2016年全国各地中考数学试题分类解析汇编第9章不等式与不等式组
2016年全国中考数学真题分类 相似形及应用(习题解析)
2016年全国中考数学真题分类相似形及应用一、选择题1.(2016安徽,8,4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.2.(2016甘肃定西,7,3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2, 故选:D .【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.3. (2016浙江杭州,2,3分) 如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC=,则DE EF=( )FE D CB A cb a nmA. 13B.12C. 23D.1 【答案】B4.(2016新疆生产建设兵团,7,5分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB . =C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE ∥BC ,DE=BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定. 【解答】解:∵D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=BC , ∴=,△ADE ∽△ABC ,∴,∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.5.(2016河北,15,2分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( C )第15题图答案:C解析:只要三个角相等,或者一角相等,两边成比例即可。
初中数学 第9章 不等式与不等式组 单元测试(2)及答案
第九章 不等式与不等式组单元练习二1.不等式4(x -2)>2(3x + 5)的非负整数解的个数为( )A 、0个B 、1个C 、2个D 、3个2.若不等式组的解集为-1≤x≤3,则图中表示正确的是( )A BC D3.不等式组123x x -≤⎧⎨-<⎩的解集是( ) A 、x ≥-1 B 、x <5C 、-1≤x <5D 、x ≤-1或x <54.若不等式()22+>+m x m 的解集是1<x ,则m 的取值范围是( )A 、2>mB 、2->mC 、2-<mD 、2<m5.不等式组⎩⎨⎧<->+22,53x x 的解集是( ) A 、2>x B 、1-<x C 、21<<-x D 、无解6.不等式组⎩⎨⎧->-≥-312,01x x 的整数解是( )A 、-1,0B 、-1,1C 、0,1D 、无解7.对于任意有理数a ,下列说法正确的是( )A 、2a >0B 、若0<a ,则2a >0C 、若1<a ,则12<aD 、若0>a ,则a a >28.不等式43+x 与31x -的差不大于-2,则满足条件的最大整数x 为( ) A 、-4 B 、-5 C 、-6 D 、以上均不对9.对于不等式组⎩⎨⎧<<b x a x (b a ≠),若它的解集是a x <,则a 与b 的关系是( ) A 、b a > B 、0>>b a C 、0<<b a D 、b a <10.若方程组⎩⎨⎧-=++=+a y x a y x 13313的解满足0>+y x ,则a 的取值范围是( ) A 、1-<a B 、1>a C 、1->a D 、1<a11.用不等号连接:①若24b a >-,则a b 2-; ②222++a a 322++a a .12.当x 时,548-+x 的解是非负数. 13.不等式13+-x≥0的非负整数解是 .14.不等式342-x ≤33+-x 的正整数解是 . 15.不等式组()⎩⎨⎧+<+->-20236335x x x x 的整数解的和是 . 16.已知0>a ,0<b ,且0>+b a ,试把a ,b -,a -,b -用“>”号连接起来 .17.若不等式组⎩⎨⎧>-<-32,12b x a x 的解集为-1<x <1,那么()()11-+b a 的值等于 . 18.不等式组()⎪⎩⎪⎨⎧<--≤+3233552x x x x 的解集是 ,这个不等式组的整数解是 . 19.若代数式231x -的值不大于2且大于-1,则x 的取值范围是 . 20.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温就下降0.55℃,现测出山脚下的平均气温为22℃,则该植物种在海拔 的地方最适宜.21.解下列不等式(组)。
【初中数学】2016年各地中考数学解析版试卷分类汇编(第2期)(42专题全套) 通用3
不等式和不等式(组)一、选择题1.(2016·山东省滨州市·3分)对于不等式组下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是﹣3,﹣2,﹣1D .此不等式组的解集是﹣<x≤2【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别解两个不等式得到x≤4和x >﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【解答】解:,解①得x≤4, 解②得x >﹣2.5,所以不等式组的解集为﹣2.5<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4. 故选B .【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.2.(2016·山东省东营市·3分)已知不等式组⎩⎨⎧x -3>0x +1≥0,其解集在数轴上表示正确的是( )【知识点】一元一次不等式组——不等式(组)的解集的表示方法 【答案】C.【解析】由x -3>0,得x >3;由x +1≥0,得x ≥―1;故选择C.【点拨】此题主要考查了在数轴上表示不等式的解集的方法,解答此题的关键是要注意“两定”:一是定界点,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.3.(2016·广西百色·3分)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0【考点】一次函数与一元一次不等式.【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.【解答】解:∵y=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.故选A.4.(2016·云南省昆明市·4分)不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥2【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可.【解答】解:解不等式x﹣3<1,得:x<4,解不等式3x+2≤4x,得:x≥2,∴不等式组的解集为:2≤x<4,故选:C.5. (2016·重庆市A卷·4分)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3 B.﹣2 C.﹣D.【分析】根据不等式组无解,求得a≤1,解方程得x=,于是得到a=﹣3或1,即可得到结论.【解答】解:解得,∵不等式组无解,∴a≤1,解方程﹣=﹣1得x=,∵x=为整数,a≤1,∴a=﹣3或1,∴所有满足条件的a的值之和是﹣2,故选B.【点评】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.6. (2016·重庆市B卷·4分)如果关于x的分式方程﹣3=有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A.﹣3 B.0 C.3 D.9【考点】解一元一次不等式组;解分式方程.【专题】计算题;分式方程及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出不等式组的解,根据已知解集确定出a的范围,分式方程去分母转化为整式方程,将a的整数解代入整式方程,检验分式方程解为负分数确定出所有a的值,即可求出之积.【解答】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即x=﹣,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即x=﹣,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即x=﹣,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即x=﹣,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为9,故选D【点评】此题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.7.(2016·湖北随州·3分)不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则分析选项可得答案.【解答】解:解不等式x﹣1≤7﹣x,得:x≤4,解不等式5x﹣2>3(x+1),得:x>,∴不等式组的解集为:<x≤4,故选:A.8. (2016·江西·3分)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先解出不等式3x﹣2<1的解集,即可解答本题.【解答】解:3x﹣2<1移项,得3x<3,系数化为1,得x<1,故选D.9.(2016·四川南充)不等式>﹣1的正整数解的个数是()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,即可得其正整数解.【解答】解:去分母得:3(x+1)>2(2x+2)﹣6,去括号得:3x+3>4x+4﹣6,移项得:3x﹣4x>4﹣6﹣3,合并同类项得:﹣x>﹣5,系数化为1得:x<5,故不等式的正整数解有1、2、3、4这4个,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10. (2016·黑龙江龙东·3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m的范围即可.【解答】解:分式方程去分母得:2x﹣m=3x+3,解得:x=﹣m﹣3,由分式方程的解为正数,得到﹣m﹣3>0,且﹣m﹣3≠﹣1,解得:m<﹣3,故选D11.(2016·内蒙古包头·3分)不等式﹣≤1的解集是()A.x≤4 B.x≥4 C.x≤﹣1 D.x≥﹣1【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得.【解答】解:去分母,得:3x﹣2(x﹣1)≤6,去括号,得:3x﹣2x+2≤6,移项、合并,得:x≤4,故选:A.12. (2016·青海西宁·3分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【考点】一元一次不等式的应用.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.13. (2016·山东潍坊·3分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【考点】一元一次不等式组的应用.【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.二、填空题1. (2016·山东省东营市·4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.【知识点】一次函数——一次函数与一元一次不等式【答案】x>3.【解析】由图象得到直线y=x+b与直线y=kx+6的交点P(3,5),在点P(3,5)的右侧,直线y=x+b落在直线y=kx+6的上方,该部分对应的x的取值范围为x>3,即不等式x+b>kx+6的解集是x>3.【点拨】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=x+b 的值大于y=kx+6的自变量x的取值范围;从函数图象的角度看,就是确定直线y=x+b在直线y=kx+6的上方的部分所有的点的横坐标所构成的集合.2.(2016·湖北黄石·3分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是m>.【分析】设x1、x2为方程x2+2x﹣2m+1=0的两个实数根.由方程有实数根以及两根之积为负可得出关于m 的一元一次不等式组,解不等式组即可得出结论.【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.【点评】本题考查了根与系数的关系、根的判别式以及解一元一次不等式,解题的关键是得出关于m的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的情况结合根的判别式以及根与系数的关系得出关于m的一元一次不等式组是关键.3. (2016·浙江省湖州市·4分)已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是y<a<b<x.【考点】有理数大小比较.【分析】由x+y=a+b得出y=a+b﹣x,x=a+b﹣y,求出b<x,y<a,即可得出答案.【解答】解:∵x+y=a+b,∴y=a+b﹣x,x=a+b﹣y,把y=a=b﹣x代入y﹣x<a﹣b得:a+b﹣x﹣x<a﹣b,2b<2x,b<x①,把x=a+b﹣y代入y﹣x<a﹣b得:y﹣(a+b﹣y)<a﹣b,2y<2a,y<a②,∵b>a③,∴由①②③得:y<a<b<x,故答案为:y<a<b<x.4. (2016·浙江省绍兴市·5分)不等式>+2的解是x>﹣3.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:3(3x+13)>4x+24,去括号,得:9x+39>4x+24,移项,得:9x﹣4x>24﹣39,合并同类项,得:5x>﹣15,系数化为1,得:x>﹣3,故答案为:x>﹣3.5. (2016·湖北武汉·3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.【考点】一次函数图形与几何变换【答案】-4≤b≤-2【解析】根据题意:列出不等式b032=0=22=3=2+6+2x y x b bx y x b b⎧⎪⎪≥⎨⎪≥⎪⎩<-<代入--满足:-代入满足:,解得-4≤b≤-26. (2016·辽宁丹东·3分)不等式组的解集为2<x<6.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.故答案为:2<x<6.7.(2016·四川内江)任取不等式组30,250kk-⎧⎨+⎩≤>的一个整数解,则能使关于x的方程:2x+k=-1的解为非负数的概率为______.[答案]1 3[考点]解不等式组,概率。
七年级数学第9章不等式与不等式组(整章知识详解)
X>-3
2、不等式组
X<2 X<5
的非负整数解是__0_,1____
方法:先求不等式(组)的解集,再确定整数解问题
七年级数学第9章不等式与不等式组
考点三:不等式(组)的特殊解
3.(烟台)不等式4-3x≥2x-6的非负整数
解是___0_,1__,2.
