江苏省姜堰区2018届九年级数学上学期期末考试试题

合集下载

2018-2019学年九年级(上)期末数学试卷5套及答案解析

2018-2019学年九年级(上)期末数学试卷5套及答案解析

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分) 2018.11.61.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.关于的一元二次方程的一个根是,则的值为()A. B. C. D.3.已知为矩形的对角线,则图中与一定不相等的是()A. B.C. D.4.一个三角形三遍的长分别为,,,另一个与它相似的三角形的最长边是,则该三角形的最短边是()A. B. C. D.5.下列各点不在反比例函数上的是()A. B. C. D.6.如图,在的正方形网格中,连接两格点,,线段与网格线的交点为点,则为()A. B. C. D.7.小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B.?①③C.③④D.‚②④8.如图所示电路,任意闭合两个开关,能使灯亮起来的概率是()A. B. C. D.9.如图,是三个反比例函数,,在轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.10.如图,矩形的周长是,以,为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是()A. B. C. D.二、填空题(每小题4分,共20分)11.方程的二次项系数是________.12.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.13.在平面直角坐标系中,直线与反比例函数的图象的一个交点,则的值为________.14.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字,,每天每次从每组中抽出一张,两张牌的数字之积为的概率为________.15.如图,在平行四边形中,交于交于,,,则的长为________.三、解答题(满分50分)16.如图,已知,利用尺规作出一个新三角形,使新三角形与对应线段比为(不写作法,保留作图痕迹).17.一只不透明的袋子中装有个质地,大小均相同的小球,这些小球分别标有,,,,甲,乙两人每次同时从袋中各随机取出个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:如果实验继续进行下去,根据上表提供数据,出现和为的频率将稳定在它的概率附近,估计出现和为的概率是.如果摸出这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表或画树状图的方法说明理由.18.如图所示,某小区计划在一块长米,宽米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径是多少?(精确到 . )19.已知,如图,,,.请你添加一个条件,使相似于,你添加的条件是________;若,,在的条件下,求的长度.20.如图,已知平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.21.如图,在平面直角坐标系中,一次函数与轴轴分别交于点,与反比例函数在第一象限交于点.写出点,,的坐标.过轴上的点作平行于轴的直线分别与直线和反比例函数交于点,求的面积.22.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知:如图,四边形是“等对角四边形”,,,.则________度,________度.在探究“等对角四边形”性质时:小红画了一个“等对角四边形 ”(如图),其中,,此时她发现成立.请你证明此结论;已知:在“等对角四边形 ”中,,,,.求对角线的长.答案1. 【答案】A【解析】根据常见几何体的三视图确定即可得.【解答】解:、长方体的主视图和左视图均为矩形,符合题意;、圆锥的主视图和左视图均为等腰三角形,不符合题意;、正方体的主视图和左视图均为正方形,不符合题意;、球的主视图和左视图均为圆,不符合题意;故选:.2. 【答案】B【解析】根据一元二次方程的解的定义把代入方法得到关于的一次方程,然后解一次方程即可.【解答】解:把代入方程得,解得.故选.3. 【答案】D【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:、对顶角相等,一定相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、一定不相等,因为,,故符合题意.故选:.4. 【答案】B【解析】首先设与它相似的三角形的最短边的长为,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为,∵一个三角形三边的长分别为,,,另一个与它相似的三角形的最长边是,∴,解得:.故选.5. 【答案】C【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点不在反比例函数的图象上,故本选项符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意.故选.6. 【答案】C【解析】构建如图所示的图形,利用平行线分线段成比例得到.【解答】解:如图,∵ ,∴.故选.7. 【答案】B【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选.8. 【答案】C【解析】先根据题意画出树状图,得出共有种情况,再根据能使灯亮起来的情况有种,即可得出能使灯亮起来的概率.【解答】解:根据题意画树状图如下:∵共有种情况,能使灯亮起来的情况有种,∴能使灯亮起来的概率是,故选:.9. 【答案】C【解析】根据反比例函数图象上点的坐标特点可得,进而可分析、、的大小关系.【解答】解:读图可知:三个反比例函数的图象在第二象限;故;,在第一象限;且,的图象距原点较远,故有:;综合可得:.故选:.10. 【答案】B【解析】设,,根据题意列出方程,,利用完全平方公式即可求出的值.【解答】解:设,,∵正方形和的面积之和为∴ ,∵矩形的周长是∴ ,∵ ,∴ ,∴ ,∴矩形的面积为:故选11. 【答案】【解析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程的二次项系数是,故答案为:.12. 【答案】太阳光,通过作图发现相应的直线是平行关系【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13. 【答案】【解析】将代入中求出值,进而即可得出点的坐标,由点的坐标利用反比例函数图象上点的坐标特征即可求出值,此题得解.【解答】解:当时,,∴点的坐标为.∵点在反比例函数的图象上,∴ .故答案为:.14. 【答案】【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图得:由树状图可知共有种可能,两张牌的和为的有种,所以概率,故答案为:.15. 【答案】【解析】由于,所以,又因为,所以,所以,从而可求出的长度.【解答】解:∵ ,∴ ,∵ ,∴ ,∴∴,,∴故答案为:16. 【答案】解:如图,即为所求作三角形.【解析】平面内任取一点,作射线、、,再射线上分别截取、、,顺次连接、、即可得.【解答】解:如图,即为所求作三角形.17. 【答案】; 假设,则(和为),所以,的值不能为.【解析】利用频率估计概率结合表格中数据得出答案即可;; 假设,根据题意先列出树状图,得出和为的概率,再与进行比较,即可得出答案.【解答】解:根据随着实验的次数不断增加,出现“和为 ”的频率是,故出现“和为 ”的概率是;; 假设,则(和为),所以,的值不能为.18. 【答案】每个扇形的半径大约是 . .【解析】根据个扇形的面积是长方形荒地面积的一半即可得出关于的一元二次方程,解之即可得出结论.【解答】解:根据题意得:,解得: . , . (舍去).19. 【答案】; ∵ ,,,∴,即,解得.【解析】根据相似三角形的判定定理即可得出结论;; 根据相似三角形的性质即可得出结论.【解答】解: ∵ ,,∴ ,∴可以添加的条件是.; ∵ ,,,∴,即,解得.20. 【答案】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得,∴ ,∴ ,∴四边形是菱形;; (2)根据有一个角是的菱形是正方形.由题意易得,∵四边形是菱形,∴ ,∴四边形是正方形.【解答】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.21. 【答案】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.【解析】分别将、代入中求出与之对应的、的值,由此即可得出点、的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点的坐标;; 将分别代入一次函数和反比例函数解析式中求出值,由此即可得出点、的坐标,进而即可得出的长度,由点、的坐标即可得出线段的长度,再利用三角形的面积公式即可求出的面积.【解答】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.22. 【答案】,【解析】过点于点,交于点点作于,则即的最小再根据,分可知是等腰角三角形,由锐角角函数的定义即可出的长.【解答】解:过点作于,于点,点作于,则即为的最值,∵,,平分,等腰角三角形,故的最小值为.。

(汇总3份试卷)2018年江苏省名校九年级上学期期末教学质量检测数学试题

(汇总3份试卷)2018年江苏省名校九年级上学期期末教学质量检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是( )A.B.C.D.【答案】A【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图.故选:A.【点睛】本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别.2.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()A.团队平均日工资不变B.团队日工资的方差不变C.团队日工资的中位数不变D.团队日工资的极差不变【答案】B【解析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003; 调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300; 最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300; 最中间两个数的平均数是:280,则中位数是280,故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D 正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.3.直角三角形两直角边之和为定值,其面积与一直角边之间的函数关系大致图象是下列中的( ) A . B . C .D .【答案】A【解析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y = ,以上是二次函数的表达式,图象是一条抛物线,所以A 选项是正确的.考查了现实中的二次函数问题,考查了学生的分析、 解决实际问题的能力.4.二次函数2y ax bx =+的图象如图,若一元二次方程2ax bx k 0++=有实数解,则k 的最小值为( )A .4-B .6-C .8-D .0【答案】A 【解析】∵一元二次方程ax 2+bx+k=0有实数解,∴可以理解为y=ax 2+bx 和y=−k 有交点,由图可得,−k≤4,∴k≥−4,∴k 的最小值为−4.故选A.5.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④【答案】D 【解析】试题解析:∵AE=13AB , ∴BE=2AE ,由翻折的性质得,PE=BE ,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP )=12(180°﹣60°)=60°, ∴∠EFB=90°﹣60°=30°,∴EF=2BE ,故①正确;∵BE=PE ,∴EF=2PE ,∵EF >PF ,∴PF <2PE ,故②错误;由翻折可知EF ⊥PB ,∴∠EBQ=∠EFB=30°,∴BE=2EQ ,EF=2BE ,∴FQ=3EQ ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF 是等边三角形,故④正确;综上所述,结论正确的是①④.故选D .考点:1.翻折变换(折叠问题);2.矩形的性质.6.若反比例函数y=k x 的图象经过点(2,﹣1),则k 的值为( ) A .﹣2B .2C .﹣12D .12 【答案】A【解析】把点(1,-1)代入解析式得-1=2k , 解得k=-1.故选A .7.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x =B .2425y x =C .225y x =D .245y x = 【答案】C【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积.【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90°∴△ABC ≌△ADE (AAS )∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a ,CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得,CF 1+DF 1=CD 1,即(3a )1+(4a )1=x 1,解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF =12×(a+4a )×4a =10a 1 =25x 1. 故选C .【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.8.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为( )A .5%B .8%C .10%D .11%【答案】A【分析】设平均每次下调的百分率为x ,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,即可得出结果.【详解】设平均每次下调的百分率为x ,依题意,得:16000(1﹣x )2=14440,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去),答:平均每次下调的百分率为5%.故选:A .【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出关于x 的方程,是解题的关键.9.若反比例函数的图像在第二、四象限,则它的解析式可能是( )A .3y x =-B .32y x =-C .3y x =D .2y x =-【答案】A【分析】根据反比例函数的定义及图象经过第二、四象限时k 0<,判断即可.【详解】解:A 、对于函数3y x=-,是反比例函数,其30k =-<,图象位于第二、四象限; B 、对于函数32y x =-,是正比例函数,不是反比例函数; C 、对于函数3y x =,是反比例函数,图象位于一、三象限;D 、对于函数2y x =-,是二次函数,不是反比例函数;故选:A .【点睛】本题考查了反比例函数、反比例的图象和性质,可以采用排除法,直接法得出答案.10.将y =﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为( ) A .y =﹣2B .y =2C .y =﹣3D .y =3【答案】A【分析】根据二次函数图象“左移x 加,右移x 减,上移c 加,下移c 减”的规律即可知平移后的解析式,进而可判断最值.【详解】将y =﹣(x+4)1+1的图象向右平移1个单位,再向下平移3个单位,所得图象的函数表达式是y =﹣(x+4﹣1)1+1﹣3,即y =﹣(x+1)1﹣1,所以其顶点坐标是(﹣1,﹣1),由于该函数图象开口方向向下,所以,所得函数的最大值是﹣1.故选:A .【点睛】本题主要考查二次函数图象的平移问题和最值问题,熟练掌握平移规律是解题关键.11 )A .x>-1B .x≥-1C .x≥1D .x =-1【答案】C【解析】根据二次根式有意义,被开方数为非负数,列不等式求出x 的取值范围即可.∴x-1≥0,∴x≥1,故选:C.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数;熟练掌握二次根式有意义的条件是解题关键.12.若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( ) A .()223y x =++ B .()223y x =-+ C .()223y x =+- D .()223y x =--【答案】B 【解析】试题分析:∵函数y=x 2的图象的顶点坐标为()0,?0,将函数y=x 2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是()()02,?032,?3++⇒. ∴所得抛物线的表达式为()223y x =-+. 故选B.考点:二次函数图象与平移变换.二、填空题(本题包括8个小题)13.已知△ABC 中,AB =5,sinB =35,AC =4,则BC =_____.【答案】或4【分析】根据题意画出两个图形,过A 作AD ⊥BC 于D ,求出AD 长,根据勾股定理求出BD 、CD ,即可求出BC .【详解】有两种情况:如图1:过A作AD⊥BC于D,∵AB=5,sinB=35=ADAB,∴AD=3,由勾股定理得:BD=4,CD=227AC AD-=,∴BC=BD+CD=4+7;如图2:同理可得BD=4,CD=227AC AD-=,∴BC=BD﹣CD=4﹣7.综上所述,BC的长是4+7或4﹣7.故答案为:4+7或4﹣7.【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.14.从1,2,3三个数字中任取两个不同的数字,其和是奇数的概率是_________.【答案】2 3【分析】由1,2,3三个数字组成的无重复数字的两位数字共有6个,其中奇数有4个,由此求得所求事件的概率.【详解】解:由1,2,3三个数字组成的无重复数字的两位数字共有3×2=6个,其中奇数有2×2=4个,故从中任取一个数,则恰为奇数的概率是42 63 =,故答案为:23.【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.解题的关键是掌握概率公式进行计算.15.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .【答案】1.【解析】试题分析:根据圆的确定先做出过A ,B ,C 三点的外接圆,从而得出答案.如图,分别作AB 、BC 的中垂线,两直线的交点为O ,以O 为圆心、OA 为半径作圆,则⊙O 即为过A ,B ,C 三点的外接圆,由图可知,⊙O 还经过点D 、E 、F 、G 、H 这1个格点,故答案为1.考点:圆的有关性质.16.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m 个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于45,则m 的值为 . 【答案】1.【解析】试题分析:根据题意得:57m m ++=45,解得:m=1.故答案为1. 考点:概率公式.17.一圆锥的母线长为5,底面半径为3,则该圆锥的侧面积为________.【答案】15π【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】圆锥的侧面积=12•2π•3•5=15π. 故答案是:15π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.已知m ,n 是一元二次方程2230x x --=的两根,则m n mn ++=________.【答案】-1【分析】根据根与系数的关系求出m+n 与mn 的值,然后代入m n mn ++计算即可.【详解】∵m ,n 是一元二次方程2230x x --=的两根,∴m+n=2,mn=-3,∴m n mn ++=2-3=-1.故答案为:-1.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅= . 三、解答题(本题包括8个小题)19.如图,已知一次函数332y x =-与反比例函数k y x=的图像相交于点4A n (,),与x 轴相交于点B . (1)求n 的值和k 的值以及点B 的坐标;(2)观察反比例函数k y x=的图像,当3y ≥-时,请直接写出自变量x 的取值范围; (3)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (4)在y 轴上是否存在点P ,使PA PB +的值最小?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)n=3,k=1,点B 的坐标为(2,3);(2)x≤﹣2或x >3;(3)点D 的坐标为(133);(2)存在,P (3,1).【分析】(1)把点A (2,n )代入一次函数中可求得n 的值,从而求出一次函数的解析式,于是可得B 的坐标;再把点A 的坐标代入反比例函数中,可得到k 的值;(2)观察反比例函数图象即可得到当y≥-3时,自变量x 的取值范围.(3)先求出菱形的边长,然后利用平移的性质可得点D 的坐标;(2)作点B 关于y 轴的对称点Q,连接AQ 交y 轴于点P ,此时PA PB +的值最小,据此可解.【详解】解:(1)把点A (2,n )代入一次函数y=32x ﹣3, 可得n=32×2﹣3=3; 把点A (2,3)代入反比例函数k y x =,可得3=4k , 解得:k=1.∵一次函数y=32x ﹣3与x 轴相交于点B , ∴32x ﹣3=3, 解得:x=2,∴点B 的坐标为(2,3),(2)当y=﹣3时,123x-=, 解得:x=﹣2.故当y≥﹣3时,自变量x 的取值范围是x≤﹣2或x >3.(3)如图1,过点A 作AE ⊥x 轴,垂足为E ,∵A (2,3),B (2,3),∴OE=2,AE=3,OB=2,∴BE=OE ﹣OB=2﹣2=2,在Rt △ABE 中,222232AE BE ++13∵四边形ABCD 是菱形,∴13AD ∥BC ,∴点A (2,313D,∴点D 的坐标为(133).(2)存在.如图2,作点B 关于y 轴的对称点Q,连接AQ 交y 轴于点P ,此时PA PB +的值最小.设直线AQ的解析式为y=kx+b,∵点B(2,3)关于y轴的对称点Q的坐标为(-2,3),∴43 20 k bk b+=⎧⎨-+=⎩,∴121kb⎧=⎪⎨⎪=⎩,∴直线AQ的关系式为112y x=+,∴直线AQ与y轴的交点为P(3,1).∴在y 轴上存在点P(3,1),使PA PB+的值最小.【点睛】本题属于反比例函数综合题,考查了待定系数法求函数解析式,菱形的性质、反比例函数的性质等知识,熟练掌握相关性质及数形结合思想是解题关键.20.某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x (元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?【答案】(1)y=﹣2x2+120x﹣1600;(2)当销售单价定为每双30元时,每天的利润最大,最大利润为1元.【分析】(1)用每双手套的利润乘以销售量得到每天的利润;(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.【详解】(1)y=w(x﹣20)=(﹣2x+80)(x﹣20)=﹣2x2+120x﹣1600;(2)y=﹣2(x﹣30)2+1.∵20≤x≤40,a=﹣2<0,∴当x=30时,y最大值=1.答:当销售单价定为每双30元时,每天的利润最大,最大利润为1元.【点睛】本题考查的是二次函数的应用.(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.21.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为;估计这批柑橘完好的质量为千克.(2)若希望这批柑橘能够获得利润5000元,那么在出售柑橘(只卖好果)时,每千克大约定价为多少元比较合适?(精确到0.1)【答案】(1)0.1,1;(2)4.78元.【分析】(1)根据图形即可得出柑橘损坏的概率,再求出柑橘完好的概率,用柑橘完好的概率乘以这批柑橘的总质量可得出这批柑橘完好的质量;(2)先设出每千克柑橘大约定价为x元比较合适,根据题意列出方程即可求出答案.【详解】(1)根据所给的图可得:柑橘损坏的概率估计值为:0.1,柑橘完好的概率估计值为1-0.1=0.9;这批柑橘完好的质量为:10000×0.9=1(千克),故答案为:0.1,1.(2)设每千克柑橘大约定价为x元比较合适,根据题意得:(x-2)×1=25000,解得:x≈4.78答:每千克柑橘大约定价为4.78元比较合适.【点睛】此题考查了利用频率估计概率,解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;用到的知识点为:频率=所求情况数与总情况数之比.22.如图,二次函数y=﹣34x2+94x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A 、B 、C 的坐标;(2)求△ABC 的面积.【答案】(1)点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3);(2)152 【分析】(1)根据题目中的函数解析式可以求得点A 、B 、C 的坐标;(2)根据(1)中点A 、点B 、点C 的坐标可以求得△ABC 的面积.【详解】解:(1)∵二次函数y =34-x 2+94x+3=34-(x ﹣4)(x+1), ∴当x =0时,y =3,当y =0时,x 1=4,x 2=﹣1,即点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3);(2)∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3),∴AB =5,OC =3,∴△ABC 的面积是:·5322AB OC ⨯==152, 即△ABC 的面积是152. 【点睛】本题考查的是二次函数与x 轴的交点,分别令x 、y 为0,即可求出函数与坐标轴的交点,进而求解三角形的面积.23.如图,已知ABC :()1AC 的长等于________;()2若将ABC 向右平移2个单位得到'''A B C ,则A 点的对应点'A 的坐标是________; ()3若将ABC 绕点C 按顺时针方向旋转90后得到111A B C △,则A 点对应点1A 的坐标是________.10; ()1,2, ()3,0.【分析】(1)直接利用勾股定理求出AC的长即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用旋转的性质得出对应点位置进而得出答案.【详解】2213+10;10;(2)如图所示:△A′B′C′即为所求,A点的对应点A′的坐标为:(1,2);故答案为(1,2);(3)如图所示:△A1B1C1,即为所求;A点对应点A1的坐标是:(3,0).故答案为(3,0).【点睛】本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.2411124sin302312-︒⎛⎫-+-⎪⎝⎭.【答案】-1【分析】直接利用绝对值的性质以及负指数幂的性质分别化简得出答案.【详解】解:原式=332)﹣12=33﹣12=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x 元,则商场日销售量增加____件,每件商品,盈利______元(用含x 的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【答案】(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x ;50﹣x .(3)每件商品降价1元时,商场日盈利可达到2000元.【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x 元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值,再根据尽快减少库存即可确定x 的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x 元,则商场日销售量增加2x 件,每件商品,盈利(50-x )元.故答案为2x ;50-x .(3)根据题意,得:(50-x )×(30+2x )=2000,整理,得:x 2-35x+10=0,解得:x 1=10,x 2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式). 26.游乐园新建的一种新型水上滑道如图,其中线段PA 表示距离水面(x 轴)高度为5m 的平台(点P 在y 轴上).滑道AB 可以看作反比例函数图象的一部分,滑道BCD 可以看作是二次函数图象的一部分,两滑道的连接点B 为二次函数BCD 的顶点,且点B 到水面的距离2BE m =,点B 到y 轴的距离是5m.当小明从上而下滑到点C 时,与水面的距离3m 2CG =,与点B 的水平距离2m CF =.(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道ABCD 的水平距离;(3)若小明站在平台上相距y 轴1m 的点M 处,用水枪朝正前方向下“扫射”,水枪出水口N 距离平台3m 2,喷出的水流成抛物线形,设这条抛物线的二次项系数为p ,若水流最终落在滑道BCD 上(包括B 、D 两点),直接写出p 的取值范围.【答案】(1)10y x=,25x ≤≤;(2)7m ;(3)91332128p -≤≤-. 【分析】(1)在题中,BE=2,B 到y 轴的距离是5,即反比例函数图象上一点的横坐标和纵坐标都已告知,则可求出比例系数k ;(2)根据B ,C 的坐标求出二次函数解析式,得到点D 坐标,即OD 长度再减去AP 长度,可得滑道ABCD 的水平距离;(3)由题意可知点N 为抛物线的顶点,设水流所成抛物线的表达式为213(1)2y p x =-+,通过计算水流分别落到点B 和点D 可以得出p 的取值范围.【详解】解:(1)∵2BE m =,点B 到y 轴的距离是5,∴点B 的坐标为()5,2. 设反比例函数的关系式为k y x=, 则25k =,解得10k =. ∴反比例函数的关系式为10y x=. ∵当5y =时,2x = ,即点A 的坐标为()2,5,∴自变量x 的取值范围为25x ≤≤;(2)由题意可知,二次函数图象的顶点为()5,2B ,点C 坐标为37,2⎛⎫ ⎪⎝⎭.设二次函数的关系式为2(5)2y a x =-+,则23(75)22a -+=,解得18a =-. ∴二次函数的关系式为221159(5)28848y x x x =--+=-+-. 当0y =时,解得129,1x x ==(舍去),∴点D 的坐标为()9,0,则9OD =. ∴整条滑道ABCD 的水平距离为:927m OD PA -=-=;(3)p 的取值范围为91332128p -≤≤-. 由题意可知,点N 坐标为(31,52⎛⎫+⎪⎝⎭,即131,2⎛⎫ ⎪⎝⎭,为抛物线的顶点.设水流所成抛物线的表达式为213(1)2y p x =-+. 当水流落在点()5,2B 时,由213(51)22p -+=,解得932p =-; 当水流落在点()9,0D 时,由213(91)02p -+=,解得13128p =-. ∴p 的取值范围为91332128p -≤≤-. 【点睛】此题主要考查了反比例函数和二次函数的基本性质和概念,以及用待定系数法求函数的解析式,难度较大. 错因分析 较难题. 失分原因是(1)没有掌握利用待定系数法求反比例函数解析式;(2)没有掌握二次函数的基本性质,利用二次函数的性质求得点D 的坐标;(3)没有掌握利用顶点式求二次函数的解析式,根据B ,D 两点的坐标进而求得p 的取值范围.27.解一元二次方程:x 2﹣5x+6=1.【答案】x 1=2,x 2=2【分析】根据因式分解法解一元二次方程,即可求解.【详解】∵x 2﹣5x+6=1,∴(x ﹣2)(x ﹣2)=1,∴x ﹣2=1或x ﹣2=1,∴x 1=2,x 2=2.【点睛】本题主要考查解一元二次方程,掌握因式分解法解方程,是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能【答案】A【解析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出即可.【详解】解:点P(-2,3)到x轴的距离是3,3>2,所以圆P与x轴的位置关系是相离,故选A.【点睛】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.2.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )A.B.C.D.【答案】A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.3.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.A.1 B.2 C.3 D.4【答案】C【分析】根据△ABC的面积可将高求出,即⊙O上的点到AB的距离为高长的点都符合题意.【详解】过圆心向弦AB作垂线,再连接半径.设△ABE的高为h,由182ABES AB h=⨯⨯=可求2h=.由圆的对称性可知,有两个点符合要求;又弦心距22543-=.∵3+2=5,故将弦心距AB延长与⊙O相交,交点也符合要求,故符合要求的点有3个.故选C.考点:(1)垂径定理;(2)勾股定理.4.下列图案中,是中心对称图形的是( )A.B.C.D.【答案】D【分析】根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.5.将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为()A.12B.14C.16D.18【答案】B【解析】连接AO1,AO2,O1O2,BO1,推出△AO1O2是等边三角形,求得∠AO1B=120°,得到阴影部分的面积=2π3-32,得到空白部分的面积=1π3+32,于是得到结论.【详解】解:连接AO1,AO2,O1O2,BO1,则O1O2垂直平分AB ∴AO1=AO2=O1O2=BO1=1,∴△AO1O2是等边三角形,∴∠AO 1O 2=60°,AB=2AO 1sin60°=212⨯⨯=∴∠AO 1B=120°,∴阴影部分的面积=2×(2120π11136022⨯-⨯=2π3,∴空白部分和阴影部分的面积和=2π-(2π3=4π32π≈14, 故选B .【点睛】 此题考查了几何概率,扇形的面积,三角形的面积,正确的作出辅助线是解题的关键.6.若一个圆锥的底面积为24cm π,圆锥的高为,则该圆锥的侧面展开图中圆心角的度数为( ) A .40︒B .80︒C .120︒D .150︒ 【答案】C【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】解:∵圆锥的底面积为4πcm 2,∴圆锥的底面半径为2cm ,∴底面周长为4π,圆锥的高为cm ,∴由勾股定理得圆锥的母线长为6cm ,设侧面展开图的圆心角是n °,根据题意得:6180n π=4π, 解得:n=1.故选:C .【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.已知1x =是关于x 的一元二次方程20x mx n ++=的解,则m n +等于( )A .1B .-2C .-1D .2【分析】方程的解就是能使方程的左右两边相等的未知数的值,因而把x=-1代入方程就得到一个关于m+n 的方程,就可以求出m+n的值.【详解】将x=1代入方程式得1+m+n=0,解得m+n=-1.故选:C.【点睛】此题考查一元二次方程的解,解题关键在于把求未知系数的问题转化为解方程的问题.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】D【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的左侧可知b>0,再由函数图象交y 轴的负半轴可知c<0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案.【详解】∵二次函数的图象开口向上,对称轴在y轴的左侧,函数图象交于y轴的负半轴∴a>0,b>0,c<0,∴反比例函数y=cx的图象必在二、四象限;一次函数y=ax﹣2b一定经过一三四象限,【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系. 9.Rt ABC ∆中,90C ∠=︒,1AC =,2BC =,sin A 的值为( )A .12B .5C .25D .2【答案】C【分析】根据勾股定理求出斜边AB 的值,在利用余弦的定义直接计算即可.【详解】在Rt △ACB 中,∠C =90°,AC =1,BC =2,∴AB =225AC BC +=,∴sin A =5BC AB ==25, 故选:C .【点睛】本题主要考查锐角三角函数的定义,解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数是定义.10.如图是某体育馆内的颁奖台,其左视图是( )A .B .C .D . 【答案】D【分析】找到从左面看所得到的图形即可.【详解】解:从左边看去是上下两个矩形,下面的比较高.故选D.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的观察方法.11.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( ).A .13B .14C .16D .19【答案】D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【详解】解:如图所示:。

