八年级数学下册 19.2.1 矩形练习(二)

合集下载

19.2.1 矩形的定义和性质(导学案)

19.2.1 矩形的定义和性质(导学案)

班级小组姓名课题: 19.2.1 矩形的定义和性质第1课时【学习目标】:掌握矩形的概念;探索并掌握矩形的有关性质,能证明这些性质定理【学习过程】:一、自主学习学习任务一:1、定义:有一个角是四边形叫做矩形,也说是 .2、矩形的性质:(1)边:矩形的对边且;(2)矩形的角:矩形的的四个角是; 对角、邻角;(3)矩形的对角线:对角线且;(4)对称性:矩形是轴对称图形,它有条对称轴.(5)面积:设矩形ABCD的两邻边长分别为a,b,则S矩形= .(6)矩形具有四边形的一切性质学习任务二:1、求证:矩形的四个角都是直角.(自己画图,写已知,求证,证明)2、求证:矩形的对角线相等. (自己画图,写已知,求证,证明)二、合作探究:1、直角三角形斜边上的中线等于斜边的一半;请你画出图形,说明理由.O D CAB第14题2、如图:矩形ABCD的对角线AC\BD相交于点O,ABD=60度,AB=6,求矩形对角线的长.三、总结反思谈谈你在本节课中的收获与体会。

四、检测反馈1.在矩形ABCD中AC=2AB,则∠AOB的大小是( )A.30 B.45 C.60 D.902.如图,矩形ABCD的两条对角线相交于点O,602AOB AB∠==°,,则矩形的对角线AC的长是()A.2 B.4 C.D.3、矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为平方单位.4.如图2是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm要求:1.导入:2-3分钟2.自主学习(13-15分钟)3.交流展示(22-25分钟)4.巩固测评(5分钟)5.总结2分钟FEDBAC图2ODCAB第14题ODCAB第14题。

人教版八年级下册数学课时练《19.2.1 正比例函数(含答案)

人教版八年级下册数学课时练《19.2.1 正比例函数(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教版八年级数学下册第十九章一次函数《19.2.1正比例函数》课时练一、选择题1.下列函数中,属于正比例函数的是()A .22y x =+B .21y x =-+C .1y x=D .5x y =2.若函数23(1)m y m x -=+是正比例函数,且图象经过第二、四象限,则m 的值是()A .2-B .2C .12D .33.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则()A .k≠3B .k =±3C .k =3D .k =﹣34.若函数23(2)m y m x -=-是关于x 的正比例函数,则常数m 的值等于()A .±2B .﹣2C .3±D .3-5.若一个正比例函数的图象经过A(3,m ﹣1),B(4,2m ﹣1)两点,则m 的值为()A .﹣0.5B .0.5C .2D .﹣26.关于直线y=4x ,下列说法正确的是()A .直线过原点B .y 随x 的增大而减小C .直线经过点(1,2)D .直线经过二、四象限7.在平面直角坐标系中,若一个正比例函数的图象经过A (m ,2),点B (5,n )两点,则m ,n 一定满足的关系式为()A .m ﹣n =3B .52m n =C .25m n =D .mn =108.函数2y x =,3y x =-,y x =-的共同特点是()A .图像位于同样的象限B .图象都过原点C .y 随x 的增大而增大D .y 随x 的增大而减小9.已知正比例函数y =3x ,若该正比例函数图象经过点(a ,4a ﹣1),则a 的值为()A .1B .﹣1C .13D .﹣1310.如图,点A 坐标为()1,0,点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为()A.11,22æö-ç÷èøB.11,22æöç÷èøC.112,222æö-ç÷èøD.112,222æöç÷èø二、填空题11.请写出一个y随x的增大而减小的函数解析式_____.12.已知y+3与x成正比例,且x=2时,y=7,则y与x的函数关系式为______________________.13.如果正比例函数的图像经过点(2,4)和(a,-3),那么a的值等于__________.14.正比例函数y=kx的图象经过点(2,3),则k=______.15.如图,在平面直角坐标系中,正方形ABCD的边长为2,//AB x轴,点A的坐标为(11),,若直线y kx=与正方形ABCD有两个公共点,k的取值范围是__________.(写出一个即可)三、解答题16.已知y+2与x成正比例,且x=-2时,y=1(1)求y与x之间的函数关系式;(2)若点(m,6)在该函数的图象上,求m的值.17.已知:函数23(2)by b x-=+且y是x的是正比例函数,5a+4的立方根是4,c是11的整数部分.(1)求a,b,c的值;(2)求2a﹣b+c的平方根.18.已知函数2(||3)2(3)y a x a x =--+是关于x 的正比例函数.(1)求正比例函数的解析式;(2)若它的图象有两点()()1122,,,A x y B x y ,当12x x <时,试比较12,y y 的大小.19.已知正比例函数图象经过(﹣2,4).(1)如果点(a ,1)和(﹣1,b )在函数图象上,求a ,b 的值;(2)过图象上一点P 作y 轴的垂线,垂足为Q ,S △OPQ =154,求Q 的坐标.20.若正比例函数的图像经过点A (-5,3),(1)求k 的值;(2)判断y 随x 的增大如何变化;(3)如果这条直线上点B 的横坐标B x =4,那么它的纵坐标的值是多少?21.已知y 与x ﹣1成正比例,且当x=3时,y=4.(1)求y 与x 之间的函数表达式;(2)当x=﹣1时,求y 的值;(3)当﹣3<y <5时,求x 的取值范围.22.已知:如图,正比例函数y=kx 的图象经过点A ,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B (m ,m+3),请你求出m 的值;(3)请你判断点P (﹣32,1)是否在这个函数的图象上,为什么?23.已知函数y =231()2k k x -+(k 为常数).(1)k 为何值时,该函数是正比例函数;(2)k 为何值时,正比例函数过第一、三象限,写出正比例函数解析式;(3)k 为何值时,正比例函数y 随x 的增大而减小,写出正比例函数的解析式。

19.2.1 矩形(2)78

19.2.1  矩形(2)78

班级: 组别: 姓名: 钢屯中学八年级导学案(2011-2012学年度第二学期) 学科:数学 编号: 78 个性天地课题 19.2.1 矩形(2) 课型 自学课 总课时 78 主创人 刘国利 教研组长签字 王廷臣 领导签字 个性天地学习目标:1.理解并掌握矩形的判定方法。

