材料 外文翻译 外文文献 一种精密电容测量薄膜平面扩张的第三部分:导体和半导体材料
物理实验技术中的材料薄膜制备与测量技巧
物理实验技术中的材料薄膜制备与测量技巧材料薄膜在物理实验中扮演着重要的角色。
它们广泛应用于电子器件、光学器件、储能设备等领域,具有独特的性能和应用前景。
但是,材料薄膜的制备与测量并不是一件简单的事情。
本文将针对物理实验技术中的材料薄膜制备与测量技巧展开探讨。
一、材料薄膜的制备技巧材料薄膜制备过程中的关键问题是如何获得高质量的薄膜。
这包括薄膜的厚度均匀性、结晶度、界面质量等方面的要求。
下面将介绍两种常见的薄膜制备技术。
1. 物理气相沉积法(Physical Vapor Deposition,简称PVD)PVD是一种利用物理手段将固态材料转化为气态,然后在衬底表面沉积成薄膜的方法。
其中,蒸发法、溅射法和激光热蒸发法是最常用的PVD技术。
在制备薄膜时,需要注意蒸发源的温度、蒸发速率以及衬底的温度和表面处理等因素,以保证薄膜的均匀性和质量。
2. 化学气相沉积法(Chemical Vapor Deposition,简称CVD)CVD是一种利用化学反应在衬底表面生成具有所需性质的材料薄膜的方法。
通过控制反应条件和气相组分,可以制备出高质量的薄膜。
常见的CVD技术有热CVD、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,简称PECVD)等。
在进行CVD制备时,需要注意反应流程的控制、反应气体的纯净度,以及衬底的温度和表面处理等因素。
二、材料薄膜的测量技巧薄膜的制备完成后,我们需要对其进行测量以获得相关性能参数。
下面将介绍两种常见的薄膜测量技术。
1. 拉曼光谱测量拉曼光谱是一种非侵入式的测量方法,可以获得材料的结构信息。
通过激光光源的散射,与物质交互作用后的光被收集,并进一步分析得到物质的振动模式和结构信息。
在薄膜研究中,拉曼光谱常用于表征薄膜的晶格结构、应力分布、杂质掺杂等方面的信息。
通过拉曼光谱测量,可以获得薄膜的结晶度、晶格纳米尺寸等重要参数。
外文文献翻译-模板
杭州电子科技大学毕业设计(论文)外文文献翻译毕业设计(论文)题目单滚筒干燥器的设计翻译题目柔性丝状颗粒在滚筒干燥器中的传热与传质过程研究学院机械工程学院专业机械设计制造及其自动化姓名班级学号指导教师柔性丝状颗粒在滚筒干燥器中的传热与传质过程研究摘要滚筒干燥机被各行业广泛应用于干燥柔性丝状粒子,如化工产品,食品和烟草等等。
然而,有关柔性丝状颗粒在滚筒干燥机中的传热与传质过程尚未得到深入研究。
在本文中,将建立滚筒干燥器的传热与传质数学模型。
我们对水分以及湿度对滚筒干燥器中柔性丝状粒子和热气流的影响开展了研究。
同时我们也研究了滚筒干燥器中柔性丝状粒子和热气流的温度以及湿度的分布情况。
研究结果表明,在一个逆流滚筒干燥器中,当转鼓内壁温度保持不变时,处于干燥器下端的柔性丝状颗粒的脱水率比处于上端的物料要高的多。
柔性丝状颗粒和气流的换热量有可能增加。
大部分气流所携带的热量来自于颗粒蒸发的潜热。
通过研究,我们能够获得不同操作工况下物料的温度和湿度分布,然后得到最佳操作参数。
1Conghui Gu , Xin Zhang , Bin Li , ZhulinYuana,(此处填写原文信息)Study on heat and mass transfer of flexible filamentous particles in a rotary dryerPowder Technology,V ol.267, 2014, pp:234-239.1 介绍滚筒干燥器是被广泛应用于化工,食品和烟草行业工业过程的一种重要设备,其在不同的操作条件下能够影响材料的质量。
滚筒干燥器还广泛用于加热,水分移除以及混合过程。
干燥是制造柔性丝状颗粒的一个主要步骤之一。
有几个因素要考虑到,这可能会影响柔性丝状颗粒的感官质量,包括气体的流动方向、烟草的切割颗粒粒度、滚筒干燥器的初始温度和气体的流量。
此外,在干燥机的不同部分,对柔性丝状颗粒的加热温度不同,从而可以提高处理材料的效率和质量。
外文资料翻译-万一锴
外文资料译文化学气相沉积金刚石:控制结构和形态摘要对于许多工业材料如切割工具,光学部件和微电子器件,控制薄膜形态组织是非常重要的。
在力学,电学和光学方面,颗粒的尺寸,排列方式和表面粗糙度对薄膜沉积具有深远的意义。
本文介绍目前的最新研究对表面的前处理,衬底和金刚石薄膜的偏置以及对处理气体甲烷和氢气中氮的添加来影响薄膜表面的形态和结构。
报告了衬底偏压对薄膜形貌影响的预研究结果。
金刚石粉和矾土粉组成的抛光材料的粒子大小是由于成核位置的缩小,从而成核密度提高了,这个已经被证实出来。
矾土比金刚石更易产生沉淀。
属于表面粗糙较能存放的质地。
对于氮元素里面参杂的杂质,有200万分之一的已经被显示出来。
对于这个问题,科学的解释是表面的碳过度饱和。
§1 引言金刚石是当今可以使用的先进科技材料之一。
它把出色的物理和化学性能独特的结合起来,使其成为在许多潜在用途方面的理想材料。
在切割工具、光学元件、生物医学元件、微电子电路和热量管理系统都有应用。
人们研究大量的方法在不同衬底上沉积金刚石薄膜,最常见的是硅。
可论证地,最成功的沉积金刚石结晶层的方法是化学气相沉积法(CVD)。
这篇文章我们研究的是另一种化学气相沉积法基本过程,通常被称为热丝化学气相沉积法。
关于沉积机制有许多问题,如果热丝化学气相沉积法在工业中成为切实可行的应用,需要解决按比例增加因素和表面化学组成这些问题。
尽管如此,这项技术仍然可以提供有关金刚石沉积科技的大量有用的科学信息。
普遍认为例如形态,质量和对衬底粘着力等特性决定了它是否适合用于特殊用途等这些问题很关键,需要研究。
金刚石成核阶段和CVD加工条件都关键性的决定薄膜结构和形态。
人们经常在沉积之前用金刚石粉刮擦衬底材料的方法来提高成核密度。
然而,这样的刮擦方法会以不明确的方式破坏表面而抑制CVD金刚石在某些方面的特殊用途。
因此更多的成核方法例如在标准CVD之前偏置变得广泛起来,它甚至可以促进金刚石薄膜的异相外延生长。
薄膜表征
2、特点:
1)测量的灵敏度与石英晶体薄片的厚度有关,越薄越灵敏! 由式 (5-3) 可知:Dq f0 由式 (5-5) 可知:f0 Df 的测量灵敏度! ■ 如固有频率 f0 = 6 MHz时,若频率变化的测量精度为 1 Hz,则可测得 1.2×10-8 g 的质量变化! 此时假设基片面积为 1 cm2,沉积材料为Al,则厚度灵敏度相当于 0.05 nm ! 2)应用广泛、主要用于实时测量沉积率 实现镀膜过程自动控制! 3)环境温度变化会造成石英晶体固有频率发生变化 要求恒温环境 需要冷却系统! 4)式 (5-5) 只是近似成立,且薄膜的有效面积不完全等于石英片面积 测量结果需要标定和校正!
薄膜与玻璃片之间的距离 S 引起的光程差 为波长 的整数倍,即: 2S ph / 2 N 此处:ph — 光在玻璃片和薄膜表面发生两次反射时造成的相移。 从玻璃片表面反射和从薄膜表面的反射都是向空气反射,其相移之和为 + , 因此干涉极大条件可写作: S ( N 1) / 2 玻璃片与薄膜表面一般不完全平行,也会造成干涉条纹出现:每当 S =/2 时,出现间距为 0的干涉条纹; 如右图所示:台阶造成的条纹间距为 ,且台阶高度 (膜厚) 满足: D 分别测得 和 0,就可以计算出台阶高度 (测得膜厚 D)。
二、基本特点:
1、类似光学金相,可提供清晰直观的表面/截面形貌像; 2、分辩率高,景深大; 3、可采用不同分析模式作定量/半定量的表面成分分析; 4、是目前材料研究最常用手段之一,应用极为广泛。
SEM的结构与主要组件
三、电子束的作用区域及主要成像粒子:
1、电子束入射到样品表面后,会与表面层的原子发生各种交互作用, 其作用区域大致为一个梨形区域,深度约 1m; 2、该区域在电子束照射下可实现成像和波谱分析的主要激发粒子是: 最表层 (10Å):俄歇电子; 浅层 (50~500Å):二次电子; 梨形区上部:背散射电子; 梨形区下部:特征X射线。 3、分别接收上述激发粒子,处理后可显示表层的各种形貌/成分信息。
机械毕业设计英文外文翻译62超薄HfO2薄膜纳米划痕测试的力学性能研究
附录:译文超薄HfO2薄膜纳米划痕测试的力学性能研究摘要:测试10nm的原子沉积HfO2薄膜的耐磨性和压痕硬度,从而研究退火对其力学性能影响。
超薄片在低负荷时的耐磨损性能是通过原子力显微镜的纳米划痕试验测量。
纳米划痕的深度随退火温度升高而降低,这表明退火后薄膜的硬度随退火温度的升高而增加。