x 3≥0,
4.
(苏州)不等式组
x
2
考点四:求字母的取值范围
1. 如- -果- -不- - 等- - -式- -xxm5 有解,那么m的取值范围是
_m__<_5___.若 无解 , 则m的 取值 范 围是_m__≥_5___.
2.如
果
不
等
式
组xx
m m
1的 2
解
集
是x
-
1,
则m的 取 值 范 围 是______.
.
不等式组的解集是x>m+2,有因解集是x>-1
所以 m+2= -1,即 m = -3
(较小)
(1)若不等式组
xm1 (较大无) 解,则
x 2 m 1
m的取值范围为___m_____3_______
2m 2 m 1
(2)若不等式组
xБайду номын сангаас(1 较小的)解集为x>3,
x3 (较大)
3
的所有整数
解有( B )个
A、2
.
B、3
C、4
D、5
方法:先求不等式(组)的解集,再确定整数解的问题
(2 x-6)<3-x
①
求不等式组
2016年全国各地中考数学试题分类解析汇编专题9 不等式与不等式组
2016年全国各地中考数学试题分类解析汇编专题9 不等式与不等式组1.(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤232.(2016•乐山)不等式组的所有整数解是()A.﹣1、0 B.﹣2、﹣1 C.0、1 D.﹣2、﹣1、03.(2016•巴中)不等式组:的最大整数解为()A.1 B.﹣3 C.0 D.﹣14.(2016•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣185.(2016•滨州)对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤26.(2016•湖北)不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个7.(2016•淄博)关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.8.(2016•益阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.9.(2016•临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.10.(2016•哈尔滨)不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤111.(2016•茂名)不等式组的解集在数轴上表示为()A.B.C.D.12.(2016•永州)不等式组的解集在数轴上表示正确的是()A.B.C.D.13.(2016•山西)不等式组解集是()A.x>﹣5 B.x<3 C.﹣5<x<3 D.x<514.(2016•随州)不等式组的解集表示在数轴上,正确的是()A.B.C.D.15.(2016•孝感)不等式组的解集是()A.x>3 B.x<3 C.x<2 D.x>216.(2016•漳州)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.17.(2016•长沙)不等式组的解集在数轴上表示为()A.B.C.D.18.(2016•大连)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<119.(2016•昆明)不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥220.(2016•新疆)不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<22016年全国各地中考数学试题分类解析汇编专题9 不等式与不等式组参考答案与试题解析1.(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【解析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.【点评】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.2.(2016•乐山)不等式组的所有整数解是()A.﹣1、0 B.﹣2、﹣1 C.0、1 D.﹣2、﹣1、0【解析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数即可.【解答】解:,由①得:x>﹣2,由②得:x≤,则不等式组的解集是﹣2<x≤,不等式组的所有整数解是﹣1,0;故选A.【点评】本题主要考查了一元一次不等式组的整数解,掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)是本题的关键.3.(2016•巴中)不等式组:的最大整数解为()A.1 B.﹣3 C.0 D.﹣1【解析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在解集内找到最大整数即可.【解答】解:解不等式3x﹣1<x+1,得:x<1,解不等式2(2x﹣1)≤5x+1,得:x≥﹣3,则不等式组的解集为:﹣3≤x<1,则不等式组的最大整数解为0,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2016•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18【解析】根据不等式20<5﹣2(2+2x)<50可以求得x的取值范围,从而可以得到a、b的值,进而求得a+b的值.【解答】解:∵20<5﹣2(2+2x)<50,解得,,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17,故选C.【点评】本题考查一元一次不等式组的整数解,解题的关键是明确解一元一次不等式组的方法.5.(2016•滨州)对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤2【解析】分别解两个不等式得到x≤4和x>﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【解答】解:,解①得x≤4,解②得x>﹣2.5,所以不等式组的解集为﹣2.5<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(2016•湖北)不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个【解析】先根据一元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选C.【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(2016•淄博)关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.【解析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣1,由②得,x≤2,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:.故选D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2016•益阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤2,故不等式组的解集为:﹣3<x≤2,在数轴上表示为:.故选A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2016•临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解析】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决.【解答】解:由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法.10.(2016•哈尔滨)不等式组的解集是()【解析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2016•茂名)不等式组的解集在数轴上表示为()A.B.C.D.【解析】分别求出各选项的解集,并做出判断.【解答】解:不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C:数轴表示解集为x≤﹣1,故选项C错误;D:数轴表示解集为x≥1,故选项D错误;故选B【点评】本题考查了利用数轴表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.12.(2016•永州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:.故选A.【点评】本题考查的是解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.13.(2016•山西)不等式组解集是()【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣5,解②得:x<3,则不等式的解集是:﹣5<x<3.故选:C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2016•随州)不等式组的解集表示在数轴上,正确的是()A.B.C.D.【解析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则分析选项可得答案.【解答】解:解不等式x﹣1≤7﹣x,得:x≤4,解不等式5x﹣2>3(x+1),得:x>,∴不等式组的解集为:<x≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2016•孝感)不等式组的解集是()A.x>3 B.x<3 C.x<2 D.x>2【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得:x>3,则不等式的解集是:x>3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(2016•漳州)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【解析】先求出两个不等式的解,然后表示出解集,并在数轴上表示出来.【解答】解:解不等式x+1>0得:x>﹣1,解不等式2x﹣4≤0得:x≤2,则不等式的解集为:﹣1<x≤2,在数轴上表示为:.故选B.【点评】本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,解答本题的关键是熟练掌握不等式的解法以及求不等式解集的规律.17.(2016•长沙)不等式组的解集在数轴上表示为()A.B.C.D.【解析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【解答】解:,解不等式2x﹣1≥5,得:x≥3,解不等式8﹣4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.18.(2016•大连)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(2016•昆明)不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥2【解析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可.【解答】解:解不等式x﹣3<1,得:x<4,解不等式3x+2≤4x,得:x≥2,∴不等式组的解集为:2≤x<4,故选:C.【点评】本题主要考查解一元一次不等式组的能力,熟练掌握不等式的性质准确求出每个不等式的解集是解题的关键.20.(2016•新疆)不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2【解析】分别解两个不等式得到x≥1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≥1,解②得x≤2,所以不等式组的解集为1≤x≤2.故选C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.第11 页共11 页。
中考数学题型归类与解析9---不等式(组)及应用