2.能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养分析能力。

学习重点:矩形的判定定理及推论。

学习难点:定理的证明方法及运用。

学法指导: 1、学生独立阅读课本P 95—P 96,探究课本基础知识,提升自己的阅读理解 能力。

2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。

3、教师巡视,及时指导、帮助学生解决疑难问题。

导学流程: 一、旧知回顾 1.什么是平行四边形?什么是矩形? 2.矩形有哪些性质?你能猜想如何判定矩形吗? 二、基础知识探究 1、矩形是特殊的平行四边形,怎样判定一个平行四边形是矩形呢?请说出最基本的方法: 矩形具有平行四边形不具有的性质是: 思考:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?(得到矩形的一个判定) 2.做一做:按照画“边 ―直角、边-直角、边-直角、边”这样四步画出一个四边形.判断它是一个矩形吗?说明理由. (探索得到矩形的另一个判定) 总结:矩形的判定方法. 矩形判定方法1:______________________________ 矩形判定方法2:_______________________________ 三、综合应用探究 1.已知□ABCD 的对角线AC 、BD 相交于点O ,△AOB 是等边三角形,AB =4 cm ,求这个平行四边形的面积. O D C B A 2.已知:如图,□ABCD 的四个内角的平分线分别相交于点E 、F 、G 、H .求证:四边形EFGH 是矩形. H G F E D C B A 四、达标反馈 1.下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形;( ) (2)有四个角是直角的四边形是矩形;( ) (3)四个角都相等的四边形是矩形;( ) (4)对角线相等的四边形是矩形;( ) (5)对角线相等且互相垂直的四边形是矩形;( )(6)对角线互相平分且相等的四边形是矩形;( ) (7)对角线相等,且有一个角是直角的四边形是矩形; ( ) (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;( ) (9)两组对边分别平行,且对角线相等的四边形是矩形. ( ) 2.如图,M 、N 分别是平行四边形ABCD 对边AD 、BC 的中点,且AD =2AB , 求证,四边形PMQN 是矩形。

最新 练习19.2.1 正比例函数 课时练习 2021-2022学年八年级数学人教版下册

最新 练习19.2.1 正比例函数 课时练习 2021-2022学年八年级数学人教版下册

2022年人教版数学八年级下册19.2.1《正比例函数》课时练习一、选择题1.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2B.k≠2C.k=﹣2D.k≠﹣22.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3C.±3D.不能确定3.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高4.下列说法中不成立的是()A.在y=3x-1中y+1与x成正比例B.在y=-0.5x中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.在y=x+3中y与x成正比例5.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣26.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A. B. C. D.7.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能8.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4二、填空题9.若函数y=(m-1)x+m2-1是正比例函数,则m=.10.已知点A(-2,4)为正比例函数y=kx上一点,则k=;若B点(2,a)在此直线上,则a=.11.已知y=(m2+1)x为正比例函数,则图象经过象限,y随x增大而.12.若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第______象限.13.函数y=-7x的图象在第象限内,经过点(1,),y随x的增大而.14.如图,已知菱形ABCD在平面直角坐标系中,A(-4,0),D(0,3),连OC,则直线OC解析式为.三、解答题15.已知y是x的正比例函数,当x=-2时,y=6,求y与x的函数关系式.16.已知y+2与2x+3成正比例函数,当x=-1时,y=8.(1)求y与x的函数关系式;(2)若A(-5,y1),B(2,y2),试比较y1与y2的大小关系.17.在函数y=-3x的图像上取一点P,过P 点作PA⊥x轴A为垂足,己知P点的横坐标为-2,求ΔPOA的面积(O为坐标原点).18.已知y-1与x成正比例,当x=-2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,-2)在这个函数的图像上,求a的值;(3)若x的取值范围是0≤x≤5,求y的取值范围.参考答案1.C2.B3.C4.D5.B6.C7.B8.B9.答案为:-1;10.答案为:-2;-4;11.答案为:第一、三;增大;12.答案为:二、四;13.答案为:二、四;-7;减小;14.答案为:y=0.8x;15.答案为:y=-3x;16.(1)y=-4x+4;(2)y1>y2.17.解:面积为6.18.(1)解:已知y-2与x成正比例,∴得到y-1=kx,∵当x=-2时,y=4,将其代入y-1=kx,解得k=-1.5,则y与x之间的函数关系式为:y=-1.5x+1;(2)由(1)知,y与x之间的函数关系式为:y=-1.5x+1;∴-2=-1.5a+1,解得,a=2;(3)∵0≤x≤5,∴0≥-1.5x≥-7.5,∴1≥-1.5x+1≥-6.5,即-6.5≤y≤1.勾股定理的逆定理一、选择题1.满足下列条件的三角形中,不是直角三角形的是()A.三个内角比为1∶2∶1B.三边之比为1∶2∶5C.三边之比为3∶2∶5D. 三个内角比为1∶2∶32.在△ABC中,∠A,∠B,∠C的对边分别是 a,b,c,那么下面不能判定△ABC是直角三角形的是()A.∠B=∠C-∠AB.a2 = (b+c) (b-c)C.∠A:∠B:∠C=5 :4 :3D.a : b : c=5 : 4 : 33.已知四个三角形分别满足下列条件:①三角形的三边之比为1:1:;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半。

19.2.1矩形(二)

19.2.1矩形(二)

课后反思:
第三步:随堂练习
1.已知:如图,O 是矩形 ABCD 对角线的交点,AE 平分∠BAD,∠AOD=120°,求∠AEO 的度数. 2. 如图 5,在矩形 ABCD 中, DE (答案:16+ 4 3 )
D
C
⊥ CE , ∠ADE = 30° , DE = 4 ,求这个矩形的周长。
A
E
B
A O
3、 已知:如图 6,矩形 ABCD 中,AE 平分 ∠BAD 交 BC 于 E,若 ∠CAE
Q ∠ DAE = 3 ∠ BAE ∴ ∠ DAE = 67 . 5 ° ∴ ∠ OAD = 22 . 5 °
例3
C
∠ BAD = 90 ° ∠ BAE = 22 . 5 ° ∴ ∠ EAC = ∠ DAE − ∠ OAD = 45 °
A
E
3 1
D