通过纳米划痕试验产生表面压痕。
退火后的薄膜硬度变化的主要原因是由于退火产生了HfSixOy。
X-射线光电子能谱(XPS)测量证明,HfSixOy的硬度随退火温度的升高而增加。
存在的HfSixOy扩大了界面,使界面层的厚度的增加。
因此,表面硬度随退火产生的HfSixOy的增加而增加。
关键词: HfO2;薄膜;纳米压痕;原子力显微镜;纳米压痕。
1、介绍在半导体产业中,为了以较低的成本获得良好的功能和性能,晶体管的沟道长度和栅介电层厚度等特征尺寸被要求不断缩小[1-3]。
二氧化铪(HfO2)由于其具有相对较高的介电常数,折射率大,并且具有宽的带隙,是一种很有前途的材料,以取代二氧化硅[2-4]用于减少栅极绝缘层的厚度。
但是,氧化铪在硅片上不具有热稳定性。
HfO2薄膜的热退火引起的结构和界面的稳定性的变化已经得到了广泛的研究。
X射线衍射分析(XRD)表明,如相,结晶和晶粒度大小等结构性能由退火温度决定[5,6]。
现通过光谱椭偏观察到的光学常数随退火温度的增加而增加[6,7]。
电子电路应用程序的集成兼容性和长期可靠性取决于其机械性能,这是由于其耐磨损性,热循环和内应力依赖于它们。
然而,由于热退火引起的力学性能变化并不完全取决于HfO2薄膜,特别是几纳米厚度的变化。
在这篇文章中,10纳米厚的氧化铪薄膜的机械性能取决于耐磨性和压痕硬度。
热退火的耐磨性和压痕硬度的变化分别从纳米划痕测试和表面纳米压痕获得。
划痕的深度用原子力显微镜(AFM)测量,其被用作评价薄膜的耐磨性和硬度的指标[8-10]。
通过表面纳米压痕确认纳米划痕测试的结果。
N缓冲层上低温生长AIN单晶薄膜
收稿日期:2002-10-16. 基金项目:国家自然科学基金资助项目(69976008)1材料、结构及工艺G a N 缓冲层上低温生长Al N 单晶薄膜秦福文1,顾 彪1,徐 茵1,杨大智2(1.大连理工大学电气工程与应用电子技术系,辽宁大连116024;2.大连理工大学材料科学与工程系,辽宁大连116024)摘 要: 采用电子回旋共振等离子体增强金属有机物化学气相沉积(ECR 2PEMOCVD )技术,在α2Al 2O 3(0001)(蓝宝石)衬底上,分别以高纯氮气(N 2)和三甲基铝(TMAl )为氮源和铝源低温生长氮化铝(AlN )薄膜。
利用反射高能电子衍射(RHEED )、原子力显微镜(AFM )和X 射线衍射(XRD )等测量样品,研究了AlN 缓冲层和氮化镓(G aN )对六方AlN 外延层质量的影响,实验表明在G aN 缓冲层上能够低温生长出C 轴取向的AlN 单晶薄膜。
关键词: AlN ;G aN ;氢等离子体清洗;氮化中图分类号:TN304.053 文献标识码:A 文章编号:1001-5868(2003)01-0032-05Study on Al N Film G row n on G a N Buffer Layer at Low T emperatureQ IN Fu 2wen 1,GU Biao 1,XU Y in 1,YAN G Da 2zhi 2(1.Department of E lectrical E ngineering and Applied E lectronics ,Dalian U niversity of T echnology ,Dalian 116024,CHN;2.Department of Material Science and E ngineering ,Dalian U niversity of T echnology ,Dalian 116024,CHN )Abstract : AlN film has been grown on α2Al 2O 3(0001)substrate by ECR 2PAMOCVD technique at low temperature using TMAl and highly pure N 2as Al and N sources ,respectively.The effects of G aN buffer layer and AlN buffer layer on the quality of AlN epilayer have been investigated through the measurement of RHEED ,TEM and XRD.The result shows that C axis oriented AlN single crystal film can be grown on G aN buffer layer at low temperature.K ey w ords : AlN ;G aN ;hydrogen plasma cleaning ;nitridation1 引言宽带隙的Ⅲ族氮化物半导体材料AlN 和G aN ,其带隙能量分别为6.2eV 和3.39eV ,是目前制备蓝光到紫外光波段的发光二极管(L ED )、激光二极管(LD )等光电器件的首选材料。
翻译
Materials Letters 132(2014)417–420Contents lists available at ScienceDirectMaterials Lettersjournal homepage: /locate/matlet柔性聚吡咯纳米阵列的纸杯及其电容性能的研究aHongxiuDu a,b ,YibingXie a,b,n ,ChiXia a,b ,WeiWang a,b ,FangTian ,YingzhiZhou a a School ofChemistry and Chemical Engineering, Southeast University, Nanjing 211189,Chinab Suzhou Research Institute of Southeast University, Suzhou 215123,Chinaa r t i c l e i n f oa b s t r a c tArticle history:以二氧化碳支撑的聚吡咯纳米阵列材料为前驱体,利用化学溶解腐蚀方法去除二氧化钛 模版制备得到自支撑的聚吡咯纳米管嵌纳米孔阵列材料。
所有的聚吡咯纳米管嵌入规整 有序的聚吡咯纳米孔中形成同轴结构且保持均匀间隙。
在1mol 硫酸中循环100次的充放电 循环后,自支撑的聚吡咯纳米管嵌纳米孔阵列薄膜电极比电容保持率为67%,且在电压 为-0.2~0.6V 时的比电容是88.6Fg À1。
鲫鱼自支撑的聚吡咯纳米管嵌纳米孔阵列电极材 料与凝胶电解质组装了一种全固态柔性超级电容器。
在电流密度为0.005Ag À1.时的比电容是13Fg À1。
自支撑的聚吡咯纳米管铅纳米孔阵列在平面和弯曲状态下都有稳定的储电 性能,表明它具有一定储能性能并在弯曲状态下可以应用。
Received 7May 2014 Accepted 21June 2014Available online 28 June 2014 Keywords: 聚吡咯 纳米阵列 超级电容器 柔性薄膜1. Introduction2.Experimental自支撑的聚吡咯纳米管铅纳米孔阵列材料通过电化学合成方法 来制备.首先,将NH4F (0.2M )和H3PO4(0.5M )溶于体积 比为1:1的水和乙二醇溶液中,然后在此溶液中利用阳极氧化 法制备二氧化钛纳米管阵列,氧化电压范围为30V ,氧化时间 为2h ,在450。
薄圆盘直径端点之间电阻的研究