中考数学题型归类与解析 专题9 不等式(组)及应用一、单选题1.(2021·山东临沂市·中考真题)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若>0b ,则11<a b,其中正确的个数是( )A .1B .2C .3D .42.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .3.(2021·山东临沂市·中考真题)不等式-113x x <+的解集在数轴上表示正确的是( ) A .B .C .D .4.(2021·四川遂宁市·中考真题)不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .5.(2021·重庆中考真题)不等式5x >的解集在数轴上表示正确的是( )A .B .C .D .6.(2021·重庆中考真题)不等式2x ≤在数轴上表示正确的是( )A .B .C .D .7.(2021·浙江金华市·中考真题)一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .20x +>B .20x -<C .24x ≥D .20x -<8.(2021·四川南充市·中考真题)满足3x 的最大整数x 是( ) A .1B .2C .3D .49.(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <0k ≠10.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5B .8C .12D .1511.(2021·浙江中考真题)不等式315x ->的解集是( )A .2x >B .2x <C .43x >D .43x <12.(2021·浙江丽水市·中考真题)若31a ->,两边都除以3-,得( ) A .13a <-B .13a >-C .3a <-D .3a >-13.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-214.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-15.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤B .52a b ≥C .25b a ≥D .25b a ≤ 二、填空题16.(2021·上海中考真题)不等式2120x -<的解集是_______. 17.(2021·甘肃武威市·中考真题)关于x 的不等式11132x ->的解集是___________. 18.(2021·浙江温州市·中考真题)不等式组343214x x -<⎧⎪⎨+≥⎪⎩的解为______.19.(2021·江苏扬州市·中考真题)在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.20.(2021·浙江丽水市·有意义,则x 可取的一个数是__________. 21.(2021·四川眉山市·中考真题)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是______.22.(2021·陕西中考真题)若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y ______2y (填“>”、“=”或“<”) 23.(2021·四川泸州市·中考真题)关于x 的不等式组23023x x a恰好有2个整数解,则实数a 的取值范围是_________.24.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y ax y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.三、解答题25.(2021·陕西中考真题)解不等式组:5431212x x x +<⎧⎪⎨+≥-⎪⎩ 26.(2021·四川成都市·中考真题)(1(1)2cos451π+-︒+(2)解不等式组:523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩27.(2021·浙江宁波市·中考真题)(1)计算:()()()2113a a a +-++.(2)解不等式组:21930x x +<⎧⎨-≤⎩①②.28.(2021·山东泰安市·中考真题)(1)先化简,再求值:23169111a a a a a a --+⎛⎫-+÷⎪++⎝⎭,其中3a =+; (2)解不等式:7132184x x ->--. 29.(2021·四川凉山彝族自治州·中考真题)解不等式12334x x x -+-<-. 30.(2021·安徽)解不等式:1103x -->.31.(2021·四川乐山市·中考真题)当x 取何正整数时,代数式32x +与213x -的值的差大于132.(2021·江苏连云港市·中考真题)解不等式组:311442x x x x -≥+⎧⎨+<-⎩.33.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?34.(2021·四川乐山市·中考真题)已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.35.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A 型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B 型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?36.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;a>给慈善机构,如果捐款后甲公司剩余的(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.37.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.38.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12,应如何购买才能使总费用最少?并求出最少费用.。
2016年中考数学试题分项版解析汇编:专题03 方程(组)和不等式(
填写姓名和座号。
填写准考证号和座号时,每个书
填写样例:□0□1□2□3□4□5□6□7□8□9。
填涂答题卡上相应题目的答案标号,修改时,要用橡皮擦干净。
书写,作图时,可用2B 铅笔,要字体工整、笔.保持答题卡清洁、完整。
严禁折叠,严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修考生禁填 缺考标记 □
缺考考生由监考员贴条形码,并用2B 铅笔填涂上面的缺考标记。
班级: 姓名: 考号
A
C
B
根据图中提供的信息,解答下列问题:(1)参加演讲比赛的教师共有____________________,并把条形统计图补充完整.(2)
图(1)
姓名:
最大最全最精的教育资源网
绝密☆启用并使用完毕前
2016—2017学年五月份 中考冲刺
数 学 答 题 卡
姓名
座号
□□
准考证号
请在各题目的答题区域内作答,超出边框的答案无效
三、20.(本小题满分7分)
请在各题目的答题区域内作答,超出边框的答案无效
三、21.(本小题满分9分)
(1) 他的结论应是 ;
(2) 探索延伸:
(3) 实际应用:
3
4
姓名 座号
考生 必填 考生务必将姓名、座号用0.5毫米的黑色墨水签字笔认真填写在书写框内,座
号的每个书写框只能填写一个阿拉伯数字,填写样例:若座号02,则填写为□0□2。
最大最全最精的教育资源网
(3)。
2016年中考数学试题分类解析汇编(第一辑)(29份)
2016年全国各地中考数学试题分类解析汇编(第一辑)第10章数据的收集、整理与描述一.选择题(共10小题)1.(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨A.18户B.20户C.22户D.24户2.(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学了整)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少3.(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,404.(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少5.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时6.(2016•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查7.(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(2016•盐城)下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查9.(2016•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查10.(2016•山西)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高2016年全国各地中考数学试题分类解析汇编(第一辑)第10章数据的收集、整理与描述参考答案与试题解析一.选择题(共10小题)1.(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以A.18户B.20户C.22户D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.2.(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学整)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【分析】通过计算得出选项A、B、C正确,选项D错误,即可得出结论.【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3.(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40【分析】先求出打羽毛球学生的比例,然后用总人数×跑步和打羽毛球学生的比例求出人数.【解答】解:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.【点评】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.4.(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选;D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.5.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答.6.(2016•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查【分析】利用普查与抽样调查的定义判断即可.【解答】解:A、对重庆市居民日平均用水量的调查,抽样调查;B、对一批LED节能灯使用寿命的调查,抽样调查;C、对重庆新闻频道“天天630”栏目收视率的调查,抽样调查;D、对某校九年级(1)班同学的身高情况的调查,全面调查(普查),则最适合采用全面调查(普查)的是对某校九年级(1)班同学的身高情况的调查.故选D【点评】此题考查了全面调查与抽样调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.【点评】此题考查了频数与频率,弄清题中的数据是解本题的关键.8.(2016•盐城)下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、对我国初中学生视力状况的调查,人数太多,调查的工作量大,适合抽样调查,故此选项错误;B、对量子科学通信卫星上某种零部件的调查,关系到量子科学通信卫星的运行安全,必须全面调查,故此选项正确;C、对一批节能灯管使用寿命的调查具有破坏性,适合抽样调查,故此选项错误;D、对“最强大脑”节目收视率的调查,人数较多,不便测量,应当采用抽样调查,故本选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.(2016•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查【分析】逐项分析四个选项中们案例最适合的调查方法,即可得出结论.【解答】解:A、对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B、对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C、对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D、对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.故选B.【点评】本题考查了全面调查与抽样调查,解题的关键是逐项分析四个选项应用的调查方法.本题属于基础题,难度不大,解决该题型题目时,联系实际选择调查方法是关键.10.(2016•山西)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。
2016届中考数学总复习(12)不等式与不等式组-精练精析(1)及答案解析
24.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.
(1)求A、B两种文具盒的进货单价?
(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?
15.不等式组 的解集是_________.
16.不等式组 的解集是_________.
三.解答题(共9小题)
17.解不等式2x﹣3< ,并把解集在数轴上表示出来.
18.解不等式 ≥ ,并把它的解集在数轴上表示出来.
19.解不等式2(x﹣1)+5<3x,并把解集在数轴上表示出来.
20.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.
2.不等式组 的解集是( )
A.x>2B.x>1C.1<x<2D.无解
考点:不等式的解集.
分析:根据不等式组解集的四种情况,进行选择即可.
解答:解:根据同大取较大的原则,
不等式组的解集为x>2,
故选:A.
点评:本题考查了不等式的解集,是基础题比较简单.解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
22.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.