已知:如图 4,矩形 ABCD 的对角线 AC、BD 交于 O,EF 过 O 点交 AD 于 E,
19.2.1 矩形(二)
教 学 目 标
1、 掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2、会初步运用矩形的概念和性质来解决有关问题. 经历探索矩形的概念和性质的过程,发展学生合情推理的意识;掌握几何思维方法。 并 渗透运动联系、从量变到质变的观点. 培养严谨的推理能力,以及自主合的精神,体会逻辑推理的思维价值。 矩形的性质. 矩形的性质的灵活应用.
1 BF 2 又 Q EF ⊥ BD ∴ ∠ FBO = 30 ° 1 1 Q BD = AC , OB = BD , OC = AC 2 2 ∴ OB = OC ∴ ∠ OCB = ∠ OBF = 30 ° ∴ ∠ BOC = 180 ° − ∠ OBF − ∠ OCB = 120 ° ∴ ∠ COF = ∠ BOC − ∠ FOC = 120 ° − 90 ° = 30 ° ∴ ∠ COF = ∠ OCF ∴ CF = OF

19.2 特殊平行四边形 (第2课时)19.2.1矩形(矩形的判定)

19.2 特殊平行四边形 (第2课时)19.2.1矩形(矩形的判定)

猜想:对角线相等的平行四边形是矩形 。
命题:对角线相等的平行四边形是矩形。 命题:对角线相等的平行四边形是矩形。
已知:平行四边形 已知:平行四边形ABCD,AC=BD。 , 。 求证:四边形 是矩形。 求证:四边形ABCD是矩形。 A 是矩形 , 证明: 证明 因为 AB=CD, BC=BC, AC=BD,
B D
C
矩形的判定方法: 矩形的判定方法:
对角线相等的平行四边形是矩形 。
(对角线相等且互相平分的四边形是矩形。) 对角线相等且互相平分的四边为四边形ABCD是平行四边形, 因为四边形 是平行四边形, 是平行四边形 AC=BD, , (或OA=OC=OB=OD) )
方法1: 方法 :
有一个角是直角的平行四边形是矩形。 有一个角是直角的平行四边形是矩形。
方法2: 方法 :
对角线相等的平行四边形是矩形 。
(对角线相等且互相平分的四边形是矩形。) 对角线相等且互相平分的四边形是矩形。 方法3: 方法 :
有三个角是直角的四边形是矩形 。
下列各句判定矩形的说法是否正确? 下列各句判定矩形的说法是否正确? (1)对角线相等的四边形是矩形; )对角线相等的四边形是矩形; (2)对角线互相平分且相等的四边形是矩形; )对角线互相平分且相等的四边形是矩形; (3)有一个角是直角的四边形是矩形; )有一个角是直角的四边形是矩形; (4)有三个角都相等的四边形是矩形 )有三个角都相等的四边形是矩形; (5)有三个角是直角的四边形是矩形; )有三个角是直角的四边形是矩形; (6)四个角都相等的四边形是矩形; )四个角都相等的四边形是矩形; (7)对角线相等,且有一个角是直角的四边形是矩形; )对角线相等,且有一个角是直角的四边形是矩形; X (8)一组对角互补的平行四边形是矩形; )一组对角互补的平行四边形是矩形; (9)对角线相等且互相垂直的四边形是矩形; )对角线相等且互相垂直的四边形是矩形; (10)一组邻边垂直,一组对边平行且相等的四边形是 )一组邻边垂直, 矩形。 矩形。

人教版初中数学八年级下册第十九章《一次函数》19.2一次函数同步练习题(含答案)

人教版初中数学八年级下册第十九章《一次函数》19.2一次函数同步练习题(含答案)
,解得 ,∴2k+b=﹣6+12=6.
故答案为:﹣3或6.
9.y=﹣x﹣1(答案不唯一)
【解析】试题解析:∵y随x的增大而减小,

设一次函数的解析式为
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,无选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
9.某一次函数的图象经过点(﹣2,1),且y轴随x的增大而减小,则这个函数的表达式可能是_____.(只写一个即可)
10.已知直线 与直线 平行,且截距为5,那么这条直线的解析式为_______.
11.直线y=-8x-6可以由直线y=-8x向___平移___个单位得到.
12.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.
故选B.
7.C
【解析】如图,作点D关于AB的对称点D′,连接CD′交AB于点E,则此时△CDE的周长最小,
∵点B的坐标为(3,4),四边形ABCO是矩形,D是OA的中点,
∴点C的坐标为(0,4),点D的坐标为(1.5,0),点D′的坐标为(4.5,0),点E的横坐标为3,
设直线CE的解析式为:y=kx+b,则有: ,解得 ,
∴直线CE的解析式为: ,
∴当 时, ,
∴点E的坐标为 .
故选C.

19.2.1 矩形(2)(矩形的判定)

19.2.1 矩形(2)(矩形的判定)

课题19.2.1 矩形(2)(矩形的判定)第( 2 )课时课型新授教学目标知识与技能理解矩形的判定定理,能有理有据的推理证明,精练准确地书写表达.过程与方法经历探索矩形的判定过程,培养实验探索能力.形成几何分析思路和方法.情感态度与价值观在探究过程中养成独立思考的习惯,在引导学生研究性学习中培养学生合作交流的学习意识重点理解矩形的判定定理难点矩形的判定及性质的综合应用.课前准备教具学具补充材料平行四边形框架学案问题与情境师生活动设计意图一.复习巩固,引入新知:二.矩形判定定理的证明:判定1:有一个角是直角的平行四边形是矩形.判定2:对角线相等的平行四边形是矩形.矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较.教师活动:拿出教具进行操作,将平行四边形渐变为矩形,然后在渐变的过程中明确判定一个四边形是矩形的第一种方法是通过定义来判定.判定1:有一个角是直角的平行四边形是矩形.教师解释:也就是说:证明一个四边形是矩形可先证这个四边形是平行四边形,然后再证这个平行四边形有一个角是直角.学生活动:观察教具,回忆学过的矩形定义,深刻理解定义可作为矩形判定的方法之一,并归纳出通俗易记的构架:先证 →再证一个Rt△→矩形.教师活动:出示教具继续操作,探究,提问:当矩形一个角变成90°后,其余三个角同时都变成90°,两条对角线也成为相等的线段,那么这个变形中你们想到了什么呢?能从中得到怎样的启发?学生活动:观察、联想后,提出各自的见解:考虑到对角线,因为四边形的两条对角线在保持互相平分的前提条件下,无论怎么伸缩,它们的长度都是相等时,平行四边形将变为矩形.(如图)判定2:对角线相等的平行四边形是矩形.教师解释:也就是说,要证明一个四边形是矩形,复习旧知,温故新知。

利用教具,生动直观形象,并且利用上节课的矩形的定义来反过来判定是否是矩形。

教师提示学生,充分体现学生学习的主体地位。

初中人教版数学八年级下册:19.2.1 第2课时 正比例函数的图象和性质 习题课件(含答案)