薄圆盘直径端点之间电阻的研究王岚;惠小强【摘要】It was difficult to apply immediate integral to measure the resistance of thin disc conductor.In order to solve this problem,this paper studied the method for measuring the resistance of thin disc by finite element method.Firstly,the measurement platform of thin disc resistance was designed by Comsol multiphysics software.Based on this design of electrode,we studied the relationship between the thin disc resistance and the disc radius,the electrode position,the position and size of the small hole on the thin disc.Then,resistance of thin disc could be measured indirectly by the disc resistance expression,which was fitted by the least square method.Finally,the above measurement method for the resistance of thin disc was verified with immediate integral under the typical condition,and the results show that the error of the method was quite small.This paper was of great significance for the design of resistance of thin disc.In addition,the resistance measurement method could also be promoted the design of resistance of other shapes.%针对薄圆盘直径端点之间电阻难以利用传统直接积分法或数值解法测量的问题,本文利用有限元分析法研究了薄圆盘直径端点之间电阻的测量方法.利用Comsol multiphysics设计薄圆盘电阻测量平台,通过在薄圆盘直径端点设计电极,研究了薄圆盘直径端点之间电阻随薄圆盘半径、电极位置、薄圆盘上小孔位置和大小的变化规律;利用最小二乘法拟合薄圆盘直径端点之间电阻表达式,实现薄圆盘直径端点之间电阻间接测量;在典型条件下,利用直接积分测量法对上述测量方法进行验证,结果表明本文提出的方法误差较小.本文研究工作对薄圆盘电阻的设计具有指导意义,且该研究方法还可以推广用于其他形状电阻的设计.【期刊名称】《物理与工程》【年(卷),期】2017(027)004【总页数】5页(P37-41)【关键词】薄圆盘;电阻;Comsol multiphysics【作者】王岚;惠小强【作者单位】西安邮电大学理学院,陕西西安 710061;西安邮电大学物联网与两化融合研究院,陕西西安 710061【正文语种】中文稳恒条件下导体内电势/电流的分布、不规则或不均匀导体电阻的测量等都是电磁学应用研究中的基本问题[1,2]。
超导物质铌薄膜
具有超导性能的铍薄膜Rolfe E. Glover, HIStefan Moser and Friedhold Baumann摘要对浓缩在液氦冷却表面的铍薄膜的阻抗温度特性进行测量。
为了减小污染,设计并使用两种蒸气源,并且用水晶石英和玻璃基质这两种物质做为薄膜生成基质。
样品在T C= 9.6±0.1K的转变温度下具有超导性能,其表现为冷却状态下阻抗快速下降。
这从早期的冷却的铍薄膜的超导电性的报告中已经得到证实。
然而其转变曲线略微陡了一点,并且转变温度也比早期报告的高了一些。
从样品之间所发现的良好的结果表明剩余杂质含量非常小,从而显得出其作用微不足道,同时观察到转变温度实际上是纯铍的特性。
铍的状态是造成在40-60K范围内退火过程中高T C值消失的根本原因。
还没有报道过T C≈6K下的状态。
铍薄膜的厚度超过750Å会在沉淀过程中出现破裂,表明有大的应力的存在。
1、前言Lazarev et al.发现铍通过一个由液氦冷却玻璃基质表面上的钨螺旋物后,在真空蒸发状态下而形成的铍薄膜表现出一个显著超导性能的转变,此时的临界温度T C≈8K(通过对比,随后大量的关于铍的报道的转变温度是0.026K)。
退火后的铍薄膜的阻抗温度转变曲线大约是1K 宽,这个测量出的温度宽度相对应的是残余电阻的10和90%之间,有时1英尺低温区域可以把转变区域扩展超过差不多1½度。
测量后的一个令人吃惊的特点是薄膜厚度和残余电阻之间似乎没有系统性的关联。
400Å和2300 Å的薄膜有大约相同的残余电阻,而此时1800Å的样品测量出残余电阻却高出2倍。
发现这样一种情况,当退火的温度在大约30K 时与高转换温度相关连的相位即处于稳定状态。
在更高温度下,相对于一个可改变的阶段,一个不可逆转的转变会发生,这可以从电阻的急速下降得到验证。
可以发现退火到60K之后,快速浓缩(≈100Å/秒,源温度1500°C)而形成的薄膜可以在1.3K以上不再具有超导性能。
薄膜和箔的测量
薄膜和箔的测量
Kelvin M.Palmer;立人
【期刊名称】《现代测量与实验室管理》
【年(卷),期】1993(000)006
【摘要】1.前言薄和软的材料,比如聚脂薄膜、磁带或光盘片基和箔的厚度测量提出一些特殊问题。
很多厚度直接测量法苦于灵敏度不够和不能重复。
为抵止不准确的测量系统,许多制造厂采用了间接测量法,比如通过称量产品的重量来控制总的投料厚度。
不幸的是用这种方法是不可能了解产品每个点上的厚度均匀问题。
【总页数】2页(P47-48)
【作者】Kelvin M.Palmer;立人
【作者单位】
【正文语种】中文
【中图分类】TB9
【相关文献】
1.硫化法在金属箔片衬底上制备 ZnS 薄膜研究 [J], 许佳雄;罗少魁;辛辅炼
2.Metallux选择威格斯APTIVTM薄膜制造其新型MetaPot柔性箔式传感器 [J], 威格斯公司
3.基于提高绝缘性——以双面聚酯薄膜复合粉云母箔研究为例 [J], 刘慧;刘群
4.薄膜和箔的测量 [J], Palm.,KM;立人
5.电化学蚀刻钽箔制备高容量薄膜钽电解电容器 [J], 郭永富;王日明;于淑会;初宝进;孙蓉
因版权原因,仅展示原文概要,查看原文内容请购买。
ZrO2薄膜分析
19 Loeffen W, Mullender S, Goulon J, et al. J. Phys. IV 7 p.333, 1997.20唐晋发郑权. 应用薄膜光学[D],上海科学技术出版社, p.383-384, 1984.21雷欧 S S. 工程最优化原理与应用[D],祁载康,万耀青,梁嘉玉(译),北京理工大学出版社,p. 213-219, 1990.Design and fabrication of the x-ray supermirrorWANG Fengli, ZHANG Zhong, WU Wenjun, QIN Shuji, WANG Zhanshan,CHEN Lingyan (Department of physics, Institute of Precision Optical Engineering,Tongji University, shanghai 200092, China)Abstract: the design and the fabrication of x-ray supermirror have been proposed, which is used as the high mirror in x-ray imaging telescope. First, the coating materials pair W, C is selected by the combination of the Spiller’ and Yamamoto’ criterion. Then using the relation of the peaking reflectivity of period multilayer and the bilayer numbers, the total layer number is determined and at the same time the first coating structure is given by the way of Yamshita. And then the optimization of the multilayer has been achieved by using the algorithm of simplex optimization. The flat reflectivity of broadband supermirror is 21% in the wavelength band of 0.0475~0.0886nm at the grazing incident angle of 8.7mrad. The influence of the roughness and