中考数学总复习教材过关(试卷版+解析版)九 不等式与不等式组(附答案)
教材过关九 不等式与不等式组一、填空题1.若x<y<0,用“<”或“>”填空: (1)-x________-y;(2)x 1________y1;(3)|x|________|y|; (4)x 2________y 2;(5)5x-1________5y-1;(6)-3x________-3y.2.不等式5x-4<6x 的解集是________________.3.写出不等式组⎩⎨⎧≥->-027,03x x 的解集是________________. 4.21x +>312-x 的非负整数解是________________. 5.(2010重庆中考)如果关于x 的不等式(a-1)x>a+5和2x>4的解集相同,则a 的值为_______.6.两根木棒的长分别为7 cm 和10 cm,要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x cm 的取值范围是________________.二、选择题7.不等式3-3x ≤18+2x 的负整数解是( )A.x ≥-3B.-1、-2C.-1、-2、-3D.-1、-2、-3、08.一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打_________________折.A.9B.8C.7D.69.已知不等式组⎩⎨⎧<->1,2x x 的解集是不等式组⎩⎨⎧<>2,x a x 的解集的一部分,则a 的值不可能是 A.-1 B.-2 C.-3 D.-410.如果不等式ax+4<0的解集在数轴上表示如图7-39,那么a 的值是图7-39A.a>0B.a<0C.a=-2D.a=2三、解答题11.解下列不等式或不等式组,并将它们的解集表示在数轴上.(1)x-2(x+1)≥-1;(2)1+3y ≥3-22+y ;(3)(2010山东枣庄中考)解不等式组,并把其解集在数轴上表示出来:⎪⎩⎪⎨⎧-<--≥+-.8)1(31,323x x x x12.(2010四川沪州中考)九年级(3)班学生到学校阅览室上课外阅读课,班长问老师要分成几个小组,老师风趣地说:假如我把43本书分给各个组,若每组8本,还有剩余;若每组9本,却又不够,你知道该分几个组吗?(请你帮助班长分组,注意写出解题过程,不能仅有分组的结果)13.学生若干人,住若干间宿舍.若每间住4人,则余19人没有宿舍住;若每间住6人,则有一间宿舍不空也不满.问有多少学生,多少宿舍?14.某校长暑假带领该校“三好学生”去旅游,甲旅行社说:“若校长买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括校长在内都6折优惠”若全票价是1 200元.你认为选择哪家旅行社更加优惠?15.某工厂现有甲种原料360 kg,乙种原料290 kg,计划用这些原料生产A 、B 两种产品共50 kg.已知生产一件A 种产品需甲种原料9 kg 、乙种原料3 kg;生产一件B 种产品需甲种原料4 kg 、乙种原料10 kg,(1)设生产x 件A 种产品,写出x 应满足的不等式组?(2)有哪几种符合题意的生产方案?请你帮助设计.。
历年初三数学中考不等式与不等式组试题分类汇编及答案
中考数学不等式与不等式组试题分类汇编一、选择题1、(浙江金华)不等式260x ->的解集在数轴上表示正确的是( )A2、(四川内江)不等式2(1)3x x +<的解集在数轴上表示出来应为( )D3、(湖南岳阳)在下图中不等式-1<x ≤2在数轴上表示正确的是( )ADCBA2-12-12-12-14、(山东枣庄)不等式2x -7<5-2x 的正整数解有( )B (A)1个 (B)2个 (C)3个 (D)4个5、(福建福州)解集在数轴上表示为如图1所示的不等式组是( )D A .32x x >-⎧⎨⎩≥B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤6、(湖北天门)关于x 的不等式2x -a ≤-1的解集如图2所示, 则a 的取值是( )。
BA 、0B 、-3C 、-2D 、-1 解:x ≤12a +,又不等式解为:x ≤-1,所以12a +=-1,解得:a =-3。
7、(云南双柏)不等式x x ->32的解集是( )CA .2<xB .2>xC .1>xD .1<x 8、(山东东营)不等式2x -7<5-2x 的正整数解有( )B(A )1个(B )2个 (C )3个 (D )4个9、(浙江台州)不等式组201x x -<⎧⎨⎩,≥的解集为( )A1 2 30 -1 -2 B .3 4 52 1 0 C .1 2 30 -1 -2 A .3 4 52 1 0 D .3- 03A .3- 03 B .3- 03 C .3- 03D .23- 图10 1-1 -2 (图2)A.12x <≤B.1x ≥C.2x <D.无解10、(四川德阳)把一个不等式组的解集表示在数轴上,如图3所示,则该不等式组的解集为( )AA.102x <≤B.12x ≤C.102x <≤D.0x >11、(湖北黄冈)将不等式84113822x x x x +<-⎧⎪⎨≤-⎪⎩的解集在数轴上表示出来,正确的是( )C12、(江苏南京)不等式组2110x x >-⎧⎨-⎩,≤的解集是( )DA.12x >-B.12x <-C.1x ≤D.112x -<≤ 13、(湖北武汉)如图4,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )。
第九章 不等式与不等式组(过关测试)【培优卷】-2022-2023学年七年级数学下册同步精品课堂
第九章 不等式与不等式组(培优卷)考试时间:120分钟 满分:120分一、单选题(每小题3分,共18分)1. 若m n >,则下列不等式一定成立的是( )A. 23m n >B. 22m n +>+C. 33m n ->-D. 22m n <2. 若a b >,则下列不等式成立的是( )A. 22a b ->-B. 55a b <C. 33a b -<-D. 88a b +<+3. 如果a ,b 为有理数,且a ,b 两数的和大于a 与b 的差,则()A. a ,b 同号B. a ,b 异号C. a ,b 为正数D. b 为正数4. 已知a b <,则下列四个不等式中,不正确的是( ).A. 22a b +<+B. 22a b -+<-+C. 0.50.5a b <D. 2121a b -<-5. 甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A. 小于8km/hB. 大于8km/hC. 小于4km/hD. 大于4km/h (2019春·内蒙古·七年级校考阶段练习)6. 已知关于x 、y 的方程组,给出下列说法:①当a =1时,方程组的解也是方程x +y =2的一个解;②当x -2y >8时,15a >;③不论a 取什么实数,2x +y 的值始终不变;④若25y x =+,则4a =-. 以上说法正确的是( )A. ②③④B. ①②④C. ③④D. ②③二、填空题(每小题3分,共18分)7. 小张购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,费用不超过100元钱,设小张买了x 支钢笔,则根据题意可列不等式为______.8. 滨海市出租汽车起步价为10元(即行驶距离在5千米以内的都需付10元车费).达到或超过5千米后,每增加1千米加价1.2元(不足1千米部分按1千米计),小华乘这种出租车从家到单位,支付车费多于15元,设小华从家到单位距离为x 千米(x 为整数),列关系式为 ____.9. 试写出一个由两个一元一次不等式组成的一元一次不等式组,使它的解集是-1<x≤2,这个不等式组是_______.10. 已知关于x 的不等式组+1>52+<0x x m -⎧⎨⎩的所有整数解的和为9-,m 的取值范围是_________ .11. 不等式组102x x -≤⎧⎨-⎩<的整数解的个数是___________.(2022春·重庆渝中·七年级重庆巴蜀中学校考期末)12. “鲁巴好少年,一起向未来”,重庆市鲁能巴蜀中学校春季运动会在4月27日如期举行.各班同学积极参与,热情高涨;运动员挥洒汗水,激昂赛场;场下观众文明观赛,有序加油.后勤团队也不甘示弱,积极为同学们做好各种后勤保障,其中,采购小组的同学们就为全班同学准备了百事可乐,红牛和脉动三种饮料.已知百事可乐、红牛和脉动的单价之和为14元,计划购买百事可乐,红牛和脉动的数量总共不超过160瓶,其中脉动的单价为每瓶5元,计划购买20瓶,百事可乐的数量不多于红牛数量的一半,但至少购买40瓶,结果,在做预算时,将百事可乐和红牛的单价弄反了,结果在实际购买时,总费用比预算多了150元.若百事可乐、红牛和脉动的单价均为整数,则实际购买百事可乐、红牛和脉动的总费用最多需要花费 _____.三、解答题(每小题6分,共30分)13. 解不等式:(1)5313x x -<+;(2)112123x x ++≤+.(2022春·安徽宣城·七年级校考期中)14. 解不等式组:221113x x x -<+⎧⎪-⎨⎪⎩ ,并在数轴上表示解集.15. 某停车场收费标准分为中型汽车和小型汽车两种,某两天这个停车场的收费情况如下表:中型汽车数量小型汽车数量收取费用第一天15辆35辆360元第二天18辆20辆300元(1)中型汽车和小型汽车的停车费每辆多少元?(2)某天停车场共停车70辆,若收取的停车费用高于500元,则中型汽车至少有多少辆?(2022春·河南周口·七年级统考期中)16. 已知方程组713x y a x y a+=--⎧⎨-=+⎩的解x 为非正数,y 为负数.(1)求a 的取值范围:(2)化简|3||3|a a -++;(3)在a 的取值范围内,当a 取何整数时,不等式221ax x a +>+的解为1x <?(2021春·河南南阳·七年级统考期中)17. A 、B 两超市平日都是以同样的价格出售同样的商品,如笔记本每本18元,练习本每本3元.(1)若小丽一日在A 超市购买了笔记本和练习本共7本,总共花费了51元,则小丽笔记本和练习本各买了多少本?(2)某节假日,A 、B 两超市推出不同的优惠方案:在A 超市累计购物超过50元的部分打九折;在B 超市累计购物超过80元的部分打八点五折.①若小丽购物金额超过80元,则她去哪家超市购物更合算?②若小丽打算到A 超市购买一些笔记本送给同学,请问她至少购买多少本时,平均每本笔记本价格不超过17元?