七年级数学图形的初步认识全章学案-1
人教版初中数学七年级上册《图形的初步认识》复习精品导学案
1DCBADCBO DCBA人教版初中数学七年级上册《图形的初步认识》复习精品导学案图形的初步认识复习1班级: 座号: 姓名:【学习目标】1.通过复习,加深对角的相关知识的理解;2.学会求角度的相关问题,并能初步使用几何语言进行表述. 【学习重点】角的相关知识及角度的简单计算.【学习难点】能初步使用几何语言(符号语言)表述角的简单运算.【学前准备】相关数学名词:角、角的平分线、余角、补角、余角和补角的性质、方位角. 1.如图,∠A 也可以表示为 ;∠BCD 也可以表示为 ;∠ABD 也可以表示为 ;∠ADC 能否表示为∠D ,为什么? 2.时间是8点30分,钟表上的时针和分针构成的角是 度. 3.如图,三角形ABC 中,点D 在边AB 上 (1)图中共有个角;分别表示为 ; (2)若∠ACB=90°,则图中互余的角有哪几对?互补的角有哪几对?4.下列说法正确的是( )A .一个角的补角一定大于这个角B .锐角与钝角互补C .一个角的余角一定大于这个角D .一个锐角的补角比它的余角大90° 5.(1) 若∠A =46°,则∠A 的余角= °;∠A 的补角= °. 6(1(27.一个锐角的补角是它的余角的3倍,求这个角的度数.【课堂探究】8.根据图形填空并计算:EDC BAEOC BA DEOCBADBCA(1)∠AOC= + ; (2)∠AO C -∠AOB = ;(3) ∠AOB+∠COD = - ; (4) 若∠AOD =126°,∠COD =60°,射线OB 平分∠AOC , 求∠BOD 的度数.9.如图,∠AOB =130°,OC 是∠AOB 内任意一条射线,OD 平分∠AOC ,OE 平分∠BOC , ∠AOD=α,求∠BOE 和∠DOE 的度数.10.如图,O 是直线AB 上一点,OE 平分∠BOC , (1)若∠AOC=50°,求∠AOE ;(2)若在∠AOC 的内部有一条射线OD 且∠DOE=90°,∠AOD=α, 请问射线OD 是∠AOC 的平分线吗?试说明理由.【课后作业】11.如图,下列说法中,不正确的是( )A .∠DBC 可以表示成∠B B .∠BAC 可以表示成∠α北东OC .∠DAC 可以表示成∠1D .∠BAC 可以表示成∠A 12.下列角度的角,不能用一副三角尺直接画出的是( ) A .15° B .75° C .25° D .120° 13.3点30分,钟表的时针和分针构成的角是 度;14.若∠α =62°,则∠α的余角= ;∠α的补角= . 15.若∠AOB=80°,∠BOC=50°,则∠AOC= °.16.若∠AOB=100°,OC 平分∠AOB ,OD 平分∠BOC ,则∠AOD= °. 17.如图所示,C 是线段AB 的延长线上一点,D 是BC 的中点,E 是AC 的中点, (1)若10AB =,8BC =,求EC 和DE 的长. (2)若m =AB ,n =BC ,此时DE 的长是多少?18.如图,货轮A 和客轮B 同时从码头O 出发,货轮A 沿北偏东30°的方向航行60海里,此时, 客轮B 沿南偏东60°的方向航行了80海里,若以0.5cm 代表20海里. (1)在右图中分别画出货轮A 和客轮B 的位置;(2)量出图中AB 的长,并计算货轮A 和客轮B 的实际距离.19.如图5,已知点O 为直线AB 上一点,OD 平分∠BOC ,90DOF ∠= (1)若40BOC ∠=,求AOF ∠的度数; (2)若COD ∠=α,EOF α∠=2,猜想OE是图中哪个已知角的平分线?请说明理由.20.如图,长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B’处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A’处,得折痕EN,求∠NEM的度数.(参照课本P149第12题在图中标上字母)。
七年级数学上册 几何图形的初步认识学案 冀教版
《几何图形的初步认识》学习方案本章学习目标:认识常见的几何体和平面图形,理解点动成线、线动成面、面动成体,识别常见几何体的表面展开图、识别从不同方向看几何体得到的三视图、识别用平面截几何体得到的平面图形,形成良好的空间观念,增强学习几何的信心。
本章中考要求:在实际背景中认识理解点、线、面。
分值2~3分,以选择题、填空题为主。
本章基本概念:1、什么是几何图形?对于各种物体,如果不考虑它们的 、 和 ,而只注意它们的 (如方的、圆的)、 (如长度、面积、体积)、和 (如垂直、平行、相交),就得到了我们要学习的几何图形.实物和几何图形之间的关系是具体与抽象之间的关系。
典型考题:2010河北第23题.(本小题满分10分) 观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q 与点O 间的最小距离是 分米;点Q 与点O 间的最大距离是 分米;点Q 在l 上滑到最左端的位置与滑到最右端位置间的距离是 分米.2、几何图形包括 (几何体)和 .像正方体、长方体、棱柱、圆锥、球等,它们都是 ;像线段、直线、三角形、长方形、梯形、正六边形、圆等,它们都是 . 几何体和平面图形的共同点是他们都是几何图形,不同点是平面图形计算周长、面积,几何体计算表面积和体积。
几何体是由平面图形围成的。
典型考题2010河北(本题2分)如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3, 则□ABCD 的周长为A .6B .9C .12D .153、常见平面图形的面积或者周长计算公式:周长周长面积面积 面积周长面积 4、常见几何体的体积计算公式:图14-1l 图14-2AB CD图2典型考题(2011调研卷本题3分).如图1把一个长方体的礼品盒用丝带打上包装,打结部分需要丝带45cm ,那么打好整个包装所用丝带总长为 cm .5、几何体都是由 围成的.如长方体有 个面,这些面都是平的,圆柱有 个底面,都是平的,一个 面,是曲的.球有一个面,是 的.可见面可以分为 面和 面.类似的线也可以分为 线和 线.包围着几何体的是 ,面与面相交成 ,线与线相交成 .点、线、面是几何图形的 .点动成 ,线动成 ,面动成 . 典型考题 (1)、左边的图形绕着虚线旋转一周形成的几何体是由右边的( ).A B C D(2)、图中的立体图形是由哪个平面图形旋转后得到?请用线连起来.、(3)、将三角形绕直线l 旋转一周,得到图4所示的立体图形的是( ).6、常见的几何体通常分为球体、柱体和锥体、台体四类。
七年级数学 第十五讲 图形的初步认识1教案 人教新课标版
第十五讲 图形的初步认识(1)知识点:一 1、几何图形 2、立体图形 3、平面图形二、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理:过两点有且只有一条直线。
简称两点确定一条直线。
4、线段的比较:(1)叠合比较法;(2)度量比较法。
5、线段公理:“两点之间,线段最短”。
连接两点的线段的长度,叫做这两点的距离。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
例1、请你在右边的方格中画出如左图所示几何体的三视图:例2、若如右平面展开图折叠成正方体后,相对面上的两个数之和为5,则x +y +z=_______________。
例3、如图所示,写出图中各立体图形的名称巩固练习:1、下面的图形中,圆锥的侧面展开图是 ( )A B C D2.将如图所示的正方体沿某些棱展开后,能得到的图形是( )A .B .C .D .321423、下列图形中,哪一个是正方体的展开图( )4、如图所示是由几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体的主视图和左视图:例4、看图回答问题 (1)图中有线段 条、分别是 、 、 ;(2)图中有射线 条、分别是 、 、 、 、 、 ;(3)图中有直线 条,它是 ;变式练习:(1)如图,该图中不同的线段共有_______条.分别是 ;(2)图中有射线 条、分别是(3)图中有直线 条,它是 。
七年级上册第4章图形的初步认识全章教案