the interdiffusion between the different layer materials on the reflectivity of multiplayer is simply introduced. Finally the designed multilayer structure has been fabricated on the magnetron sputtering system ,and the measured reflectivity is around 15% in the range of 8.7-15.7mrad by the x-ray reflectivity diffractometer (XRD).Key words: broadband supermirror, simplex optimization, roughness, magnetron sputteringZrO2薄膜的X射线衍射分析∗张东平邵淑英洪瑞金邵建达范正修(中科院上海光学精密机械研究所光学薄膜研究与发展中心上海 201800)王文宝(苏州大学分析测试中心苏州 215006 )摘要:用电子束热蒸发的方法生长了ZrO2薄膜,通过X射线衍射分析,我们得到了在不同电子束流下沉积的薄膜其结构和性质是不同的。
AZO薄膜论文答辩资料二
在太阳能电池,平面显示,雷达,传感器等光电领域有着广阔的应用前景。
薄膜太阳能电池可以广泛的应用于通信电子产品中,节省了宝贵的能源,而且无污染。
在山区或者偏僻的地方,通信电子产品往往受到没有电源的困扰,而薄膜太阳能电池的应用恰好可以解决这个问题。
在通信领域的信息接收方面,AZO薄膜良好的光电特性可以用于光电传感器,薄膜将光电电子器件和传统的硅平面工艺相结合,具有良好而稳定的化学和物理特性,可广泛应用于光电探测,传感器和光通信领域。
1 面发热膜AZO透明导电薄膜通电后会产生热量。
利用这一点可将其用于汽车、飞机挡风玻璃、照相机镜头以及滑雪用眼镜的防雾防霜。
2 液晶显示器。
透明导电薄膜是平板显示的基础材料,目前AZO薄膜的电学性能已经完全能达到液晶显示器对电极的要求,并且因为AZO薄膜性能稳定不会污染液晶显示器。
低电阻率、高透射率的AZO薄膜也将会发挥巨大的作用。
3 太阳能电池。
在太阳能电池上,透明导电膜作为减反射层和透明电极使用,可以提高太阳能的转换效率透明导电膜做前电极的一种新结构的晶体硅太阳电池可使转换效率提高25~35%。
而用AZO薄膜替代ITO薄膜,不仅可以降低生产成本,而且无毒,稳定性强(特别是在氢等离子体中),对太阳能电池的发展具有重要意义。
4 热反射镜由于AZO薄膜具有可见光区的高透射性,对红外光的高反射性,所以可用于寒冷地区的建筑玻璃窗,起热屏蔽作用,保持一定的室温,节省能源消耗。
5 此外,尤其要提出的是AZO在手机电容屏中的使用,目前手机触摸电容屏普遍使用ITO层会出现高蚀间隔带,ITO层在蚀刻时,更容易出现直线放射型的缺划或电阻偏高带;另一些厂家的玻璃ITO层则会出现微晶沟缝。
氧化铟锡(俗称ITO)膜,面光洁度要低一些,更容易出现“麻点”现象。
而AZO薄膜完全具备作为手机电视电脑液晶显示的材料,它优越的导电性和透光性完全符合液晶显示的要求,而且可以避免ITO薄膜的缺点。
性价比更高,只是因为ITO出现的时间比AZO薄膜早,所以才普遍被使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者:Chad R. Snyder, Member Frederick I. Mopsik国籍:America出处:IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENTA Precision Capacitance Cell for Measurement of Thin Film Out-of-Plane Expansion–Part III: Conducting andSemiconducting MaterialsAbstract—This paper describes the construction, calibration, and use of a precision capacitance-based metrology for the measurement of the thermal and hygrothermal (swelling) expansion of thin films. It is demonstrated that with this version of our capacitance cell, materials ranging in electrical properties from insulators to conductors can be measured. The results of our measurements on p-type<100> -oriented single crystal silicon are compared to the recommended standard reference values from the literature and are shown to be in excellent agreement.Index Terms—Capacitance cell, coefficient of thermal expansion (CTE), guarded electrode, high sensitivity displacement, inner layer dielectrics, polymers, thin films.I. INTRODUCTIONTHE coefficient of thermal expansion (CTE) is a key design parameter in many applications. It is used for estimating dimensional tolerances and thermal stress mismatches. The latter is of great importance to the electronics industry, where thermal stresses can lead to device failure. For accurate modeling of these systems, reliable values are needed for the CTE.Traditionally, displacement gauge techniques such as thermomechanical analysis (TMA) have been utilized for determining the CTE. However, standard test methods basedm [1-2]. This ison these techniques are limited to dimensions greater than 100 mproblematic for materials which can be formed only as thin layers (such as coatings and certain inner layer dielectrics). Additionally, there is some question as to whether valuesobtained on larger samples (bulk material) are the same as those obtained for thin films, even when the effects of lateral constraints are included in the calculations .It has long been recognized that capacitance-based measurements, in principle, can offer the necessary resolution for these films . For a pair of plane-parallel plate capacitors, if the sample is used to set the spacing