四、解答题(每小题8分,共24分)(2023·河北邯郸·校考一模)18. 小明到某水果店购买苹果和梨,他发现一人购买1千克苹果和2千克梨共花费了28元,另一人购买2千克苹果和1千克梨共花费了32元.(1)妈妈给小明带了20元钱,想购买1千克苹果和1千克梨;小明带的钱够用吗?说明理由;(2)到家后妈妈给小明出了一道题:如果给你带250元钱.①当购买苹果和梨的重量相等时,最多能够买多少千克苹果?(千克只取整数)②当购买苹果的重量是梨的重量的2倍时,最多能够买多少千克苹果?(千克只取整数)(2022·河北石家庄·统考二模)19. 某社区原来每天需要处理生活垃圾920吨,刚好被12个A型转运站和10个B 型转运站处理.已知一个A型转运站比一个B型转运站每天多处理7吨生活垃圾.(1)每个A型或B型转运站每天处理生活垃圾各多少吨?(2)由于垃圾分类要求的提高,每个转运站每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该社区每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型转运站共5个,试问至少需要增设几个A型转运站才能当日处理完所有生活垃圾?(2020·湖南郴州·统考中考真题)20. 为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案?五、解答题(每小题9分,共18分)(2022春·安徽芜湖·七年级芜湖市第二十九中学校考期末)21. 阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[]x.例如,==-=-.那么,[][3.2]3,[5]5,[ 2.1]3=+,其中01x x a≤<.例如,a=+=+-=-+.请你解决下列问题:3.2[3.2]0.2,5[5]0, 2.1[ 2.1]0.9-=__________,[0]=__________;(1)[4.8]=__________,[ 6.5]x=,那么x的取值范围是__________;(2)如果[]3(3)如果[52]31x x -=+,求x 的值.(2023·安徽滁州·校考一模)22. 某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a 盒,小健如何选择方案更划算?六、解答题(本大题共12分)23. 阅读下列材料:数学问题:已知2x y -=,且1x >,0y <,试确定x y +的取值范围.问题解法:2x y -= ,2x y ∴=+.又1x > ,21y ∴+>,1y ∴>-.又0y < ,10y ∴-<<.①同理得12x <<.②由②+①得1102y x -+<+<+,x y ∴+的取值范围是02x y <+<.完成任务:(1)在数学问题中的条件下,写出23x y +的取值范围是_____.(2)已知3x y +=,且2x >,0y >,试确定x y -的取值范围;(3)已知1y >,1x <-,若x y a -=成立,试确定x y +的取值范围(结果用含a 的式子表示).第九章 不等式与不等式组(培优卷)考试时间:120分钟 满分:120分一、单选题(每小题3分,共18分)【1题答案】【答案】B【解析】【分析】根据不等式的性质解答.【详解】解:A 、若m >n ,则22m n >或33m n >,故选项不符合题意;B 、若m >n ,22m n +>+,故选项符合题意;C 、若m >n ,33m n -<-,故选项不符合题意;D 、若m >n ,22m n >,故选项不符合题意;故选:B .【点睛】本题主要考查了不等式的性质,不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项的项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【2题答案】【答案】C【解析】【分析】根据不等式的性质进行分析判断.【详解】解:A 、a b > ,22a b ∴-<-,原变形错误,故本选项不符合题意;B 、a b > ,∴55a b >,原变形错误,故本选项不符合题意;C 、a b > ,33a b ∴-<-,原变形正确,故本选项符合题意;D 、a b > ,88a b ∴+>+,原变形错误,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质,解题的关键是能熟记不等式的性质的内容,要注意:不等式的性质:不等式两边同时乘(或除以)同一个负数时,不等号方向的改变.【3题答案】【答案】D【解析】【分析】因为a ,b 两数的和大于a 与b 的差,即a+b >a-b ,解此不等式,即可得出b >0.【详解】∵a ,b 两数的和大于a 与b 的差,∴a+b >a-b ,即b >0.故选D .【点睛】此题要先根据题意列出不等式再求解.【4题答案】【答案】B【解析】【详解】不等式的基本性质:a b <,a b ->-,22a b -+>-+.故选B.【5题答案】【答案】B【解析】【详解】设甲的速度为x 千米/小时,则乙的速度为2x 千米/小时,由题意可得,2(x+2x )>24,解得x>8,所以要保证在2小时以内相遇,则甲的速度要大于8km/h ,故选B.(2019春·内蒙古·七年级校考阶段练习)【6题答案】【答案】A【解析】【详解】试题分析:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y =2的解,故①不正确;通过加减消元法可解方程组为x=3+a ,y=-2a-2,代入x-2y >8可解得a>15,故②正确;2x+y=6+2a+(-2a-2)=4,故③正确;代入x、y的值可得-2a-2=(3+a)2+5,化简整理可得a=-4,故④正确.故选:A二、填空题(每小题3分,共18分)【7题答案】【答案】2(30-x)+5x≤100【解析】【分析】设小张买了x支钢笔,则买了(30-x)本笔记本,根据费用不超过100元钱即可列出不等式.【详解】解:设小张买了x支钢笔,则买了(30-x)本笔记本,根据题意得:2(30-x)+5x≤100,故答案为:2(30-x)+5x≤100.【点睛】题目主要考查不等式的应用,理解题意是解题关键.【8题答案】【答案】10+1.2(x-5)>15【解析】【分析】设小华从家到单位距离为x千米,根据题意可知车费为10+1.2(x-5),即可列不等式.【详解】车费分两部分计算,即起步价与超过5千米的费用的和.不等关系:从家到单位,支付车费多于15元.根据题意,得10+1.2(x-5)>15.故答案为:10+1.2(x-5)>15【点睛】此题主要考查不等式的应用,正确得出不等关系是解题关键.【9题答案】【答案】2010xx>-≤⎧⎨+⎩(答案不唯一)【解析】【详解】分析:本题为开放性题,根据“大小小大中间找”可知只要写2个一元一次不等式x≤a,x>b,其中a>b即可.详解:根据解集﹣1<x ≤2,构造的不等式为2010x x >-≤⎧⎨+⎩. 故答案为2010x x -≤⎧⎨+⎩>(答案不唯一).点睛:本题考查了一元一次不等式解集与不等式组之间的关系.本题为开放性题,按照口诀列不等式组即可.解不等式组的简便求法就是用口诀求解,构造已知解集的不等式是它的逆向运用.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).【10题答案】【答案】68m ≤<或86m -≤<-【解析】【分析】先求出不等式组的解集,然后根据不等式组的整数解的情况得到不等式组的整数解可以为5-、4-或5-、4-、3-、2-、1-、0、1、2、3,据此求解即可解答.【详解】+1>52+<0x x m -⎧⎨⎩①②,解不等式①得:>6x -,解不等式②得:<2m x -,∴不等式组的解集为:6<<2m x --, 不等式组的所有整数解的和为9-,∴不等式组的整数解可以为5-、4-或5-、4-、3-、2-、1-、0、1、2、3,∴4<32m --- 或3<42m - ,6<8m ∴ 或8<6m -- ,故答案为:6<8m ≤或8<6m -≤-.【点睛】本题主要考查了根据不等式组的整数解的情况,由不等式组的解确定出整数m 的值是解题的关键.【11题答案】【答案】3个【解析】【分析】先求出不等式的解集,再求出不等式的解集,即可得出答案.【详解】102x x -≤⎧⎨-⎩①<② ∵解不等式①得:x≤1,解不等式②得:x >-2,∴不等式组的解集为-2<x≤1,∴不等式组的整数解为-1,0,1,共3个,故答案为3.【点睛】此题考查解一元一次不等式组,不等式组的整数解,能求出不等式组的解集是解此题的关键.(2022春·重庆渝中·七年级重庆巴蜀中学校考期末)【12题答案】【答案】805元【解析】【分析】设购买x 瓶百事可乐,y 瓶红牛,百事可乐的单价为m 元,则红牛的单价为()9m -元,根据在做预算时,将百事可乐和红牛的单价弄反了,结果在实际购买时,总费用比预算多了150 元,可得()()99150xm y m x m ym +---+=⎡⎤⎣⎦,整理得:15092y x m-=-,再根据百事可乐的数量不多于红牛数量的一半,但至少购买40瓶,可得12x y ≤,40x ≥,140x y +≤,根据x ,y ,m 均为正整数,12x y ≤,可得 4.5m <,可得m =2或m =3或m =4,依此进行讨论即可求解.【详解】解:设购买x 瓶百事可乐,y 瓶红牛,百事可乐的单价为m 元,则红牛的单价为14﹣5﹣m =(9﹣m )元,依题意得:xm +y (9﹣m )﹣[x (9﹣m )+ym ]=150,整理得:15092y x m -=-,∵12x y ≤,x ≥40,∴x +y +20≤160,∴x +y ≤140,又∵x ,y ,m 均为正整数,x ≤12y ,∴y ﹣x 是正整数,∵m <4.5,∴9﹣2m =7(舍去)或9﹣2m =5或9﹣2m =3或9﹣2m =1,∴m =2或m =3或m =4,当m =2时,9﹣m =7,y ﹣x =30,∴4030140x x x ≥⎧⎨++≤⎩,解得:40≤x ≤55,此时实际购买这三种物品的总费用为:5×20+2x +7y =100+2x +7(x +30)=9x +310,∴当x 取最大值55时,总费用最大为9×55+310=805(元)(不合题意舍去);当m =3时,9﹣m =6,y ﹣x =50,4050140x x x ≥⎧⎨++≤⎩,解得40≤y ≤45,∴此时实际购买这三种物品的总费用为:5×20+3x +6(x +50)=9x +400,∴当x 取最大值45时,总费用最大为9×55+40=805(元);当m =4时,9﹣m =5,y ﹣x =150,∴40150140x x x ≥⎧⎨++≤⎩,此时不等式组无解.