(江苏专版)2020版高考数学一轮复习第九章解析几何第三节圆与方程教案理(含解析)苏教版
江苏专版版高考数学一轮复习第九章解析几何第三节直线与圆圆与圆的位置关系实用课件文0530479
(2)∵(3-1)2+(1-2)2=5>4,∴点 M 在圆 C 外部. 当过点 M 的直线斜率不存在时,直线方程为 x=3,即 x-3=0. |1-3| 又点 C(1,2)到直线 x-3=0 的距离 d= =2=r, 1 即此时满足题意,所以直线 x=3 是圆的切线. 当切线的斜率存在时,设切线方程为 y-1=k(x-3), 即 kx-y+1-3k=0, |k-2+1-3k| 3 则圆心 C 到切线的距离 d= =r=2,解得 k= . 2 4 k +1 3 ∴切线方程为 y-1= (x-3),即 3x-4y-5=0. 4
考点贯通 抓高考命题的“形”与“神”
直线与圆的位置关系问题
[例 1] (1)直线 l:mx-y+1-m=0 与圆 C:x2+(y-1)2
=5 的位置关系是________. (2)若直线 x+my=2+m 与圆 x2+y2-2x-2y+1=0 相 交,则实数 m 的取值范围为________.
[解析]
综上可得,过点 M 的圆 C 的切线方程为 x-3=0 或 3x-4y-5=0.
∵|MC|= 3-12+1-22= |MC|2-r2= 5-4=1.
5,∴过点 M 的圆 C 的切线长为
[方法技巧] 1.求过圆上的一点(x0,y0)的切线方程的方法 先求切点与圆心连线的斜率 k, 若 k 不存在, 则结合图形 可直接写出切线方程为 y=y0; 若 k=0, 则结合图形可直接写 出切线方程为 x=x0;若 k 存在且 k≠0,则由垂直关系知切 1 线的斜率为-k,由点斜式可写出切线方程.
|c| |c| 2 = 2 = ,因此根据直角三角形的关系,弦长的 2= 2|c| 2 a +b 一半就等于
1-
2 2 2 = ,所以弦长为 2. 2 2
(江苏专版)高考数学一轮复习第九章解析几何第三节圆与方程教案理(含解析)苏教版
(江苏专版)高考数学一轮复习第九章解析几何第三节圆与方程教案理(含解析)苏教版第三节圆与方程1.圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(x-a)2+(y-b)2=r2(r>0)圆心:(a,b),半径:r一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0)圆心:⎝⎛⎭⎪⎫-D2,-E2,半径:12D2+E2-4F2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[小题体验]1.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是________.解析:将圆的一般方程化成标准方程,得(x+a)2+(y+1)2=2a,因为0<a<1,所以(0+a)2+(0+1)2-2a=(a-1)2>0,即0+a2+0+12>2a,所以原点在圆外.答案:原点在圆外2.圆C的直径的两个端点分别是A(-1,2),B(1,4),则圆C的标准方程为________.解析:设圆心C的坐标为(a,b),则a=-1+12=0,b=2+42=3,故圆心C(0,3).半径r=12AB=12[1--1]2+4-22= 2.所以圆C的标准方程为x2+(y-3)2=2.答案:x2+(y-3)2=23.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是________.解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件.[小题纠偏]若点(1,-1)在圆x 2+y 2-x +y +m =0外,则m 的取值范围是________.解析:由题意可知⎩⎪⎨⎪⎧-12+12-4m >0,1+-12-1-1+m >0,解得0<m <12.答案:⎝ ⎛⎭⎪⎫0,12考点一 圆的方程基础送分型考点——自主练透[题组练透]1.(2019·东台中学检测)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为________.解析:设圆心坐标为(a,0),则a -52+-12=a -12+-32,解得a=2,∴圆心为(2,0),半径为10,∴圆C 的标准方程为(x -2)2+y 2=10.答案:(x -2)2+y 2=102.(2018·徐州模拟)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为____________.解析:因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.答案:x 2+y 2=13.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的标准方程为____________. 解析:因为AB :x +y -2=0(0≤x ≤2), 所以A (0,2),B (2,0),AB =0-22+2-02=2 2.所以点A ,B 的中点为(1,1),故所求圆的标准方程为(x -1)2+(y -1)2=2. 答案:(x -1)2+(y -1)2=24.(2019·盐城中学测试) 圆经过点A (2,-3)和B (-2,-5). (1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程. 