2018初三数学上册期末试卷有答案

2018初三数学上册期末试卷有答案

2018最新初三数学上册期末试卷有答案学校:班级: 姓名: 考生须知1.本试卷共8页,共五道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上认真填写班级、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将本试卷和答题卡一并交回.一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个是符合题意的.1.已知∠A为锐角,且sin A=,那么∠A等于A.15°B.30°C.45°D.60°2.如图是某几何体的三视图,该几何体是A.圆锥B.圆柱C.长方体D.正方体3.如图,点B是反比例函数()在第一象限内图象上的一点,过点B作BA⊥x轴于点A,BC⊥y轴于点C,矩形AOCB的面积为6,则k的值为A.3 B.6 C.-3 D.-64.如图,⊙O是△ABC的外接圆,∠A = ,则∠BOC 的大小为A.40°B.30°C.80°D.100°5.将二次函数用配方法化成的形式,下列结果中正确的是A.B.C.D.6.如图,将ΔABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是(第6 题图)(第7 题图)A.60°B.65°C.70°D.75°7.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是A.25°B.40°C.50°D.65°8.小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是A.两人从起跑线同时出发,同时到达终点.B.小苏跑全程的平均速度大于小林跑全程的平均速度.C. 小苏在跑最后100m的过程中,与小林相遇2次.D.小苏前15s跑过的路程小于小林前15s跑过的路程.二、填空题(共8道小题,每小题2分,共16分)9.请写出一个图象在第二,四象限的反比例函数的表达式.10.如图,在平面直角坐标系xOy中,点A,点B 的坐标分别为(,),(,),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为(,),则点A的对应点的坐标为.(第10题图) 11.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为.12.抛物线经过点A(0,3),B(2,3),抛物线的对称轴为.(第11题图)13.如图,⊙O的半径为3,正六边形ABCDEF内接于⊙O,则劣弧AB的长为.14.如图,在直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AC边上一点,将△BCD沿BD折叠,使点C落在AB边的E点,那么AE的长度是.15.如图,在平面直角坐标系xOy中,△CDE可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△CDE的过程:.16.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为________.(第16题图)三、解答题(共6道小题,每小题5分,共30分)17.计算:.18.二次函数图象上部分点的横坐标x,纵坐标y 的对应值如下表:x ………(1)求这个二次函数的表达式;(2)在图中画出这个二次函数的图象.19.如图,在△ABC中,AB=AC,BD⊥AC于点D.AC=10,cos A= ,求BC的长.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:;(2)若AB=10,CD=8,求BE的长.21.尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.22.某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量某塔的高度,他们先在点用高米的测角仪测得塔顶的仰角为,然后沿方向前行m到达点处,在处测得塔顶的仰角为.请根据他们的测量数据求此塔的高.(结果精确到m,参考数据:,,)四、解答题(共4道小题,每小题6分,共24分)23.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图),你选择的方案是_____(填方案一,方案二,或方案三),则B点坐标是______,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.24.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tanD= ,求AE的长.25.小明根据学习函数的经验,对函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应数值如下表:x …-2-1…y … 4.3 3.2 0 -2.2 -1.4 0 2.8 3.7 4 3.7 2.8 0 -1.4 -2.2 m 3.2 4.3 …其中m= ;(2)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质;(4)进一步探究函数图象发现:①方程有个互不相等的实数根;②有两个点(x1,y1)和(x2,y2)在此函数图象上,当x2 >x1>2时,比较y1和y2的大小关系为:y1 y2 (填“>”、“<”或“=”) ;③若关于x的方程有4个互不相等的实数根,则a 的取值范围是.26.在平面直角坐标系xOy中,抛物线y=mx2-2mx-3 (m≠0)与y轴交于点A,其对称轴与x轴交于点B 顶点为C点.(1)求点A和点B的坐标;(2)若∠ACB=45°,求此抛物线的表达式;(3)在(2)的条件下,垂直于轴的直线与抛物线交于点P(x1,y1)和Q(x2,y2),与直线AB交于点N(x3,y3),若x3<x1<x2,结合函数的图象,直接写出x1+x2+x3的取值范围为.五、解答题(共2道小题,每小题7分,共14分)27.已知,△ABC中,∠ACB=90°,AC=BC,点D 为BC边上的一点.(1)以点C为旋转中心,将△ACD逆时针旋转90°,得到△BCE,请你画出旋转后的图形;(2)延长AD交BE于点F,求证:AF⊥BE;(3)若AC= ,BF=1,连接CF,则CF的长度为.28.对于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为,到y轴的距离为,若,则称为点P的最大距离;若,则称为点P的最大距离.例如:点P(,)到到x轴的距离为4,到y轴的距离为3,因为3 < 4,所以点P的最大距离为.(1)①点A(2,)的最大距离为;②若点B(,)的最大距离为,则的值为;(2)若点C在直线上,且点C的最大距离为,求点C的坐标;(3)若⊙O上存在点M,使点M的最大距离为,直接写出⊙O的半径r的取值范围.昌平区2017-2018学年度第一学期初三年级期末质量抽测数学参考答案及评分标准2018. 1一、选择题(共8道小题,每小题2分,共16分)题号 1 2 3 4 5 6 7 8答案 C A B D C D B D二、填空题(共8道小题,每小题2分,共16分)题号9 10 11 12 13 14答案(答案不唯一)(3,2) 16 直线x=14题号15 16答案将△AOB绕点O顺时针旋转90°,再沿x轴向右平移一个单位(答案不唯一) (作图正确1分.答案正确1分)三、解答题(共6道小题,每小题5分,共30分)17.解:…………………………………………………………4分.…………………………………………………………………5分18.解:(1)由题意可得二次函数的顶点坐标为(,).…………………………………1分设二次函数的解析式为:………………2分把点(0,3)代入得∴…………………………………3分(2)如图所示 (5)分19.解:∵AC=AB,AB=10,∴AC=10.……………………………………………1分在Rt△ABD中∵cos A= = ,∴AD=8,……………………………………………………………………2分∴DC=2.……………………………………………………………………………3分∴.…………………………………………………………4分∴.……………………………………………………5分20.(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD. ……………………1分∴.……………………2分(2)解:连接OC∵直径AB⊥弦CD,CD=8,∴CE=ED=4. ……………………3分∵直径AB =10,∴CO =OB=5.在Rt△COE中……………………4分∴.……………………5分21.(1)如图所示……………………2分(2)解:∵直径AC =4,∴OA =OB=2. ………………………3分∵正方形ABCD为⊙O的内接正方形,∴∠AOB=90°,………………………4分∴……………………5分.22.解:由题意:AB=40,CF=1.5,∠MAC=30°,∠MBC =60°,∵∠MAC=30°,∠MBC =60°,∴∠AMB=30°∴∠AMB=∠MAB∴AB=MB=40.…………………………1分在Rt△ACD中,∵∠MCB=90°,∠MBC =60°,∴∠BMC =30°.∴BC = =20.…………………………2分∴…………………………………3分.,∴MC 34.6.………………………………………………4分∴MF= MC+CF=36.1.…………………………………………………………5分∴塔的高约为36.1米.……………………………………5分解:方案1:(1)点B的坐标为(5,0)……………1分设抛物线的解析式为:……………2分由题意可以得到抛物线的顶点为(0,5),代入解析式可得:∴抛物线的解析式为:……………3分(2)由题意:把代入解得:=3.2……………5分∴水面上涨的高度为3.2m……………6分方案2:(1)点B的坐标为(10,0) (1)分设抛物线的解析式为:……………2分由题意可以得到抛物线的顶点为(5,5),代入解析式可得:∴抛物线的解析式为:……………3分(2)由题意:把代入解得:=3.2……………5分∴水面上涨的高度为3.2m……………6分方案3:(1)点B的坐标为(5, ) (1)分由题意可以得到抛物线的顶点为(0,0)设抛物线的解析式为:……………2分把点B的坐标(5, ),代入解析式可得:∴抛物线的解析式为:……………3分(2)由题意:把代入解得:= ……………5分∴水面上涨的高度为 3.2m……………6分24.(1)证明:连接,∵点C为弧BF的中点,∴弧BC=弧CF.∴.……………1分∵,∴.∴.……………………2分∵AE⊥DE,∴.∴.∴OC⊥DE.∴DE是⊙O的切线.……………………3分(2)解:∵tanD= = ,OC=3,∴CD=4.……………………………4分∴OD= =5.∴AD= OD+ AO=8.……………………………5分∵sinD= = = ,∴AE= .……………………………6分25.(1)m=0,……………1分(2)作图,……………2分(3)图像关于y轴对称, (答案不唯一) ……………3分(4)(5)26.解:(1)∵抛物线y=mx2-2mx-3 (m≠0)与y 轴交于点A,∴点A的坐标为;……………………1分∵抛物线y=mx2-2mx-3 (m≠0)的对称轴为直线,∴点B的坐标为.……………………2分(2)∵∠ACB=45°,∴点C的坐标为,……………………3分把点C代入抛物线y=mx2-2mx-3得出,∴抛物线的解析式为y=x2-2x-3.……………………4分(3)……………………6分27.(1)补全图形……………………2分(2)证明:∵ΔCBE由ΔCAD旋转得到,∴ΔCBE≌ΔCAD,………………3分∴∠CBE=∠CAD,∠BCE=∠ACD=90°,……………4分∴∠CBE+∠E=∠CAD+∠E,∴∠BCE=∠AFE=90°,∴AF⊥BE.……………………………………5分(3)………………………………………………7分28.解:(1)①5………………………1分②………………………3分(2)∵点C的最大距离为5,∴当时,,或者当时,. ………………4分分别把,代入得:当时,,当时,,当时,,当时,,∴点C(,)或(,).………………………5分(3).…………………………………7分。