综上所述,实际购买百事可乐、红牛和脉动的总费用最多需要花费805元.故答案为:895元.【点睛】本题考查了应用类问题,不定方程的应用,解题的关键是正确读懂题意列出方程和代数式.三、解答题(每小题6分,共30分)【13题答案】【答案】(1)2x <(2)5x ≥-【解析】【分析】(1)不等式移项,合并同类项,把x 系数化为1,即可求出解集;(2)不等式去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解集.【小问1详解】解:移项得:5313x x -<+,合并同类项得:24x <,解得:2x <;【小问2详解】去分母得:3(1)2(12)6x x +≤++,去括号得:33246x x +≤++,移项得:34263x x -≤+-,合并同类项得:5x -≤,解得:5x ≥-.【点睛】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.(2022春·安徽宣城·七年级校考期中)【14题答案】【答案】x<3,图见解析【解析】【分析】先求得每个不等式的解集,后确定不等式组的解集.【详解】解:221113x x x -<+⎧⎪⎨-⎪⎩①② 由①得3x <,由②得4x ,则不等式的解集是3x <,原不等式组的解集在数轴上表示如图【点睛】本题考查了一元一次不等式组的解法,熟练掌握不等式的解题步骤是解题的关键.【15题答案】【答案】(1)中型汽车的停车费每辆10元,小型汽车的停车费每辆6元; (2)中型汽车至少有21辆【解析】【分析】(1)设中型汽车的停车费每辆x 元,小型汽车的停车费每辆y 元,根据第一天和第二天的收费各列一个方程,组成二元一次方程组求解即可;(2)设中型汽车有a 辆,小型汽车有()70a -辆,根据收取的停车费用高于500元,列不等式求解即可.【小问1详解】解:设中型汽车的停车费每辆x 元,小型汽车的停车费每辆y 元.根据题意,得15353601820300x y x y +=⎧⎨+=⎩,解这个方程组得106x y =⎧⎨=⎩,答:中型汽车的停车费每辆10元,小型汽车的停车费每辆元;【小问2详解】解:设中型汽车有a 辆,小型汽车有()70a -辆,根据题意,得()10670500a a +->,解这个不等式,得:20a > ,答:中型汽车至少有21辆.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,仔细审题,找出其中的等量关系和不等量关系式是解答本题的关键.(2022春·河南周口·七年级统考期中)【16题答案】【答案】(1)23a -<≤;(2)6;(3)-1【解析】【分析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据a 的取值范围去掉绝对值符号,把代数式化简即可;(3)根据不等式2ax +x >2a +1的解为x <1得出2a +1<0且23a -<≤,解此不等式得到关于a 取值范围,找出符合条件的a 的值.【详解】解:(1)解方程组713x y a x y a +=--⎧⎨-=+⎩,解得:342x a y a =-+⎧⎨=--⎩,∵x 为非正数,y 为负数,30420a a -+≤⎧∴⎨--<⎩,解不等式组,得:23a -<≤;(2)∵23a -<≤,∴30a -<,30a +>|3||3|336a a a a ∴-++=-++=;(3)不等式221ax x a +>+可化为:(21)21a x a +>+,∵不等式221ax x a +>+的解为1x <,可知210a +<,12a ∴<-,又23a -<≤,122a ∴-<<-,∵a 为整数,∴1a =-.【点睛】本题考查的是解二元一次方程组及解一元一次不等式组、代数式的化简求值,先把a 当作已知求出x 、y 的值,再根据已知条件得到关于a 的不等式组求出a 的取值范围是解答此题的关键.(2021春·河南南阳·七年级统考期中)【17题答案】【答案】(1)小丽笔记本买了2本,练习本买了5本;(2)①当购物金额超过80元且不足140元时,小丽去A 超市购物更划算;当购物金额为140元时,小丽去两家超市购物一样;当金额超过140元时,小丽去B 超市购物更合算;②小丽至少购买7本时,平均每本笔记本价格不超过17元.【解析】【分析】(1)设小丽笔记本买了x 本,练习本买了y 本,根据题意可得718351x y x y +=⎧⎨+=⎩,进而求解即可;(2)①设小丽的购物原价为m (m >80)元,则在A 超市购买需付金额为(0.9m +5)元,在B 超市购买需付金额为(0.85m +12)元,进而分三种情况进行求解即可;②设小丽购买了n 本笔记本,则总金额为(0.9×18n +5)元,根据平均每本笔记本价格不超过17元即可得出关于n 的一元一次不等式,求解即可.【详解】解:(1)设小丽笔记本买了x 本,练习本买了y 本,根据题意可得:718351x y x y +=⎧⎨+=⎩,解得:25x y =⎧⎨=⎩,答:小丽笔记本买了2本,练习本买了5本.(2)设小丽的购物原价为m (m >80)元,由题意得:在A 超市购买需付金额为()500.9500.95m m +-=+(元),在B 超市购买需付金额为()800.85800.8512m m +-=+(元),当0.950.8512m m +<+时,则有80140m <<,当0.950.8512m m +=+时,则有140m =,当0.950.8512m m +>+时,则有140m >,∴当购物金额超过80元且不足140元时,小丽去A 超市购物更划算;当购物金额为140元时,小丽去两家超市购物一样;当金额超过140元时,小丽去B超市购物更合算;(3)设小丽购买了n本笔记本,则总金额为(0.9×18n+5)元,由题意得:0.918517n n⨯+≤,解得:164n≥,∵n为正整数,∴n的最小值为7;答:小丽至少购买7本时,平均每本笔记本价格不超过17元.【点睛】本题主要考查二元一次方程组及一元一次不等式的应用,熟练掌握二元一次方程组及一元一次不等式的应用是解题的关键.四、解答题(每小题8分,共24分)(2023·河北邯郸·校考一模)【18题答案】【答案】(1)小明带的钱够用,理由见解析(2)①12千克;②14千克【解析】【分析】(1)设1千克苹果的价格为x元,1千克梨的价格为y元,根据购买1千克苹果和2千克梨共花费了28元,另一人购买2千克苹果和1千克梨共花费了32元列出方程组求出x、y的值即可得到答案;(2)①设可以购买m千克苹果,则购买m千克梨,再根据总花费不超过250元列出不等式求解即可;②设可以购买n千克苹果,则购买12n千克梨,再根据总花费不超过250元列出不等式求解即可.【小问1详解】解:小明带的钱够用,理由如下:设1千克苹果的价格为x元,1千克梨的价格为y元,依题意得:228 232x yx y+=⎧⎨+=⎩,解得:128xy=⎧⎨=⎩,∴12820x y +=+=.答:小明带的钱够用.【小问2详解】解:①设可以购买m 千克苹果,则购买m 千克梨,依题意得:12820x y +=+=,解得:1122m ≤,又∵m 为正整数,∴m 的最大值为12.答:最多能够买12千克苹果.②设可以购买n 千克苹果,则购买12n 千克梨,依题意得:11282502n n +⋅≤,解得:5158n ≤,又∵n ,12n 均为正整数,∴n 的最大值为14.答:最多能够买14千克苹果.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系和不等关系是解题的关键.(2022·河北石家庄·统考二模)【19题答案】【答案】(1)每个B 型点位每天处理生活垃圾38吨(2)至少需要增设3个A 型转运站才能当日处理完所有生活垃圾【解析】【小问1详解】解:设每个B 型转运站每天处理生活垃圾x 吨,则每个A 型转运站每天处理生活垃圾(7)x +吨.根据题意可得,12(7)10920++=x x ,解得:38x =.答:每个B 型点位每天处理生活垃圾38吨;【小问2详解】解:设需要增设y 个A 型转运站才能当日处理完所有生活垃圾,由(1)得每个A 型转运站每天处理生活垃圾45吨,分类要求提高后,每个A 型点位每天处理生活垃圾45837-=(吨),每个B 型转运站每天处理生活垃圾38830-=(吨),根据题意可得:37(12)30(105)92010+++-≥-y y ,解得167≥y ,∵y 是正整数,∴符合条件的y 的最小值为3,答:至少需要增设3个A 型转运站才能当日处理完所有生活垃圾.【点睛】本题考查一次方程及一次不等式的应用,解题的关键是读懂题意,找准等量关系或不等关系,列方程或不等式.(2020·湖南郴州·统考中考真题)【20题答案】【答案】(1)甲物资采购了300吨,乙物质采购了240吨;(2)共有3种运输方案,方案1:安排25辆A 型卡车,25辆B 型卡车;方案2:安排26辆A 型卡车,24辆B 型卡车;方案3:安排27辆A 型卡车,23辆B 型卡车.【解析】【分析】(1)设甲物资采购了x 吨,乙物质采购了y 吨,根据“某省红十字会采购甲、乙两种抗疫物资共540吨,且采购两种物资共花费1380万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排A 型卡车m 辆,则安排B 型卡车(50-m )辆,根据安排的这50辆车一次可运输300吨甲物质及240吨乙物质,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各运输方案.【详解】解:(1)设甲物资采购了x 吨,乙物质采购了y 吨,依题意,得:540321380x y x y +⎧⎨+⎩==,解得:300240x y ⎧⎨⎩==.答:甲物资采购了300吨,乙物质采购了240吨.(2)设安排A 型卡车m 辆,则安排B 型卡车(50-m )辆,依题意,得:()()75503003750240m m m m ⎧+-≥⎪⎨+-≥⎪⎩,解得:25≤m ≤2712.∵m 为正整数,∴m 可以为25,26,27,∴共有3种运输方案,方案1:安排25辆A 型卡车,25辆B 型卡车;方案2:安排26辆A 型卡车,24辆B 型卡车;方案3:安排27辆A 型卡车,23辆B 型卡车.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.