解:(1)要使圆的面积最小,则AB 为圆的直径, 所以圆心为(0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5. (2)因为k AB =12,AB 的中点为(0,-4),所以直线AB 的中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式得半径r =10, 因此所求圆的方程为(x +1)2+(y +2)2=10.[谨记通法]1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质. 考点二 与圆有关的最值问题 题点多变型考点——多角探明[锁定考向]与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想. 常见的命题角度有: (1)斜率型最值问题; (2)截距型最值问题;(3)距离型最值问题.[题点全练]角度一:斜率型最值问题1.(2019·涞水月考)已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求y x的最大值与最小值.解:方程(x -3)2+(y -3)2=6表示以(3,3)为圆心,6为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值, 此时|3k -3|k 2+1=6,解得k =3±2 2.所以y x的最大值为3+22,最小值为3-2 2. 角度二:截距型最值问题2.(2018·东海高级中学测试)已知实数x ,y 满足(x -2)2+(y +1)2=1,则2x -y 的最大值为________.解析:令b =2x -y ,当直线2x -y =b 与圆相切时,b 取得最值. 由|2×2+1-b |5=1,解得b =5±5,所以2x -y 的最大值为5+ 5. 答案:5+ 53.(2019·启东模拟)已知非负实数x ,y 满足x ≠y ,且x 2+y 2x +y≤4,则S =y -2x 的最小值是________.解析:由x 2+y 2x +y≤4,得x 2+y 2≤4(x +y ),移项配方得(x -2)2+(y -2)2≤8,此不等式表示以C (2,2)为圆心,以22为半径的圆及其内部在第一象限与x 轴、y 轴正半轴的部分(除去y =x ).将S =y -2x 变形为y =2x +S ,当直线l :y =2x +S 与圆相切于第一象限时,S 取得最小值,由圆的切线性质,圆心C (2,2)到l 的距离等于半径长,即|2+S |5=22,解得S =-2-210(S =-2+210舍去).故S =y -2x 的最小值是-2-210.答案:-2-210 角度三:距离型最值问题4.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2-02+0-02=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.[通法在握]与圆有关的最值问题的3种常见转化法 (1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题. (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.[演练冲关]1.(2019·淮安检测)已知x ,y 满足x 2+y 2-4x -6y +12=0,则x 2+y 2的最小值为________.解析:x 2+y 2-4x -6y +12=0可化为(x -2)2+(y -3)2=1,则圆心坐标为(2,3),圆的半径r =1.因为x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在圆心与原点连线与圆的两个交点处取得最值,又圆心到原点的距离为2-02+3-02=13,所以x 2+y 2的最小值为(13-1)2=14-213.答案:14-2132.在平面直角坐标系xOy 中,点A (-1,0),B (1,0).若动点C 满足AC =2BC ,则△ABC 的面积的最大值是________.解析:设C (x ,y ),则(x +1)2+y 2=2(x -1)2+2y 2,化简得(x -3)2+y 2=8.其中y ≠0,从而S △ABC =12×2×|y |≤22,即△ABC 的面积的最大值是2 2.答案:2 2考点三 圆的方程的简单应用重点保分型考点——师生共研 [典例引领](2018·扬州调研)设△ABC 顶点坐标A (0,a ),B (-3a ,0),C (3a ,0),其中a >0,圆M 为△ABC 的外接圆.(1)求圆M 的方程;(2)当a 变化时,圆M 是否过某一定点,请说明理由.解:(1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 因为圆M 过点A (0,a ),B (-3a ,0),C (3a ,0),所以⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a .所以圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2)因为圆M 的方程可化为(x 2+y 2+3y )-(3+y )a =0.由⎩⎪⎨⎪⎧x 2+y 2+3y =0,3+y =0,解得x =0,y =-3.所以圆M 过定点(0,-3).[由题悟法]圆的方程是一个二元二次方程,所以有时候我们可从函数和方程的角度对其相关问题进行分析,也可利用方程中x ,y 的取值范围来确定有关函数的值或范围.[即时应用]已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求P Q ―→·M Q ―→的取值范围.