九年级上期末数学试卷3含答案解析

九年级上期末数学试卷3含答案解析

2018-2019学年江苏省泰州市姜堰市九年级(上)期末数学试卷一、选择题1.sin30°的值为()A.B.C.D.2.下列各组图形一定相似的是()A.两个矩形B.两个等边三角形C.各有一角是80°的两个等腰三角形D.任意两个菱形3.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数4.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠15.如图,将宽为1cm的长方形纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2 B.cm2C.cm2D.cm26.如图,二次函数y=ax2+bx+c(a>0)的图象与直线y=1交点坐标为(1,1),(3,1),则不等式ax2+bx+c﹣1>0的解集为()A.x>1 B.1<x<3 C.x<1或x>3 D.x>3二、填空题:7.抛物线y=2x2﹣4x+1的对称轴为直线.8.100件某种产品中有五件次品,从中任意取一件,恰好抽到次品的概率是.9.将抛物线y=﹣2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为.10.如图,在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=3,BD=4,AE=2,那么AC=.11.已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的母线长为.12.某人沿着坡度i=1:的山坡走了50米,则他离地面的高度上升了米.13.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=10t﹣5t2,则小球运动到的最大高度为米.14.△ABC中,AB=AC=4,BC=5,点D是边AB的中点,点E是边AC的中点,点P是边BC上的动点,∠DPE=∠C,则BP=.15.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB=.16.已知二次函数y=ax2+2x(a<0)的图象与x轴交于A(6,0),顶点为B,C为线段AB上一点,BC=2,D为x轴上一动点.若BD=OC,则D的坐标为.三、解答题:(共102分)17.(10分)(1)计算:2﹣1+|﹣2|+tan60°(2)解方程:(x+1)(x﹣3)=﹣1.18.(8分)某班召开主题班会,准备从由2名男生和2名女生组成的班委会中选择2人担任主持人.(1)用树状图或表格列出所有等可能结果;(2)求所选主持人恰好为1名男生和1名女生的概率.19.(8分)甲进行了10次射击训练,平均成绩为9环,且前9次的成绩(单位:环)依次为:8,10,9,10,7,9,10,8,10.(1)求甲第10次的射击成绩;(2)求甲这10次射击成绩的方差;(3)乙在相同情况下也进行了10次射击训练,平均成绩为9环,方差为1.6环2,请问甲和乙哪个的射击成绩更稳定?20.(10分)如图,△ABC中,∠C=90°,tanB=,AC=2,D为AB中点,DE垂直AB交BC于E.(1)求AB的长度;(2)求BE的长度.21.(10分)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).22.(10分)如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.(1)求此二次函数的关系式;=S△ABC,求P (2)P为二次函数y=ax2+bx+c在x轴下方的图象上一点,且S△ABP点的坐标.23.(10分)如图,四边形OABC为平行四边形,B、C在⊙O上,A在⊙O外,sin∠OCB=.(1)求证:AB与⊙O相切;(2)若BC=10cm,求⊙O的半径长及图中阴影部分的面积.24.(10分)如图,在菱形ABCD中,AB=4,对角线AC、BD交于O点,E为AD延长线上一点,DE=2,直线OE分别交AB、CD于G、F.(1)求证:DF=BG;(2)求DF的长;(3)若∠ABC=60°,求tan∠AEO.25.(12分)如图,在矩形ABCD中,AB=1,BC=2,点E是AD边上一动点(不与点A,D重合),过A、E、C三点的⊙O交AB延长线于点F,连接CE、CF.(1)求证:△DEC∽△BFC;(2)设DE的长为x,△AEF的面积为y.①求y关于x的函数关系式,并求出当x为何值时,y有最大值;②连接AC,若△ACF为等腰三角形,求x的值.26.(14分)已知二次函数y=mx2﹣nx+n﹣2(n>0,m≠0)的图象经过A(2,0).(1)用含n的代数式表示m;(2)求证:二次函数y=mx2﹣nx+n﹣2的图象与x轴始终有2个交点;(3)设二次函数y=mx2﹣nx+n﹣2的图象与x轴的另一个交点为B(t,0).①当n取n1,n2时,t 分别为t1,t2,若n1<n2,试判断t1,t2的大小关系,并说明理由.②若t为整数,求整数n的值.2016-2017学年江苏省泰州市姜堰市九年级(上)期末数学试卷参考答案与试题解析一、选择题1.sin30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:sin30°=,故选:A.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.下列各组图形一定相似的是()A.两个矩形B.两个等边三角形C.各有一角是80°的两个等腰三角形D.任意两个菱形【考点】相似图形.【分析】根据相似图形的概念进行判断即可.【解答】解:两个矩形对应边的比不一定相等,故不一定相似;两个等边三角形相似对应边的比相等,对应角相等,一定相似;各有一角是80°的两个等腰三角形对应角不一定相等,故不一定相似;任意两个菱形对应角不一定相等,故不一定相似;故选:B.【点评】本题考查的是相似图形的概念,掌握对应角相等,对应边的比相等的多边形,叫做相似多边形是解题的关键.3.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数【考点】统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选D.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.4.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠1【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且△=22﹣4(m ﹣1)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)>0,解得m<2且m≠1.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.5.如图,将宽为1cm的长方形纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为()A.cm2 B.cm2C.cm2D.cm2【考点】翻折变换(折叠问题);矩形的性质.【分析】如图,作CH⊥AB于H.首先证明AC﹣=AB,△ACH是等腰直角三角形,求出AB、CH即可解决问题.【解答】解:如图,作CH⊥AB于H.∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AC=AB,∵∠CAB=45°,∠AHC=90°,∴∠CAH=∠HCA=45°,∴AH=CH=1,AC=AB=,=•AB•CH=,∴S△ABC故选D.【点评】本题考查翻折变换、矩形性质、三角形的面积公式等知识,熟知图形翻折不变性的性质是解答此题的关键,本题的突破点是证明AC=AB=,属于中考常考题型.6.如图,二次函数y=ax2+bx+c(a>0)的图象与直线y=1交点坐标为(1,1),(3,1),则不等式ax2+bx+c﹣1>0的解集为()A.x>1 B.1<x<3 C.x<1或x>3 D.x>3【考点】二次函数与不等式(组).【分析】根据二次函数y=ax2+bx+c(a>0)的图象与直线y=1交点坐标即可得到不等式ax2+bx+c﹣1>0的解集.【解答】解:根据图象得二次函数y=ax2+bx+c(a>0)的图象与直线y=1交点坐标为(1,1),(3,1),而ax2+bx+c﹣1>0,即y>1,故x<1或x>3.故选:C.【点评】此题主要考查了二次函数与一元二次不等式之间的联系:根据当y>1时,利用图象得出不等式解集是解题关键.二、填空题:7.抛物线y=2x2﹣4x+1的对称轴为直线x=1.【考点】二次函数的性质.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).8.100件某种产品中有五件次品,从中任意取一件,恰好抽到次品的概率是.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:100件某种产品中有五件次品,从中任意取一件,恰好抽到次品的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.将抛物线y=﹣2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为y=﹣2(x﹣1)2+2.【考点】二次函数图象与几何变换.【分析】直接根据平移规律作答即可.【解答】解:将抛物线y=﹣2x2+1向右平移1个单位长度,再向上平移1个单位长度后所得抛物线解析式为y=﹣2(x﹣1)2+2.故答案为:y=﹣2(x﹣1)2+2.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.10.如图,在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=3,BD=4,AE=2,那么AC=.【考点】平行线分线段成比例.【分析】由平行可得到=,代入可求得EC,再利用线段的和可求得AC.【解答】解:∵DE∥BC,∴=,即=,解得EC=,∴AC=AE+EC=2+=,故答案为:.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.11.已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的母线长为5.【考点】圆锥的计算.【分析】这个圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后解方程即可.【解答】解:这个圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5.故答案为5.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.某人沿着坡度i=1:的山坡走了50米,则他离地面的高度上升了25米.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意可以设出某人沿着坡度i=1:的山坡走了50米时的竖直高度,然后根据勾股定理即可解答本题.【解答】解:设某人沿着坡度i=1:的山坡走了50米时的竖直高度为x米,则此时走的水平距离为米,由勾股定理可得,,解得,x1=﹣25(舍去),x2=25,故答案为:25.【点评】本题考查解直角三角形的应用﹣坡度坡角问题、勾股定理,明确坡度的含义是解答此类题目的关键.13.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=10t﹣5t2,则小球运动到的最大高度为5米.【考点】二次函数的应用.【分析】把抛物线解析式化成顶点式,即可解答.【解答】解:∵h=10t﹣5t2=﹣5(t﹣1)2+5,又∵﹣5<0,∴t=1时,h有最大值,最大值为5,故答案为5.【点评】本题主要考查二次函数的应用,借助二次函数解决实际问题,解题的关键是正确的建立二次函数模型.14.△ABC中,AB=AC=4,BC=5,点D是边AB的中点,点E是边AC的中点,点P是边BC上的动点,∠DPE=∠C,则BP=1或4.【考点】相似三角形的判定与性质;等腰三角形的性质.【分析】根据等腰三角形的性质得到BD=2,CE=2,∠B=∠C,根据相似三角形的性质即可得到结论.【解答】解:∵AB=AC=4,点D是边AB的中点,点E是边AC的中点,∴BD=2,CE=2,∠B=∠C,∵∠DPE=∠C,∴∠BPD=180°﹣∠B﹣∠DPE,∠CEP=180°﹣∠EPC﹣∠C,∴∠DPB=∠PEC,∴△BPD∽△CPE,∴,即,∴PB=1或4,故答案为:1或4.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.15.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB=30°.【考点】圆内接四边形的性质;平行四边形的性质.【分析】根据圆内接三角形的性质得到∠ADC+∠ABC=180°,根据平行四边形的性质的∠AOC=∠ABC,根据圆周角定理得到∠ADC=∠AOC,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠ADC+∠ABC=180°,∵四边形ABCO为平行四边形,∴∠AOC=∠ABC,由圆周角定理得,∠ADC=∠AOC,∴∠ADC+2∠ADC=180°,∴∠ADC=60°,∵OA=OC,∴平行四边形ABCO为菱形,∴BA=BC,∴∠ADB=∠ADB=30°,故答案为:30°.【点评】本题考查的是圆内接三角形的性质、平行四边形的性质、菱形的判定,掌握相关的性质定理和判定定理是解题的关键.16.已知二次函数y=ax2+2x(a<0)的图象与x轴交于A(6,0),顶点为B,C为线段AB上一点,BC=2,D为x轴上一动点.若BD=OC,则D的坐标为D (2,0)或(4,0).【考点】抛物线与x轴的交点.【分析】把A(6,0)代入y=ax2+2x得0=62a+2×6,得到y=﹣x2+2x,根据抛物线的顶点坐标公式得到B(3,3),根据两点间的距离公式得到AB==6,过B作BE⊥OA于E,CF⊥OA与F,根据相似三角形的性质得到AF=2,CF=2,根据两点间的距离公式得到OC==2,根据BD=OC,列方程即可得到结论.【解答】解:把A(6,0)代入y=ax2+2x得0=62a+2×6,∴a=﹣,∴y=﹣x2+2x,∵顶点为B,∴B(3,3),∴AB==6,∵BC=2,过B作BE⊥OA于E,CF⊥OA与F,∴CF∥BE,∴△ACF∽△ABE,∴==,∴AF=2,CF=2,∴OF=4,∴OC==2,∵BD=OC,∴BD=2,设D(x,0),∴BD==2,∴x1=2,x2=4,∴D(2,0)或(4,0).故答案为:D(2,0)或(4,0).【点评】本题考查了抛物线与x轴的交点,相似三角形的判定和性质,勾股定理,待定系数法求函数的解析式,正确的作出辅助线是解题的关键.三、解答题:(共102分)17.(10分)(2016秋•泰州期末)(1)计算:2﹣1+|﹣2|+tan60°(2)解方程:(x+1)(x﹣3)=﹣1.【考点】实数的运算;负整数指数幂;解一元二次方程-配方法;特殊角的三角函数值.【分析】(1)原式利用负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;(2)方程整理后,利用配方法求出解即可.【解答】解:(1)原式=+2﹣+=;(2)整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+,x2=1﹣.【点评】此题考查了实数的运算,以及解一元二次方程﹣配方法,熟练掌握运算法则是解本题的关键.18.某班召开主题班会,准备从由2名男生和2名女生组成的班委会中选择2人担任主持人.(1)用树状图或表格列出所有等可能结果;(2)求所选主持人恰好为1名男生和1名女生的概率.【考点】列表法与树状图法.【分析】(1)根据题意可直接先画出列表或树状图;(2)根据图可判断12种结果中有8种结果可以使该事件发生,即可得概率.【解答】解:(1)画树状图如下:==.(2)由(1)知P(恰好为1名男生和1名女生)【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.甲进行了10次射击训练,平均成绩为9环,且前9次的成绩(单位:环)依次为:8,10,9,10,7,9,10,8,10.(1)求甲第10次的射击成绩;(2)求甲这10次射击成绩的方差;(3)乙在相同情况下也进行了10次射击训练,平均成绩为9环,方差为1.6环2,请问甲和乙哪个的射击成绩更稳定?【考点】方差.【分析】(1)用甲射击的总环数减去前9次射击的总环数可得;(2)根据方差的计算公式可得;(3)根据方差的意义可得答案.【解答】解:(1)根据题意,甲第10次的射击成绩为9×10﹣(8+10+9+10+7+9+10+8+10)=9;(2)甲这10次射击成绩的方差为×[4×(10﹣9)2+3×(9﹣9)2+2×(8﹣9)2+(7﹣9)2]=1;(3)∵平均成绩相等,而甲的方差小于乙的方差,∴乙的射击成绩更稳定.【点评】本题主要考查方差,熟练掌握方差的计算公式和方差的意义是解题的关键.20.(10分)(2016秋•泰州期末)如图,△ABC中,∠C=90°,tanB=,AC=2,D为AB中点,DE垂直AB交BC于E.(1)求AB的长度;(2)求BE的长度.【考点】解直角三角形.【分析】(1)首先利用正切函数的定义求得另一直角边BC的长,然后利用勾股定理即可求得AB的长;(2)首先求得BD的长,然后求得DE的长,利用勾股定理即可求得BE的长.【解答】解:(1)∵∠C=90°,tanB=,AC=2,∴BC=2AC=4,∴AB===2;(2)∵D为AB中点,∴BD=AB=,∵DE垂直AB交BC于E,tanB=,∴DE=BD=,∴BE===.【点评】本题考查了解直角三角形及勾股定理的知识,解题的关键是从题目中整理出直角三角形并选择合适的边角关系求得相关线段的长,难度不大,属于中等题目.21.(10分)(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.【解答】解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.【点评】考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.22.(10分)(2016秋•泰州期末)如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.(1)求此二次函数的关系式;=S△ABC,求P (2)P为二次函数y=ax2+bx+c在x轴下方的图象上一点,且S△ABP点的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)将B、C的坐标和对称轴方程代入抛物线的解析式中,即可求得待定系数的值,可得此二次函数的关系式;(2)根据等底等高的三角形的面积相等,可得P的纵坐标与C的纵坐标互为相反数,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)根据题意,得,解得.故二次函数的表达式为y=﹣x2+2x+3.=S△ABC,得(2)由S△ABPy P+y C=0,得y P=﹣3,当y=﹣3时,﹣x2+2x+3=﹣3,解得x1=1﹣,x2=1+.故P点的坐标为(1﹣,﹣3)或(1+,﹣3).【点评】本题考查了二次函数综合题,(1)利用待定系数法求函数解析式;(2)利用等底等高的三角形的面积相等得出P的纵坐标与C的纵坐标互为相反数是解题关键.23.(10分)(2016秋•泰州期末)如图,四边形OABC为平行四边形,B、C在⊙O上,A在⊙O外,sin∠OCB=.(1)求证:AB 与⊙O 相切;(2)若BC=10cm ,求⊙O 的半径长及图中阴影部分的面积.【考点】切线的判定;平行四边形的性质;扇形面积的计算;解直角三角形.【分析】(1)由特殊三角函数值sin ∠OCB=,求得∠OCB=45°,根据同圆的半径相等得:OB=OC ,利用等边对等角得:∠OCB=∠OBC=45°,所以∠BOC=90°,最后由平行四边形的对边平行和平行线性质得:∠BOC=∠ABO=90°,AB 与⊙O 相切;(2)根据勾股定理求⊙O 的半径长,再利用差求阴影部分的面积.【解答】(1)证明:连接OB ,∵sin ∠OCB=, ∴∠OCB=45°,∵OB=OC ,∴∠OCB=∠OBC=45°,∴∠BOC=90°,∵四边形OABC 是平行四边形,∴AB ∥OC ,∴∠BOC=∠ABO=90°,∵B 在⊙O 上,∴AB 与⊙O 相切;解:(2)设⊙O 的半径为r ,则OB=OC=r ,在Rt △OBC 中,r 2+r 2=102,∴r=5,∴S 阴影部分=S 扇形OBC ﹣S △OBC =﹣×=π﹣25,答:⊙O 的半径长5,阴影部分的面积为.【点评】本题考查了切线的判定、平行四边形的性质、三角函数值、扇形的面积;明确两种证明切线的方法:①无交点,作垂线段,证半径;②有交点,作半径,证垂线;熟记扇形的面积公式,并掌握特殊的三角函数值.24.(10分)(2016秋•泰州期末)如图,在菱形ABCD 中,AB=4,对角线AC 、BD 交于O 点,E 为AD 延长线上一点,DE=2,直线OE 分别交AB 、CD 于G 、F .(1)求证:DF=BG ;(2)求DF 的长;(3)若∠ABC=60°,求tan ∠AEO .【考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.【分析】(1)根据菱形的性质得出OD=OB ,再由平行线的性质得出∠OBG=∠ODF ,故可得出△BGO ≌△DFO ,进而可得出结论;(2)过点O 作OK ∥AD ,由三角形中位线定理得出OK 的长,再判定出△DEF ∽△KOF ,利用相似三角形的对应边成比例即可得出结论;(3)过点O 作OH ⊥AD 于点H ,根据菱形的性质得出∠ADO=30°,∠OAH=60°,设OH=x ,则DH=x ,AH=x ,再由AD=4可得出x 的值,进而得出结论.【解答】(1)证明:∵四边形ABCD 是菱形,∴OB=OD ,AB ∥CD ,∴∠OBG=∠ODF .在△BGO 与△DFO 中,∵,∴△BGO ≌△DFO (ASA ),∴DF=BG ;(2)解:过点O 作OK ∥AD ,∵点O 是对角线AC 、BD 交点,∴点O 是线段AC 的中点,∴OK 是△ACD 的中线,∴OK=AD=2,DK=CD=2.∵AD ∥OK ,∴△DEF ∽△KOF ,∴=,即=,解得DF=1.(3)解:过点O 作OH ⊥AD 于点H ,∵∠ABC=60°,∴∠ADO=30°,∠OAH=60°,设OH=x ,则DH=x ,AH=x .∵AD=4,∴x +x=4,解得x=,∴HD=3,OH=,∴HE=HD +DE=3+2=5,∴tan ∠AEO==.【点评】本题考查的是相似三角形的判定与性质、全等三角形的判定与性质、菱形的性质及锐角三角函数的定义等知识,涉及面较广,难度较大.25.(12分)(2016秋•泰州期末)如图,在矩形ABCD中,AB=1,BC=2,点E 是AD边上一动点(不与点A,D重合),过A、E、C三点的⊙O交AB延长线于点F,连接CE、CF.(1)求证:△DEC∽△BFC;(2)设DE的长为x,△AEF的面积为y.①求y关于x的函数关系式,并求出当x为何值时,y有最大值;②连接AC,若△ACF为等腰三角形,求x的值.【考点】圆的综合题.【分析】(1)如图1中,连接EF.首先证明EF是⊙O直径,推出∠ECF=90°,由∠DCB=∠ECF,推出∠DCE=∠BCF,由∠D=∠CBF,即可证明△DEC∽△BFC.(2)①由△DEC∽△BFC,得=,求出BF,构建二次函数,利用二次函数的性质即可解决问题.②分三种情形讨论即可解决问题.a、当AC=AF=时.b、当CA=CF时,易知AB=BF=1,c、当FC=FA时,则有(2x)2+22=(1+2x)2.【解答】(1)证明:如图1中,连接EF.∵四边形ABCD是矩形,∴AB=CD=1,AD=BC=2,∠A=∠D=∠DCB=∠ABC=∠CBF=90°,∴EF是⊙O直径,∴∠ECF=90°,∴∠DCB=∠ECF,∴∠DCE=∠BCF,∵∠D=∠CBF,∴△DEC∽△BFC.(2)①∵△DEC∽△BFC,∴=,∴=,∴BF=2x,AF=1+2x,∴y=•AE•AF=(2﹣x)(1+2x)=﹣x2+x+1=﹣(x﹣)2+,∵﹣1<0,∴当x=时,y有最大值.②如图2中,a、当AC=AF=时,∵BF=2x=﹣1,∴x=.b、当CA=CF时,易知AB=BF=1,∴2x=1,∴x=.c、当FC=FA时,则有(2x)2+22=(1+2x)2,解得x=,综上所述,△ACF为等腰三角形,x的值为或或.【点评】本题考查圆综合题、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,学会用分类讨论的思想思考问题,属于中考压轴题.26.(14分)(2016秋•泰州期末)已知二次函数y=mx2﹣nx+n﹣2(n>0,m ≠0)的图象经过A(2,0).(1)用含n的代数式表示m;(2)求证:二次函数y=mx2﹣nx+n﹣2的图象与x轴始终有2个交点;(3)设二次函数y=mx2﹣nx+n﹣2的图象与x轴的另一个交点为B(t,0).①当n取n1,n2时,t 分别为t1,t2,若n1<n2,试判断t1,t2的大小关系,并说明理由.②若t为整数,求整数n的值.【考点】抛物线与x轴的交点;二次函数的图象.【分析】(1)把A(2,0)代入y=mx2﹣nx+n﹣2,即可用含n的代数式表示m;(2)只需证明△=(﹣n)2﹣4m(n﹣2)>0即可;(3)①根据题意用含n的代数式表示t,可得t1﹣t2=﹣=,依此可得t1﹣t2<0,从而求解;②t==2﹣,因为t为整数且n>0,可得n+2>2,得到n+2=4或n+2=8,解方程即可求解.【解答】解:(1)把A(2,0)代入y=mx2﹣nx+n﹣2,得4m﹣2n+n﹣2=0,m=;(2)∵△=(﹣n)2﹣4m(n﹣2)=n2﹣4××(n﹣2)=n2﹣n2+4=4>0,∴二次函数y=mx2﹣nx+n﹣2的图象与x轴始终有2个交点;(3)①依题意可知t=;所以t1﹣t2=﹣=,因为n1<n2,所以n1﹣n2<0,又因为n>0,所以n1+2>0,n2+2>0,所以t1﹣t2<0,所以t1<t2;②t==2﹣,因为t为整数且n>0,所以n+2>2,所以n+2=4或n+2=8所以n=2或n=6.【点评】本题考查了抛物线与x轴的交点.解答本题的关键是根据根的判别式△>0证明抛物线与x轴有两个交点.。