of the plates d while being outside of themeasurement path, then for a constant effective area of the plates A , the capacitance in a vacuum vac C is given by the well-known equation d AC vac 0ε=(1)where 0εis the permittivity of free space (m pF 854.80=ε).With the sampleoutside of the measurement path and only air etween the electrodes, the vacuum capacitance is obtained rom the measured capacitance C by air vac C C ε=(2)where air ε is the dielectric constant of air.In three previous papers, the design and data reduction techniques were presented for our three-terminal capacitance-based metrology for thin polymer film measurements. The first paper (I) described the initial design based on gold-coated Zerodur. However, several problems were encountered. It was discovered that Zerodur displays ferroelectric behavior, with an apparent Curie temperature of 206 ℃as determined by fitting with a Curie –Weiss law. The rapid change in the dielectric constant of the Zerodur along with a coupling from the central contact through the guard gap to the high electrode created an apparentnegative thermal expansion . The second problem with the initial design was with the gold coating. This coating had the tendency to “snow plow” when scratches formed in the surface creating raised areas which would result in shorts when measurements were performed on thin samples. The second problem with the gold was that it underwent mechanical creep under loading.To resolve these problems, a new electrode was designed from fused quartz coated with nichrome. A groove filled with conductive silver paint was added to the back side of the bottom electrode around the central contact to intercept any field lines between the central wire contact through the guard gap to the high electrode. The new design was described in the second paper (II) along with thermal expansion measurementson<0001>-oriented single crystal sapphire (32O Al ) and a 14-m μ thick inner layer dielectric material [10]. It was recognized in II that the data reduction was simple as long as the air filling the gap between the capacitor plates was dry. However, to expand the utility of the capacitance cell to hygrothermal expansion (i.e., swelling in a humid environment), the third paper (III) described the data reduction techniques necessary for use of the capacitance cell under humid conditions .Fig. 1. Schematic of the electrodes. Note that the shaded areas correspond tothe nichrome coating.The resolution of the instrument was determined in II and III. For dry, isothermal conditions, the capacitance cell can measure relative changes in thickness on the order of 710- , for a 0.5-mm thick sample; this corresponds to a resolution on the orderof m 11105-⨯. Under dry conditions in which the temperature is changed, thereproducibility of a relative thickness change (e.g., for CTE measurement) is on the order of 610- . Finally, under humid conditions, the ultimate resolution is primarily a function of temperature —the actual values of which are given in III.In II, a deficiency was recognized in the design. Neither semiconducting or conducting materials could be used as the material for testing. This was especially the case for silicon, which forms a Schottky barrier with nichrome and acts as a voltage rectifier. Additionally, because of the nature of the interface, the 1 kHz measurement frequency generates ultrasound which results in the epoxy contacts being shaken loose. We mentioned brieflyin II that if the top electrode had a guard ring added, the sample could be held at zero potential and this would no longer be a problem. To demonstrate this, we