课题:4.1.1几何图形(第1课时)一、教学目标1.知道图形分为立体图形和平面图形,能辨认常见的立体图形和平面图形.2.知道立体图形的某些面是平面图形,会在立体图形中指出平面图形,培养空间观念.二、教学重点和难点1.重点:辨认常见的立体图形.2.难点:辨认棱柱、棱锥.三、教学过程(教学说明:本节课用到的教具较多,课前需要作认真的准备)(一)创设情境,导入新课师:从今天开始,我们将学习第四章图形认识初步.(板书:第四章图形认识初步)本节课我们首先学习什么是图形.(板书:图形)(二)尝试指导,讲授新课师:什么是图形?在小学里,在日常生活中,我们已经接触过很多图形.师:(出示正方体模型)这是什么图形?生:正方体.(没有学生知道,教师直接告诉)师:(将画有正方体的纸贴到黑板上)这张纸上画的是什么图形?生:正方体.(师板书:正方体)(以下师依次出示长方体、圆柱、圆锥、球的模型,教学过程同上)师:(出示三棱柱模型)这是什么图形?生:……(学生很可能回答不出)师:这个图形叫棱柱.师:(将画有三棱柱的纸贴到黑板上)这张纸上画的是什么图形?生:棱柱.(师板书:棱柱)师:(出示六棱柱模型)这又是什么图形?生:……(学生很可能回答不出)师:这个图形也是棱柱.师:(将画有六棱柱的纸贴到黑板上)这张纸上画的是什么图形?生:棱柱.(师板书:棱柱)师:(三棱柱、六棱柱的棱垂直桌面放置)这两个图形都是棱柱,但它们的形状还是有不一样的地方,有什么不一样的地方?生:……(多让几位同学说)师:(演示三棱柱)这个棱柱相对的这两个面都是三角形,(演示六棱柱)这个棱柱相对的这两个面都是六边形,所以我们把这个棱柱叫做三棱柱,(板书:三)把这个棱柱叫做六棱柱.(板书:六)师:(三棱柱的棱平行桌面放置)三棱柱像我们生活中见过的什么东西?生:……(多让几位同学说)师:三棱柱挺像是一个帐篷.师:(六棱柱的棱垂直桌面放置)六棱柱像我们生活中的什么东西?生:……(多让几位同学说)师:六棱柱挺像是一个茶叶盒.(也可说其它东西)(以下师依次出示四棱锥、五棱锥,教学过程与棱柱教学基本相同)师:(指模型)刚才我们看了正方体、长方体、圆柱、圆锥、球、棱柱、棱锥,这些图形有什么共同的特点呢?(稍停)它们都是立体图形.(板书:立体图形)师:(指板书)这些立体图形在我们生活中都是常见的,请大家把课本翻到118页,(稍停)上面一排印了一些实物,这些实物是什么东西?生:地球仪、魔方、现代汉语词典、沙堆、铅笔、建筑物.师:这些实物是什么立体图形呢?请大家把实物与下面一排的图形用线连起来.(生连线,师巡视)师:说说你是怎么连线的?生:……师:这位同学连得对不对?(有不对的,其他同学纠正)(三)试探练习,回授调节1.师出示一些大图片,让学生找立体图形.(四)尝试指导,讲授新课师:(指板书)正方体、长方体、圆柱、圆锥、球、棱柱、棱锥都是立体图形,除了这些立体图形,还有其它的立体图形吗?生:……(多让几位同学发表看法)师:(出示两个模型的组合图形,譬如将正方体与圆锥组合在一起)这个图形是立体图形吗?师:(出示三个模型的组合图形)这个图形是立体图形吗?师:(出示四个模型的组合图形)这个图形是立体图形吗?师:这些图形都是立体图形,将一些立体图形组合在一起,我们可以得到各种各样的立体图形.师:实际上,只要图形的各部分不都在同一个平面内,也就是说图形不是平平的,这样的图形都是立体图形.一棵树可以看成是一个立体图形,一朵花可以看成是一个立体图形,一只藏羚羊可以看成是一个立体图形,雄伟的布达拉宫可以看成是一个立体图形,甚至整座城市也可以看成是一个立体图形.师:与立体图形相对的是平面图形.(板书:平面图形)平面图形是各部分都在同一个平面内的图形,也就是说是平平的那种图形.(师在黑板上贴出画有正方形、长方形、三角形、平行四边形、梯形、五边形、六边形、圆、扇形的纸)师:这些图形是常见的平面图形,你能说出它们的名称吗?生:……(生说师板书)师:除了这些常见的平面图形,平面图形还有很多,实际上只要各部分都在同一平面内的图形都是平面图形.五星红旗图案是平面图形,剪纸图案是平面图形,奥运五环是平面图形.师:好了,现在我们可以对“图形”作一个总结了,谁能说说对图形的认识?生:……师:(指准板书)图形分为立体图形和平面图形.(板书:)常见的立体图形有正方体、长方体、圆柱、圆锥、球、棱柱、棱锥等,立体图形还有很多很多,无穷无尽,(板书:……)只要各部分不都在同一个平面内的图形都是立体图形.常见的平面图形有正方形、长方形、三角形、平行四边形、梯形、五边形、六边形、圆、扇形等,平面图形还有很多很多,也是无穷无尽,(板书:……)只要各部分都在同一个平面内的图形都是平面图形.师:(指板书)我们知道,立体图形和平面图形是两种不相同的图形,但这两种图形相互之间是有联系的,立体图形与平面图形有什么联系呢?生:……(多让几位同学说,要积极肯定学生回答中的合理部分)师:立体图形和平面图形的联系是,立体图形的某些面是平面图形.(画,并板书:立体图形的某些面)师:(演示长方体模型)这个长方体的这一面是什么图形?生:……(多演示长方体的几个面)师:(演示圆锥模型)这个圆锥的底面是什么图形?生:圆.师:(演示棱柱模型)这个棱柱的这一面是什么图形?生:……(多演示棱柱的几个面)师:(演示棱锥模型)这个棱锥的这一面是什么图形?生:……(多演示棱锥的几个面)(五)试探练习,回授调节2.课本P练习.119(只要求学生回答:各立体图形的表面中包含哪些平面图形?如第一个立体图形的表面中有2个圆,又如第三个立体图形的表面中有2个五边形、5个长方形.如果学生对第五个立体图形的感知有困难,师可以告诉这个立体图形的构成,即上面是一个棱锥,下面是一个长方体.答题用口答形式)(六)归纳小结,布置作业师:本节课我们学习了什么是图形,图形分为立体图形和平面图形.虽然立体图形和平面图形是两种不同的图形,但它们之间是有联系的,什么联系呢?生:立体图形的某些面是平面图形.习题1.2.3.做在课本上)(作业:P123课题:4.1.2点、线、面、体(第1课时)一、教学目标1.认识体、面、线、点的概念,从静态角度认识体、面、线、点之间的关系,即“体由面围成,面面相交成线,线线相交成点”.2.从动态角度认识点、线、面、体之间的关系,即“点动成线,线动成面,面动成体”.3.通过观察图形,了解图形是由点、线、面、体组成的.二、教学重点和难点1.重点:点、线、面、体的概念及其关系.2.难点:点动成线,线动成面,面动成体.三、教学过程(一)创设情境,导入新课师:上节课我们学习了什么是图形,通过学习我们知道,图形分为立体图形和平面图形.(边讲边出示模型)正方体、长方体、圆柱、圆锥、球、棱柱、棱锥都是立体图形,而正方形、长方形、三角形、平行四边行、梯形、五边形、六边形、圆、扇形都是平面图形.立体图形与平面图形相互之间是有联系的,立体图形的某些面是平面图形.无论立体图形还是平面图形都是图形,无论我们走到哪里,我们所看到的无处不是图形,我们生活在图形的世界里!小到一粒沙子是图形,大到整座城市也是图形.大家可以欣赏欣赏课本115页上的那个图形,(稍等)这个图形画的是什么?生:北京奥林匹克公园.师:你能把北京奥林匹克公园的情况向大家介绍一下吗?生:北京奥林匹克公园的中心是可容纳8万人的国家体育场,周围分布着田径、体操、游泳等14个场馆,整个公园占地1215公顷,总建筑面积约200万平方米.师:这么大的北京奥林匹克公园也可以看成是一个图形,这个图形真是够大的.大家仔细看看这个图形,里面到底有一些什么东西?生:……(学生列举出来的可能是实物,如建筑物、树等等,要多让几位同学说)师:在这个图形中同学们找出了不少东西,但恐怕还没有找全.老师不用看图形,就敢说,北京奥林匹克公园这个图形中只有四样东西.这么大的图形中怎么只有四样东西?是的,只有四样东西.这就神了,这四样东西是什么东西呢?这四样东西就是点、线、面、体.(板书课题:4.1.2点、线、面、体)本节课我们就来学习点、线、面、体.(二)尝试指导,讲授新课师:任何复杂的图形都是由点、线、面、体组成.(板书:图形由点、线、面、体组成)师:什么是体?(板书:体)有体积的东西都是体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是体.师:你能举出生活中是体的东西?生:……(多让几位同学说)师:生活中的体有很多很多,一个土豆是体,一头牛是体,一个人的身体是体,一幢房子也是体.一样东西只要有体积,不管是什么形状,都是体.师:什么是面?(板书:面,并演示长方体模型)包围着体的是面.这个长方体共有几个面?生:6个.师:(演示长方体模型)这6个面都是平平的.师:(出示圆柱模型)包围着圆柱的是面,这个圆柱有几个面?生:……师:(演示圆柱模型)这个圆柱有3个面,这个面和这个面是平平的,这个面是弯曲的.师:(出示圆锥模型)包围着圆锥的也是面,这个圆锥有2个面,哪一个是平平的?哪一个是弯曲的?(生上台指出来)师:从上面的讨论,我们可以知道,面有两种,一种是平面,一种是曲面.(板书:(平面、曲面))在生活中,我们也能找到平面和曲面的例子,譬如,平静的水面给我们留下平面的印象,而有浪的水面给我们留下曲面的印象.师:什么是线?(板书:线)这就是线.(边讲边画一条直线、一条曲线)线也有两种,笔直的是直线,弯曲的是曲线.(板书:(直线、曲线))师:(指模型)你能在这些立体图形中找出直线和曲线吗?(多让一些学生找)师:在生活中,我们同样能找到很多线的例子,譬如,课桌的边沿、织卡垫的线、寺庙壁画优美的线条、夜晚流星划过天空时的那一道光线,这些都给我们留下线的印象.师:什么是点?(板书:点)这就是点.(边讲边画点)师:知道了点、线、面、体是什么,就不难想像,任何图形都是由点、线、面、体组成的,北京奥林匹克公园这个图形当然也是由点、线、面、体组成的.(三)试探练习,回授调节练习1.1.课本P122(四)尝试指导,讲授新课师:知道了什么是点、线、面、体,下面我们讨论点、线、面、体之间的关系. 师:(出示长方体模型)体与面有什么关系呢?生:……(多让学生发表看法,要肯定学生回答中的合理部分)师:(演示长方体模型)体是由面围成的.(连线并板书:体由面围成)师:面与线有什么关系呢?(连线)师:(演示长方体模型)请大家注意观察,这两个面相交的地方是什么?生:线.师:(演示长方体模型)这两个面相交的地方是什么?生:线.