初中人教版数学八年级下册:19.2.1   第2课时 正比例函数的图象和性质  习题课件(含答案)

k<0
大 致 图 象
k>0
k<0
大 图象是自左向右_上__升__ 图象是自左向右_下__降_
致 的,经过第 一、三 象 的,经过第 二、四 象
图 限.
限.

|k|越大,图象越陡(即越靠近y轴).
性 质 y随x的增大而 增大 .
y随x的增大减而小 .
例 已知正比例函数 y=(m+2)x.求: (1)m 为何值时,函数图象经过第一、三象限; 解:(1)由题可知 m+2>0,解得 m>-2.
(2)m 为何值时,y 随 x 的增大而减小; (3)m 为何值时,点(1,3)在该函数的图象上. (2)由题可知 m+2<0,解得 m<-2. (3)∵点(1,3)在正比例函数 y=(m+2)x 的 图象上, ∴m+2=3.解得 m=1.
方法点拨:正比例函数 y=kx(k≠0)中,k 的符号决定直线上升或下降,在利用正比例 函数的性质解决问题时,常结合方程或不等 式求解.
y=-2x(答案不唯一)
.
4.在正比例函数 y=(k-2)x 中,y 随 x 的增大而
增大,则 k 的取值范围是 k>2 .
5.已知正比例函数 y=kx 的图象经过点 M(-2,4). (1)求 y 的值随 x 值的 变化情况;
(1)∵正比例函数 y=kx 的图象经过点 M(-2,4), ∴4=-2k. 解得 k=-2<0. ∴y 随 x 的增大而减小.
(2)画出这个函数的图象. (2)如图所示.
知识要点 正比例函数的象和性质
正比例函数y=kx(k≠0) 正比例函数y=kx(k≠0)的图象是一 形状 条经过 原点 的直线,我们称它为
直线y=kx .
正比例函数y=kx(k≠0) 根据两点确定一条直线,画y=kx 画法 (k≠0)的图象时,一般选(0,0 )和(1,k)两点比较简便.

2020-2021学年人教版八年级下册数学19.2.1正比例函数 同步练习(含解析)

2020-2021学年人教版八年级下册数学19.2.1正比例函数 同步练习(含解析)

19.2.1正比例函数同步练习一.选择题1.下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系2.已知函数y=3x|m﹣2|是关于x的正比例函数,则常数m的值为()A.3或1B.3C.±1D.13.已知y是x的正比例函数,当x=3时,y=﹣6,则y与x的函数关系式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x4.已知正比例函数y=kx,当x每增加2时,y减少3,则k的值为()A.﹣B.C.﹣D.5.下列说法中不成立的是()A.在y=3x﹣1中y+1与x成正比例B.在y=﹣中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.在y=x+3中y与x成正比例6.关于直线y=﹣2x,下列结论正确的是()A.图象必过点(1,2)B.图象经过第一、三象限C.与y=﹣2x+1平行D.y随x的增大而增大7.已知函数y=(m+1)x,y随x的增大而增大,则m的取值范围在数轴上表示正确的是()A.B.C.D.8.已知直线y=k1x,y=k2x,y=k3x的图象如图,则k1、k2、k3的大小关系为()A.k1>k2>k3B.k1>k3>k2C.k3>k2>k1D.k2>k1>k39.关于正比例函数y=﹣2x,下列说法正确的是()A.y随x的增大而增大B.图象是经过第一、第二象限的一条直线C.图象向上平移1个单位长度后得到直线y=﹣2x+1D.点(1,2)在其图象上10.已知正比例函数y=(2t﹣1)x的图象上一点(x1,y1),且x1y1<0,那么t的取值范围是()A.t<0.5B.t>0.5C.t<0.5或t>0.5D.不确定二.填空题11.直线y=x经过第象限.12.某正比例函数的图象经过点(﹣1,2),则此函数关系式为.13.如果正比例函数y=(3k﹣2)x的图象在第二、四象限内,那么k的取值范围是.14.在函数y=x中,若自变量x的取值范围是50≤x≤75,则函数值y的取值范围为.15.如图,直线l的解析式为y=x,点A的坐标为(﹣2,0),AB⊥l于点B,则△ABO的面积为.三.解答题16.已知y与x成正比例,且当x=3时,y=4.(1)求y与x之间的函数解析式;(2)当x=﹣1时,求y的值.17.已知函数y=(k+3)x.(1)k为何值时,函数为正比例函数;(2)k为何值时,函数的图象经过一,三象限;(3)k为何值时,y随x的增大而减小?(4)k为何值时,函数图象经过点(1,1)?18.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A 的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:y=πx2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A.2.解:∵函数y=3x|m﹣2|是关于x的正比例函数,∴|m﹣2|=1,解得:m=3或1,故选:A.3.解:设y与x之间的函数关系式是y=kx,把x=3,y=﹣6代入得:﹣6=3k,解得:k=﹣2,∴y与x的函数关系式为y=﹣2x,故选:B.4.解:根据题意得:y﹣3=k(x+2),y﹣3=kx+2k,而y=kx,所以2k=﹣3,解得k=﹣.故选:C.5.解:A、∵y=3x﹣1,∴y+1=3x,∴y+1与x成正比例,故本选项正确.B、∵y=﹣,∴y与x成正比例,故本选项正确;C、∵y=2(x+1),∴y与x+1成正比例,故本选项正确;D、∵y=x+3,不符合正比例函数的定义,故本选项错误.故选:D.6.解:A、∵(1,2)不能使y=﹣2x左右相等,因此图象不经过(1,2)点,故此选项错误;B、∵k=﹣2<0,∴图象经过第二、四象限,故此选项错误;C、∵两函数k值相等,∴两函数图象平行,故此选项正确;D、∵k=﹣2<0,∴y随x的增大而减小,故此选项错误;故选:C.7.解:∵一次函数y=(m+1)x,y随x的增大而增大,∴m+1>0,解得,m>﹣1,在数轴上表示为:.故选:C.8.解:由题意得:k1为正数,k2>k3,∴k1,k2,k3的大小关系是k1>k2>k3.故选:A.9.解:A、k=﹣2,y随x的增大而减小,不符合题意;B、图象是经过第二、第四象限的一条直线,不符合题意;C、图象向上平移1个单位长度后得到直线y=﹣2x+1,符合题意;D、当x=1时,y=﹣2,所以点(1,2)不在其图象上,不符合题意;故选:C.10.解:因为x1y1<0,所以该点的横、纵坐标异号,即图象经过二、四象限,则2t﹣1<0,t<.故选:A.二.填空题11.解:由正比例函数y=x中的k=>0知函数y=x的图象经过第一、三象限.故答案是:一、三.12.解:设此函数的解析式为y=kx(k≠0),∵点(﹣1,2)在此函数图象上,∴﹣k=2,解得k=﹣2,∴此函数的关系式为y=﹣2x.故答案为:y=﹣2x.13.解:正比例函数y=(3k﹣2)x的图象经过第二、四象限,∴3k﹣2<0,解得,k<.故答案是:k<.14.解:∵函数y=x的y随x的增大而增大,∴当x=50时,y=×50=120.当x=75时,y=×75=180.则120≤y≤180.故答案是:120≤y≤180.15.解:∵直线l的解析式为y=x,∴∠AOB=45°,设B(a,a),∵AB⊥l于点B,∴△AOB是等腰直角三角形,∴AB=OB=OA,∵点A的坐标为(﹣2,0),∴OA=2,∴AB=OB=,∴△ABO的面积==1,故答案为:1.三.解答题16.解:(1)∵y与x成正比例,∴设y=kx,∵当x=3时,y=4,∴4=3k,解得k=,∴y与x之间的函数关系式为y=x;(2)把x=﹣1代入y=x得y=﹣;17.解:(1)根据题意得k+3≠0,解得k≠﹣3;(2)根据题意得k+3>0,解得k>﹣3;(3)根据题意得k+3<0,解得k<﹣3;(4)把(1,1)代入y=(k+3)x得k+3=1,解得k=﹣2,即k为﹣2时,函数图象经过点(1,1).18.解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为﹣2,∴点A的坐标为(3,﹣2).将点A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)设点P的坐标为(a,0),则S△AOP=|a|×|﹣2|=5,解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(﹣5,0)或(5,0).。