2018-2019学年上学期期末考试 九年级数学试题(含答案)

2018-2019学年上学期期末考试 九年级数学试题(含答案)

2018-2019学年上学期期末考试九年级数学试题(含答案)2018-201年第一学期期末考试九年级数学注意事项:1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名,再用2B铅笔把对应的卡号的标号涂黑。

2.选择题和判断题的每小题选出答案后,用2B铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号,不能答在试卷上。

3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔和签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡,题目指定区域内的相应位置上改动,原来的答案也不能超出指定的区域,不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效。

4.考生可以使用计算器,必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分选择题(共30分)一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的。

)1.下列图形是中心对称而不是轴对称的图形是( )。

2.下列事件是必然事件的是()。

A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x²-x=0必有实数根3.对于二次函数y=(x-1)²+2的图像,下列说法正确的是()。

A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点4.若函数的图像y=x经过点(2,3),则该函数的图像一定不经过()。

A.(1,6)B.(-1,6)C.(2,-3)D.(3,-2)5.Rt ABC中,∠C=90º,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是( )。

A.相切B.相交C.相离D.无法确定6.下列一元二次方程中,两个实数根之和为1的是()。

A.x²+x+2=0B.x²+x-2=0C.x²-x+2=0D.x²-x-2=07.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()。

2018-2019学年苏科版九年级上期末考试数学试卷(含答案)

2018-2019学年苏科版九年级上期末考试数学试卷(含答案)

九年级(上)数学期末模拟试卷 2018-2019学年上学期期末考试九年级数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)已知(m-1)x2-3x+1=0是关于x的一元二次方程,则实数m的取值范围是.2.(2分)8与2的比例中项是.3.(2分)若一组数据7,3,5,x,2,9的众数为7,则这组数据的中位数是.4.(2分)若一个圆锥的底面半径长是10cm,母线长是18cm,则这个圆锥的侧面积= (结果保留π).5.(2分)如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC= .6.(2分)如图,⊙O的内接四边形ABCD中,AB=BC,∠D=72°,则∠BAC= °.7.(2分)已知二次函数y=x2+2x+3+b的图象与x轴只有一个公共点,则实数b= .8.(2分)抛掷一枚质地均匀的骰子1次,朝上一面的点数不大于2的概率= .9.(2分)已知,那么= .10.(2分)如图是二次函数y=ax2+bx+c(a<0)的图象的一部分,过点(-3,0),对称轴是过点(-1,0)且平行于y轴的直线,点A(-)、B()在图象上.下列说法:①ac>0;②2a-b=0;③4a-2b+c<0;④y1>y2中,正确的是.(填序号)11.(2分)图中的每个点(包括△ABC的各个顶点)都在边长为1的小正方形的顶点上,在P、Q、G、H中找一个点,使它与点D、E构成的三角形与△ABC相似,这个点可以是.(写出满足条件的所有的点)12.(2分)对于二次函数y=ax2-3x-4(a>0),若自变量x分别取两个不同的值x1,x2时,所对应的函数值y相等,则当x取x1+x2时,所对应的y的值是.二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,恰有一项符合题目要求.)。

最新江苏省2018-2019年九年级上期末数学试卷及答案

最新江苏省2018-2019年九年级上期末数学试卷及答案

九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=22.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是()A.3个B.4个C.10个D.16个3.下列说法错误的是()A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.抛物线y=ax2(a≠0)中,a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点4.下列命题中,是真命题的为()A.锐角三角形都相似 B.直角三角形都相似C.等腰三角形都相似 D.等边三角形都相似5.某公司10月份的利润为320万元,要使12月份的利润达到500万元,则平均每月增长的百分率是()A.30% B.25% C.20% D.15%6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.B.C.D.7.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°8.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切9.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x 的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=510.如图,AC是矩形ABCD的对角线,E是边BC延长线上一点,AE与CD相交于F,则图中的相似三角形共有()A.2对B.3对C.4对D.5对11.将△ACE绕点C旋转一定的角度后使点A落在点B处,点E在落在点D处,且B、C、E在同一直线上,AC、BD交于点F,CD、AE交于点G,AE、BD交于点H,连接AB、DE.则下列结论错误的是()A.∠DHE=∠ACB B.△ABH∽△GDH C.DHG∽△ECG D.△ABC∽△DEC 12.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论①a+b>0;②若点A(﹣3,y1),点B(﹣3,y2)都在抛物线上,则y1<y2;③a(m﹣1)+b=0;④若c≤﹣1,则b2﹣4ac ≤4a.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)13.二次函数y=x2+1的最小值是.14.已知正六边形的半径是2,则这个正六边形的边长是.15.如图,点D是等边△ABC内的一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,那么旋转了度.16.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为.17.如图,点M、N分别是等边三角形ABC中AB,AC边上的点,点A关于MN的对称点落在BC边上的点D处.若=,则的值.18.定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.可以证明四边形BCEF为矩形.(Ⅰ)在图①中,的值为;(Ⅱ)已知四边形BCEF为矩形,仿照上述操作,得到四边形BCMN,如图②,可以证明四边形BCMN为矩形,则n的值是.三、解答题(共7小题,满分66分)19.已知y是x的反比例函数,并且当x=2时,y=6(1)求y关于x的解析式;(2)当x=4时,y的值为该函数的图象位于第象限在图象的每一支上,y随x 的增大而.20.(1)解方程:x2﹣2x+1=25(2)利用判别式判断方程3x2+10=2x2+8x的根的情况.21.已知,AG是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AG交⊙O于点C,连接AO并延长交BC于点M(Ⅰ)如图1,若BC=10,求BM的长;(Ⅱ)如图2,连接AC,过点C作CD∥AB∠AG于点D,AM的延长线交过点C的直线于点P,且∠BCP=∠ACD.求证:PC是⊙O的切线.22.如图,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,连接AC、BD、AD、BC交于点Q.(1)若∠DAB=40°,求∠CAD的大小;(2)若CA=10,CB=16,求CQ的长.23.如图所示,一拱桥的截面呈抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,拱桥与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m景观灯.(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.24.已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F (1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.25.已知抛物线y=x2+x﹣2(1)求抛物线与x轴的交点坐标;(2)将抛物线y=x2+x﹣2沿y轴向上平移,平移后与直线y=x+2的一个交点为点P,与y 轴相交于点Q,当PQ∥x轴时,求抛物线平移了几个单位;(3)将抛物线y=x2+x﹣2在x轴下方的部分沿x轴翻折到x轴上方,图象的起步部分保持不变,翻折后的图象与原图象在x轴上方的部分组成一个“W”形状的新图象,若直线y=x+b 与该新图象恰好有三个公共点,求b的值.2015-2016学年天津市和平区九年级(上)期末数学试卷参考答案一、选择题(共12小题,每小题3分,满分36分)1.D ;2.D ;3.C ;4.D ;5.B ;6.C ;7.C ;8.A ;9.D ;10.C ;11.B ;12.B ;二、填空题(共6小题,每小题3分,满分18分)13.1;14.2;15.60;16.;17.;18.;3;三、解答题(共7小题,满分66分)19.一;减小;20.(1)(x-1)2=25 ;开平方x-1=±5;x=6或x=-4。

区2018届九年级上学期期末考试数学试题(附答案)

区2018届九年级上学期期末考试数学试题(附答案)

2017—2018学年度上学期期末学业水平质量调研试题九年级数学 2018.1(时间:120分钟 总分120分) 一、选择题(本大题共14小题,每小题只有一个正确选项,每小题3分,共42分) 1.下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .平行四边形 C .正五边形 D .圆2. 若1220x x c +=-的一个根,则c 的值为( )A .﹣2B .2C .3D .13.在平面直角坐标系中,将抛物线23y x =先向右平移1个单位,再向上平移2个单 位,得到的抛物线的解析式是( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2y x =-- 4.对于二次函数2144y x x =-+-,下列说法正确的是( ) A .当x >0时,y 随x 的增大而增大 B .当x =2时,y 有最大值-3 C .图象的顶点坐标为(-2,-7) D .图象与x 轴有两个交点 5. 已知反比例函数7y x=-图象上三个点的坐标是A 1(2,)y -、B 2(1,)y -、C 3(2,)y , 能正确反映1y 、2y 、3y 的大小关系的是( )A.213y y y >>B. 132y y y >>C. 123y y y >>D. 231y y y >> 6.如图,点A 、C 、B 在⊙O 上,已知∠AOB =∠ACB =a ,则a 的值为( ) A .135° B .120° C .110° D .100°7.如图,AB 是⊙O 的直径,CD ⊥AB ,∠ABD =60°,CD =S 阴影=( ) A .23π B .π C .2π D .4π8. 定义[]x 表示不超过实数x 的最大整数,如[1.8]1=, 1.42[]-=-,[33]-=-.函数[]y x =的图象如图,则方程[]212x x =的解为( )A .0B .0或2C .1或D 9.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是 OA 、OB 、OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:610.临沂高铁即将开通,这将极大方便市民的出行.如图,在距离铁轨200米处的B 处,观察由东向西的动车,当动车车头在A 处时,恰好位于B 处的北偏东60°方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A.1) B.1) C. 200 D .30011.标枪飞行的路线是一条抛物线,不考虑空气阻力,标枪距离地面的高度h (单位: m )与标枪被掷出后经过的时间t (单位:s )之间的关系如下表:下列结论:①标枪距离地面的最大高度大于20m ;②标枪飞行路线的对称轴是直线t =92;③标枪被掷出9s 时落地;④标枪被掷出1.5s 时,距离地面的高度是11m ,其中正确结论的个数是( )A .1B .2 C .3 D .4 12.如图,已知双曲线ky x=(k < 0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB相交于点C .若点A 的坐标为(-6,4),则△AOC 的面积为( ) A. 12 B. 9 C. 6 D. 413.如图,点P 在等边△ABC 的内部,且PC =6,PA =8,PB =10,将线段PC 绕点C 顺时 针旋转60°得到P'C ,连接AP',则cos ∠PAP'的值为等于( ) A .45 B .35 C .34 D .214.如图,等边△ABC 的边长为4,点P 为BC 边上的任意一点(不与点B 、C 重合), 且∠APD =60°,PD 交AB 于点D .设BP=x ,BD =y ,则y 关于x 的函数图象是( )二、填空题(本大题共1大题,5小题,每小题3分,共15分) 15.(1)计算:4560)cos tan -= .(2)如图,小明、小丽之间的距离为2.7m ,他们在同一盏路灯下的影长分别为 1.8m 、1.5m ,已知小明、小丽的身高分别为1.8m 、1.5m ,则路灯的高为 m . (3)如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为 .(4)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在 格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .(5)如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴 为直线x =﹣1,给出以下结论:①abc <0,②24b ac ->0,③4b +c <0,④若 B 15(,)2y -、C 21(,)2y -为函数图象上的两点,则12y y >,⑤当31x -≤≤时, 0y ≥.其中正确的结论是(填写代表正确结论的序号) .三、解答题(本大题共6小题,共63分)A16.(本小题10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x ,面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设计费能达到24000元吗?如果能请求出此时的边长x ,如果不能请说明理由; (3)当x 是多少米时,设计费最多?最多是多少元?17. (本小题10分)如图,在平面直角坐标系中,反比例函数my x=和一次函数 (2)y k x =-的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式及B 点坐标;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.18. (本小题10分)已知△ABC 内接于以AB 为直径的⊙O ,过点C 作⊙O 的切线交BA 的延长线于点D ,且DA :AB =1:2. (1)求∠CDB 的度数;(2)在切线DC 上截取CE =CD ,连接EB ,判断直线EB 与⊙O 的位置关系,并证明.19. (本小题10分)如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角∠EOA =30°,在OB 的位置时俯角∠FOB =60°,若OC ⊥EF ,点A 比点B 高7cm .(1)求单摆的长度;(2)求从点A 摆动到点B 经过的路径长.20. (本小题11分)如图①,△ABC 是等腰直角三角形,∠BAC =90°,AB=AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD=CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转α(090)α<<时,如图②,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由;(2)当△ABC 绕点A 逆时针旋转45°时,如图③,延长DB 交CF 于点H ; (ⅰ)求证:BD ⊥CF ;(ⅱ)当AB =2,AD=DH 的长.21. (本小题12分)如图,直线3y x =-+与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式;(2)连接AC ,在x 轴上是否存在点Q ,使以P 、B 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.2017—2018学年度上学期期末学业水平质量调研试题九年级数学参考答案 2018.01说明:本答案仅供参考,阅卷时以小组统一答案为准一、选择题(本大题共14小题,每小题3分,共42分)二、填空题(本大题共5小题,每小题3分,共15分)15(1)2-(2)3 (3)(4)3 (5)②③⑤ 三、解答题(本大题共6小题,共63分) 16. (本小题满分10分)(1)∵矩形的一边为x 米,周长为16米, ∴另一边长为(8﹣x )米,∴S =x (8﹣x )=28x x -+,其中0<x <8,即28S x x =-+(0<x <8);………………………………3分 (2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米), 即28x x -+=12, 解得:x =2或x =6,∴设计费能达到24000元.………………………………6分 (3)∵28S x x =-+=2(4)16x --+, ∴当x =4时,S 最大值=16,∴当x =4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.………………………………10分 17.(本小题共10分)(1)、∵点A (3,2)在反比例函数my x=,和一次函数y=k (x ﹣2)上; ∴2=3m ,2=k (3﹣2),解得m =6,k =2;∴反比例函数解析式为6y x=,一次函数解析式为24y x =-;………2分]∵点B 是一次函数与反比例函数的另一个交点,∴6x=2x ﹣4,解得x 1=3,x 2=﹣1; ∴B 点的坐标为(﹣1,-6);……………4分 (2)∵点M 是一次函数y=2x ﹣4与y 轴的交点, ∴点M 的坐标为(0,﹣4), 设C 点的坐标为(0,y c ),由题意知12×3×|y c ﹣(﹣4)|+12×1×|y c ﹣(﹣4)|=10,……………6分 解得|y c +4|=5,………………8分 当y c +4≥0时,y c +4=5,解得y c =1, 当y c +4≤0时,y c +4=﹣5,解得y c =﹣9,∴点C 的坐标为(0,1)或(0,﹣9).………………………………10分 18. (本小题满分10分)(1)如图,连接OC ,∵CD 是⊙O 的切线, ∴∠OCD=90°.设⊙O 的半径为R ,则AB=2R , ∵DA :AB=1:2,∴DA=R ,DO=2R .∴A 为DO 的中点,∴AC=12DO=R,∴AC=CO=AO,∴三角形ACO 为等边三角形 ∴∠COD=60°,即∠CDB=30°.………………………………4分 (2)直线EB 与⊙O 相切.………………………………5分 证明:连接OC ,由(1)可知∠CDO=30°,∴∠COD=60°.∵OC=OB ,∴∠OBC=∠OCB=30°.∴∠CBD=∠CDB .∴CD=CB . ∵CD 是⊙O 的切线,∴∠OCE=90°.∴∠ECB=60°.又∵CD=CE ,∴CB=CE .∴△CBE 为等边三角形.∴∠EBA=∠EBC+∠CBD=90°. ∴EB 是⊙O 的切线.………………………………10分 19. (本小题满分10分)解:(1)如图,过点A 作AP ⊥OC 于点P ,过点B 作BQ ⊥OC 于点Q , ∵∠EOA=30°、∠FOB=60°,且OC ⊥EF ,∴∠AOP=60°、∠BOQ=30°, 设OA=OB=x ,则在Rt △AOP 中,OP=OAcos ∠AOP=x ,在Rt △BOQ 中,OQ=OBcos ∠BOQ=x ,由PQ=OQ ﹣OP 可得x ﹣x=7,解得:x=(7+7)cm ,答:单摆的长度约为(7+7)cm ;………………6分(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB=7+7,∴∠AOB=90°,则从点A 摆动到点B 经过的路径长为=72+,答:从点A 摆动到点B 经过的路径长为72+cm .………………10分 20. (本小题满分11分) 解:(1)BD=CF .………1分]理由如下:由题意得,∠CAF=∠BAD=α, 在△CAF 和△BAD 中,∴△CAF ≌△BAD ,∴BD=CF ;………3分](2)①由(1)得△CAF ≌△BAD ,∴∠CFA=∠BDA ,∵∠FNH=∠DNA ,∠DNA+∠NAD=90°,∴∠CFA+∠FNH=90°,∴∠FHN=90°,即BD ⊥CF ;………6分] ②连接DF ,延长AB 交DF 于M ,∵四边形ADEF 是正方形,AB=2,∴AM=DM=3,BM=AM ﹣AB=1,∵∠MAD=∠MDA=45°,∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF ,∴△DMB ∽△DHF ,=解得,………11分]21.(本小题满分12分)解: (1)由已知,得B (3,0),C (0,3),∴3093c b c =⎧⎨=++⎩, 解得43b c =-⎧⎨=⎩,∴抛物线解析式为243y x x =-+;………4分 (2)存在………6分由(1),得A (1,0),连接BP , ∵∠CBA=∠ABP=45°, ∴当BQ BCBP BA=时,△ABC ∽△PBQ ,∴BQ=3,∴1Q (0,0),………8分 ∴当BQ BA BP BC =时,△ABC ∽△QBP ,∴BQ=23,∴2Q (73,0); ………11分∴Q 点的坐标是(0,0)或(73,0).………12分。