(再演示其它模型,让学生真真切切地看清楚线面关系)师:哪位同学来概括面与线的关系?生:……师:面与面相交的地方是线,简单地说就是,面面相交成线.(板书:面面相交成线)师:线与点又有什么关系呢?(连线)师:(演示长方体模型)请大家注意观察,这两条线相交的地方是什么?生:点.师:(画相交线)这两条线相交的地方是什么?生:点.师:可见,线与线相交的地方是点,简单地说就是,线线相交成点.(板书:线线相交成点)师:哪位同学把点、线、面、体的关系完整地说一遍?生:体由面围成,面面相交成线,线线相交成点.师:这位同学所说的只是点、线、面、体的一种关系,点、线、面、体还有另一种关系,什么关系呢?下面我们就来讨论这种关系?师:请大家拿起笔,笔尖可以看作是一个点,这个点在纸上运动时,形成了什么?生:形成了线.师:从画线这样一个简单的现象中,你看出了点与线之间有什么关系?生:……(多让几位同学说)师:点动成线.(板书:点动成线)师:画线是点动成线的例子,老师还可以举一个点动成线的例子.在一望无际的沙漠上,一个孤独的旅行者留下的一排长长的足迹.在这个例子,点是什么?线是什么?线是怎么形成的?生:……师:点动成线,那么线动成什么?(用一根细棒比划线动)师:把你的观点在小组里交流,为了让其他同学听明白你的意思,最好把你的观点用实物演示出来.(生小组交流,师巡视倾听)师:线动成什么?生:线动成面.(师板书:线动成面)师:(出示湿布条)这是布条,这根布条可以看作是一条线,这条线在黑板上运动时,就形成了面.(边讲边演示)这就是线动成面的意思.师:谁能举出生活中线动成面的例子.生:……(如汽车雨刷在挡风玻璃上运动、用扫帚扫地、用刷子刷油等)师:点动成线,线动成面,那么面动成什么呢?(边讲边演示长方形硬纸板绕它一边旋转)生:……(多让几位同学说)师:长方形绕它的一边旋转,形成了圆柱.师:(边讲边演示)直角三角形绕它的一边旋转,形成了什么图形?生:圆锥.师:通过这两个实际演示的例子,我们可以得出,面动成什么?生:面动成体.(师板书:面动成体)(五)试探练习,回授调节2.课本P122练习2.(六)归纳小结,布置作业师:本节课我们学习了点、线、面、体.图形是由点、线、面、体组成的,点、线、面、体之间有两种联系,第一种关系是什么?生:……师:第二种关系是什么?生:……(作业:阅读4.1多姿多彩的图形P116-P123)课题:4.2直线、射线、线段(第1课时)一、教学目标1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.4.经历画图过程得出:经过两点有一条直线并且只有一条直线.二、教学重点和难点1.重点:按照语句画出图形.2.难点:几何语言.三、教学过程(一)创设情境,导入新课师:前面我们看了各种各样的立体图形和平面图形,这些图形都有些什么性质?这是数学要研究的.怎么来研究呢?聪明的做法是,先研究简单图形,再研究复杂图形.那我们应该从什么样的简单图形开始研究?请看黑板.(二)尝试指导,讲授新课师:(在黑板上画一条水平直线)这是一个什么图形?生:直线.师:(在黑板上画一条斜向直线)这是一个什么图形?生:直线.师:你是怎么知道它们都是直线?生:它们都是笔直的.师:从样子上看,直线都是笔直的,这是直线的第一个特点.(板书:直线特点:笔直的)直线还有第二个特点,直线是向两方无限延伸的.(分别指第一条直线和第二条直线,说明直线向两方无限延伸,然后板书:向两方无限延伸的)师:知道了直线的特点,接下来我们要学习直线的表示.(板书:直线的表示)有些同学可能有疑问,直线的表示是什么意思?为什么要学习直线的表示?回答这些问题,我们可以换一个问题来考虑.人都有自己的名字,你说说人为什么要有自己的名字?生:……师:人都有自己的名字,这样可以把不同的人区别开来.直线也是一样,每条直线也都需要有自己的名字,这样可以把直线与直线区别开来.给直线取名字就是直线的表示.师:怎么给直线取名字?或者说,怎么表示直线呢?师:(指水平直线)我们可以用一条直线上的两点来表示这条直线.譬如,(边讲边画)直线上一点是点A,(边讲边画)直线上另一点是点B,这条直线可以记作直线AB.(板书:直线AB)需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.师:表示直线还有第二种方法.(指斜直线)在这条直线的旁边写上小写字母l(边讲边写),这条直线可以记作直线l.(板书:直线l)(三)试探练习,回授调节1.判断下面表示直线的方法是否正确,如果错误,指出错在哪里:记作直线P.P(6)(5)A记作直线A ;记作直线AB ;BA记作直线m ;m (4)(3)(2)a b记作直线ab ;记作直线EF ;F E (1)2.读下列语句,并按照这些语句画出图形: (1)画直线CD ; (2)画直线a.(四)尝试指导,讲授新课(师出示右图) 师:(指图)在这个图形中,直线l 与点O 有什么关系? 生:……(多让几位同学说)师:准确地说,应该这样说:点O 在直线上(板书:点O 在直线上).也可以说,直线经过点O (板书:(直线经过点O )).(指准图)点O 在直线上,与直线经过点O 是一个意思.师:同桌之间把这两句话说一说.(同桌互相说) (师出示右图) 师:(指图)在这个图形中,直线l 与点P 有什么关系? 生:……(多让几位同学说)师:准确地说,应该这么说:点P 在直线l 外(板书:点P 在直线l 外).“点P 在直线l 外”,还有另一种说法,还可以怎么说呢? 生:直线l 不经过点P (师板书:(直线l 不经过点P )). (师出示右图)OllbaO师:(指图)在这个图形中,直线a和直线b有什么关系呢?生:……(多让几位同学说)师:(指准图)直线a和直线b相交,详细一点说可以这样说,直线a和直线b相交于点O.(板书:直线a和直线b相交于点O).点O就叫做它们的交点.交点O有什么特点?师:(指准图)交点O 既在直线a 上,又在直线b 上,交点O 是直线a 和直线b 的公共点. (五)试探练习,回授调节3.辨析题:扎西认为点A 在直线l 上,卓玛认为点B 在直线l 上,你认为谁的看法正确?BAll4.按照图形填空:(1)点A 在直线m ,也可以说,直线m 点A(2)点B 在直线m , 也可以说,直线m 点5.读下列语句,并按照这些语句画出图形: (1)点P 在直线l 上; (2)直线l 不经过点O ; (3)点O 在直线AB 上;(4)直线AB 和直线CD 相交于点P. (六)尝试指导,讲授新课6.探究题:(1)画出经过点A 的直线,你认为经过一点A 可以画几条直线?(2)画出经过点A 、点B 的直线,你认为经过两点A 、B 可以画几条直线?(3)从上面画图,你得出了什么结论? (生做探究题,师巡视引导)师:你认为经过一点A 可以画几条直线? 生:无数条.(师画若干条经过A 的直线) 师:你认为经过两点A 、B 可以画几条直线? 生:一条.(师画经过A 、B 的直线) 师:从画图,你得出了什么结论? 生:……(多让几位同学说) 师:从画图,我们可以得出,(指准图)经过一点有无数条直线;经过两点有一条直线,并且只有一条直线.(板书:经过两点有一条直线,并且只有一条直线)请大家把这个结论读一遍.(生读)师:这个结论可以简单地说成:两点确定一条直线(板书:(两点确定一条直线)). 师:两点确定一条直线是什么意思?生:经过两点有一条直线,并且只有一条直线.师:两点确定一条直线是一个有用的结论.譬如,如果你想把一根细木条固定在墙上,你需要钉几个钉子?mA师:为什么2个够了?生:因为两点确定一条直线.师:又譬如,我们为什么可以用一条直线上的两点来表示这条直线?这也是因为两点确定一条直线.(七)归纳小结,布置作业师:本节课我们学习了直线,谁来把直线的知识归纳一下?生:……(师给以补充)(作业:P练习(1)(2))129课题:4.2直线、射线、线段(第2课时)一、教学目标1.知道射线、线段的意义,会表示射线和线段,会按语句画出射线和线段.2.知道直线、射线、线段的区别和联系.二、教学重点和难点1.重点:射线、线段的意义和表示.2.难点:按语句画图形.三、教学过程(一)基本训练,巩固旧知1.按下列语句画出图形:(1)点B在直线EF上;(2)直线CD不经过点A;(3)经过点O的三条直线a、b、c;(4)直线AB、CD相交于点B.(二)创设情境,导入新课l(师出示右图)师:(指图)上节课我们学习了直线,(板书:4.2直线)本节课我们将学习射线和线段.(板书:射线、线段)(三)尝试指导,讲授新课师:什么样的图形是射线呢?射线是直线的一部分.是哪一部分呢?(指图)请看这个图,这是一条直线,我们把点A左边部分擦掉(边说边擦),剩下的部分就是一条射线.也就是说,(指准图)直线上的一点和它一旁的部分叫做射线.点A 这一点叫做这条射线的端点.(板书:端点)端点就是最边边上的点.师:(指图)从射线的样子看,射线很像手电筒照射出去的光线,射线又像枪射出的子弹的线路,“射线”这个名称也正是因为它的样子而得到的.师:射线的表示与直线的表示基本上是一样的.(指图)这条射线怎么表示? 生:射线AB.(师板书:射线AB )师:这条射线还有另外一种表示,怎么表示? 生:射线l.(板书:或射线l )师:不知道同学们听出来了没有,刚才老师说,射线的表示与直线基本上是一样的,这说明射线的表示与直线的表示还是有点不一样.什么地方有点不一样呢?