数学八年级下正方形的性质与判定(2)

数学八年级下正方形的性质与判定(2)

平行四边形
有一个角是直角
有一组邻边相等
矩形
有一组邻边相等
正方形
有一个角是直角
菱形
先正是矩形再证是菱形或 先正是菱形再证是矩形
正 方 形 常 见 的 判 定 法
例1.已知:如图(4)在正方形ABCD中,F为CD延长线
上一点,CE⊥AF于E,交AD于M,
求证:∠MFD=45°
要证MD=FD,大家只须证得哪两个三角形全等?
O
B
C P
4、如图,四边形ABCD.DEFG都是正方形,连接 AE.CG。 (1)求证:AE=CG (2)观察图形, 猜想AE与CG的位置 G F 关系,并证明你的 A 猜想。 B D E
C
5.在△ABC中,AB=AC,D是BC的中点,DE⊥AB,
பைடு நூலகம்
DF⊥AC,垂足分别是E,F.
1)试说明:DE=DF
△CMD≌△ADF
例2:如图正方形ABCD的边长为1,E、F分别为 BC、CD上的点,若BE+DF=EF, 求证:∠EAF=450 变式:如图,正方形 ABCD的边长为4,点E、 F分别在BC、CD上, ∠EAF=450,△CEF 8 的 面积为 ,求△ 3 AEF 的面积。
G
A
D F
B
E
C
练习1.如图(5),在AB上取一点C,以 AC、BC为正方形的一边在同一侧作正 方形AEDC和BCFG连结AF、BD延长 BD交AF于H。 求证:(1) △ACF≌△DCB (2) BH⊥AF
2)只添加一个条件,使四边形EDFA是正方形.
请你至少写出两种不同的添加方法.(不另外
添加辅助线,无需证明)
6.已知:正方形ABCD中,点E、F、G 、H分别是AB 、BC 、 CD 、DA的中点,试判断四边形EFGH是正方形吗?为什 么?

19.2.1 矩形(2)

19.2.1 矩形(2)

例1:如图,M为平行四边形 1:如图, 为平行四边形ABCD A 如图 的中点, 边AD的中点,且MB=MC, 的中点 , 求证:四边形 是矩形。 求证:四边形ABCD是矩形。 是矩形 B
M
D
C
证明: 四边形ABCD平行四边形 证明 ∵四边形 平行四边形 ∴AB=CD且∠A+∠D=1800 且 ∠ 又∵M是AD的中点 是 的中点 ∴AM=DM ∴△ABM≌△DCM ≌ 又∵ MB=MC 又 ∠A+∠D=1800 ∠ ∴∠A=∠ ∴∠ ∠D ∴∠A=900 ∴∠ 平行四边形ABCD是矩形 ∴平行四边形 是矩形
∴OA=OB=OC=OD 又OE=½OA,OF=½OB,OG=½OC,OH=½OD ∴OE=OF=OG=OH ∴四边形EFGH是矩形 四边形 是矩形
(对角线互相平分且相等的四边形是矩形)
例4: 如果平行四边形四个内角的平分线能够围成一个四边形,那 如果平行四边形四个内角的平分线能够围成一个四边形, 么这个四边形是矩形. 么这个四边形是矩形.
猜想:有三个角是直角的四边形是矩形 。
你能证明上述结论吗? 你能证明上述结论吗?
矩形的判定方法: 矩形的判定方法: 有三个角是直角的四边形是矩形 。
A D
几何语言: 几何语言:
∵ ∠A=∠B=∠C=90° ∠ ∠ ° 四边形ABCD是矩形 ∴四边形 是矩形
B C
你能归纳矩形的几种判定方法吗? 你能归纳矩形的几种判定方法吗?
方法1: 方法1
有一个角是直角的平行四边形是矩形。 有一个角是直角的平行四边形是矩形。
方法2 方法2:
对角线相等的平行四边形是矩形 。
(对角线相等且互相平分的四边形是矩形。) 对角线相等且互相平分的四边形是矩形。 方法3 方法3:

人教版数学八年级下册19.2.1《正比例函数》精选练习 (含答案)

人教版数学八年级下册19.2.1《正比例函数》精选练习 (含答案)