五、解答题(每小题9分,共18分)(2022春·安徽芜湖·七年级芜湖市第二十九中学校考期末)【21题答案】【答案】(1)4;7-;0(2)34x ≤<(3)53x =【解析】【分析】(1)根据题目中的定义,[x ]表示不超过x 的最大整数,求出结果即可;(2)根据定义,x 是大于等于3小于4的数;(3)由[]5231x x -=+得到315232x x x +≤-<+,求出x 的取值范围,再由31x +是整数即可得到x 的值.【小问1详解】解:∵不超过4.8的最大整数是4,∴[]4.84=,∵不超过 6.5-的最大整数是7-,∴[]6.57-=-,∵不超过0的最大整数是0,∴[]00=,故答案是:4;7-;0.【小问2详解】解:∵[]3x =,∴x 是大于等于3小于4的数,即34x ≤<.故答案为:34x ≤<.【小问3详解】解:∵[]5231x x -=+,∴315232x x x +≤-<+,解得322x ≤<,∵31x +是整数,∴53x =.【点睛】本题考查新定义问题,不等式组的运用,解题的关键是理解题目中[]x 的意义,列出不等式组进行求解.(2023·安徽滁州·校考一模)【22题答案】【答案】(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【解析】【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=-解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a⨯⨯+⨯=+方案二:206400.8100.82128a a+⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a+解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a+解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.六、解答题(本大题共12分)【23题答案】【答案】(1)1234x y -<+<;(2)x y -的取值范围是13x y <-<;(3)x y +的取值范围是22a x y a +<+<--.【解析】【分析】(1)仿照例子,根据不等式的基本性质即可求解;(2)仿照例子,注意由0<y <1到-1<-y <0的转化,再由不等式同号可加性进行求解;(3)仿照例子,注意确定不等式有解集时,a 的取值范围,因此要先确定当a <-2时,关于x 、y 的不等式存在解集.【详解】(1)12x << ,224x ∴<<.10y -<< ,330y ∴-<<,1234x y ∴-<+<.故答案为1234x y -<+<.(2)3x y += ,3x y ∴=-.又2x > ,32y ∴->,1y ∴<.又0y > ,01y ∴<<,10y ∴-<-<.同理得23x <<,1203x y ∴-+<-<+,x y ∴-的取值范围是13x y <-<.(3)x y a -= ,x a y ∴=+.又1x <- ,1a y ∴+<-,1y a ∴<--.又1y > ,11a ∴-->,2∴<-a .当2a <-时,11y a <<--.同理得11a x +<<-,22a x y a ∴+<+<--,∴当2a <-时,x y +的取值范围是22a x y a +<+<--.【点睛】本题考查不等式的性质;能够根据例子,仿照例子结合不等式的基本性质解题,注意不等式的同号可加性,是隐含的限定条件.。
2016年全国中考数学真题分类 一元一次不等式(组)(习题解析)
2016年全国中考数学真题分类一元一次不等式(组)一、选择题8.(2016•广东茂名,8,3分)不等式组的解集在数轴上表示为()A.B.C.D.【思路分析】分别求出各选项的解集,并做出判断.不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C:数轴表示解集为x≤﹣1,故选项C错误;D:数轴表示解集为x≥1,故选项D错误;故选B.【答案】B.5.(2016辽宁大连,5,3分)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(2016台湾,19)表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案门号的月租费(元)400 600MAT手机价格(元)15000 13000注意事项:以上方案两年内不可变更月租费A.500 B.516 C.517 D.600【考点】一元一次不等式的应用;一次函数的应用.【分析】由x的取值范围,结合题意找出甲、乙两种方案下两年的总花费各是多少,再由乙方案比甲方案便宜得出关于x的一元一次不等式,解不等式即可得出结论.【答案】解:∵x为400到600之间的整数,∴若小洁选择甲方案,需以通话费计算,若小洁选择乙方案,需以月租费计算,甲方案使用两年总花费=24x+15000;乙方案使用两年总花费=24×600+13000=27400.由已知得:24x+15000>27400,解得:x>516,即x至少为517.故选C.二、填空题11.(2016陕西11,3分)不等式0321<+-x 的解集是6x >。
全国各地中考数学解析版试卷分类汇编总汇:不等式(组)
全国各地中考数学解析版试卷分类汇编总汇:不等式(组)一、选择题1. ( 2014•广西贺州,第7题3分)不等式的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:,解得,故选:A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2. ( 2014•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()3.(2014年云南省,第3题3分)不等式组的解集是()A . x >B .﹣1≤x <C .x <D .x ≥﹣1考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可. 解答:解:,由①得,x >,由②得,x ≥﹣1,故此不等式组的解集为:x >.故选A .点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2014年广东汕尾,第3题4分)若x >y ,则下列式子中错误的是( )A .x ﹣3>y ﹣3B .>C .x+3>y+3D .﹣3x >﹣3y分析:根据不等式的基本性质,进行选择即可.解:A 、根据不等式的性质1,可得x ﹣3>y ﹣3,故A 正确;B 、根据不等式的性质2,可得>,故B 正确;C 、根据不等式的性质1,可得x+3>y+3,故C 正确;D 、根据不等式的性质3,可得﹣3x <﹣3y ,故D 错误;故选D .点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 5.(2014•毕节地区,第5题3分)下列叙述正确的是()10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()天,频率为:....解:,解得友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?()A.6 B.7 C.8 D.9分析:设晓莉和朋友共有x人,分别计算选择包厢和选择人数的费用,然后根据选择包厢计费方案会比人数计费方案便宜,列不等式求解.解:设晓莉和朋友共有x人,若选择包厢计费方案需付:900×6+99x元,若选择人数计费方案需付:540×x+(6﹣3)×80×x=780x(元),∴900×6+99x<780x,解得:x>=7.∴至少有8人.故选C.点评:本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.9. (2014•湘潭,第6题,3分)式子有意义,则x的取值范围是()此题考查了二次根式的意义和性质.概念:式子满足的条件是()考查了二次根式的意义和性质.概念:式子12. (2014•株洲,第6题,3分)一元一次不等式组的解集中,整数解的个数是()确的是().>14.(2014•德州,第6题3分)不等式组的解集在数轴上可表示为()B C D解不等式组得:解:,A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36分析:先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,据此即可列不等式求得a的范围.解:,解①得:x<a﹣1,解②得:x≥﹣37,则a﹣1>﹣37,解得:a>﹣36.故选C.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.二.填空题1. ( 2014•广东,第15题4分)不等式组的解集是1<x<4.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组2.(2014•新疆,第10题5分)不等式组的解集是.解:3.(2014•温州,第13题5分)不等式3x﹣2>4的解是x>4.(2014•毕节地区,第17题5分)不等式组的解集为﹣4﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.≥6.(2014•四川自贡,第12题4分)不等式组的解集是1<x≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年全国各地中考数学试题分类解析汇编第9章不等式与不等式组一.选择题(共20小题)1.(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤232.(2016•乐山)不等式组的所有整数解是()A.﹣1、0 B.﹣2、﹣1 C.0、1 D.﹣2、﹣1、03.(2016•巴中)不等式组:的最大整数解为()A.1 B.﹣3 C.0 D.﹣14.(2016•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣185.(2016•滨州)对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤26.(2016•湖北)不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个7.