在表示射线时,(指准图)表示端点的字母A 必须写在前面,所以这条射线表示成射线AB ,不可以表示成射线BA.而对直线来说,用直线AB 表示,用直线BA 表示都是一样的.(师出示右图)师:学习了射线我们再来看线段.什么样的图形是线段呢?线段也是直线的一部分.是哪一部分呢?(指刚出示的直线)请看这个图,这是一条直线,我们把点A 左边部分擦掉(边说边擦),再把点B 右边部分擦掉(边说边擦),剩下的部分就是一条线段.也就是说,(指准图)直线上两点和它们之间的部分叫做线段.(指准图)线段最边边上的两点A 、B 叫做这条线段的端点.(板书:端点、端点) 师:这条线段怎么表示? 生:线段AB.(板书:线段AB )师:在这条线段的上面写上小写字母a (边讲边写a ),这条线段还可以表示为线段a.(板书:或线段a ) (四)试探练习,回授调节2.指出下列各图是直线、射线还是线段,并按要求填空:Q 是 ,记作 ,端点是 .是 ,记作 ,端点是 ; 是 ,记作 ,端点是 ; P QP 是 ,记作 ;(4)(3)(2)(1)3.口答:射线有几个端点?线段有几个端点?直线有没有端点?4.按照下列语句画图形:CDD C C D 画线段CD : 画射线DC : 画射线CD : 画直线CD : D C (1)(2)(3)(4)5.填空:图中以O 为端点的射线是 .O 图中以O 为端点的射线是 ;OP(1)(2)6.按下列语句画出图形:(1)经过点O 的三条线段a 、b 、c ; (2)线段AB 、CD 相交于点O ; (3)线段AB 、CD 相交于点B ;(4)P 是直线a 外一点,过点P 有一条直线b 与直线a 相交于点Q. (五)归纳小结,布置作业师:这两节课我们学习了三种基本图形,这三种基本图形是哪三种? 生:直线、射线、线段.师:我们一起来回顾有关直线、射线、线段的知识.(作业:P 132习题2.3.4.)课题:4.2直线、射线、线段(第3课时)一、教学目标1.会用尺子测量和圆规截取两种方法,画一条线段使它等于已知线段.2.会用尺子或圆规比较两条线段的长短.二、教学重点和难点1.重点:画一条线段使它等于已知线段,比较两条线段的长短.2.难点:用圆规.三、教学过程(一)尝试指导,讲授新课a(师出示右图)师:(指图)这是线段a,现在要你画一条线段AB,要求线段AB与线段a一样长,(板书:画一条线段AB,使AB=a)怎么画呢?请大家独立完成下面的探究题.1.探究题:(1)画一条与线段a一样长的线段AB;a(2)你还能用其它方法画吗?(生画图,师巡视)师:你是怎么画的?把你画图的方法在小组里交流交流.(生小组交流,师巡视倾听)师:(指图)画与线段a一样长的线段,你是怎么画的?生:……(多让几位同学说,让学生中不同的画法都说出来,肯定正确的画法,指出错误画法错误的地方)师:画与线段a一样长的线段AB,一般有两种方法.第一种方法是用尺子量(板书:用尺子量),先用尺子量出线段a的长度(边说边量),线段a的长度是30厘米,然后画出30厘米长的线段AB(边说边画).线段AB就是我们要画的与线段a一。
最新人教版七年级数学上册 第四章《图形初步认识》教案1 新人教版
图形初步认识 活动 目标及重难点 教学目标知识与技能 应用本章知识解决一些实际问题过程与方法 通过实验、操作,提高对图形的认识能力,探索学习空间与图形的方法情感、态度、价值观 在解决一些实际问题的过程中,体验推理的意义,获取学习的经验。
教学重难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法.教具准备一、例题讲解 例1如图1-1,正方体盒子中,一只蚂蚁从B 点沿正方体的表面爬到D 1点,画出蚂蚁爬行的最短线路 .分析:正方体是空间图形,解决空间图形的问题,经常是将空间图形转化为平面图形,这正是转化思想的体现.解:将正方体展开成平面图形,如图1-2所示,因为两点之间线段最短,所以,在图1-2中,BD 1就是所要求的最短线路.例2一个角的补角是它的3倍,这个角是多少?分析:设这个角的度数为x ,则它的补角为180-x ,根据题意,可列出一元一次方程来求解.解:设这个角的度数为x ,则有180-x =3x.解这个方程,得x =45°.所以这个角是45°.例3如图2,点O 是直线A 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线, 求∠DOE 的度数.分析:在解决线段的中点和角的平分线问题时,某个环节整体处理,能化难为易,轻松求解.分别求出∠DOC 、∠EOC 的度数,再相加得到∠DOE 的度数,是不可能的,可将∠DOE 作为一个整体来考虑.解:因为OD 是∠AOC 的平分线,OE 是∠COB 的平分线,所以∠COD =21∠COA ,∠COE =21∠COB , 而∠COA +∠COB =180°,图1 图2图3所以∠DOE =21(∠COA +∠COB )=21×180°=90°. 例4 如图3-173所示,回答下列问题。
图3-173(1)图中有几条直线?用字母表示出来;(2)图中有几条射线?用字母表示出来;(3)图中有几条线段?用字母表示出来。
图形认识初步全章学案
七年级数学“先学后教”导学案第四章 图形认识初步4·1·1 几何图形(第一课时)一、学习目标初步了解几何图形、立体图形和平面图形的概念;能识别一些基本的几何体。
二、阅读思考仔细阅读课本P116—1118页,了解什么叫几何图形;什么是立体图形;什么是平面图形?1、 统称为几何图形; 是立体图形; 是平面图形;请你分别写出几何图形、立体图形、平面图形各两个实例。
2、完成课本P118页思考;三、尝试练习1、课本P119页练习;P123-125页习题4.1第1、2、3题2、下列图形中,属于立体图形的有( )①正方形;②圆;③棱柱;④球;⑤长方体;⑥圆柱;⑦六边形;⑧棱锥A .①②⑦B .③④⑤⑦ C3、一个正方体的每个面分别标有数字1,2, 3,4,5,6.根据图中该正方体A,B,C三种 状态所显示的数字,可推出“?”处的数字是四、交流展示 1、在组内讲解阅读思考,并交流。
2、在组内指定同学报答案,答案不同的先记下,最后交流展示。
3、教师巡视各组学习情况,并适时点拨或启发五、当堂反馈1、下列说法中错误的是( )A .棱柱有两个互相平行,形状相同,大小相等的面B .棱锥除一个面外,其余各面都是三角形C .圆柱的侧面可能是长方形D .正方体是四棱柱,也是六面体2、课本P125页习题4.1第7、8题。
3、如图,左面的几何体叫三棱柱,它有五个面,9条棱,6个顶点,中间和右边的几何体分别是四棱柱和五棱柱。
(1)四棱柱有 个顶点, 条棱, 个面;(2)五棱柱有 个顶点, 条棱, 个面;(3)你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?(4)n 棱柱有几个顶点,几条棱,几个面吗?六、反思小结1、立体图形、平面图形与几何图形的关系是什么?2、请举出生活中一些类似于棱柱、圆柱、圆锥及球的物体的名称(各举三例)4·1·1 几何图形(第二课时)一、学习目标1、能画出从不同方向看一些基本几何体以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体。
新人教版七上第四章图形认识初步全章教案
(此文档为word格式,下载后您可任意编辑修改!)4.1.1 几何图形(1)【教学目标】1、通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2、能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.3、从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。
【教学难点】从具体事物中抽象出几何图形【知识重点】识别简单几何体【教学过程】(师生活动)一、引入新课(播放北京申奥成功的欢庆之夜)2001年7月13日北京申奥成功,这是每一个中国人终生难忘的日子.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)你能从中找到一些熟悉的图形吗?(学生看书)小组讨论交流.你能再举出一些常见的图形吗?学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流.在这些图片或实物中有我们熟悉的图形吗?二、找一找思考第118页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?三、议一议(出示棱柱、圆柱、棱锥、圆锥模型)看一看再动手摸一摸,说说它们的异同。
(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充。
)四、想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答。
五、赛一赛小组长组织组员完成课本118页思考题(下),并进行学习汇报。
六、课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?七、布置作业1、必做题:课本第123页习题4.1第1、2题2、选做题:课本第125页习题4.1第7、8题。