constructed such a capacitance cell—the design and testing of which are described in this paper.II. CAPACITANCE CELL DESIGNA.Electrode DesignBecause the construction of the electrodes was thoroughly described in II, a less detailed description will be given with emphasis on the changes in the design. The electrodes were constructed, as before, in the following manner (see Fig. 1).cm210⨯cylindrical blanks of fused quartz were ground and polished to optical flatness.cmSmall holes were drilled through the center of each blank so that 16 gauge wire could be inserted into them. The wires were then cemented with a conducting epoxy (resistivity of 10⨯-44at 25℃). A second hole and wire were then added to each blank Ωcmapproximately 0.75 cm from the edge of the blanks. A coating of nichrome was then added such that it covered all surfaces except for a small area around the back of the blanks. A guard gap was scribed on both the top and bottom electrodes such that no material was raised which could cause a short. On the bottom electrode, the guard gap was scribed on a 3 cm diameter, and on the top electrode it was scribed on a 6 cm diameter. In the bottom electrode, a 1 cm diameter well was cut into the back of the blank which extended to within 5 mm of the front surface. This well was then filled with a thin conductive silver paint. The paint connected the outer guard ring’s metallization to the edge of the well.Fig. 2. Schematic of the assembled capacitance cell.B. Cell Assembly and Capacitance MeasurementsThe holder described in II was employed for the modified cell. In this version of the capacitance cell, both conductors of the semirigid coaxial line were connected to the top electrode. The center connector and braid were connected to the center area and outer guard ring, respectively, by fine 30 gauge wire coils. The coils were terminated with center female contacts from 50ΩBNC connectors, which could be easily connected/disconnected to the 16 gauge tinned copper wire that was epoxied into the electrodes. A schematic of the assembled cell is shown in Fig. 2. The female BNC connector on the brass holder (bottom electrode) was connected to the low terminal, and the female BNC connector on the semirigid coaxial line was connected to the high terminal. All connections from the capacitance cell to the bridge were performed using Teflon insulated low noise cables.The capacitance measurements were obtained using a commercial automatedthree-terminal capacitance bridge which uses an oven-stabilized quartz capacitor and has a cited guaranteed relative resolution of better than 7105⨯ pF/pF for the range of capacitances used with this cell (Andeen –Hagerling 2500 A 1 kHz Ultra-PrecisionCapacitance Bridge with Option E). (Note that the “useful” relative resolution is suggestedby the manufacturer to be typically a factor of 10 or more better that the cited relative resolution.) The capacitance bridge’s c alibration was verified against a National Institute of Standards and Technology (NIST) calibrated standard reference capacitor —the difference between the two was within the capacitor’s uncertainty.All measurements were performed in a temperature/humidity chamber equipped with a 90 ℃ dew point air purge. The cell was equilibrated at each temperature until the relative fluctuations in the vacuum corrected capacitance were no more than 710-10 pF/pF. Barometric pressure was monitored using a digital pressure sensor with a manufacturer’s stated uncertainty of 0.1 mm Hg(13 Pa). As stated previously in II, the temperature of the cell was calibrated in terms of the chamber temperature with aresistance temperature