泰州市姜堰区九年级上册期末考试数学试题有答案

泰州市姜堰区九年级上册期末考试数学试题有答案

九年级第一学期期末考试数学试题(考试时间:120分钟 总分:150分)注意:所有试题的答案均填写在答题纸上,答案写在试卷上无效. 一、选择题(每题3分,共18分) 1.︒30sin 的值为 A .21B .23C .33D .41 2.下列各组图形一定相似的是A .两个矩形B .两个等边三角形C .有一内角是80°的两个等腰三角形D .两个菱形 3.小华根据演讲比赛中九位评委所给的分数制作了如下表格:A .平均数B .众数C .方差D .中位数4.如果关于的一元二次方程22(10)1m x x -++=有两个不相等的实数根,那么m 的取值范围是A .m >2B .m <2C .m >2且m ≠1D .m <2且m ≠15.如图,将宽为1cm 的长方形纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为A .cm 2B .cm 2C .cm 2D .cm 26.如图,二次函数c bx ax y ++=2(a >0)的图像与直线1=y 交点坐标为(1,1),(3,1),则不等式012>-++c bx ax 的解集为A .1>xB .31<<xC .1<x 或3>xD .3>x 二、填空题:(每题3分,共30分)7.抛物线1422+-=x x y 的对称轴为直线 ▲ .8.100件某种产品中有5 件次品,从中任意抽取1件,恰好抽到次品的概率为 ▲ .9.将抛物线y=-22+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为 ▲ . 10.如图,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E ,如果AD=3,BD=4,AE=2,那么AC= ▲ .11.已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的母线长为 ▲ . 12.某人沿着坡度3:1=i 的山坡走了50米,则他离地面的高度上升了 ▲米.13.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是2510t t h -=,则小球运动到的最大高度为 ▲ 米.14.△ABC 中,AB=AC=4,BC=5,点D 是边AB 的中点,点E 是边AC 的中点,点P 是边BC 上的动点,∠DPE =∠C ,则BP = ▲ .15.如图,四边形ABCD 为⊙O 的内接四边形,若四边形ABCO 为平行四边形,则∠ADB = ▲ .16.已知二次函数x ax y 322+=(a <0)的图像与x 轴交于A(6,0),顶点为B ,C 为线段AB 上一点,BC =2,D 为轴上一动点.若BD =OC ,则D 的坐标为 ▲ .三、解答题:(共102分) 17.(本题满分10分) (1)计算:︒+-+-60tan 2321(2)解方程:1)3)(1(-=-+x x(第5题图) (第6题图) (第10题图)(第14题图) (第15题图) (第16题图)18. (本题满分8分)某班召开主题班会,准备从由2名男生和2名女生组成的班委会中选择2人担任主持人. (1)用树状图或表格列出所有等可能结果;(2)求所选主持人恰好为1名男生和1名女生的概率. 19.(本题满分8分)甲进行了10次射击训练,平均成绩为9环,且前9次的成绩(单位:环)依次为:8,10,9,10,7,9,10,8,10.(1)求甲第10次的射击成绩; (2)求甲这10次射击成绩的方差;(3)乙在相同情况下也进行了10次射击训练,平均成绩为9环,方差为1.6环2,请问甲和乙哪个的射击成绩更稳定?20.(本题满分10分)如图,△ABC 中,∠C =90°,31tan B ,AC=2,D 为AB 中点,DE 垂直AB 交BC 于E. (1)求AB 的长度; (2)求BE 的长度.21.(本题满分10分)如图,AB 、CD 为两个建筑物,建筑物AB 的高度为60米,从建筑物AB 的顶点A 处测得建筑物CD 的顶部C 处的俯角∠EAC 为30°,测得建筑物CD 的底部D 处的俯角∠EAD 为45°. (1)求两建筑物底部之间水平距离BD 的长度; (2)求建筑物CD 的高度(结果保留根号).22.(本题满分10分)如图,二次函数c bx ax y ++=2的图像与轴交于A 、B 两点,交y 轴于C 点,其中B 点坐标为(3,0),C 点坐标为(0,3),且图像对称轴为直线1=x . (1)求此二次函数的关系式;(2)P 为二次函数c bx ax y ++=2在轴下方的图像上一点,且S △ABP = S △ABC ,求P 点的坐标.CB DAE23.(本题满分10分)如图,四边形OABC 为平行四边形,B 、C 在⊙O 上,A 在⊙O 外,22sin =∠OCB . (1)求证:AB 与⊙O 相切;(2)若BC =10cm ,求⊙O 的半径长及图中阴影部分的面积.24.(本题满分10分)如图,在菱形ABCD 中,AB =4,对角线AC 、BD 交于O 点,E 为AD 延长线上一点,DE =2,直线OE 分别交AB 、CD 于G 、F. (1)求证:DF =BG ; (2)求DF 的长;(3)若∠ABC=60°,求tan ∠AEO .25.(本题满分12分)如图,在矩形ABCD 中,AB=1,BC=2,点E 是AD 边上一动点(不与点A ,D 重合 ),过A 、E 、C 三点的⊙O 交AB 延长线于点F ,连接CE 、CF . (1)求证:△DEC ∽△BFC ;(2)设DE 的长为,△AEF 的面积为y .①求y 关于的函数关系式,并求出当为何值时,y 有最大值; ②连接AC ,若△ACF 为等腰三角形,求的值.26.(本题满分14分)已知二次函数22-+-=n nx mx y (0>n ,m ≠0)的图像经过A (2,0). (1)用含n 的代数式表示m ;(2)求证:二次函数22-+-=n nx mx y 的图像与 轴始终有2个交点; (3)设二次函数22-+-=n nx mx y 的图像与 轴的另一个交点为B (t ,0).①当n 取21,n n 时,t 分别为21,t t ,若21n n <,试判断21,t t 的大小关系,并说明理由. ②若t 为整数,求整数n 的值.第一学期期末考试 九年级数学试题参考答案一、选择题(每题3分,共18分) 1.A 2.B 3.D 4.D 5.D 6.C 二、填空题:(每题3分,共30分) 7.直线1=x 8.201 9.2)1(22+--=x y 10.314 11.5 12.25 13. 5 14.1或4 15.30度 16.(2,0)或(4,0) 三、解答题:(共102分) 17.(本题满分10分) (1)原式=33221+-+.........................4分 =25...................................5分 (2)整理得, 0222=--x x ...................................7分解得,31,3121-=+=x x ...................................10分18.(1)略(共12种等可能性结果)...................................4分 (2)P (恰好为1名男生和1名女生)=32.........................8分19. (1)9....................2分(2)1......................4分 (3)因为平均成绩相等,且甲的方差小于乙的方差,所以乙的射击成绩更稳定 .....................................................................8分 20.(1)102;........................5分(2)310....................10分 21. (1)60........................4分(2)32060-....................10分 22.(1)322++-=x x y ..................................................4分 (2)(71+,-3)或(71-,-3)..................................10分23.(1)证明略..........................................4分(2)⊙O 的半径长25..........7分,阴影部分的面积为25225-π..........10分.24.(1)证三角形BGO 与三角形DFO 全等即可;................................3分 (2)DF 的长为1...........................................................6分 (3)53.................................................................10分 25.(1)证明略;.........................4分 (2)①1232++-=x x y ,.............7分;当43=时,y 有最大值;.......9分; ②215,21-==x x 或43=x ............................................12分;26.(1)把A (2,0)代入22-+-=n nx mx y ,得42+=n m ................2分; (2))2(4)(2---n m n =)2(4242-⋅+⋅-n n n =422+-n n =4>0.所以二次函数22-+-=n nx mx y 的图像与 轴始终有2个交点;.............5分; (3)①依题意可知242+-=n n t ..............................................7分;所以242242221121+--+-=-n n n n t t =)2(2()(82121++-n n n n )因为21n n <,所以021<-n n , 又因为0>n ,所以02,0221>+>+n n 。

{3套试卷汇总}2018年江苏省名校九年级上学期数学期末联考试题

{3套试卷汇总}2018年江苏省名校九年级上学期数学期末联考试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,直角△ABC 中,90A ∠=︒,30B ∠=︒,4AC =,以 A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分的面积是( )A .4433π-B .1233π-C .4433π+D .1233π+ 【答案】A 【分析】连结AD .根据图中阴影部分的面积=三角形ABC 的面积-三角形ACD 的面积-扇形ADE 的面积,列出算式即可求解.【详解】解:连结AD .∵直角△ABC 中,∠A=90°,∠B=30°,AC=4,∴∠C=60°,3∵AD=AC ,∴三角形ACD 是等边三角形,∴∠CAD=60°,∴∠DAE=30°,∴图中阴影部分的面积=4×32-4×3÷2-2304360π⨯343π. 故选A .【点睛】本题考查了扇形面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算. 2.一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4tan 3α=,则扇形纸板和圆形纸板的半径之比是( )A.1304B.22C.23D.672【答案】A【分析】分别求出扇形和圆的半径,即可求出比值.【详解】如图,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=4,∵4tan3α==ABOB,∴OB=34AB=3,∴CO=7由勾股定理得:OD=224765+==r1;如图2,连接MB、MC,∵四边形ABCD 是⊙M 的内接四边形,四边形ABCD 是正方形,∴∠BMC =90°,MB =MC ,∴∠MCB =∠MBC =45°,∵BC =4,∴MC =MB =22=r 2∴扇形和圆形纸板的半径比是65:22=130 故选:A .【点睛】本题考查了正方形性质、圆内接四边形性质;解此题的关键是求出扇形和圆的半径,题目比较好,难度适中.3.如图,四边形ABCD 是正方形,延长BC 到E ,使CE AC =,连接AE 交CD 于点F ,则AFD ∠=( )A .67.5°B .65°C .55°D .45°【答案】A 【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解.【详解】解:∵四边形ABCD 是正方形,CE=CA ,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFD=90°-22.5°=67.5°,故选A .【点睛】主要考查到正方形的性质,等腰三角形的性质和外角与内角之间的关系.这些性质要牢记才会灵活运用. 4.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP′重合,如果AP=3cm ,那么PP′的长为( )A .43B .42C .33D .32【分析】由题意易证ABP ACP '≌,则有3,AP AP BAP CAP ''==∠=∠,进而可得90PAP '∠=︒,最后根据勾股定理可求解.【详解】解:∵△ABC 是等腰直角三角形,∴∠BAC=90°,AB=AC ,∵将△ABP 绕点A 逆时针旋转后,能与△ACP′重合,∴ABP ACP '≌,∵AP=3cm ,∴3,AP AP BAP CAP ''==∠=∠,∵90BAP PAC ∠+∠=︒,∴90CAP PAC '∠+∠=︒,即90PAP '∠=︒,∴PAP '是等腰直角三角形, ∴232PP AP '==;故选D .【点睛】本题主要考查旋转的性质及等腰直角三角形的性质与判定,熟练掌握旋转的性质及等腰直角三角形的性质与判定是解题的关键.5.抛物线y =x 2+6x+9与x 轴交点的个数是( )A .0B .1C .2D .3 【答案】B【分析】根据题意,求出b 2﹣4ac 与0的大小关系即可判断.【详解】∵b 2﹣4ac =36﹣4×1×9=0∴二次函数y =x 2+6x+9的图象与x 轴有一个交点.故选:B .【点睛】此题考查的是求二次函数与x 轴的交点个数,掌握二次函数与x 轴的交点个数和b 2﹣4ac 的符号关系是解决此题的关键.6.如果二次函数y=ax 2+bx+c (a≠0)的图象如图所示,那么下列不等式成立的是()A .a>0B .b<0【解析】试题解析:由函数图象可得各项的系数:0,0,0.a b c>0.ac∴<故选C.7.矩形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线相等D.对角线互相垂直【答案】D【分析】依据矩形的性质进行判断即可.【详解】解:矩形不具备的性质是对角线互相垂直,故选:D.【点睛】本题考查了矩形的性质,熟练掌握性质是解题的关键8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.16B.13C.12D.23【答案】A【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.9.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.10.对于二次函数y=﹣2x2,下列结论正确的是()A.y随x的增大而增大B.图象关于直线x=0对称C.图象开口向上D.无论x取何值,y的值总是负数【答案】B【分析】根据二次函数的性质可判断A、B、C,代入x=0,可判断D.【详解】解:∵a=﹣2<0,b=0,∴二次函数图象开口向下;对称轴为x=0;当x<0时,y随x增大而增大,当x>0时,y随x增大而减小,故A,C错误,B正确,当x=0时,y=0,故D错误,故选:B.【点睛】本题考查了二次函数的图象和性质,熟练掌握基础知识是解题关键.11.若将抛物线y=2(x+4)2﹣1平移后其顶点落y在轴上,则下面平移正确的是()A.向左平移4个单位B.向右平移4个单位C.向上平移1个单位D.向下平移1个单位【答案】B【分析】抛物线y=2(x+4)2﹣1的顶点坐标为(﹣4,﹣1),使平移后的函数图象顶点落在y轴上,则原抛物线向右平移4个单位即可.【详解】依题意可知,原抛物线顶点坐标为(﹣4,﹣1),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向右平移4个单位即可.此题考察抛物线的平移规律,根据规律“自变量左加右减,函数值上加下减”得到答案.12.两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A重合,若三角形ABC固定,当另一个三角形绕点A旋转时,它的角边和斜边所在的直线分别与边BC交于点E、F,设BF=x,CE=y,则y关于x的函数图象大致是()A.B.C.D.【答案】C【分析】由题意得∠B=∠C=45°,∠G=∠EAF=45°,推出△ACE∽△ABF,得到∠AEC=∠BAF,根据相似三角形的性质得到AB CEBF AC=,于是得到结论.【详解】解:如图:由题意得∠B=∠C=45°,∠G=∠EAF=45°,∵∠AFE=∠C+∠CAF=45°+∠CAF,∠CAE=45°+∠CAF,∴∠AFB=∠CAE,∴△ACE∽△ABF,∴∠AEC=∠BAF,∴△ABF∽△CAE,∴AB CE BF AC=,又∵△ABC是等腰直角三角形,且BC=2,∴AB=AC2,又BF=x,CE=y,∴22x=,即xy=2,(1<x<2).本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ABF∽△ACE 是解题的关键.二、填空题(本题包括8个小题)13.如图,直线l1∥l2,直线l3与l1、l2分别交于点A、B.若∠1=69°,则∠2的度数为_____.【答案】111°【分析】根据平行线的性质求出∠3=∠1=69°,即可求出答案.【详解】解:∵直线l1∥l2,∠1=69°,∴∠3=∠1=69°,∴∠2=180°﹣∠3=111°,故答案为111°.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等.14.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.【答案】(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).【点睛】本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.15.已知a+b=0目a≠0,则20202019a ba=_____.【分析】先将分式变形,然后将0a b +=代入即可. 【详解】解:20202019a b a+ 20192019a b b b++= 020192019b b+= 20192019b b= 1=,故答案为1【点睛】本题考查了分式,熟练将式子进行变形是解题的关键.16.地物线2y ax bx c =++的部分图象如图所示,则当0y >时,x 的取值范围是______.【答案】1x <-或3x >【分析】根据二次函数的对称性即可得出二次函数与x 轴的另一个交点为(3,0),当0y >时,图像位于x 轴的上方,故可以得出x 的取值范围.【详解】解:由图像可得:对称轴为x=1,二次函数与x 轴的一个交点为(-1,0)则根据对称性可得另一个交点为(3,0)∴当1x <-或3x >时,0y >故答案为:1x <-或3x >【点睛】本题主要考查的是二次函数的对称性,二次函数的图像是关于对称轴对称的,掌握这个知识点是解题的关键.17.如图,在矩形ABCD 中,1,30AB DBC =∠=︒. 若将BD 绕点B 旋转后,点D 落在BC 延长线上的点E 处,点D 经过的路径为DE ,则图中阴影部分的面积为______.【答案】332π- 【分析】先利用直角三角形的性质和勾股定理求出BD 和BC 的长,再求出Rt BCD ∆和扇形BDE 的面积,两者作差即可得. 【详解】由矩形的性质得:90,1BCD CD AB ∠=︒==30DBC ∠=︒2222,3BD CD BC BD CD ∴===-=Rt BCD ∴∆的面积为11331222BCD S BC CD ∆=⋅=⨯⨯= 扇形BDE 所对的圆心角为306DBC π∠=︒=,所在圆的半径为BD 则扇形BDE 的面积为2211226263BDE S BD πππ=⨯⋅=⨯⨯=扇形 所以图中阴影部分的面积为332BCD BDE S S S π∆=-=-阴影扇形 故答案为:332π-. 【点睛】 本题考查了矩形的性质、直角三角形的性质、勾股定理、旋转的性质、扇形的面积公式,这是一道基础类综合题,求出扇形BDE 的面积是解题关键.18.在Rt △ABC 中,∠C 是直角,sinA =23,则cosB =__________ 【答案】23【分析】由题意直接运用直角三角形的边角间关系进行分析计算即可求解得出结论.【详解】解:如图,∵∠C 是直角, ∴BcosB BC A =, 又∵23BC inA AB s ==, ∴23cosB =. 【点睛】本题考查直角三角形的边角关系,熟练掌握正弦和余弦所对应的边角关系是解题的关键.三、解答题(本题包括8个小题)19.在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为 ;(3)试估算盒子里黑、白两种颜色的球各有多少个?