3、备选题:(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词。
图形初步认识教案初中
图形初步认识教案初中课程目标:1. 了解和掌握基本图形的特征和性质。
2. 能够识别和分类常见图形。
3. 能够运用图形的基本知识解决实际问题。
教学重点:1. 基本图形的特征和性质。
2. 图形分类和识别。
教学难点:1. 图形分类和识别。
教学准备:1. 教学课件或黑板。
2. 各种图形卡片或实物。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的各种图形,如窗户、桌子、椅子等。
2. 提问:你们能说出这些图形的名称吗?它们有什么特征?二、新课(20分钟)1. 介绍基本图形的名称和特征,如圆形、方形、三角形、矩形等。
2. 通过课件或黑板展示各种图形,让学生观察和记忆它们的特征。
3. 讲解图形的性质,如圆形的周长和面积公式,方形的对角线长度等。
4. 举例说明如何运用图形的基本知识解决实际问题,如计算面积、周长等。
三、练习(15分钟)1. 发放图形卡片或实物,让学生进行观察和分类。
2. 要求学生说出每个图形的名称和特征,并进行分类。
3. 让学生尝试解决一些实际问题,如计算图形的面积、周长等。
四、总结(5分钟)1. 回顾本节课所学的图形名称和特征。
2. 强调图形分类和识别的重要性。
3. 鼓励学生在日常生活中观察和运用图形知识。
教学反思:本节课通过引导学生观察教室里的各种图形,激发学生的学习兴趣。
通过展示课件和黑板,让学生直观地了解基本图形的特征和性质。
在练习环节,通过发放图形卡片或实物,让学生进行观察和分类,巩固所学知识。
在总结环节,回顾本节课所学的图形名称和特征,并强调图形分类和识别的重要性。
通过本节课的学习,学生能够识别和分类常见图形,并能够运用图形的基本知识解决实际问题。
七年级数学上册 第一章 基本的几何图形导学案(新版)青岛版-(新版)青岛版初中七年级上册数学学案
【创设情境】1.说出下列立体图形的名称。
①②③④⑤⑥⑦2.上题中棱柱有:,棱锥有。
(填序号)3._____、_____、_____、_____、_____、______、______等都是几何体,几何体简称_____。
【确立目标】学生熟悉学习目标并提出自己的意见。
【自主学习】观察下列实物图片,它们的形状分别类似于哪种几何体?①②③④⑤1.几何体的分类:2.棱柱与圆柱、圆锥的区别与联系:顶点棱侧面底面棱柱圆柱圆锥【合作交流】1.将下列图中的几何体进行分类,并简要说明理由。
①②③④⑤2.如图所示的各图中包含哪些简单的平面图形?①②③④3.在下图中的三幅图案中,你分别看到了哪些图形?它们是怎样组合而成的?【分组展示】【释疑解惑】小组展示自主学习与合作交流成果,板演完成。
【巩固训练】1.长方体有个顶点,经过每个顶点有条棱,共有条棱。
个面,条棱,个顶点,形状和面积完全相同的只有个面.3.把一个正方体用刀切去一部分,能否得到正方体、长方体、三棱锥、三棱柱、四棱柱、五棱柱?4.图中的的几何体由几个面围成,面与面相交成几条线?它们是直的还是曲的?【拓展提升】1.写出如图所示图形的名称:①______;②______;③______;④______;⑤_____。
①②③④⑤2.下列几何体中不是多面体的是( )A、立方体B、长方体C、三棱锥D、圆柱3.下列几何体没有曲面的是()A、圆柱B、圆锥C、球D、棱柱4.下列图案是由哪些简单的几何图形组成的?5.请你用两个圆、两个三角形和两条线段组合几幅新奇、有趣的图形,并给出文字说明。
自我评价A B C掌握知识的情况参与活动的积极性4.数一数立方体有几条棱?几个顶点?5.将包装盒沿它的某些棱剪开,并铺在平面上,得到一个怎样的平面图形?如果展开的方法不同,得到的图形相同吗?动手做一做,然后画一画。
你能得到多少种平面图形?与同学交流。
6.下列哪个图形是立方体包装盒的展开图?①②③④⑤7.你能制作一个立方体纸盒吗?与同学交流,画出你的草图。
最新冀教版七年级数学上册《几何图形的初步认识》全章教学设计(精品教案)
第二章几何图形的初步认识1.通过对丰富的实物和实例的抽象,进一步认识几何图形,尤其是点、线段、射线、直线和角,并会表示它们.2.经历观察、测量、画图、折纸等活动,了解上述图形的有关性质,发展空间观念.3.会比较线段的长短和角的大小,能估计线段的长短和角的大小.4.认识角的度量单位,会进行角的换算.5.会计算线段和角的和与差,能使用直尺和圆规作线段和角.6.与角的认识相结合认识平面图形的旋转.7.了解一些数学基本事实,掌握相关的图形关系,增强空间观念和几何直观.1.通过各种几何图形的抽象过程和图形性质及图形关系的发现和确认,进一步发展学生的数学基本思想,并在这样的活动过程中,使学生积累数学活动经验.2.通过本章的数学活动过程,培养学生发现问题、提出问题、分析问题、解决问题的能力.1.培养学生观察、操作、探究图形性质等合作意识.2.培养学生在发现问题、解决问题过程中的创新精神.本章的基本知识是:认识几何图形,了解线与角、线段与角的有关性质并学会计算,认识平面图形的旋转.本章的基本技能是:画一条线段等于已知线段,画出两条线段的和或差,作一个角等于已知角,作两个角的和或差,能进行角的度数和线段长度的计算.本章的基本数学思想是:几何图形生成过程中运用的抽象思想,图形关系发现和确认过程中运用的推理思想等.本章内容的呈现方式及特点:在本章,空间观念、几何直观、推理能力、应用意识和创新意识这些核心概念的培养与发展,是教材设计的主导思想.加强发现和提出问题、分析和解决问题的能力的培养,是本章教材设计的又一重要指导思想.【重点】1.点、线段、射线、直线和角的有关性质.2.比较线段和角的大小,按照相关要求作简单的线段和角.【难点】1.角的定义和计算.2.利用直尺和圆规按要求作线段和角.1.现实中的几何实例与教学中的几何对象是具体和抽象、特殊和一般的关系,在实际教学中,如何引导学生从具体的实例中抽象出事物的一般性,是教学中的一个难点,这方面的处理是否得当直接关系到学生能否准确地理解数学中的各种几何概念.2.几何量的度量是几何中基础而重要的问题,是培养学生准确的几何观念的重要内容.教师通过让学生使用直尺、三角板、量角器和圆规等常用的数学工具,培养学生严谨的科学态度和基本的使用工具的能力,对于学生在日常生活中使用其他工具解决实际问题也很有帮助.3.几何知识应该在几何的实际背景中讲授.本章内容包含了大量的生活实例,有利于学生克服数学中抽象而形式化的困难,对学生准确理解并掌握几何概念以及它们的一些简单性质十分有利.2.1 从生活中认识几何图形 1课时2.2 点和线1课时2.3 线段的长短1课时2.4 线段的和与差1课时2.5 角以及角的度量 1课时2.6 角的大小1课时2.7 角的和与差1课时2.8 平面图形的旋转 1课时回顾与反思1课时2.1 从生活中认识几何图形1.进一步认识常见的几何图形,并能用自己的语言描述它们的特征.2.体会点、线、面是几何图形的基本要素.进一步经历几何图形的抽象过程.培养学生从具体到抽象的思想方法.【重点】从实物背景中得到几何图形的特征.【难点】在小学的基础上进一步增强对几何图形的抽象认识.【教师准备】多媒体课件.【学生准备】立体图形的实物.导入一:从北京天坛主体建筑物的外观上看,它是由不同形状和大小的几何体构成的吗?[设计意图] 主题图是北京天坛的照片,它可以看作是由不同形状、不同大小、不同位置的几何体组成的.用此图导入可以比较好地帮助学生从生活中去认识几何图形的特征.导入二:物体的构成包含多种元素,几何图形也是如此.以长方体为例,我们来分析一下几何图形的构成元素.(1)观察长方体模型,如图所示,它有几个面?面与面相交的地方形成了几条线?棱与棱相交形成了几个顶点?(2)拿出三棱柱模型让学生思考以上问题.(3)你能说出构成几何图形的元素包含哪些吗?学生思考交流,师生共同总结:几何图形的构成元素包括点、线、面.[设计意图] 引导学生在已有知识的基础上,通过主动地观察、思考,体会几何图形是由点、线、面构成的,从构成元素的角度把握几何体的特征,从而引入点、线、面的概念.[过渡语] 现实生活中的物体,它们的形状、大小及它们之间的位置关系,反映着它们本身的性质和彼此的关联,这正是人们需要探究清楚的问题.活动1 观察与思考——认识几何图形1.观察图片,思考下列问题:(1)如果用一个“形状”来描述地球或月球,你会用什么图形来概括?预设:圆、椭圆等.(2)如果用一个“形状”来描述上图中的学具,你会用什么图形来概括?预设:长方形、正方形、六边形等.[设计意图] 本问题不要求学生给出比较准确的答案,主要通过情境问题帮助学生体验从几何图形的角度观察生活中的物体.2.几何图形对于各种物体,如果不考虑它们的颜色、材料和质量等,而只关注它们的形状(如方的、圆的等)、大小(如长度、面积、体积等)和它们之间的位置关系(如垂直、平行、相交等),就得到几何图形.图形的形状、大小和它们之间的位置关系是几何研究的主要内容.活动2 做一做——深化对几何图形的认识1.出示教材第63页问题及图片,让学生自主尝试连线.[设计意图] 帮助学生体会实物与几何图形之间的对应关系,为下一步学习做铺垫.2.如图所示,请你把每个平面图形的名称写在它的下面.