device (RTD) mounted to the cell with thermally conducting paste. The RTD was calibrated against a NIST certified ITS-90 standard reference thermometer. As in II, because we are using a dry air purge, we can use the ideal gas law correction to determine the molar volume of the air air v to calculate vac C pRT v air =(3) WhereT---absolute temperature;P---pessure;R---gas constant(11314507.8--⋅⋅⋅=K mol kpa L R )[12].From this and the value of the molar polarization of dry air obtained from the literature, mol L P 31031601.4-⨯=[13], the dielectric constant of the air separating the electrodes is ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=aie air aie air air v P v P 112ε(4) III. MEASUREMENTSA. Cell CalibrationTo use (1) to calculate the thickness of the sample, the effective area must be known. To determine this value as a function of temperature, as in II, we calibrated the area andarea expansion through the use of Zerodur spacers with thicknesses of approximately 2.0 mm. As in II, the actual dimensions of the Zerodur spacers were measured in a ball to plane configuration with a specially designed caliper equipped with a linear voltage displacement transducer (LVDT) that had a resolution of mm 4101-⨯±. The cell was assembled with the Zerodur spacers using the sample preparation described in II.Measurements were performed at 0 ℃, 25 ℃, 50 ℃, 75℃, 100℃, 125 C, and 150℃. The cell was cycled through this range of temperature three times, and the values for vac C were determined for each run after averaging all the properties over approximately 1 h using 10 s increments (a total of 360 data points) after equilibrium was achieved. The area A was calculated using the room temperature thickness measurements and the 25 ℃ value for vac C . All subsequent determinations of A, at higher and lower temperatures, were corrected for the slight expansion and contraction of the Zerodur as a function oftemperature (161005.0--⨯=K Zerodur α). The results of the effective radius of the electrode as a function of temperature are plotted in Fig. 3.Fig. 3. Effective radius of the bottom electrode as a function of temperature obtained by measurements using Zerodur and correcting for its slightexpansion.Fig. 4. Relative expansion of the<100>-oriented single crystal silicon as afunction of temperature. The line is a plot of the data fromB. p-Type Doped<100> Single Crystal SiliconTo demonstrate the ability of the cell to measure silicon and to provide accurate values for thermal expansion, a 0.6-mm thick wafer of single-side polished, back side stress relieved, p-type, <100>-oriented single crystal silicon with a resistivity of 15 cm was1cm. The pieces broken (by scribing) into three pieces. Each piece was approximately2were then cleaned with ultra pure distilled water and ethanol. The cell was assembled in the same fashion as was described in II and was placed in a vacuum oven at ambient temperatures for approximately 1 h to effectively wring the sample.3 . Measurements were performed at 25℃, 50 ℃, 75 ℃, 100 ℃, 125 ℃, and 150℃, a minimum of two times each. (Note: No point was taken at 0 ℃ due to problems with the compressor in the environmental chamber.) The wafer thickness was determined using the effective radius versus temperature data shown in Fig. 3. The results of this analysis are shown in Fig. 4 along with the recommended expansion data on silicon obtained from [14]. It should be noted that the standard reference data was defined relative to 20 ℃ whereas we havemeasured, for convenience, relative to 25 ℃. Therefore, the standard reference, relative expansion data was shifted in Fig. 4 by an amount