【答案】(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只【分析】(1)观察表格找到逐渐稳定到的常数即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【详解】(1)∵摸到白球的频率约为0.6,∴当n 很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)∵摸到白球的频率为0.6,∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)黑白球共有20只,白球为:50×0.6=30(只),黑球为:50﹣30=20(只).答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.20.意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1. 八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2. 整理数据:分析数据:应用数据:(1)由上表填空:a = ;b = ;c = ;d = .(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.【答案】(1)11,10,78.5,81;(2)600人;(3)八年级学生总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).【分析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【详解】解:(1)由题意知a =11,b =10,将七年级成绩重新排列为:59,70,72,73,75,75,75,76,1,1,78,79,80,80,81,83,85,86,87,94,∴其中位数c =78792=78.5, 八年级成绩的众数d =81,故答案为:11,10,78.5,81;(2)由样本数据可得,七年级得分在80分及以上的占7120+=25,故七年级得分在80分及以上的大约600×25=240人;八年级得分在80分及以上的占10220+=35,故八年级得分在80分及以上的大约600×35=360人.故共有600人.(3)该校八年级学生对急救知识掌握的总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.21.如图,四边形ABCD是⊙O的内接四边形,∠AOC=116°,则∠ADC的角度是_____.【答案】58°【分析】直接利用圆周角定理求解.【详解】∵∠AOC和∠ADC都对ABC,∴∠ADC=12∠AOC=12×116°=58°.故答案为:58°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.22.如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t (s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【答案】(1)t为3秒时,△BDE的面积为7.3cm3;(3)存在时间t为5013或8013秒时,使得△BDE与△ABC相似.【分析】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(3)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【详解】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,DFAG=BDAB∵AB=AC=10,BC=11∴BG=8,∴AG=1.∵AD=BE=t,∴BD=10﹣t,∴DF6=1010t-解得DF=35(10﹣t)∵S△BDE=12BE•DF=7.3∴35(10﹣t)•t=13解得t=3.答:t为3秒时,△BDE的面积为7.3cm3.(3)存在.理由如下:①当BE=DE时,△BDE与△BCA,∴BEAB=BDBC即10t=1016t-,解得t=50 13,②当BD=DE时,△BDE与△BAC,BE BC =BDAB即16t=1010t-,解得t =8013. 答:存在时间t 为5013或8013秒时,使得△BDE 与△ABC 相似. 【点睛】此题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.23.已知抛物线245y x x --=与y 轴交于点C .(1)求点C 的坐标和该抛物线的顶点坐标;(2)若该抛物线与x 轴交于,A B 两点,求ABC 的面积S ;(3)将该抛物线先向左平移1个单位长度,再向上平移2个单位长度,求平移后的抛物线的解析式(直接写出结果即可).【答案】(1)(0,5);2,9(﹣);(2)15;(3)226y x x --=【分析】(1)令x=0即可得出点C 的纵坐标,从而得出点C 的坐标;利用配方法将抛物线表达式进行变形即可得出顶点坐标(2)求出A ,B 两点的坐标,进而求出A 与B 的距离,由C 点坐标可知OC 的长,即可得出答案(3)根据平移的规律结合原抛物线表达式 ()224529y x x x =﹣﹣=﹣﹣即可得出答案. 【详解】解:(Ⅰ)当0x =时,5y =-,故点0,5C (),则抛物线的表达式为:()224529y x x x =﹣﹣=﹣﹣, 故顶点坐标为:2,9(﹣); (2)令0y =,解得:1x =-或5,则6,5AB OC ==, 则11651522S AB OC ⨯⨯⨯⨯===; (3)∵()224529y x x x =﹣﹣=﹣﹣∴平移后的抛物线表达式为:()22219226y x x x +-+--=﹣=【点睛】本题考查的知识点是二次函数图象与几何变换以及二次函数的性质,此题较为基础,易于掌握. 24.某果品专卖店元旦前后至春节期间主要销售薄壳核桃,采购价为15元/kg ,元旦前售价是20元/kg ,每天可卖出450kg .市场调查反映:如调整单价,每涨价1元,每天要少卖出50kg ;每降价1元,每天可多卖出150kg .(1)若专卖店元旦期间每天获得毛利2400元,可以怎样定价?若调整价格也兼顾顾客利益,应如何确定售价?(2)请你帮店主算一算,春节期间如何确定售价每天获得毛利最大,并求出最大毛利.【答案】(1)21,19;(2)售价为22元时,毛利最大,最大毛利为1元【分析】(1)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况列出一元二次方程确定售价即可;(2)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况设每天的毛利为w元,涨价和降价两种情况列出二次函数求出售价进行比较即可确定售价和最大毛利.【详解】解:(1)根据题意,得①设售价涨价x元,(20﹣15+x)(450﹣50x)=2400解得x1=1,x2=3,∵调整价格也兼顾顾客利益,∴x=1,则售价为21元;②设售价降价y元,(20﹣15﹣y)(450+150y)=2400解得y1=y2=1,则售价为19元;答:调整价格也兼顾顾客利益,售价应定为19元.(2)根据题意,得①设售价涨价x元时,每天的毛利为w1元,w1=(20﹣15+x)(450﹣50x)=﹣50x2+200x+2250=﹣50(x﹣2)2+1.当售价涨价2元,即售价为22元时,毛利最大,最大毛利为1元;②设售价降价y元时,每天的毛利为w2元,w2=(20﹣15﹣y)(450+150y)=﹣150y2+300y+2250=﹣150(y﹣1)2+2400当降价为1元时,即售价为19元时,毛利最大,最大毛利为2400元.综上所述,售价为22元时,毛利最大,最大毛利为1元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,二次函数的性质,解决本题的关键是找到题目中蕴含的等量关系,熟练掌握二次函数的性质,能够将一般式转化为顶点式.25.已知,如图,在△ABC 中,∠C=90°,点D 是AB 外一点,过点D 分别作边AB 、BC 的垂线,垂足分别为点E 、F ,DF 与AB 交于点H ,延长DE 交BC 于点G .求证:△DFG ∽△BCA【答案】见解析【分析】通过角度转化,先求出∠D=∠B ,然后根据∠C=∠DFG=90°,可证相似.【详解】∵ DF ⊥BC 于F ,∠C=90°∴∠DFG =∠C =90°又DE ⊥AB 于点E∴∠DGB +∠B =90°又∠DGB +∠D =90°∴∠B=∠D∴△DFG ∽△BCA .【点睛】本题考查证相似,解题关键是通过角度转化,得出∠D=∠B.26.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围. 【答案】-4≤a<-3.【解析】试题分析:首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a 的不等式组求得a 的范围.试题解析:解:由5x+2>3(x ﹣2)得:x >﹣2,由12x≤8﹣32x+2a 得:x≤4+a . 则不等式组的解集是:﹣2<x≤4+a .不等式组只有两个整数解,是﹣2和2.根据题意得:2≤4+a <2.解得:﹣4≤a <﹣3.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.27.先化简,再求值:2212111x x x x x --⎛⎫÷+- ⎪-+⎝⎭,其中x 是方程260x x +-=的根. 【答案】见解析【解析】试题分析:先将原式按分式的相关运算法则化简,再解方程求得x 的值,最后将使原分式有意义的x 的值代入化简后的式子计算即可.试题解析:原式()()()()()()()()()()()()()2121122212122111111111111121x x x x x x x x x x x x x x x x x x x x x x x x x x x -++-----+---+=÷=÷=÷=⋅=+-++-++-++---.解方程260x x +-=得1232x x =-=,.当3x =-时,原式()113412==-⨯-; 当2x =时,原式无意义.点睛:求分式的值时,字母的取值需确保原分式有意义,本题中,当2x =时,原分式无意义,此时不能将2x =代入化简所得的分式中进行计算.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知四边形 ABCD 内接于⊙O ,AB 是⊙O 的直径,EC 与⊙O 相切于点 C ,∠ECB=35°, 则∠D 的度数是( )A .145°B .125°C .90°D .80°【答案】B 【解析】试题解析:连接.OC∵EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选B.点睛:圆内接四边形的对角互补.2.如图,将ABC ∆绕着点C 按顺时针方向旋转20︒,B 点落在'B 位置,A 点落在'A 位置,若''AC A B ⊥,则BAC ∠的度数是 ( )A .50︒B .60︒C .70︒D .80︒ 【答案】C【解析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC ⊥A’B’可得∠BAC=∠A’=90°-20°=70°, 故选择C.【点睛】本题考查了旋转的性质.3.如果53x y x +=,那么y x =( ) A .85 B .38 C .32 D .23【答案】D【分析】直接利用已知进行变形进而得出结果. 【详解】解:∵53x y x +=, ∴3x+3y =5x ,则3y =2x , 那么y x =23. 故选:D .【点睛】本题考查了比例的性质,正确将已知变形是解题的关键.4.己知⊙O 的半径是一元二次方程2340x x --=的一个根,圆心O 到直线l 的距离6d =.则直线l 与⊙O 的位置关系是A .相离B .相切C .相交D .无法判断【答案】A【分析】在判断直线与圆的位置关系时,通常要得到圆心到直线的距离,然后再利用d 与r 的大小关系进行判断;在直线与圆的问题中,充分利用构造的直角三角形来解决问题,直线与圆的位置关系:①当d >r 时,直线与圆相离;②当d=r 时,直线与圆相切;③当d <r 时,直线与圆相交.【详解】∵2340x x --=的解为x=4或x=-1,∴r=4,∵4<6,即r <d ,∴直线l 和⊙O 的位置关系是相离.故选A.【点睛】本题主要考查了直线与圆的位置关系,一元二次方程的定义及一般形式,掌握直线与圆的位置关系,一元二次方程的定义及一般形式是解题的关键.5.对于非零实数a b 、,规定11a b b a ⊕=-,若()22x 11⊕-=,则x 的值为 A .56 B .54 C .32 D .16- 【答案】A【解析】试题分析:∵11a b b a ⊕=-,∴()1122x 12x 12⊕-=--. 又∵()22x 11⊕-=,∴1112x 12-=-. 解这个分式方程并检验,得5x 6=.故选A . 6.如果函数22y x x m =--+的图象与x 轴有公共点,那么m 的取值范围是( )A .1mB .1m <C .1m >-D .1m ≥-【答案】D【分析】根据二次函数与一元二次方程的关系,利用根的判别式即可得出答案.【详解】∵函数22y x x m =--+的图象与x 轴有公共点, 224(2)4(1)440b ac m m ∴-=--⨯-⨯=+≥ ,解得1m ≥- .故选:D .【点睛】本题主要考查二次函数与x 轴的交点问题,掌握根的判别式是解题的关键.7.已知△ABC 与△DEF 相似且对应周长的比为4:9,则△ABC 与△DEF 的面积比为A .2:3B .16:81C .9:4D .4:9【答案】B【解析】直接根据相似三角形周长的比等于相似比,面积比等于相似比的平方解答.【详解】解:∵△ABC 与△DEF 相似且对应周长的比为4:9,∴△ABC 与△DEF 的相似比为4:9,∴△ABC 与△DEF 的面积比为16:81.故选B【点睛】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比,面积的比等于相似比的平方. 8.将抛物线23y x =如何平移得到抛物线23(2)3y x =+-( )A .向左平移2个单位,向上平移3个单位;B .向右平移2个单位,向上平移3个单位;C .向左平移2个单位,向下平移3个单位;D .向右平移2个单位,向下平移3个单位.【答案】C【分析】根据二次函数图象的平移规律“左加右减,上加下减”即可得出答案.【详解】根据二次函数的平移规律可知,将抛物线23y x =向左平移2个单位,再向下平移3个单位即可得到抛物线23(2)3y x =+-,故选:C .【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.9.把抛物线2–y x =先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是( ) A .()212y x =-++B .()212y x =-+-C .()212y x =---D .()=+-2y x 12 【答案】B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=-x 1的顶点坐标为(0,0),先向左平移1个单位再向下平移1个单位后的抛物线的顶点坐标为(-1,-1),所以,平移后的抛物线的解析式为y=-(x+1)1-1.故选:B .【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.10.对于反比例函数4y x=-,下列说法错误的是( ) A .它的图象分别位于第二、四象限B .它的图象关于y x =成轴对称C .若点1(2,)A y -,2(1,)B y -在该函数图像上,则12y y <D .y 的值随x 值的增大而减小【答案】D【分析】根据反比例函数的性质对各选项逐一分析即可. 【详解】解:反比例函数4y x =-,40k =-<,图像在二、四象限,故A 正确. 反比例函数k y x=,当0k >时,图像关于y x =-对称; 当k 0<时,图像关于y x =对称,故B 正确当0x <时,y 的值随x 值的增大而增大,21-<-,则12y y <,故C 正确在第二象限或者第四象限,y 的值随x 值的增大而增大,故D 错误故选D【点睛】本题主要考查了反比例函数的性质.11.若ABC ∆与DEF ∆的相似比为1:4,则ABC ∆与DEF ∆的周长比为( )A .1:2B .1:3C .1:4D .1:16【答案】C【分析】根据相似三角形的性质解答即可.【详解】解:∵ABC ∆与DEF ∆的相似比为1:4,∴ABC ∆与DEF ∆的周长比为:1:4.故选:C.【点睛】本题考查了相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.12.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt △ABC 中,AC =k ,∠ACB =90°,∠ABC =30°,延长CB 至点M ,在射线BM 上截取线段BD ,使BD =AB ,连接AD ,依据此图可求得tan75°的值为( )A .23-B .23C .13+D 31【答案】B 【解析】在直角三角形ABC 中,利用30度所对的直角边等于斜边的一半表示出AB 的长,再利用勾股定理求出BC 的长,由CB+BD 求出CD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出所求即可.【详解】在Rt △ABC 中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°3k ,∴∠CAD=∠CAB+∠BAD=75°,在Rt △ACD 中3,则tan75°=tan ∠CAD=CD AC =3k 2k k+3 故选B【点睛】 本题考查了解直角三角形,熟练掌握三角函数是解题的关键.二、填空题(本题包括8个小题)13.如图,抛物线y=ax 2与直线y=bx+c 的两个交点坐标分别为A (-2,4),B (1,1),则不等式ax 2>bx+c 的解集是_________.【答案】x <-2或x >1【分析】根据图形抛物线2y ax =与直线bx c =+的两个交点情况可知,不等式2ax bx c >+的解集为抛物线的图象在直线图象的上方对应的自变量x 的取值范围.【详解】如图所示: ∵抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()()2411A B -,,,, ∴二次函数图象在一次函数图象上方时,即不等式2ax bx c >+的解集为:2x <-或1x >.故答案为:2x <-或1x >.【点睛】本题主要考查了二次函数与不等式组.解答此题时,利用了图象上的点的坐标特征来解不等式. 14.如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3…A n ,将抛物线y =x 2沿直线L :y =x 向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M 1,M 2,M 3,…M n 都在直线L :y =x 上;②抛物线依次经过点A 1,A 2,A 3…A n ,则顶点M 2020的坐标为_____.【答案】(4039,4039)【分析】根据抛物线的解析式结合整数点的定义,找出点A n 的坐标为(n ,n 2),设点M n 的坐标为(a ,a ),则以点M n 为顶点的抛物线解析式为y=(x-a )2+a ,由点A n 的坐标利用待定系数法,即可求出a 值,将其代入点M n 的坐标即可得出结论.【详解】∵抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…,A n ,…,∴点A n 的坐标为(n ,n 2).设点M n 的坐标为(a ,a ),则以点M n 为顶点的抛物线解析式为y =(x ﹣a )2+a ,∵点A n (n ,n 2)在抛物线y =(x ﹣a )2+a 上,∴n 2=(n ﹣a )2+a ,解得:a =2n ﹣1或a =0(舍去),∴M n 的坐标为(2n ﹣1,2n ﹣1),∴M 2020的坐标为(4039,4039).故答案为:(4039,4039).【点睛】本题考查了二次函数图象与几何变换、一次函数图象上点的坐标特征以及待定系数法求二次函数解析式,根据点A n 的坐标利用待定系数法求出a 值是解题的关键.15.抛物线21y x =-的顶点坐标是______________.【答案】 (0,-1)【分析】抛物线的解析式为:y=ax 2+k ,其顶点坐标是(0,k ),可以确定抛物线的顶点坐标.【详解】抛物线21y x =-的顶点坐标是(0,-1).16.已知25a b =,则2a b a +=___________. 【答案】92【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【详解】解:∵25a b =,设a=2k,b=5k, ∴245922a b k k a k ++== 【点睛】本题考查了比例的性质,属于简单题,设k 法是解题关键.17.如图,在▱ABCD 中,点E 在DC 边上,若12DE EC =,则BF EF的值为_____.【答案】32【分析】由DE 、EC 的比例关系式,可求出EC 、DC 的比例关系;由于平行四边形的对边相等,即可得出EC 、AB 的比例关系,易证得EFC ∽BFA ,可根据相似三角形的对应边成比例求出BF 、EF 的比例关系.【详解】解:12DE EC =,23EC DC ∴=;。