[处理方式] (1)让学生自主填写.(2)思考:几何图形包括哪两种?总结:几何图形包括立体图形(几何体)和平面图形.像正方体、长方体、棱柱、圆柱、圆锥、球等,它们都是立体图形.像线段、直线、三角形、长方形、梯形、六边形、圆等,它们都是平面图形.活动3 几何体的基本要素观察以下几何体:1.几何体的面:可以看到,几何体都是由面围成的.如:长方体有六个面,这些面都是平的;圆柱有三个面,两个底面是平的,一个侧面是曲的;球有一个面,是曲的.2.几何体的线:(1)长方体中,面与面交接(相交)的地方形成线.这样的线有几条?是直的还是曲的?(12条直线)(2)在圆柱中,两个底面与侧面交接(相交)的地方形成线.这样的线有几条?是直的还是曲的?(2条曲线)3.几何体的点:在长方体中,线与线交接(相交)的地方形成点.这样的点有几个?(8个)总结:包围着几何体的是面,面与面相交形成线,线与线相交形成点.点、线、面是几何图形的基本要素.[知识拓展] 立体图形与平面图形是两类不同的图形,但它们相互联系,立体图形上的某部分就是平面图形,立体图形是由平面图形组成的.几何图形{立体图形:一个图形的各个部分不都在同一个平面上平面图形:一个图形的各部分都在同一个平面上1.下面各组图形都是平面图形的是( )A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、长方形、圆D.点、相交线、线段、正方体解析:A中球和圆锥是立体图形;B中体是立体图形;D中正方体是立体图形.故选C.2.如图所示,把梯形绕虚线旋转一周形成一个几何体,与它相似的物体是( )A.课桌B.灯泡C.篮球D.水桶解析:一个直角梯形绕垂直于底边的腰所在直线旋转一周后成为圆台.答案合适的为D.故选D.3.下列四种说法:①平面上的线都是直线;②曲面上的线都是曲线;③两条直线相交只能得到一个交点;④两个平面相交只能得到一条交线.其中不正确的有( )A.4个B.3个C.2个D.1个解析:解答本题时注意:不可认为曲面上的线都是曲线,如圆柱的母线就是曲面上的直线,故②错误;平面上也有曲线,故①错误;③④正确.故选C.2.1 从生活中认识几何图形活动1 观察与思考——认识几何图形活动2 做一做——深化对几何图形的认识活动3 几何体的基本要素一、教材作业【必做题】教材第64页练习第1,2题.【选做题】教材第65页习题A组第2题.二、课后作业【基础巩固】1.下列物体中与足球形状类似的是( )A.易拉罐B.电脑显示器C.烟囱D.西瓜2.下列有六个面的几何体的个数是( )①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱.A.1B.2C.3D.43.天空中的流星划过后留下的光线,给我们以什么样的形象( )A.点B.线C.面D.体4.对于棱柱与圆柱,围成的面中有曲面的是,有平面的是,面与面相交的线中有曲线的是,只有直线的是.5.由生活中的物体抽象出几何图形,在后面的横线上填出对应的几何体的名称.(1)足球;(2)电视机;(3)漏斗;(4)砖块;(5)纸箱;(6)铁棒.【能力提升】6.如图所示的陀螺是由下列哪两个几何体组合而成的( )A.长方体和圆锥B.长方体和三棱锥C.圆柱和三棱锥D.圆柱和圆锥7.在如图所示的几何体中,由三个面围成的几何体有( )A.1个B.2个C.3个D.4个8.下列判断正确的有( )①正方体是棱柱,长方体不是棱柱;②正方体是棱柱,长方体也是棱柱;③正方体是柱体,圆柱也是柱体;④正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个9.滚动的保龄球的轨迹是一条直线,说明了;雨刷滑过汽车的车窗得到一个扇面,说明了;将一个长方形绕一边旋转得到圆柱,说明了.10.如图所示,至少找出下列几何体的四个共同点.【拓展探究】11.一个多面体,若顶点数是4,面数为4,则棱数应为.12.用6根相同长度的木棒在空间中最多可搭成个正三角形.【答案与解析】1.D(解析:西瓜和足球都类似于球.故选D.)2.C(解析:长方体有6个面,圆柱有3个面,四棱柱有6个面,正方体有6个面,三棱柱有5个面,故有六个面的有3个.)3.B(解析:天空中的流星划过后留下的光线,给我们以线的形象.)4.圆柱棱柱和圆柱圆柱棱柱(解析:圆柱由两个平面和一个曲面围成,相交的线为两条曲线;棱柱由几个长方形与两个多边形围成,相交的线均为直线.)5.(1)球(2)长方体(3)圆锥(4)长方体(5)长方体(6)圆柱6.D(解析:上面是圆柱,下面是圆锥.)7.C(解析:除三棱锥外都是由三个面围成的.)8.B(解析:正方体和长方体都是四棱柱,棱柱和圆柱都是柱体,所以本题中②③正确.)9.点动成线线动成面面动成体10.解:(1)侧面都有长方形;(2)底面都是多边形;(3)每个面都是平的;(4)都是柱体;(5)经过每个顶点都有三条棱等.11.6(解析:这是一个四面体,即三棱锥,棱数为6.)12.4(解析:用6根火柴棒搭成正四面体,四个面都是正三角形,一共有4个.)认识几何体和认识几何图形不是一个难点,难点是从几何图形中抽象出几何体.为了突破这个教学难点,本课时在教学的过程中,遵循学生的认知规律,采取了步步诱导的教学策略,帮助学生在思考过程中,从点、线、面三个层次加深了对几何体的认识.在教学的过程中,过于依赖教材的素材,没有对课内的教材进行适度拓展.在探讨几何体的组成时,可以选取学生身边熟悉的事物,比如黑板、课桌等,这样更能形象地帮助学生认识几何体的组成.练习(教材第64页)1.解:这个几何体有8个面,18条棱,12个顶点.2.球六棱柱圆锥三棱柱圆柱习题(教材第64页)A组1.解:第一个几何体是三棱柱,平面图形有三角形(2个)、长方形(3个);第二个几何体是圆柱,平面图形有圆(2个);第三个几何体是圆锥,平面图形有圆(1个);第四个几何体是长方体,平面图形有长方形(6个).(画图略)3.解:第一个几何体有4个面,6条线,4个点;第二个几何体有6个面,12条线,8个点;第三个几何体有9个面,16条线,9个点.B组1.解:第一个物体可以看做是由几个圆柱构成的;第二个物体可以看做是球;第三个物体可以看做是由圆柱和圆锥构成的;第四个物体可以看做是圆锥.2.解:第一个图片表示点动成线,第二个图片表示线动成面,第三个图片表示面动成体.常见的立体图形我们生活在三维的世界中,身边有各种各样的物体.我们要善于观察身边的事物,认识立体图形.生活中的立体图形有柱体、锥体、球体.柱体分为圆柱和棱柱,其中圆柱是由两个底面和一个侧面围成的,如图(2)所示,它的底面是两个大小相等且互相平行的圆面,侧面是一个曲面.棱柱是由两个底面和几个侧面围成的,它的底面是两个大小和形状都相同且互相平行的多边形,侧面是n个长方形,一个棱柱的底面是几边形,这个棱柱就是几棱柱.如:底面是三角形的棱柱叫做三棱柱,如图(6)所示;底面是四边形的棱柱叫做四棱柱,如图(1)所示.锥体分为圆锥和棱锥,其中圆锥是由一个底面和一个侧面围成的,它的底面是一个圆,侧面是一个曲面,如图(4)所示;棱锥是由一个底面和几个侧面围成的,它的底面是一个多边形,侧面是有一个公共顶点的三角形,一个棱锥的底面是几边形,这个棱锥就叫做几棱锥,如图(7)所示的棱锥是三棱锥,如图(5)所示的棱锥是四棱锥.球体是由一个曲面围成的封闭的几何体.球体的特征是球体表面上任意一点到球心的距离都相等,如图(3)所示的立体图形是球体.2.2 点和线1.了解点、线段、射线、直线的概念.2.掌握点、线段、射线和直线的表示方法.3.理解并掌握“两点可以确定一条直线”这个基本事实.1.通过实际情境感知点和线,认识点、线段、射线和直线这些几何图形.2.通过观察和画图了解线段、射线和直线的关系及其表示方法.3.通过观察和操作,理解并掌握“两点可以确定一条直线”这个基本事实.1.培养学生乐于思考,敢于创新的精神.2.通过多姿多彩的活动,培养学生的创新意识和发散思维.【重点】点、线段、射线、直线的概念和表示方法.【难点】“两点可以确定一条直线”的基本事实.【教师准备】多媒体课件.【学生准备】复习上一节的知识.导入一:同学们见过这种电子显示屏吧?你知道显示屏上的数字和图形是由什么基本要素构成的吗?[设计意图] 通过生活情境,帮助学生感受“点”在几何图形中的作用.导入二:如图所示,用7根火柴棒可以摆出图中的“8”.你能去掉其中的若干根火柴棒,摆出0~9中其他的9个数字吗?这种用7条线段构成的数字称为“7画字”,它可以用在计算器或电梯的楼层显示屏上.[设计意图] 教师组织学生交流各自的答案.本题呈现了点、线段在生活和科技中的应用,使学生体会数学与现实世界的密切联系.[过渡语] 点和线是两种最基本的几何图形,又是构成其他几何图形的基本要素.活动1 点与线1.出示课本图2 - 2 - 1,请在图上找出表示石刻园、展览中心、花卉园、茶餐厅和健身区的点,并用笔加重描出这个公园的边界线.[设计意图] 体会和感受点和线的关系,为深入理解几何上的点和线做认知准备.2.请指出图中平面图形的顶点和边,立体图形的顶点和棱.[处理方式] 先让学生说出两个平面图形的顶点和边,初步让学生从几何的角度认识点和线的关系,随后让学生说出两个立体图形中点和棱的关系,可以让学生用笔描的方式画出一些点和棱.3.点和线的关系的初步描述点的形象随处可见,如地图上用来表示城市位置的点,绘画中表示天空中星星的点,几何图形中表示顶点的点等等.