19.2.1《正比例函数》精选练习一、选择题1.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量D.人的体重与身高2.若y=x+2–b是正比例函数,则b的值是( )A.0B.–2C.2D.–0.53.已知是正比例函数,则m的值是( )A.8B.4C.±3D.34.已知y关于x成正比例,且当x=2时,y=-6,则当x=1时,y的值为( )A.3B.-3C.12D.-125.下列式子中,表示y是x的正比例函数的是()A.y=x2B.C.D.y2=3x6.若某正比例函数过(2,-3),则关于此函数的叙述不正确的是()A.函数值随自变量x的增大而增大B.函数值随自变量x的增大而减小C.函数图象关于原点对称D.函数图象过二、四象限7.正比例函数y=kx(k>0)的图象大致是()A. B. C. D.8.正比例函数y=kx的图象如图所示,则k的值为( )A. B. C. D.9.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A. B. C. D.10.下列关于正比例函数y=-5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线D.它的图象经过第一、三象限11.在正比例函数y=–3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在( )A.第一象限B.第二象限C.第三象限D.第四象限12.在y=(k+1)x+k 2-1中,若y 是x 的正比例函数,则k 值为( )A.1B.-1C.±1D.无法确定二、填空题13.已知函数y=(m ﹣1)x+m 2﹣1是正比例函数,则m=_____.14.若是正比例函数,则(a-b)2020的值是________.15.已知y 与x 成正比例,并且x=-3时,y=6,则y 与x 的函数关系式为________.16.若k>0,x>0,则关于函数y=kx 的结论:①y 随x 的增大而增大;②y 随x 的增大而减小;③y 恒为正值;④y 恒为负值.正确的是________.(直接写出正确结论的序号)17.已知正比例函数y=kx(k ≠0),当-3≤x ≤1时,对应的y 的取值范围是-1≤y ≤31,且y 随x 的减小而减小,则k 的值为________.18.已知正比例函数的图像经过点M(-2,1)、A(x 1,y 1)、B(x 2,y 2),如果x 1<x 2,那么y 1____y 2.(填“>”、“=”、“<”)三、解答题19.已知y 与x 成正比例函数,当x=1时,y=2.求:(1)求y 与x 之间的函数关系式;(2)求当x=-1时的函数值;(3)如果当y 的取值范围是0≤y ≤5,求x 的取值范围.20.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a ,8),求点A 的坐标.21.已知正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=﹣1时,求y的值.23.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)这个函数的解析式;(2)判断点A(4,﹣2)是否在这个函数图象上;(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.24.如图,已知四边形ABCD是正方形,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=_______.(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化,请说明理由;若会发生变化,求出a的值.参考答案1.答案为:C2.答案为:C3.答案为:D4.答案为:B5.答案为:C6.答案为:A7.答案为:D8.答案为:B9.答案为:C10.答案为:B11.答案为:B12.答案为:A13.答案为﹣1.14.答案为:1.15.答案为:y=-2x.16.答案为:①③.17.答案为:18.答案为:>.19.解:(1)设y=kx,将x=1、y=2代入,得:k=2,故y=2x;(2)当x=-1时,y=2×(-1)=-2;(3)∵0≤y≤5,∴0≤x≤5,解得:0≤x≤2.5;20.解:(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x.(2)图象图略.(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).21.解:(1)∵正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,∴点A的坐标为(-2,4)或(-2,-4).设这个正比例函数为y=kx,则-2k=4或-2k=-4,解得k=-2或k=2,故正比例函数为y=2x或y=-2x.(2)当y=2x时,图象经过第一、三象限;当y=-2x时,图象经过第二、四象限.(3)当y=2x时,函数值y是随着x的增大而增大;当y=-2x时,函数值y是随着x的增大而减小.22.解:(1)设y+3=k(x+2)(k≠0).∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.∴y与x之间的函数关系式是y=2x+1;(2)由(1)知,y=2x+1.所以,当x=﹣1时,y=2×(﹣1)+1=﹣1,即y=﹣1.23.解:(1)∵正比例函数y=kx经过点(3,﹣6),∴﹣6=3•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x;(2)将x=4代入y=﹣2x得:y=﹣8≠﹣2,∴点A(4,﹣2)不在这个函数图象上;(3)∵k=﹣2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.24.解:(1)正方形边长为2,∴AB=2.在直线y=2x中,当y=2时,x=1∴OA+1,OD=3∴C(3,2),将C(3,2)代入y=kx中,得3k=2,解得.(2)k的值不会发生变化理由:∵正方形边长为a∴AB=a,在直线y=2x中,当y=a时,x=0.5a,.将代入y=kx中,得,解得,∴k值不会发生变化.。

八年级数学下册第19章矩形菱形正方形19、2菱形19、2、1菱形的性质教学课件新版华东师大版

八年级数学下册第19章矩形菱形正方形19、2菱形19、2、1菱形的性质教学课件新版华东师大版

O
C
D
课程讲授
1 菱形的性质
练一练: 如图,在菱形ABCD中,对角线AC,BD相交于点O, H为AD边中点,菱形ABCD的周长为28,则OH的长为 (A ) A.3.5 B.4 C.7 D.14
课程讲授
2 菱形的面积
想一想:比较菱形的对角线和平行四边形的对角线,我 们发现菱形的对角线将菱形分成四个全等的直角三角 形,而平行四边形通常只被分成两对全等的三角形.
2 菱形的面积
练一练: 如图,菱形ABCD的周长是120 cm,对角线AC的 长度为36 cm.求: (1)另一条对角线的长度; (2)这个菱形的面积.
课程讲授
2 菱形的面积
练一练:
解:(1)∵四边形ABCD是菱形且周长为
120 cm,∴AB=30 cm,AO=
1 2
AC=18
cm,
在Rt△ABO中,BO= AB2-AO2 =24 cm,
平分一组对角.
B
数学表达式:
AO
C
在菱形ABCD中,对角线AC与BD相交于点O. D
则AC⊥BD, ∠DAC=∠BAC,∠DCA=∠BCA,
∠ADB=∠CDB,∠ABD=∠CBD.
课程讲授
1 菱形的性质
做一做:把图中的菱形ABCD沿直线BD对折
(1)点A的对应点是 点C ;(2)点C的对应点
是 点A ;(3)点D的对应点是 点B ;
已知菱形两条 对角线的长, 你能求出它的
面积吗?
课程讲授
2 菱形的面积
问题1:菱形是特殊的平行四边形,那么能否利用平行四 边形面积公式计算菱形ABCD的面积?
能.如图,过点A作AE⊥BC于点E,则S菱形ABCD=底×高