<合集试卷3套>2018年江苏省名校九年级上学期期末考试数学试题

<合集试卷3套>2018年江苏省名校九年级上学期期末考试数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如果将抛物线y =x 2向上平移1个单位,那么所得抛物线对应的函数关系式是( ) A .y =x 2+1B .y =x 2﹣1C .y =(x+1)2D .y =(x ﹣1)2 【答案】A【分析】根据向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线y =x 2向上平移1个单位后的顶点坐标为(0,1),∴所得抛物线对应的函数关系式是y =x 2+1.故选:A .【点睛】本题考查二次函数的平移,利用数形结合思想解题是本题的解题关键.2.在△ABC 中,C ∠=90°, AC =4,2cos 3A =那么AB 的长是( ). A .5B .6C .8D .9 【答案】B【分析】根据余弦值等于邻边比斜边即可得到答案.【详解】在△ABC 中,C ∠=90°, AC =4,2cos 3A =, ∵cos AC A AB =, ∴423AB =, ∴AB=6,故选:B.【点睛】此题考查三角函数,熟记余弦值的边的比的关系是解题的关键.3.如果双曲线y =k x 经过点(3、﹣4),则它也经过点( ) A .(4、3)B .(﹣3、4)C .(﹣3、﹣4)D .(2、6) 【答案】B【解析】将(3、﹣4)代入即可求得k ,由此得到答案.【详解】解:∵双曲线y =k x经过点(3、﹣4), ∴k =3×(﹣4)=﹣12=(﹣3)×4,故选:B .【点睛】此题考查反比例函数的性质,比例系数k 的值等于图像上点的横纵坐标的乘积.4.下列事件中,是必然事件的是( )A .两条线段可以组成一个三角形B .打开电视机,它正在播放动画片C .早上的太阳从西方升起D .400人中有两个人的生日在同一天【答案】D【解析】一定会发生的事件为必然事件,即发生的概率是1的事件.根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、两条线段可以组成一个三角形是不可能事件;B 、打开电视机,它正在播放动画片是随机事件;C 、早上的太阳从西方升起是不可能事件;D 、400人中有两个人的生日在同一天是不必然事件;故选:D .【点睛】本题考查的是必然事件.不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图所示的中心对称图形中,对称中心是( )A .1OB .2OC .3OD .4O【答案】B 【分析】直接利用中心对称图形的性质得出答案.【详解】解:如图所示的中心对称图形中,对称中心是O 1.故选:B .【点睛】本题考查中心对称图形,解题关键是熟练掌握中心对称图形的性质.6.下列多边形一定相似的是( )A .两个平行四边形B .两个矩形C .两个菱形D .两个正方形【答案】D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.7.下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.2a6÷a3=2a3D.a2•a4=a8【答案】C【分析】分别对选项的式子进行运算得到:2a+5b不能合并同类项,(﹣ab)2=a2b2,a2•a4=a6即可求解.【详解】解:2a+5b不能合并同类项,故A不正确;(﹣ab)2=a2b2,故B不正确;2a6÷a3=2a3,正确a2•a4=a6,故D不正确;故选:C.【点睛】本题考查了幂的运算,解题的关键是掌握幂的运算法则.8)A.x>-1 B.x≥-1 C.x≥1D.x=-1【答案】C【解析】根据二次根式有意义,被开方数为非负数,列不等式求出x的取值范围即可.∴x-1≥0,∴x≥1,故选:C.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数;熟练掌握二次根式有意义的条件是解题关键.9.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2D.m<﹣2【答案】A【解析】试题分析:由题意知抛物线y=x2+2x+m﹣1与x轴有两个交点,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案选A.考点:抛物线与x轴的交点.10.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,903班共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛同学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是()A.12B.14C.18D.116【答案】B【解析】直接利用概率公式计算得出答案.【详解】共设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,参赛同学抽到每一类别的可能性相同,∴小宇参赛时抽到“生态知识”的概率是:14.故选B.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.11.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3 C.D.1:2【答案】A【分析】根据题意,利用勾股定理可先求出某人走的水平距离,再求出这个斜坡的坡度即可.∴坡度i=;故选:A.【点睛】此题主要考查学生对坡度的理解,在熟悉了坡度的定义后利用勾股定理求得水平距离是解决此题的关键.12.反比例函数kyx=经过点(1,3-),则k的值为()A.3 B.3-C.13D.13-【答案】B【解析】此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.二、填空题(本题包括8个小题)13.如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC ∽△ADE .【答案】解:∠D=∠B 或∠AED=∠C .【分析】根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B 或∠AED=∠C 或AD :AB=AE :AC 或AD•AC=AB•AE 时两三角形相似.故答案为∠D=∠B (答案不唯一).14.如图,AB 是以点O 为圆心的圆形纸片的直径,弦CD AB ⊥于点E ,AB 10,BE 3==.将阴影部分沿着弦AC 翻折压平,翻折后,弧AC 对应的弧为G ,则点O 与弧G 所在圆的位置关系为____________.【答案】点在圆外【分析】连接OC ,作OF ⊥AC 于F ,交弧AC 于G ,判断OF 与FG 的数量关系即可判断点和圆的位置关系.【详解】解:如图,连接OC ,作OF ⊥AC 于F ,交弧AC 于G ,∵AB 10,BE 3==,∴OA=OB=OC=5,AE=7,OE=2,∵CD AB ⊥,∴222225221CE OC OE =-=-=,∴222221770AC CE AE =+=+=,∵OF ⊥AC ,∴CF=12AC, ∴222211557042OF OC CF =-=-⨯=, ∵2155()22>, ∴52OF >, ∴52FG <, ∴OF FG >,∴点O 与弧G 所在圆的位置关系是点在圆外.故答案是:点在圆外.【点睛】本题考查了点和圆位置关系,利用垂径定理进行有关线段的计算,通过构造直角三角形是解题的关键. 15.如图,有一张矩形纸片,长15cm ,宽9cm ,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm ,根据题意可列方程为_____.【答案】(15﹣2x )(9﹣2x )=1.【分析】设剪去的小正方形边长是xcm ,则纸盒底面的长为(15﹣2x )cm ,宽为(9﹣2x )cm ,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm ,则纸盒底面的长为(15﹣2x )cm ,宽为(9﹣2x )cm , 根据题意得:(15﹣2x )(9﹣2x )=1.故答案是:(15﹣2x )(9﹣2x )=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.16.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= .【答案】2(1)n +.【分析】根据三角形数得到x 1=1,x 1=3=1+1,x 3=6=1+1+3,x 4=10=1+1+3+4,x 5=15=1+1+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即x n=1+1+3+…+n=()21n n+、x n+1=()()122n n++,然后计算x n+x n+1可得.【详解】∵x1=1,x1═3=1+1,x3=6=1+1+3,x4═10=1+1+3+4,x5═15=1+1+3+4+5,…∴x n=1+1+3+…+n=()21n n+,x n+1=()()122n n++,则x n+x n+1=()()122n n+++()21n n+=(n+1)1,故答案为:(n+1)1.17.反比例函数kyx=的图象具有下列特征:在所在象限内,y的值随x值增大而减小.那么k的取值范围是_____________.【答案】0k>【分析】直接利用当k>1,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<1,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:∵反比例函数kyx=的图象在所在象限内,y的值随x值的增大而减小,∴k>1.故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,掌握基本性质是解题的关键.18.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.【答案】2【分析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.【详解】圆心角为120°,半径为6cm 的扇形的弧长为1206180π⨯=4πcm ∴圆锥的底面半径为2, 故圆锥的高为2262-=42cm【点睛】 此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.三、解答题(本题包括8个小题)19.2020年元且,某商场为促销举办抽奖活动.规则如下:在一个不透明的纸盒里,装有2个红球和2个黑球,这些球除颜色外都相同.顾客每次摸出1个球,若摸到红球,则获得一份奖品;若摸到黑球,则没有奖品.(1)如果张大妈只有一次摸球机会,那么张大妈获得奖品的概率是 .(2)如果张大妈有两次摸球机会(摸出后不放回),请用“树状图”或“列表”的方法,求张大妈获得两份奖品的概率.【答案】(1)12;(2)16. 【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的球是红球的结果数,然后根据概率公式求解. 【详解】(1)从布袋中任意摸出1个球,摸出是红球的概率=24=12; 故答案为:12; (2)画树状图为:共有12种等可能的结果数,其中两次摸到红球的结果数为2,所以张大妈获得两份奖品的概率=212=16. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.20.郑万高铁开通后,极大地方便了沿线城市人民的出行.高铁开通前,从A 地到C 地需乘普速列车绕行B 地,已知200AB km =,车速为100/.km h 高铁开通后,可从A 地乘高铁以1003/km h 的速度直达C 地,其中B 在A 的北偏东45︒方向,C 在B 的南偏东75方向.甲、乙两人分别乘高铁与普速列车同时从A 出发到C 地,结果乙比甲晚到2小时.试求,A C 两地的距离.【答案】,A C 两地的距离为()2003km 【分析】过点A 作AD CB ⊥交CB 的延长线于点D ,利用解直角三角形求出AB 、AD 、BD 的长度,设从A 到C 的时间为t 小时,在Rt △ACD 中,利用勾股定理列出方程,求出t 的值,然后得到AC 的长度. 【详解】解:由题意可知,4575120ABC ∠=︒+︒=︒.过点A 作AD CB ⊥交CB 的延长线于点D ,60ABD ∴∠=︒.设从A 到C 的时间为t 小时,则从A 到B 再到C 的时间为()2t +小时,200AB km =,100,3BD km AD km ∴==.易得1003AC t =,()1002200100BC t t =+-=.在Rt ACD 中,222AD CD AC +=,(()()22210031001003t t +=∴+, 即220t t --=,解得:1t =-(舍去),22t =,) 1003100322003AC t km ∴===.【点睛】本题考查了解直角三角形的应用,方位角问题,利用勾股定理解直角三角形,解题的关键是熟练运用解直角三角形和勾股定理求出各边长度,从而列出方程解题.21.已知抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),与y 轴交于点C .(1)求抛物线的解析式;(2)点D 为第四象限抛物线上一点,设点D 的横坐标为m ,四边形ABCD 的面积为S ,求S 与m 的函数关系式,并求S 的最值;(3)点P 在抛物线的对称轴上,且∠BPC =45°,请直接写出点P 的坐标.【答案】(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣10)或(1,﹣110).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0), ∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4; (2)设点D (m ,12 m 2﹣m ﹣4),可求点C 坐标为(0,-4), ∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯--- =﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上, 2(12)1++10,则点P 的坐标为:(1,﹣10)或(1,﹣110).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.22.已知二次函数2221y x mx m =-+-(m 为常数).(1)证明:不论 m 为何值,该函数的图像与 x 轴总有两个公共点;(2)当 m 的值改变时,该函数的图像与 x 轴两个公共点之间的距离是否改变?若不变, 请求出距离;若改变,请说明理由.【答案】(1)详见解析;(2)图像与x 轴两个公共点之间的距离为()()112m m +--=【分析】(1)证明判别式△>0即可证得;(2)将二次函数表达式化简成交点式,得到函数与x 轴交点,通过交点可以证明函数的图像与 x 轴两个公共点之间的距离为定值即可.【详解】解:(1)证明:令0y =, 得22210x mx m -+-=()()222424140b ac m m -=-⨯-=> ∴ 此方程有两个不相等的实数根.∴ 不论m 为何值,该函数的图像与x 轴总有两个公共点.(2)()()()22221111y x mx m x m x m x m =-+-=--=-+-- 当110,1,1y x m x m ==-=+时,∴ 图像与x 轴两个公共点坐标为()()1,0,1,0m m -+∴ 图像与x 轴两个公共点之间的距离为()()112m m +--=.【点睛】本题考查了二次函数与x 轴的交点,可以利用判别式△的符号进行判断,还涉及到因式分解.23.已知关于x 的一元二次方程2(2)10x m x m +++-=,(1) 求证:无论m 为何值,方程总有两个不相等的实数根;(2) 当m 为何值时,该方程两个根的倒数之和等于1.【答案】(2)见解析 (2)12- 【解析】(2)根据方程的系数结合根的判别式,可得出△=2m 2+4>0,进而即可证出:方程总有两个不相等的实数根;(2)利用根与系数的关系列式求得m 的值即可.【详解】证明:△=(m+2)2-4×2×(m-2)=m 2+2.∵m 2≥0,∴m 2+2>0,即△>0,∴方程总有两个不相等的实数根.(2)设方程的两根为a 、b ,利用根与系数的关系得:a+b=-m-2,ab=m-2 根据题意得:11a b+=2, 即:21m m =2 解得:m=-12, ∴当m=-12时该方程两个根的倒数之和等于2. 【点睛】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.24.如图,在平面直角坐标系中,△ABC 的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O 为位似中心,△ABC 与△A 1B 1C 1位似比为1:2,在y 轴的左侧,请画出△ABC 放大后的图形△A 1B 1C 1.【答案】见解析.【分析】根据位似图形的画图要求作出位似图形即可.【详解】解:如图所示,△A1B1C1即为所求.【点睛】本题主要考察位似图形的作图,掌握位似图形的画法是解题的关键.25.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,1.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【答案】(1)结果见解析;(2).【解析】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的1种情况,∴两个数字的积为奇数的概率为:.试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由两个数字的积为奇数的情况,再利用概率公式即可求得答案.26.如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.(1)求证:CD是⊙O的切线;(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.【答案】(1)证明见解析;(2)BE的长是15 4【分析】(1)连接OC,根据条件先证明OC∥AD,然后证出OC⊥CD即可;(2)先利用勾股定理求出AE的长,再根据条件证明△ECO∽△EDA,然后利用对应边成比例求出OC的长,再根据BE=AE﹣2OC计算即可.【详解】(1)连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD ⊥CD ,∴OC ⊥CD ,∵OC 为⊙O 半径,∴CD 是⊙O 的切线.(2)在Rt △ADE 中,由勾股定理得:,∵OC ∥AD ,∴△ECO ∽△EDA , ∴OC EO AD AE= ∴15915OC OC -= 解得:OC=458, ∴BE=AE ﹣2OC=15﹣2×458=154, 答:BE 的长是154. 27.在平面直角坐标系xOy 中,抛物线2y ax bx c =++与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1) ①直接写出抛物线的对称轴是________;②用含a 的代数式表示b ;(2)横、纵坐标都是整数的点叫整点.点A 恰好为整点,若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.【答案】(1)①直线x =1;②b =-1a ;(1)-1≤a <-1或1<a≤1.【分析】(1) ①根据抛物线的对称性可以直接得出其对称轴;②利用对称轴公式2b x a =-进一步求解即可; (1)分两种情况:①0a >,②0a <,据此依次讨论即可.【详解】解:(1)①∵当x=0时,y=c ,∴点A 坐标为(0,c ),∵点A 向右平移1个单位长度,得到点B ,∴点B (1,c ),∵点B 在抛物线上,∴抛物线的对称轴是:直线x=1;故答案为:直线x=1;②∵抛物线的对称轴是直线:x=1,∴12b a-=,即2b a =-; (1)①如图,若0a >,因为点A (0,c ),B (1,c )都是整点,且指定区域内恰有一个整点,因此这个整点D 的坐标必为(1,c -1),但是从运算层面如何保证“恰有一个”呢,与抛物线的顶点C (1,c -a )做位置与数量关系上的比较,必须考虑到紧邻点D 的另一个整点E (1,c -1)不在指定区域内,所以可列出不等式组:12c c a c c a ->-⎧⎨-≤-⎩,解得:12a <≤; ②如图,若0a <,同理可得:12c c a c c a +<-⎧⎨+≥-⎩,解得:21a -≤<-; 综上所述,符合题意的a 的取值范围是-1≤a<-1或1<a≤1.【点睛】本题主要考查了抛物线的性质和一元一次不等式组的综合运用,熟练二次函数的性质、灵活应用数形结合的数学思想是解题关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.如图,已知在△ABC 纸板中,AC =4,BC =8,AB =11,P 是BC 上一点,沿过点P 的直线剪下一个与△ABC 相似的小三角形纸板,如果有4种不同的剪法,那么CP 长的取值范围是( )A .0<CP≤1B .0<CP≤2C .1≤CP <8D .2≤CP <8 【答案】B【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP 的长的取值范围.【详解】如图所示,过P 作PD ∥AB 交AC 于D 或PE ∥AC 交AB 于E,则△PCD ∽△BCA 或△BPE ∽△BCA,此时0<PC <8;如图所示,过P 作∠BPF =∠A 交AB 于F,则△BPF ∽△BAC,此时0<PC <8;如图所示,过P 作∠CPG =∠B 交AC 于G,则△CPG ∽△CAB,此时,△CPG ∽△CBA,当点G 与点A 重合时,CA 1=CP×CB,即41=CP×8,∴CP =1,∴此时,0<CP≤1;综上所述,CP 长的取值范围是0<CP≤1.故选B .【点睛】本题主要考查了相似三角形的性质,解决本题的关键是要熟练掌握相似三角形的性质.3.如图,已知二次函数y=(x +1)2﹣4,当﹣2≤x≤2时,则函数y 的最小值和最大值( )A .﹣3和5B .﹣4和5C .﹣4和﹣3D .﹣1和5【答案】B 【解析】先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【详解】∵二次函数y=(x+1)2-4,对称轴是:x=-1∵a=-1>0,∴x >-1时,y 随x 的增大而增大,x <-1时,y 随x 的增大而减小,由图象可知:在-2≤x≤2内,x=2时,y 有最大值,y=(2+1)2-4=5,x=-1时y 有最小值,是-4,故选B .【点睛】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.4.如图,抛物线y =()20ax bx c a ++≠与x 轴交于点()3,0-,其对称轴为直线12x =-,结合图象分析下列结论:① 0abc >; ② 30a c +>;③ 244b ac a->0; ④当0x <时, y 随 x 的增大而增大;⑤ 244am bm +≤2a b -(m 为实数),其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于点(-3,0),其对称轴为直线12x =-, ∴抛物线y=ax 2+bx+c (a≠0)与x 轴交于点(-3,0)和(2,0),且-2b a =1-2, ∴a=b ,由图象知:a<0,c>0,b<0,∴abc>0,故结论①正确;∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于点(-3,0),∴9a-3b+c=0,∵a=b ,∴c=-6a ,∴3a+c=-3a>0,故结论②正确; ∵当12x =-时,y=244ac b a->0, ∴244b ac a -<0,故结论③错误; 当x <1-2时,y 随x 的增大而增大,当1-2<x<0时,y 随x 的增大而减小,故结论④错误; ∵a=b ,∴244am bm +≤2a b -可换成244am am +≤a -,∵a <0,∴可得244m m +≥-1,即4m 2+4m+1≥0(2m+1)2≥0,故结论⑤正确;综上:正确的结论有①②⑤,故选:B .【点睛】本题考查了二次函数图象与系数的关系,二次函数的性质,掌握知识点是解题关键.5.如图,在O 中,AB 所对的圆周角050ACB ∠=,若P 为AB 上一点,055AOP ∠=,则POB ∠的度数为( )A .30°B .45°C .55°D .60°【答案】B 【解析】根据圆心角与圆周角关系定理求出∠AOB 的度数,进而由角的和差求得结果.【详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B .【点睛】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.6.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【答案】A 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.二次函数2y x 经过平移后得到二次函数2(1)1y x =-+,则平移方法可为( )A .向左平移1个单位,向上平移1个单位B .向左平移1个单位,向下平移1个单位C .向右平移1个单位,向下平移1个单位D .向右平移1个单位,向上平移1个单位【答案】D【分析】解答本题可根据二次函数平移的特征,左右平移自变量x 加减(左加右减),上下平移y 加减(下加上减),据此便能得出答案.【详解】由2(1)1y x =-+得21(1)y x -=-平移方法可为向右平移1个单位,向上平移1个单位故答案为:D .【点睛】本题考查了二次函数的平移问题,掌握次函数的平移特征是解题的关键.8.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( )A .k≤﹣4B .k <﹣4C .k≤4D .k <4 【答案】C【解析】根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2﹣1ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.下图中,不是中心对称图形的是( ) A . B . C . D .【答案】D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A 、是中心对称图形,故此选项不合题意;B 、是中心对称图形,故此选项不合题意;C 、是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项符合题意;故选:D.【点睛】考查了中心对称图形,关键是掌握中心对称图形定义.10.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.11.关于x的一元二次方程x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣2 B.2 C.5 D.﹣4【答案】B【分析】把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,然后解关于m的方程即可.【详解】解:把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,解得m=1.故选:B.【点睛】本题主要考查对一元二次方程的解,解一元一次方程,等式的性质等知识点的理解和掌握12.如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=63,则阴影部分面积为()A.πB.3πC.6πD.12π【答案】D【解析】根据题意得出△COB是等边三角形,进而得出CD⊥AB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案.【详解】解:连接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO ,∴△COB 是等边三角形,∵E 为OB 的中点,∴CD ⊥AB ,∵CD=63, ∴EC=33,∴sin60°×CO=33,解得:CO=6,故阴影部分的面积为:21206360π⨯=12π. 故选:D .【点睛】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正确得出CO 的长是解题关键.二、填空题(本题包括8个小题) 13.如图,A 是反比例函数y =4x(x >0)图象上一点,以OA 为斜边作等腰直角△ABO ,将△ABO 绕点O 以逆时针旋转135°,得到△A 1B 1O ,若反比例函数y =x k 的图象经过点B 1,则k 的值是_____.【答案】-1【分析】过点A 作AE ⊥y 轴于点E ,过点B 1作BF ⊥y 轴于点F ,则可证明△OB 1F ∽△OAE ,设A (m ,n ),B 1(a ,b ),根据三角形相似和等腰三角形的性质求得2.2a ,再由反比例函数k 的几何意义,可得出k 的值.【详解】过点A 作AE ⊥y 轴于点E ,过点B 1作BF ⊥y 轴于点F ,∵等腰直角△ABO 绕点O 以逆时针旋转135°,∴∠AOB 1=90°,∴∠OB 1F =∠AOE ,∵∠OFB 1=∠AEF =90°,∴△OB 1F ∽△OAE , ∴1B F OE =OF AF =1OB OA , 设A (m ,n ),B 1(a ,b ),∵在等腰直角三角形OAB 中,A OB O =22,OB =OB 1, ∴a n =b m =22, ∴m =2b .n =﹣2a ,∵A 是反比例函数y =4x (x >0)图象上一点, ∴mn =4,∴﹣2a•2b =4,解得ab =﹣1.∵反比例函数y =k x的图象经过点B 1, ∴k =﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数k 的几何意义及旋转的性质,等腰直角三角形的性质,反比例函数k 的几何意义是本题的关键.14.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1. 【答案】14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.。

{3套试卷汇总}2018年江苏省名校九年级上学期期末达标检测数学试题

{3套试卷汇总}2018年江苏省名校九年级上学期期末达标检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一元二次方程2250x x --=的左边配成完全平方后所得方程为( )A .2 (1)6x +=B .2 (1)6x -=C .2 (2)9x +=D .2 (2)9x -=【答案】B【解析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】把方程x 2﹣2x ﹣5=0的常数项移到等号的右边,得到x 2﹣2x =5,方程两边同时加上一次项系数一半的平方,得到:x 2﹣2x+(﹣1)2=5+(﹣1)2,配方得:(x ﹣1)2=1.故选B .【点睛】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 2.如图,△ABC 中,D 是AB 的中点,DE ∥BC ,连结BE ,若S △DEB =1,则S △BCE 的值为( )A .1B .2C .3D .4【答案】B 【解析】根据三角形中位线定理和三角形的面积即可得到结论.【详解】∵D 是AB 的中点,DE ∥BC ,∴CE =AE .∴DE =12BC , ∵S △DEB =1,∴S △BCE =2,故选:B .【点睛】本题考查了三角形中位线定理,熟练掌握并运用三角形中位线定理是解题的关键.3.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD =4,AB =6,BC =12,则DE 等于( )A .4B .6C .8D .10【答案】C 【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质可得出AD DE AB BC =,再代入AD =4,AB =6,BC =12即可求出DE 的长.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD DE AB BC =,即4612DE =, ∴DE =1.故选:C .【点睛】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长.4.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .6B .8C .10D .12【答案】A 【分析】连接OD ,由直径AB 与弦CD 垂直,根据垂径定理得到E 为CD 的中点,由CD 的长求出DE 的长,又由直径的长求出半径OD 的长,在直角三角形ODE 中,由DE 及OD 的长,利用勾股定理即可求出OE 的长.【详解】解:如图所示,连接OD .∵弦CD ⊥AB ,AB 为圆O 的直径,∴E 为CD 的中点,又∵CD=16,∴CE=DE=12CD=8, 又∵OD=12AB=10, ∵CD ⊥AB ,∴∠OED=90°,在Rt △ODE 中,DE=8,OD=10,根据勾股定理得:OE=22OD DE =6,则OE 的长度为6,故选:A . 【点睛】本题主要考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理是解答此题的关键.5.如图,△ABC 内接于⊙O ,OD ⊥AB 于D ,OE ⊥AC 于E ,连结DE .且DE =322,则弦BC 的长为( )A 2B .2C .2D 6【答案】C 【分析】由垂径定理可得AD =BD ,AE =CE ,由三角形中位线定理可求解.【详解】解:∵OD ⊥AB ,OE ⊥AC ,∴AD =BD ,AE =CE ,∴BC =2DE =2×322=2 故选:C .【点睛】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识,灵活运用这些性质进行推理是本题的关键.6.下列事件中,为必然事件的是( )A .太阳从东方升起B .发射一枚导弹,未击中目标C .购买一张彩票,中奖D .随机翻到书本某页,页码恰好是奇数 【答案】A【分析】根据必然事件以及随机事件的定义对各选项进行逐一分析即可.【详解】A 、太阳从东方升起是必然事件,故本选项正确;B 、发射一枚导弹,未击中目标是随机事件,故本选项错误;C 、购买一张彩票,中奖是随机事件,故本选项错误;D 、随机翻到书本某页,页码恰好是奇数是随机事件,故本选项错误.故选:A .【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.7.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3)【答案】C【分析】由题意使x=0,求出相应的y 的值即可求解.【详解】∵y=3(x ﹣2)2﹣5, ∴当x=0时,y=7, ∴二次函数y=3(x ﹣2)2﹣5与y 轴交点坐标为(0,7). 故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.8.下列计算正确的是( )A =B .3+=C 2=D .22)7= 【答案】C【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的除法法则对C 进行判断;根据完全平方公式对D 进行判断.【详解】A 、原式=﹣,所以A 选项错误;B 、3B 选项错误;C 2,所以C 选项正确;D 、原式=+4=D 选项错误.故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.如图,圆O 是Rt △ABC 的外接圆,∠ACB=90°,∠A=25°,过点C 作圆O 的切线,交AB 的延长线于点D ,则∠D 的度数是( )A.25°B.40°C.50°D.65°【答案】B【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【详解】连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故选B.10.若气象部门预报明天下雨的概率是65%,下列说法正确的是()A.明天一定会下雨B.明天一定不会下雨C.明天下雨的可能性较大D.明天下雨的可能性较小【答案】C【分析】根据概率的意义找到正确选项即可.【详解】解:气象部门预报明天下雨的概率是65%,说明明天下雨的可能性比较大,所以只有C合题意.故选:C.【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.11.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.213π-C.π﹣4 D.223π-【答案】A【分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC-S△OBC即可求得.【详解】∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:222OB=,∴22 BC=∴S阴影=S扇形OBC-S△OBC=290212222 3602ππ⨯-⨯⨯=-,故选:A.【点睛】本题考查了扇形的面积公式:2360n RSπ⋅=(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.12.如图,⊙O是△ABC的外接圆,连接OA、OB,∠C=40°,则∠OAB的度数为()A.30°B.40°C.50°D.80°【答案】C【分析】直接利用圆周角定理得出∠AOB的度数,再利用等腰三角形的性质得出答案. 【详解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=12(180°﹣80°)=50°.故选:C.【点睛】本题主要考查了三角形的外接圆与外心,圆周角定理. 正确得出∠AOB的度数是解题关键.二、填空题(本题包括8个小题)13.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.【答案】20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【详解】设黄球的个数为x个,∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,∴x50=60%,解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.14.已知关于x的一元二次方程20x k-+=有两个不相等的实数根,则k的取值范围是________.【答案】3k<【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.关于x 的方程263x x -+=0的两根分别是1x 和2x ,且1211+x x =__________. 【答案】2【分析】根据一元二次方程根与系数的关系即可解答.【详解】∵方程263x x -+=0的两根分别是1x 和2x ,∴126x x +=,123x x = , ∴1211+x x =1212623x x x x +==, 故答案为:2.【点睛】此题考查根与系数的关系,熟记两个关系式并运用解题是关键.16.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).【答案】>【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.17.若(m+1)x m (m+2﹣1)+2mx ﹣1=0是关于x 的一元二次方程,则m 的值是_____.【答案】﹣2或2【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(2)未知数的最高次数是2;(2)二次项系数不为2.由这两个条件得到相应的关系式,再求解即可.【详解】由题意得:(21)2{10m m m -≠+=+ 解得m =−2或2.故答案为:﹣2或2.【点睛】考查一元二次方程的定义的运用,一元二次方程注意应着重考虑未知数的最高次项的次数为2,系数不为2.18.如图,在△ABC 中,D 、E 分别是边AB 、AC 上的两点,且DE //BC ,BD =AE ,若AB =12cm ,AC =24cm ,则AE =_____.【答案】1cm【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案.【详解】解:∵DE//BC , ∴AD AE AB AC =,即412122AE AE -=, 解得:AE =1. 故答案为:1cm .【点睛】本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键.三、解答题(本题包括8个小题)19.如图,已知直线AB 与轴交于点C ,与双曲线交于A (3,)、B (-5,)两点.AD ⊥轴于点D ,BE ∥轴且与轴交于点E.(1)求点B 的坐标及直线AB 的解析式;(2)判断四边形CBED 的形状,并说明理由.【答案】(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得. ∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵ BE∥轴,∴点E的坐标是(0,-4).而CD =5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.∴□CBED是菱形20.城市规划期间,欲拆除一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD 的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30•°,D、E之间是宽为2m的人行道.试问:在拆除电线杆AB时,为确保行人安全,•是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心,以AB•长为半径的圆形区域为危险区域.)(3≈1.732,2≈1.414)【答案】不必封上人行道【分析】过C点作CG⊥AB交AB于G.求需不需要将人行道封上实际上就是比较AB与BE的长短,已知BD,DF的长度, 那么AB的长度也就求出来了,现在只需要知道BE的长度即可,有BF的长,ED的长,缺少的是DF的长,根据“背水坡CD的坡度i=1: 2,坝高CF为2m” DF是很容易求出的,这样有了CG的长,在△ACG中求出AG的长度,这样就求出AB的长度,有了BE的长,就可以判断出是不是需要封上人行道了.【详解】过C点作CG⊥AB交AB于G.在Rt△CDF中,水坡CD的坡度i=2:1,即tan∠CDF=2,∵CF=2,∴DF=1.∴BF=BD+DF=12+1=13.∴CG=13,在Rt△ACG中,∵∠ACG=30°,∴AG=CG·tan30°=13×33=7.5 m∴AB=AG+BG=7.5+2=9.5m,BE=12m,AB<BE,∴不必封上人行道.【点睛】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.如图,在平面直角坐标系xOy中,反比例函数kyx=的图象与一次函数112y x=-+的图象的一个交点为(,2)A a.(1)求这个反比例函数的解析式;(2)求两个函数图像的另一个交点B的坐标;并根据图象,直接写出关于x的不等式112kxx-+<的解集.【答案】(1)4y x=- (2)20x -<<或4x > 【分析】(1)把A 坐标代入一次函数解析式求出a 的值,确定出A 的坐标,再代入反比例解析式求出k 的值,即可确定出反比例解析式;(2)解析式联立求得B 的坐标,然后根据图象即可求得.【详解】解:(1) ∵点(,2)A a 在一次函数112y x =-+图象上, ∴ 1122a -+= ∴ 2a =-∴ (2,2)A -∵点A 在反比例函数k y x =的图象上, ∴4k =-.∴ 4y x=- (2)由11112224y x x y y x ⎧=-+⎪=-⎧⎪⇒⎨⎨=⎩⎪=-⎪⎩或2241x y =⎧⎨=-⎩ ∴(4,1)B - 由图象可知,1412x x-+<-的解集是20x -<<或 4x >.【点睛】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及反比例函数图象上点的坐标特征,根据一次函数图象上点的坐标特征求出点A、B的坐标是解题的关键.22.解方程(1)2x2﹣6x﹣1=0(2)(x+5)2=6(x+5)【答案】(1)3112x±=;(2)x=﹣5或x=1.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)∵a=2,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×2×(﹣1)=44>0,则x621131142±±==(2)∵(x+5)2﹣6(x+5)=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得:x=﹣5或x=1.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.23.操作:在△ABC中,AC=BC=4,∠C=90°,将一块直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。