点运动的轨迹是线.活动2 线段、射线和直线思路一1.线段及其表示方法线段的直观形象是拉直的一段线.如跳高的横杆、直尺的边沿、一段铁轨等,都给我们以线段的形象.点和线段的表示方法如图所示.位于线段AB两端的点A,B,叫做这条线段的端点.2.射线及其表示如图所示,将线段AB沿AB方向(或BA方向)无限延伸所形成的图形叫做射线.点A(或点B)叫做射线的端点.3.直线及其表示方法如图所示,将线段AB沿这条线段向两方无限延伸所形成的图形叫做直线.[知识拓展] 直线、射线、线段的联系和区别:名称 图形 表示方法 端点延伸性 度量 线段 线段a线段AB 线段BA2个不能延伸 可度量 射线 射线OA 1个向一方无限延伸 不可度量 直线 直线l直线AB 直线BA无端点向两个方向无限延伸 不可度量 思路二问题:在数学里,我们常用字母表示图形.一个点可以用一个大写字母表示,如“·”这个点可以表示成点A,那么一条线段、一条射线、一条直线又该怎样表示呢?请同学们自主学习线段、射线、直线的表述方法.(阅读教材第66,67页)[处理方式] 学生自主学习,用自己的语言总结叙述线段、射线、直线的表示方法,教师补充并借助多媒体讲解.(1)线段的图形及表示方法:用两个端点的大写字母来表示,或用一个小写字母表示,可以写成:线段AB;线段BA;线段a.(2)射线的图形及表示方法:用它的端点和射线上的另一点来表示,可以写成:射线AB.注意:这两个字母的排列顺序不能互相交换,表示端点的字母必须写在另一个字母的前面,同时也不能用一个小写字母表示.(3)直线的图形及表示方法:用直线上的两个点来表示或用一个小写字母来表示,可以写成:直线AB;直线BA;直线l.提问:生活中有哪些物体可以近似地看作线段、射线、直线?学生讨论后举例,如:吃饭的筷子、铅笔给我们线段的形象;手电筒、激光笔射出的光线都给我们以射线的形象;高速路上的白色实线等给我们直线的形象.[设计意图] 让学生充分交流,丰富线段、射线、直线的生活背景,进一步巩固所学的线段、射线、直线的知识,使学生感受现实生活中含有大量的数学信息,提高学习兴趣,培养学生分析问题、解决问题的能力.活动3 两点确定一条直线1.点与直线的关系平面内的一点P与直线l可能有怎样的位置关系?请画出图形,并用相应的语言说明.在同一个平面内,给定一个点与一条直线,它们的位置关系有两种情况.(1)第一种情况:点P在直线l上(直线l经过点P)(2)第二种情况:点P在直线l外(直线l不经过点P)[处理方式] 可以交给学生交流完成,然后强调:因为直线具有无限延长性,所以已知一个点在直线上,就可以断定不存在另一种情况.也就是说,一个点在平面内,要么在直线上,要么不在直线上,二者必居其一.2.过直线外一点的直线提问:(1)过一个点A可以画几条直线?(2)过两点A,B可以画几条直线?(3)如果将一个细木条固定在墙上,至少需要几个钉子?它的依据是什么?提示:过一个已知点可画无数条直线,过两个已知点可以画出直线,但只能画一条直线.[处理方式] 引导学生动手画图,自主思考,相互讨论,描述从操作中所发现的结论,与学生共同总结直线的性质,并板书“经过两点有且只有一条直线”.注意:(1)“有”表示存在性,“仅有”表示唯一性.(2)这个性质还可以说成“两点确定一条直线”.[设计意图] 学生通过动手画图,培养几何作图能力,并在作图过程中发现直线的某些性质.[知识拓展] (1)线段无粗细之分,有两个端点.理解线段的概念要掌握它的三个特征:直的、有两个端点、可以度量.(2)射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯等射出来的光线可以近似地看做射线.(3)射线的特点:直的、有一个端点、向一方无限延伸.(4)直线的特点:直的、没有端点、向两方无限延伸.将线段向两个方向无限延伸就形成了直线.(5)经过两点有且只有一条直线可以简述为:两点确定一条直线.“有且只有”中的“有”表示存在性,“只有”表示唯一性,“确定”与“有且只有”的意义相同.1.线段、射线、直线的概念.2.线段、射线、直线的表示方法.3.直线的性质:经过两点有且只有一条直线,可以简述为两点确定一条直线.1.图中直线PQ、射线AB、线段MN能相交的是( )解析:根据直线可向两方无限延伸,射线可向一方无限延伸,线段有两个端点解答.只有D选项射线AB与直线PQ能够相交.故选D.2.用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,这表明;用两个钉子把细木条钉在墙上,就能固定细木条,这表明.解析:用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,说明过一点有无数条直线;用两个钉子把细木条钉在墙上,就能固定细木条,说明两点确定一条直线.答案:过一点有无数条直线两点确定一条直线3.如图所示,四点A,B,C,D,按照下列语句画出图形:(1)画直线AB;(2)画射线BD;(3)线段AC和线段DB相交于点O.解:如图所示.2.2 点和线活动1 点与线活动2 线段、射线和直线活动3 两点确定一条直线经过两点有且只有一条直线一、教材作业【必做题】教材第68页练习.【选做题】教材第68页习题A组第3题.二、课后作业【基础巩固】1.下列说法正确的是( )A.直线CD和直线DC是一条直线B.射线CD和射线DC是一条射线C.线段CD和线段DC是两条线段D.直线CD和直线a不能是同一条直线2.下列说法正确的有( )①直线是射线长度的2倍;②线段为直线的一部分;③射线为直线;④直线、射线、线段中,线段最短.长度的12A.4个B.3个C.2个D.1个3.同一平面内三条直线最多有m个交点,最少有n个交点,则m+n 等于( )A.2B.3C.4D.54.已知平面内的四个点A,B,C,D,过其中两个点画直线可以画出几条?画图说明.【能力提升】5.如图所示,能读出的线段共有( )A.8条B.10条C.6条D.以上都错6.下列说法中错误的是( )A.经过一点的直线可以有无数条B.经过两点的直线只有一条C.一条直线只能用一个字母表示D.线段CD和线段DC是同一条线段7.如图所示,点A,B,C,D在同一直线上,那么这条直线上共有线段( )A.3条B.4条C.5条D.6条【拓展探究】8.一根绳子弯曲成如图(1)所示的形状.当用剪刀像图(2)那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图(3)那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b 之间把绳子再继续剪(剪刀的方向与a平行),这样一共剪n次时绳子的段数是( )A.4n+1B.4n+2C.4n+3D.4n+59.一条直线将平面分成两部分,两条直线最多将平面分成四个部分,那么三条直线将平面最多分成几部分?四条直线将平面最多分成几部分?n条直线呢?10.如图所示.(1)点A,B,C在直线l上,则直线l上共有几条线段?(2)如果直线l上有5个点,则直线l上共有几条线段?(3)如果直线l上有100个点,则直线l上共有几条线段?(4)如果直线l上有n个点,则直线l上共有几条线段?【答案与解析】1.A(解析:直线CD和直线DC都是由C,D这两点确定的,根据两点确定一条直线可知,这两条直线是同一条直线.故选A.)2.D(解析:没有真正体会直线、射线的延伸性,这种延伸性决定了直线、射线无长度,不能比较长短,所以①③④是错误的.故选D.)3.B(解析:三条直线的位置关系有三种情况:三条直线互相平行,此时没有交点;三条直线交于一点;三条直线交于两点;三条直线交于三点.所以m=3,n=0,所以m+n=3.故选B.)4.解:由于题目没有说明已知的四个点是否在一条直线上,所以应分类讨论.(1)当四个点A,B,C,D在同一直线上时,只可以画出一条直线,如图(1)所示;(2)当四个点A,B,C,D中有三个点在同一直线上。
七年级数学图形的初步认识全章学案
第2课: 画立体图形
初一( )班姓名:第周星期
环节一、由立体图形到视图
1、问题:.怎样在平面上画空间物体。
方法:从三个不同的方向看一个物体,从正面、上面和侧面,然后描绘三张所看到的图,即视图.这样就把一个物体转化为平面的图形.
2、如要做一个水管的三叉接头,工人事先看到的不是图4.2.1,而是从正面、上面和左面(或右面)
看接头的三个平面图形(如图
4.2.2),然后根据这三个图形制
造出水管接头.
3、从正面看到的图形,称为正视图;从上面看到的图形,称为俯视
图;从左面看到的图形,称为左视图.
环节二:例题学习
例1:画出正方体、圆柱和四棱锥的三视图
.
解:
即讲即练:
1.画出下列立体图形的三视图.
解:(1)
(2)
(3)
2.指出左面三个平面图形是右面这个物体的三视图中的哪个视图。
()()()
环节三:由视图到立体图形
例2:下面是一些立体图形的三视图,请根据视图说出立体图形的名称.
正视图左视图
正视图左视图
俯视图俯视图
(1) (2)
解:(1)该立体图形是;(2)该立体图形是
即讲即练:
1.一个物体的三视图是下面三个图形,该物体形状的名称.是
2.一个物体的三视图如下,该物体的形状名称.是
(正视图) (左视图)
正视图 左视图 俯视图
环节四:巩固练习
1、说出下列立体图形的名称.