华东师大版八年级数学下册19.2.1菱形的性质练习题

华东师大版八年级数学下册19.2.1菱形的性质练习题
【详解】
∵ ,且 ,∴ .
(1)如图①,当 , 时, ,
∴ ,∴ .
∵菱形 的周长为8,∴ ,∴ ;
(2)如图②,当 , 时,过点 作 于点 ,连结 ,
则 ,
∴ ,∴ .
∵菱形 的周长为பைடு நூலகம்,∴ .
中, ,∴ ,
∴ ,∴ .
综上所述, 的面积为2或 .
【点睛】
本题主要考查了菱形的性质以及等腰直角三角形的性质的运用,解决问题的关键是画出图形,运用分类思想以及化归思想进行求解.
A. B. C. D.
29.已知菱形的周长为 ,一条对角线长为 ,则菱形四个角的度数分别为( )
A.30°,150°,30°,150°B.60°,120°,60°,120°
C.45°,135°,45°,135°D.以上都不对
30.如图,在菱形 中, , 的垂直平分线交对角线 于点 , 为垂足,连结 ,则 等于( )
13.菱形 的面积为
【解析】
【分析】
求出两对角线的长度,然后根据菱形的面积等于对角线乘积的一半进行计算即可求解.
【详解】
∵菱形 的周长为4,
∴ .
∵两个相邻内角 与 的度数之比为1∶2,且 ,
∴ ,
∴ 是等边三角形,
∴ ,∴ .
∵ ,∴在 中, ,
∴ ,
∴菱形 的面积为 .
【点睛】
本题考查了菱形的对角线互相垂直平分的性质,以及菱形的四条边都相等的性质,根据度数求出以较短的对角线BD为边的三角形是等边三角形是解题的关键.
根据菱形的性质求得∠B=60°,判定△ABC为等边三角形即可求解.
【详解】
∵四边形ABCD是菱形
∴AB=BC,AB∥CD
∴∠B+∠BCD=180°,

八年级数学矩形的判定

八年级数学矩形的判定

19.2.1(2)矩形的判定教学目标:(一)知识技能:经历矩形的判别方法的探究过程,掌握矩形的三种判定方法。

(二)教学思考:1、经历利用矩形定义探究矩形其他判别方法的过程,培养学生的观察、思考、推理的意识,发展学生的形象思维和逻辑推理能力。

2、根据矩形的判定进行简单的证明,培养学生的逻辑推理能力和演绎能力。

(三)解决问题:1、尝试从不同角度寻求矩形的判别方法,并能有效地解决问题,尝试评价不同方法之间的差异。

2、通过对矩形判定的过程的反思,获得灵活判别四边形是矩形的经验。

(四)情感态度:在探究矩形的判别方法的活动中获得成功的体验,通过运用矩形的判定和性质,锻炼克服困难的意志、建立自信心。

重点:矩形的判定定理的探究。

难点:矩形的判定定理的探究和应用教学过程:一、复习引入:1、矩形具有哪些性质?哪些是平行四边形所没有的?列表比较:2、矩形定义:有一个角是直角的平行四边形是矩形二、新授课:1.、教师出示教具并演示,学生观察,猜想,得出命题:对角线相等的平行四边形是矩形。

2、学生思考讨论,教师板书证明过程3、判定定理1:对角线相等的平行四边形是矩形用字母语言表示:∵ABCD,AC=BDABCD是矩形。

老师强调:这个定理包括两个条件:一是平行四边形,二是对角线相等。

4、生活应用:工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否分别相等,还要测量它们的两条对角线是否相等,以确保图形是矩形,你知道其中的道理吗?学生:回答。

5、①出示问题:有一个角是直角的四边形是矩形吗?例如(如下图A)有两个角是直角的四边形是矩形吗?例如(如下图B)有三个角是直角的四边形是矩形吗?例如(如下图C)A B C②下面我们来证明一下这个问题:有三个角是直角的四边形是矩形教师画出图形,写出已知,求证,学生独立完成证明过程(一生板演)③结论:矩形的判定定理2:有三个角是直角的四边形是矩形用字母语言表示:∵四边形ABCD中,∠A=∠B=∠C=90°,∴ ABCD 是矩形。

八年级数学下册 18.2.1 矩形练习2 新人教版(2021年整理)

八年级数学下册 18.2.1 矩形练习2 新人教版(2021年整理)

八年级数学下册18.2.1 矩形练习2 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册18.2.1 矩形练习2 (新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册18.2.1 矩形练习2 (新版)新人教版的全部内容。

矩形一、选择题1.若矩形对角线相交所成钝角为120°,短边长3.6cm,则对角线的长为().A.3。

6cm B。

7。

2cm C.1。

8cm D.14。

4cm2.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是( )A。

B。

C. D.3.如图,在矩形 ABCD 中,AB〈BC,AC,BD相交于点O,则图中等腰三角形的个数是( )A。

8 B. 6 C.4 D。

24。

(四川南充自主招生)已知直角三角形ABC的周长为14,斜边AB 上的中线CD长为3,则直角三角形ABC的面积为()A。

5 B。

6 C. 7 D.85.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC=()A。

30° B.40°C。

45°D。

60°二、填空题6.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.7.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A 落在BC 上的A 1处,则∠EA 1B =______°。

8。

(江苏盐城中考模拟)如图,在△ABC 中,∠C= 90°,AB=10,34BC AC ,过 AB 边上一点P作PE 丄AC 于点E ,PF 丄BC 于点F ,则EF 的最小值是 。