江苏省姜堰区九年级数学上学期期末考试试题苏科版

江苏省姜堰区九年级数学上学期期末考试试题苏科版

江苏省姜堰区2018 届九年级数学上学期期末考试一试题(考试时间:120 分钟满分:150分)请注意:全部试题的答案均填写在答题卡上,答案写在试卷上无效。

一、选择题:(每题 3 分,共 18 分)1. sin 45°的值为A.1B.C.D.2.一元二次方程 x2+px﹣ 6=0 的一个根为 2,则 p 的值为A.﹣ 1B.﹣ 2C.1D.23.把抛物线y=﹣ 2x2向上平移 1 个单位,再向右平移 1 个单位,获取的抛物线的分析式是A. y=﹣ 2(x+1)2+1B. y=﹣ 2( x﹣ 1)2+1C. y=﹣ 2(x﹣ 1)2﹣ 1D. y=﹣ 2( x+1)2﹣ 14.如图, D 是△ ABC一边 BC上一点,连结 AD,使△ ABC∽△ DBA 的条件是A. AC: BC=AD:BD B. AC: BC=AB: ADC. AB2=CD?BC D. AB2=BD?BC5.如图,在平面直角坐标系中,边长为6 的正六边形 ABCDEF的对称中心与原点O 重合,点 A 在 x轴上,点 B 在反比率函数 y=位于第一象限的图象上,则k 的值为A. 9B. 9C. 3D. 36.如图,在平面直角坐标系中,以为圆心作⊙交轴正半轴于,P 为⊙O上的动点O O x A..(点 P 不在座标轴上),过点 P 作 PC⊥ x 轴, PD⊥ y 轴于点 C、D,B 为 CD中点,连结AB则∠ BAO的最大值是A.15B.30C.45D.601二、填空题:(每题 3 分,共 30 分)7.抛物线 y=2x 2﹣ 3 的极点坐标为▲.8.已知方程 x2 +5x+1=0 的两个实数根分别为x1、 x2,则 x1 +x2 =▲.9.把一块直尺与一块三角板如图搁置,若 sin ∠1=,则∠2的度数为▲.10.在学校的歌唱竞赛中, 10 名选手的成绩如统计图所示,则这 10名选手成绩的众数是▲.11.拦水坝横断面以下图,迎水坡 A B的坡比是1:3,坝高 BC=10m,则坡面 AB的长度是▲.12.如图,直线 l ∥l∥l,直线 AC分别交 l、 l、l3于点 A、 B、 C;过点 B 的直线 DE分别交 l、123121l 3于点 D、 E.若 AB=2, BC=4, BD=1.5,则线段DE的长为▲.13.已知圆锥的母线长为10,底面圆的直径为12,则此圆锥的侧面积是▲.14.如图, AB是⊙ O的直径, CD是⊙ O的弦,若∠ BAC=22°,则∠ ADC的度数是▲.15.某种商品每件进价为20 元,检查表示:在某段时间内若以每件x 元(20≤ x≤30,且 x 为整数)销售,可卖出(30- x)件 . 若使收益最大,每件的售价应为________▲ ________元 .16.如图,一次函数y 13 x 的图像与二次函数y 2x28x 3 的对称轴交于 A 点 , 函数3y kx (k0 )的图像与y13 x的图像、二次函数y 2x28x 3的对称轴分别交于B点和C3点 , 若△ ABC是等腰三角形,则tan ACB =▲.三、解答题:(共 102 分)217. (此题满分 10 分)计算或解方程:1 12 x3tan 301.( 1)计算 :12 ;( 2) 解方程 :x 11 2x 118. (此题满分 8 分)已知 M=5y 23 , N=4 y 4 y 2 .( 1)求当 M=N 时 y 的值;( 2)求 M-N 的最值.19. (此题满分 8 分)某商场今年 8~ 12 月 A 、 B 两种品牌的冰箱的销售状况以下表(单位:台):品牌 8 月 9 月10 月 11 月 12 月A 13 14 15 16 17 B1014151620经过整理,获取数据剖析表以下:品牌 均匀数 ( 台) 中位数 ( 台)方差(台 2) A15b2Ba 15c( 1)求出表中 a 、 b 、c 的值;( 2)比较该商场 8~ 12 月这两种品牌冰箱月销售量的稳固性.20. (此题满分 10 分)我学校招集留守小孩过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2 个,豆沙粽 1 个,肉粽 1 个(粽子外观完整同样) .( 1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;( 2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰巧取到两个白粽子的概率.321.(此题满分 10 分)某企业今年销售一种产品, 1 月份获取收益 20 万元,因为产品热销,收益逐月增添, 3 月份的收益比 2 月份的收益增添 4.8 万元,假定该产品收益每个月的增添率同样,求这个增添率 .22. (此题满分 10 分)如图,已知抛物线y x2kx 6的图像与 x 轴交于点 A 和 B,点 A 在点 B的左侧,与 y 轴的交点为 C,tan ∠OCB1.2(1)求k的值;(2)若点 P(m, -2m)在该抛物线上,求 m的值.23.(此题满分 10 分)以下图,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的 A 处,测得一辆汽车从 B 处行驶到 C 地方用时间为 0.9 秒,已知∠ B=30°,∠ C=45°.(1)求 B, C之间的距离;(保存根号)(2)假如此地限速为 80km/h,那么这辆汽车能否超速?请说明原因.(参照数据:≈1.7 ,≈1.4 )24.(此题满分 10 分)如图,四边形ABCD为⊙O的内接四边形,AC为⊙O 的直径 ,DB=DC,延伸 BA、 CD订交于 E 点 .(1) 求证 : ∠EAD=∠CAD;3,求 AD的长(2) 若 AC=10, sin BAC5425.(此题满分 12 分)在平面直角坐标系中,设二次函数y =( +)(﹣﹣ 1)(>0)的图象与 x 轴交于 A、B 两点( A x a x a a在 B的右侧),与 y 轴交于 C 点 .( 1)求抛物线y=( x+a)( x﹣ a﹣1)的对称轴;( 2)若点 D( 22a, m )在二次函数y=(x+a)( x﹣a﹣ 1)的图像上,此中m<0,a 为整数.① a 的值;y x a x a 1 C②点 P 为二次函数 =( + )(﹣﹣)对称轴上一点 , △ACP 为以 AC为腰的等腰三角形 , 求 P 点的坐标 .26.(此题满分 14 分)如图,已知矩形ABCD中AB=2,BC=a, E 为 DC延伸线上一点,CE=1.(1)连结 AC、 AE,求tan ACB? tan BAE 的值;(2)P为线段BC上的点,且以P、A、B三点为极点的三角形与以P、C、 E 三点为极点的三角形相像 .若 a=4,求线段 BP的长;若知足条件的点P 有且只有2个,求 a 的值或取值范围.5参照答案选择题: CCBDBB填空题: 7.(0, -3 ) 8 .-5 9 . 135°10 .90 分 11 .20m 12 .4.5 13. 6014 . 68° 15 . 2516 .3, 33解答题:17.(1) 33 (2)x=3,查验略18.(1)y=1 或 y=3 (2)当 x=2 时, y 有最小值 -119.( 1)a=15,b=15, c=10.4 ( 2)因为 x A x B 而 S A2S B 2 ,因此该商场 8– 12 月 A 种品牌冰箱月销售量稳固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
2
a
15
c
( 1)求出表中 a、 b、c 的值; ( 2)比较该商场 8~ 12 月这两种品牌冰箱月销售量的稳定性.
20. (本题满分 10 分)
我学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽
2 个,豆沙粽 1 个,
肉粽 1 个(粽子外观完全一样) .
( 1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是
A.﹣ 1
B.﹣ 2
C. 1
D. 2
3. 把抛物线 y=﹣ 2x2 向上平移 1 个单位,再向右平移 1 个单位,得到的抛物线的解析式是
A. y=﹣ 2(x+1) 2+1
B. y=﹣ 2( x﹣ 1)2+1
2
C. y=﹣ 2(x﹣ 1) ﹣ 1
2
D. y=﹣ 2( x+1) ﹣ 1
4. 如图, D 是△ ABC一边 BC上一点,连接 AD,使△ ABC∽△ DBA 的条件是
将 x 2 a 代入方程(Ⅱ)得 a 3
3 (舍负取正)
综上所述: a 2 2 或 3
箱月销售量稳定。
1
1
20.( 1)
(2)树状图略, P (小明恰好取到两个白粽子) =
4
4
21.设增长率为 x,根据题意得: 20(1 x)2 20(1 x) 4.8 ,解得: x1 1.2(舍去) x2 0.2 ,
答:这个增长率为 20% 22.( 1) k=-1 ( 2)m=-3 或 m=2
23.( 1) B,C 之间的距离为( 10 3 10 ) m
14 . 68° 15 . 25 16 . 3 , 3 3
解答题:
17.(1) 3 3 (2)x=3, 检验略
18.(1)y=1 或 y=3 (2)当 x=2 时, y 有最小值 -1
19.( 1)a=15,b=15, c=10.4 (2)因为 x A x B 而 SA 2 SB 2 ,所以该商场 8–12 月 A 种品牌冰
16. 如图 , 一次函数 y 1 3 x 的图像与二次函数 3
y 2 x2 8x 3 的对称轴交于 A 点 , 函数
y kx ( k 0 ) 的图像与 y 1 3 x的图像、二次函数 y 2 x2 8x 3 的对称轴分别交于 B 点和 C
3
点 , 若△ ABC是等腰三角形,则 tan ACB = ▲ .
二、填空题: (每题 3 分,共 30 分)
7. 抛物线 y=2x 2﹣ 3 的顶点坐标为


8. 已知方程 x2 +5x+1=0 的两个实数根分别为 x1、 x2,则 x 1 +x2 =


9. 把一块直尺与一块三角板如图放置, 若 sin ∠1= ,则∠2的度
数为


10. 在学校的歌咏比赛中, 10 名选手的成绩如统计图所示,则这
22. (本题满分 10 分)
如图,已知抛物线 y x2 kx 6 的图像与 x 轴交于点 A 和 B,点 A 在点 B 1
的左边,与 y 轴的交点为 C,tan ∠OCB .
2 ( 1)求 k 的值;
( 2)若点 P(m, -2m)在该抛物线上,求 m的值.
23. (本题满分 10 分) 如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,
检测点设在距离公路 10m的 A 处,测得一辆汽车从 B 处行驶到 C 处所用时 间为 0.9 秒,已知∠ B=30°,∠ C=45°. ( 1)求 B, C之间的距离; (保留根号) ( 2)如果此地限速为 80km/h,那么这辆汽车是否超速?请说明理由. ( 参考数据: ≈1.7 , ≈1.4 )
AB x

2得 x
PC CE a x 1
PB AB x
当△ PBA∽△ ECP时,可得

2 得 x 2 ax
EC PC 1 a x
2 a (Ⅰ) 3 2 0 (Ⅱ)
因为满足条件的点 P 有且只有两个,所以有两种情况: 1) 方程(Ⅱ)有两个相等的实数根
由△ =0,得 a 2 2 (舍负取正)
2) 方程(Ⅰ)的解也是方程(Ⅱ)的解
(2) P 为线段 BC上的点,且以 P、 A、 B 三点为顶点的三角形与以 P、C、 E 三点为顶点的三角形 相似 . 若 a= 4,求线段 BP的长; 若满足条件的点 P 有且只有 2 个,求 a 的值或取值范围.
Hale Waihona Puke 参考答案 选择题: CCBDBB 填空题: 7.(0, -3 ) 8 . -5 9 . 135° 10 . 90 分 11 .20m 12 .4.5 13 . 60
a 为整数 . ① a 的值; ②点 P 为二次函数 y=( x+a)( x﹣ a﹣1)对称轴上一点 , △ACP 为以 AC为腰的C
等腰三角形 , 求 P 点的坐标 .
26. (本题满分 14 分) 如图,已知矩形 ABCD中 AB=2, BC= a, E 为 DC延长线上一点, CE=1.
(1)连接 AC、 AE,求 tan ACB tan BAE 的值 ;
(2) ①由
a 得: 1 a 2 ,因为 a 为整数,所以 a 1
2 2a a 1 3
② P( 1 , 11 ),( 1 , - 11 ),( 1 , - 2+ 19 ) , ( 1 ,- 2- 19 )
22
2
2
2
2
2
2
26.( 1) 2 3
(2) ①线段 BP的长为 2
2, 2
2或8 3
②当△ PBA∽△ PCE时,可得 PB

( 2)小明在甲盘和乙盘中先后各取了一个粽子, 请用树状图或列表法求小明恰好取到两个白粽子的
概率.
21. (本题满分 10 分) 某公司今年销售一种产品, 1 月份获得利润 20 万元,由于产品畅销,利润
逐月增加, 3 月份的利润比 2 月份的利润增加 4.8 万元, 假设该产品利润每月的 增长率相同,求这个增长率 .
24. (本题满分 10 分) 如图,四边形 ABCD为⊙O的内接四边形, AC为⊙O 的直径 ,DB=DC,延长 BA、 CD相交于 E 点 .
(1) 求证 : ∠EAD=∠CAD;
3 (2) 若 AC=10, sin BAC , 求 AD的长
5
25. (本题满分 12 分) 在平面直角坐标系中,设二次函数


13. 已知圆锥的母线长为 10,底面圆的直径为 12,则此圆锥的侧面积是


14. 如图, AB是⊙ O的直径, CD是⊙ O的弦,若∠ BAC=22°,则∠ ADC的度数是


15. 某种商品每件进价为 20 元,调查表明:在某段时间内若以每件 x 元( 20≤ x≤30,且 x 为整数)
出售,可卖出( 30- x)件 . 若使利润最大,每件的售价应为 ________▲ ________元 .
10 名选手成绩的众数是


11. 拦水坝横断面如图所示, 迎水坡 AB 的坡比是 1: 3 ,坝高 BC= 10m,
则坡面 AB的长度是


12. 如图,直线 l 1∥l2∥l3,直线 AC分别交 l 1、 l 2、l 3 于点 A、 B、 C;过点 B 的直线 DE分别交 l 1、
l 3 于点 D、 E.若 AB=2, BC=4, BD=1.5,则线段 DE的长为
y=( x+a)( x﹣a﹣ 1)(a>0)的图象与 x 轴交于 A、B 两点( A
在 B的右边),与 y 轴交于 C 点 .
( 1)求抛物线 y=( x+a)( x﹣ a﹣ 1)的对称轴 ;
( 2)若点 D( 2 2a, m ) 在二次函数 y=(x+a)( x﹣a﹣ 1)的图像上,其中 m<0,
(2) V 10 3 10 30 米 / 秒 =108km/h > 80 km/h ,所以这辆汽车超速了。 0.9
24.( 1)略
( 2)由△ EAD∽△ ECB得 AD AE ED BC CE BE
AD 10 ED 得 :AD= 10
6 2ED 18
25.(1) 对称轴为 : 直线 x 1 2
2 2a
B. 9
6. 如图,在平面直角坐标系中,以
C. 3
D. 3
O为圆心作⊙ O交 x 轴正半轴于 A, P为⊙ O上的动.点.
(点 P 不在坐标轴上) ,过点 P 作 PC⊥ x 轴, PD⊥ y 轴于点 C、D,B 为 CD中点,连接 AB则∠ BAO的最
大值是
A. 15
B. 30
C. 45
D. 60
A. AC: BC=AD: BD C. AB2=CD?BC
B. AC: BC=AB: AD D. AB2=BD?BC
5. 如图,在平面直角坐标系中,边长为 6 的正六边形 ABCDEF的对称中心与原点 O 重合,点 A 在 x
轴上,点 B 在反比例函数 y= 位于第一象限的图象上,则 k 的值为
A. 9
19. (本题满分 8 分)
某商场今年 8~ 12 月 A、 B两种品牌的冰箱的销售情况如下表
品牌
8月
9月
10 月
11 月
( 单位 : 台 ): 12 月
A
13
14
15
16
17
B
10
14
15
16
20
通过整理,得到数据分析表如下 :
品牌 A B
平均数 ( 台 ) 中位数 ( 台) 方差 ( 台 2)
15
三、解答题: (共 102 分)
17. (本题满分 10 分)计算或解方程:
相关文档
最新文档