2、根据要求画出下列立体图形的视图
.
(画左视图) (画俯视图) (画右视图)
3、如图,右面三幅图分别是从哪个方向看这个棱柱得到的。
4.画出下面物体的三视图. (3)
(2)(1)。
数学华东师大版七年级上册第4章《图形的初步认识》复习学案1 (1)
优质资料---欢迎下载第四章 图形的初步认识复习(第一课时)【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题。
【复习重点】: 线段、射线、直线、角的性质和运用【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。
【导学指导】一、知识结构二、回顾与思考1、下面是我们学习过的一些数学名词,你能用自己的语言简短地描述它们吗? 立体图形 平面图形 展开图两点间的距离 余角 补角2、与以前相比,你对直线、射线、线段和角有什么新的认识?3、直线的性质:经过两点有一条直线,并且只有一条直线。
即: __________确定一条直线。
4、线段的性质和两点间的距离(1)线段的性质:两点之间,_______________。
(2)两点间的距离:连接两点的_______________,叫做两点间的距离。
5、线段的中点及等分点的意义(1)若点C 把线段AB 分为________的两条线段AC 和BC ,则点C 叫做线段的中点。
角的概念 平面图形 从不同方向看立体图形展开立体图形 平面图形 几何图形 立体图形 直线、射线、线段 角 两点之间,线段最短 线段大小的比较角的度量 角的比较与运算 余角和补角 角的平分线 等角的补角相等 等角的余角相等两点确定一条直线1、角的定义和表示(1)有_______________的两条射线组成图形叫做角。
这是从静止的角度来定义的。
由一条射线绕着_______________旋转而成的图形叫做角。
这是从运动的角度来定义的。
(2)角的表示:①用三个大写字母表示;②用一个大写字母表示;③用阿拉伯数字或希腊字母表示。
2、角的度量1°=60′;1′=60′′.3、角的比较比较角的方法:度量法和叠合法。
4、角的平分线从一个角的顶点出发,把这个角分成________的两个角的射线,叫做这个角的平分线。
人教版-数学-七年级上册-人教数学七上 图形的认识 学案
课题几何图形课型新授课
学教目标1、掌握几何图形,立体图形和平面图形的概念。
2、培养空间想象能力,能找出一个立体图形中包含那些平面图形。
重点难点.几何图形,立体图形和平面图形的概念
课前准备学教指导
一、自主学习:
1、大家观察下面的图形
第一幅图是一个长方体的盒子,它有两个面的正方形,其余各面都是长方形。
观察盒子的外形,从整体上看是___;看不同的侧面是___和___;只看棱顶点等局部,得到的是___、___.
2、有些几何体(如长方体、正方体、圆柱、圆锥、球等)的各部
分都不在___,它们是___.
3、有些几何体(如线段、角、长方形、圆等)的各部分都在__,它们是___.
二、合作探究:
1、下面图形实物的形状对应那些立体图形?把相应的实物与图形用线连起来.
2、下面各图形包含那些简单的平面图形?请再举出一些平面图形的例子.
3、下面各立方图形的表面包含哪些平面图形?试指出这些平面图形在立体图形中的位置.
三、达标检测:学法大视野
教学反思:。
七年级平面图形的认识一学案
---------------------------------------------------------------最新资料推荐------------------------------------------------------七年级平面图形的认识一学案七年级数学辅导平面图形的认识一、知识结构二、基础知识回顾 1. 经过两点一条直线. 2. 两点之间的所有连线中, . 两点之间 , 叫做这两点之间的距离. 3. 如图, 点 M 把线段 AB 分成的两条线段AM 与BM, 点M 叫做线段AB 的 . 这时 . 4. 角由两条的射线组成,两条射线的公共端点是这个角的 . 角通常用字母及符号来表示. 5. 1 = , 1 = 6. 从一个角的顶点引出的一条射线, 把这个角分成两个的角, 这条射线叫做这个角的 . 7. 在同一个平面内, 的两条直线叫做 . 我们通常用表示平行. 8. 经过直线外一点, 一条直线与这条直线平行. 如果两条直线都与第三条直线平行, 那么 . 9. 如果两条直线 , 那么这两条直线互相垂直. 我们通常用表示垂直. 10. 平面内, 经过一点一条直线与已知直线垂直. 11. 如图, 过 A点作直线 L的垂线, 垂足为 B 点. 叫做点 A到直线 L的距离. 综合应用(七巧板、图案设计)角的比较平行垂直线段的比较符号表示大小关系位置关系平面图形线段、射线和直线角符号表示大小关系 ABMABL 三、常考点分析考点一:1 / 15线段、射线、直线(1)线段有两种表示方法:一种是__ __________,另外一种是_________________.(2)射线的表示方法:_____________________,注意____________.(3)直线也有两种表示方法:一种是____________,另外一种是____________________.(4)两点之间的所有连线中, _______最短.我们把这条线段的长,就叫做____________.(5)延长线段 MN 到 P,使 NP=MN,则 N 是线段 MP 的点, MN= MP= MP 总结归纳:1、线段、射线、直线的异同点2、线段有两种表示方法:线段 AB 与线段 BA,表示同一条线段。
优秀教案2018-2019学年最新人教版七年级上学期数学《图形认识初步》全章教学设计
第四章图形认识初步4.1.1认识几何图形(1)【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
【导学指导】一、知识链接同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。
图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、自主探究1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?(1)纸盒(1)长方体(2)长方形(3)正方形(4)线段点我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2.立体图形思考第115页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本115页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
3.平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
俯视图
左视图
正视图 第四章 《图形的初步认识》单元测试卷
初一( )班 姓名: 成绩:
一、选择题(每题3分,共30分) 号 0 案
1、 下图中几何体从左边看得到的视图是( )
2、小明从正面观察图1所示的两个物体,看到的是( ).
A B C D
3、如右图是一个物体的三视图,则该物体的形状是( )
A .圆锥
B .圆柱
C .三棱锥
D .三棱柱 4、由若干个小立方块搭成的几何体的三视图如图所示,则该几何体中小立方块的个数是( )
A . 4
B . 5
C . 7
D .8
5、下列图形中可能是正方体展开图的是( )
6、下列语句中,正确的是( )
A .延长直线A
B B .延长射线OA
C .延长线段AB 至C ,使AC =
2
1AB D .延长线段AB 至C ,使AB = 2BC
7、下列说法正确的是( ) 正面 图1
O C B
A A .点A 到点
B 的距离就是连接点A 和点B 的线段; B .直线的一半是射线;
C .线段OA 也可以说成线段AO ;
D .射线AB 与射线BA 表示同一条射线.
8、在直线l 上顺次取A 、B 、C 三点,使得AB=5㎝,BC=3㎝,如果O 是线段
AC 的中点,那么线段OB 的长度是( ).
A .0.5㎝
B .1㎝
C .1.5㎝
D .2㎝
9、已知x 、y 都是钝角的度数,甲、乙、丙、丁四人计算)(6
1y x 的结果依次为50°、26°、72°、
90°,你认为( )的结果可能正确的.
A .甲
B .乙
C .丙
D .丁 10、南偏东80°的射线与西南方向的射线组成的角(小于平角)是( ). A .35° B .55° C .125° D .145°
二、填空题(每空1分,共24分)
1、如图,有 条直线,有 条射线,有 条线段。
图1 图2
2、如图2,C 是AB 的中点,若AC = 3cm ,则AB = ;若AB = 8cm ,则BC = .
3、(1)若AB = 10cm ,CD = 8cm ,则AB CD.(填“>”或“<” )
(2) 如图,AB AC (填“>”或“<” ).
4、如图4,有 个锐角,有 个直角,有 个钝角,有 个平角.
图4 图5
5、如图5,OC 平分∠AOB ,若∠AOB = 70°,则∠AOC = °;
若∠BOC = 40°,则∠AOB = °.
6、 已知∠α = 42°,则∠α的余角是 .
7、已知∠α = 105°,则∠α的补角是 .
8、若∠1 + ∠2 = 90°,∠1 + ∠3 = 90°,则∠2 ∠3.
9、如右图,若∠1 = 50°,则∠2 = .
10 在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是 (填上序号即可).
11、(1) ?'2330︒= ︒ (2) 78.36_________'____"︒︒=
(3)5245'3246'_________'︒︒︒-= (4) 18.32634'_____
︒︒︒+= 12、时钟在3点半时,它的时针与分针所在的锐角的度数是 . 13、同一平面内有三点,每过两点画一条直线,则直线的条数是 .
三、解答题
14、 (1) 一个角的余角比它的补角29
还多1︒,求这个角.(6分) (2)已知互余两角的差为20︒ ,求这两个角的度数.(6分)
解:
15、(本题12分)(1)已知:如图3,线段a ,b ;
请按下列步骤画图:(用圆规和直尺画图,不写画法、保留作图痕迹)
①画线段BC ,使得BC=a b - ;
②在直线BC 外任取一点A ,画直线AB 和射线AC .
③试估计你在(1)题所画的图形中∠ABC 与∠BAC 的大小关系.
16、已知,如图,点C在线段AB上,线段AC=6cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度。
(10分)
17、在图中,EF ,EG 分别是∠AEB 、∠BEC 的平分线,求∠GEF 的度数。
(12分)(写出详细的过程)
A
M B
C
N。