2020学年八年级数学下册 第十九章19.2.1 正比例函数 第2课时 正比例函数的图象与性质练习

2020学年八年级数学下册 第十九章19.2.1 正比例函数 第2课时 正比例函数的图象与性质练习

第2课时 正比例函数的图象与性质知识点 1 正比例函数的图象1.正比例函数y =2x 的大致图象是( )图19-2-12.经过以下一组点可以画出函数y =-3x 的图象的是( ) A .(0,0)和(3,-1) B .(1,-3)和(-1,3) C .(1,3)和(-3,1) D .(-1,-3)和(1,3)3.若正比例函数y =kx 的图象在第二、四象限,则k 的取值可以是( ) A .1 B .0或1 C .±1 D .-14.[2018·常州]一个正比例函数的图象经过点(2,-1),则它的解析式为( ) A .y =-2x B .y =2x C .y =-12x D .y =12x5.已知正比例函数y =(k +1)x 的图象经过第一、三象限,则k 的取值范围是________. 6.已知函数:①y =12x ,②y =x ,③y =2x ,④y =-2x .(1)在同一平面直角坐标系中画出各函数的图象;(2)观察这些函数的图象可以发现,随着|k |的增大,直线与y 轴的位置关系有何变化?(k 指比例系数) (3)猜想函数①和④的图象的位置关系.知识点 2 正比例函数的性质7.对于函数y =-2x ,下列说法不正确的是( ) A .它的图象是一条直线 B .y 随着x 的增大而增大 C .它的图象过点(-1,2) D .它的图象经过第二、四象限8.在关于x 的正比例函数y =(k -1)x 中,y 随x 的增大而减小,则k 的取值范围是( ) A .k <1 B .k >1 C .k ≤1 D .k ≥19.已知正比例函数y =kx (k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1-y 2>0D .y 1-y 2<010.若正比例函数y =(1-4m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时, y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m <14D .m >1411.[2018·陕西]如图19-2-2,在矩形AOBC 中,A (-2,0),B (0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( )图19-2-2A .-12 B.12C .-2D .212.已知正比例函数y =3x 的图象经过点A (-1,y 1),B (-2,y 2),则y 1________y 2(填“>”“<”或“=”).13.写出一个图象经过第一、三象限的正比例函数y =kx (k ≠0)的解析式:________.14.如图19-2-3,三个正比例函数的图象对应的解析式为:①y =ax ,②y =bx ,③y =cx ,则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .b >a >cD .b >c >a图19-2-3 图19-2-415.放学后,小明骑车回家,他经过的路程s (千米)与所用时间t (分)的函数关系如图19-2-4所示,则小明的骑车速度是________千米/分.16.已知正比例函数y =kx (k 是常数,k ≠0),当-3≤x ≤1时,对应的y 的取值范围是-1≤y ≤13,且y 随x 的增大而增大,则k 的值为________.17.已知正比例函数y =kx ,当x =1时,y =2.(1)求正比例函数的解析式; (2)求当x =-1时的函数值;(3)当y 的取值范围是0≤y ≤5时,求x 的取值范围.18.2[018·昆明改编]如图19-2-5,点A 的坐标为(4,2),将点A 绕坐标原点O 旋转90°后,再向左平移1个单位长度得到点A ′,求过点A ′的正比例函数图象的解析式.图19-2-519.如图19-2-6,已知正比例函数y=kx的图象经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式.(2)在x轴上是否存在一点P,使△AOP的面积为5?若存在,求出点P的坐标;若不存在,请说明理由.图19-2-6拓广探究创新练冲刺满分20.[2018·贵港]如图19-2-7,直线l的解析式为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3;…;按此作法进行下去,则点A n的坐标为________.图19-2-7教师详解详析1.B 2.B3.D [解析] ∵正比例函数y =kx 的图象在第二、四象限,∴k <0.故选D. 4.C5.k >-1 [解析] ∵正比例函数y =(k +1)x 的图象经过第一、三象限,∴k +1>0,∴k >-1. 6.解:(1)如图:(2)观察这些函数的图象可以发现,随着|k |的增大,直线与y 轴的夹角越来越小. (3)函数①和④的图象互相垂直. 7.B8.A [解析] 由正比例函数的性质可知:当y 随x 的增大而减小时,k -1<0,即k <1.故选A. 9.C10.D [解析] 因为当x 增大时,y 减小,说明函数y 随着x 的增大而减小,则有1-4m <0,解得m >14.故选D.11.A [解析] 由A (-2,0),B (0,1)可得C (-2,1).把点C 的坐标代入y =kx ,得-2k =1,解得k =-12.故选A. 12.>13.y =2x (答案不唯一) [解析] ∵正比例函数y =kx 的图象经过第一、三象限, ∴k >0,当k 取2时可得函数解析式为y =2x .14.B [解析] ∵y =ax ,y =bx ,y =cx 的图象都在第一、三象限,∴a >0,b >0,c >0.∵直线越陡,则|k |越大,∴c >b >a .15.0.2 16.1317.解:(1)将x =1,y =2代入y =kx ,得k =2, 故正比例函数的解析式为y =2x .(2)当x =-1时,y =2×(-1)=-2. (3)∵0≤y ≤5,∴0≤2x ≤5, 解得0≤x ≤52.18.解:当点A 绕坐标原点O 逆时针旋转90°后,再向左平移1个单位长度得到点A ′, 则A ′(-3,4).设过点A ′的正比例函数图象的解析式为y =k 1x , 则4=-3k 1, 解得k 1=-43,则过点A ′的正比例函数图象的解析式为y =-43x .同理可得:当点A 绕坐标原点O 顺时针旋转90°后,再向左平移1个单位长度得到点A ″,则A ″(1,-4). 设过点A ″的正比例函数图象的解析式为y =k 2x , 则k 2=-4,则过点A ″的正比例函数图象的解析式为y =-4x .综上所述,过点A ′的正比例函数图象的解析式为y =-43x 或y =-4x .19.解:(1)∵点A 的横坐标为3,且△AOH 的面积为3, ∴点A 的纵坐标为-2,∴点A 的坐标为(3,-2). ∵正比例函数y =kx 的图象经过点A , ∴3k =-2,∴k =-23,∴正比例函数的解析式是y =-23x .(2)存在.∵△AOP 的面积为5,点A 的坐标为(3,-2), ∴OP =5,∴点P 的坐标为(5,0)或(-5,0).20.(2n -1,0) [解析] 直线l 的解析式为y =3x ,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点B 1,可知点B 1的坐标为(1,3),以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2,则OA 2=OB 1,所以OA 2=12+(3)2=2,所以点A 2的坐标为(2,0).同理,可求得点B 2的坐标为(2,2 3),故OA 3=22+(2 3)2=4,则点A 3的坐标为(4,0),所以点B 3的坐标为(4,4 3).…所以点A n 的坐标为(2n -1,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 19.2.1矩形(二)
1.矩形具有而平行四边形不具有的性质是( )
A.对边相等
B.对角相等
C.对角互补
D.对角线平分
2.直角三角形中,两直角边长分别为12和5,则斜边中线长是( )
A.26
B.13
C.8.5
D.6.5
3.矩形ABCD 对角线AC 、BD 交于点O ,AB=5,12,cm BC cm =则△ABO 的周长为等于 .
4. 如图所示,矩形ABCD 的对角线AC 和BD 相交于点O ,
过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,
则图中阴影部分的面积为 .
5.已知矩形的周长为40cm ,被两条对角线分成的相邻两个三角形的周长 的差为8cm ,则较大的边长为 .
6. 如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于E ,CF BD ⊥于F 。

求证BE=CF 。

7.如图,M 为□ABCD 的边AD 的中点,且MB=MC 。

求证:□ABCD 是矩形。

8. 如图所示,E 为□ABCD 外,AE ⊥CE,BE ⊥DE ,
求证:□ABCD 为矩形
A C
D M。

相关文档
最新文档