S equal to()()K S T 5-=α(5)where T α is the CTE at temperature T taken fromIt is apparent that the two sets of data agree within the experimental uncertainty. (The error bar is smaller on the 25 ℃ data point than on the higher temperatures due to the fact that more repeat runs were performed, which reduced the uncertainty for that data point.) This demonstrates several key conclusions regarding the capacitance cell. First, thelimitations of the previous design have been eliminated; silicon and conducting samples can be measured. Second, the results show that the capacitance cell produces data that agree with literature data. Finally, we have further demonstrated the advantage of our technique for measurement of thin samples over commercially available TMAs. Thevalidity of this statement can be shown by considering the results of a round robin study. This study was performed among researchers at NIST, IBM Endicott, DEC,Microelectronics and Computer Technology Corporation, Naval SurfaceWarfareCenter —Crane Division, CALCE Electronic Products and Systems Center at the University of Maryland, Cornell University, University of Texas at Austin, Purdue University, and the Semiconductor Research Corporation (SRC) on the measurement of the CTE of single crystal<100> silicon using various commercial TMAs [15]. A 1.1765-mm thick sample of <100>single crystal silicon was used by all participants. All reported values for the CTE of silicon were below the literature values for the corresponding temperature ranges by 15% to 40%. Our sample was approximately half as thick as their sample, yet our values are within the experimental error. (It should be recalled that our total precision is independent of actual thickness and the main error is due to electrode/sample interfacial effects.Therefore, had we used the thicker sample, as was used in the round robin study, the error in our results would have been reduced.)In closing, it should be mentioned that since silico n was the “worst case” scenario for the new capacitance cell, it was deemed unnecessary to perform measurements on single crystals of a metallic sample which have a much higher CTE. However, a singlemeasurement was taken on the silicon by connecting the braids from the high and low terminals together shorting the two guard rings as if it were done by a metallic sample. The measured capacitance was unchanged; this therefore demonstrated that conducting materials can be measured.IV. CONCLUSIONSWe have presented the designs and implementation of our capacitance cell for the measurement of conducting and semiconducting materials (as well as dielectrics). The thermal expansion data, obtained with the new version of our capacitance cell, on p-type doped single crystal silicon have demonstrated both the ability of the cell to measure silicon and conducting samples and the ability of the cell to provide accurate CTE data on these types of materials. As a result, it is apparent that this metrology can also be applied to thin polymer films deposited on silicon substrates. Furthermore, this cell can also be used to study the hygrothermal expansion (swelling due to the presence of moisture) by utilizing the data reduction techniques described in III. Accordingly, this technique should be especially useful to the microelectronics packaging industry for the characterization of inner layer dielectrics as well as composite structures.ACKNOWLEDGMENTThe authors would like to thank Dr. J. R. Ehrstein in the Semiconductor Electronics Division at NIST for providing the silicon sample.一种精密电容测量薄膜平面扩张的第三部分:导体和半导体材料 摘要—本文介绍了设计、校准,并且使用精密电容基础计量学来测量薄膜的热、湿热(肿胀)的扩张。