(2016•淄博)关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.8.(2016•益阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.9.(2016•临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.10.(2016•哈尔滨)不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤111.(2016•茂名)不等式组的解集在数轴上表示为()A.B.C.D.12.(2016•永州)不等式组的解集在数轴上表示正确的是()A.B.C.D.13.(2016•山西)不等式组解集是()A.x>﹣5 B.x<3 C.﹣5<x<3 D.x<514.(2016•随州)不等式组的解集表示在数轴上,正确的是()A.B.C.D.15.(2016•孝感)不等式组的解集是()A.x>3 B.x<3 C.x<2 D.x>216.(2016•漳州)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.17.(2016•长沙)不等式组的解集在数轴上表示为()A.B.C.D.18.(2016•大连)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<119.(2016•昆明)不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥220.(2016•新疆)不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<22016年全国各地中考数学试题分类解析汇编(第一辑)第9章不等式与不等式组参考答案与试题解析一.选择题(共20小题)1.(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.【点评】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.2.(2016•乐山)不等式组的所有整数解是()A.﹣1、0 B.﹣2、﹣1 C.0、1 D.﹣2、﹣1、0【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数即可.【解答】解:,由①得:x>﹣2,由②得:x≤,则不等式组的解集是﹣2<x≤,不等式组的所有整数解是﹣1,0;故选A.【点评】本题主要考查了一元一次不等式组的整数解,掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)是本题的关键.3.(2016•巴中)不等式组:的最大整数解为()A.1 B.﹣3 C.0 D.﹣1【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在解集内找到最大整数即可.【解答】解:解不等式3x﹣1<x+1,得:x<1,解不等式2(2x﹣1)≤5x+1,得:x≥﹣3,则不等式组的解集为:﹣3≤x<1,则不等式组的最大整数解为0,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2016•台湾)若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣18【分析】根据不等式20<5﹣2(2+2x)<50可以求得x的取值范围,从而可以得到a、b的值,进而求得a+b的值.【解答】解:∵20<5﹣2(2+2x)<50,解得,,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17,故选C.【点评】本题考查一元一次不等式组的整数解,解题的关键是明确解一元一次不等式组的方法.5.(2016•滨州)对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤2【分析】分别解两个不等式得到x≤4和x>﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【解答】解:,解①得x≤4,解②得x>﹣2.5,所以不等式组的解集为﹣2.5<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(2016•湖北)不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个【分析】先根据一元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选C.【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(2016•淄博)关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣1,由②得,x≤2,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:.故选D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2016•益阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤2,故不等式组的解集为:﹣3<x≤2,在数轴上表示为:.故选A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2016•临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【分析】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决.【解答】解:由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法.10.(2016•哈尔滨)不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2016•茂名)不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出各选项的解集,并做出判断.【解答】解:不等式组的解集为﹣1<x≤1,A:数轴表示解集为无解,故选项A错误;B:数轴表示解集为﹣1<x≤1,故选项B正确;C:数轴表示解集为x≤﹣1,故选项C错误;D:数轴表示解集为x≥1,故选项D错误;故选B【点评】本题考查了利用数轴表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.12.(2016•永州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:.故选A.【点评】本题考查的是解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.13.(2016•山西)不等式组解集是()A.x>﹣5 B.x<3 C.﹣5<x<3 D.x<5【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣5,解②得:x<3,则不等式的解集是:﹣5<x<3.故选:C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2016•随州)不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则分析选项可得答案.【解答】解:解不等式x﹣1≤7﹣x,得:x≤4,解不等式5x﹣2>3(x+1),得:x>,∴不等式组的解集为:<x≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2016•孝感)不等式组的解集是()A.x>3 B.x<3 C.x<2 D.x>2【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得:x>3,则不等式的解集是:x>3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(2016•漳州)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出两个不等式的解,然后表示出解集,并在数轴上表示出来.【解答】解:解不等式x+1>0得:x>﹣1,解不等式2x﹣4≤0得:x≤2,则不等式的解集为:﹣1<x≤2,在数轴上表示为:.故选B.【点评】本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,解答本题的关键是熟练掌握不等式的解法以及求不等式解集的规律.17.(2016•长沙)不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【解答】解:,解不等式2x﹣1≥5,得:x≥3,解不等式8﹣4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.18.(2016•大连)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(2016•昆明)不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥2【分析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可.【解答】解:解不等式x﹣3<1,得:x<4,解不等式3x+2≤4x,得:x≥2,∴不等式组的解集为:2≤x<4,故选:C.【点评】本题主要考查解一元一次不等式组的能力,熟练掌握不等式的性质准确求出每个不等式的解集是解题的关键.20.(2016•新疆)不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2【分析】分别解两个不等式得到x≥1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≥1,解②得x≤2,所以不等式组的解集为1≤x≤2.故选C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.。