解:(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2. (2)设Q(x ,y ),则x 2+y 2=2,且P Q ―→·M Q ―→=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2. 令x =2cos θ,y =2sin θ,所以P Q ―→·M Q ―→=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝⎛⎭⎪⎫θ+π4-2, 所以P Q ―→·M Q ―→的取值范围为[-4,0].一抓基础,多练小题做到眼疾手快1.若圆的半径为3,圆心与点(2,0)关于点(1,0)对称,则圆的标准方程为________. 答案:x 2+y 2=92.在平面直角坐标系xOy 中,设点P 为圆O :x 2+y 2+2x =0上任意一点,点Q(2a ,a +3)(a ∈R),则线段P Q 长度的最小值为________.解析:圆O :x 2+y 2+2x =0,即 (x +1)2+y 2=1,表示以(-1,0)为圆心、半径为1的圆,则点Q(2a ,a +3)到圆心(-1,0)的距离d =2a +12+a +32=5a 2+10a +10=5a +12+5,所以当a =-1时,d 取得最小值为5,故线段P Q 长度的最小值为5-1.答案:5-13.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为________. 解析:由半径r =12D 2+E 2-4F =124a 2+4b 2=2得,a 2+b 2=2.所以点(a ,b )到原点的距离d =a 2+b 2=2. 答案:24.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得点(1,0)关于直线y =x 对称的点(0,1)为圆心, 又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1. 答案:x 2+(y -1)2=15.(2019·兴化月考)经过点(2,0)且圆心是直线x =2与直线x +y =4的交点的圆的标准方程为________.解析:由⎩⎪⎨⎪⎧x =2,x +y =4得⎩⎪⎨⎪⎧x =2,y =2,即两直线的交点坐标为(2,2),则圆心坐标为(2,2).又点(2,0)在圆上,所以半径r =2,则圆的标准方程为(x -2)2+(y -2)2=4.答案:(x -2)2+(y -2)2=46.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线 x =-3上的动点,则P Q 的最小值为________.解析:如图所示,圆心M (3,-1)与定直线x =-3的最短距离为M Q =3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.答案:4二保高考,全练题型做到高考达标1.(2019·无锡调研)设两条直线x +y -2=0,3x -y -2=0的交点为M ,若点M 在圆 (x -m )2+y 2=5内,则实数m 的取值范围为________.解析:联立⎩⎪⎨⎪⎧x +y -2=0,3x -y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1,则M (1,1),由交点M 在圆(x -m )2+y 2=5的内部,可得(1-m )2+1<5,解得-1<m <3. 故实数m 的取值范围为(-1,3). 答案:(-1,3)2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点(2,1)连线的斜率.过两点连线的直线方程为kx -y +1-2k =0,当该直线与圆相切时,k 取得最大值与最小值,由|2k |k 2+1=1,解得k =±33.答案:33,-333.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为________________.解析:由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.答案:(x -1)2+(y +1)2=24.(2018·苏州期末)在平面直角坐标系xOy 中,已知过点A (2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________________.解析:根据题意,设圆C 的圆心为(m ,-2m ),半径为r ,则⎩⎪⎨⎪⎧m -22+-2m +12=r 2,|m -2m -1|2=r ,解得m =1,r =2,所以圆C 的方程为(x -1)2+(y +2)2=2. 答案:(x -1)2+(y +2)2=25.已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m =________.解析:因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.答案:-16.在平面直角坐标系xOy 内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).答案:(-∞,-2)7.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意可知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π48.(2018·滨海中学检测)已知点P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,若圆C 上存在点Q ,使得∠CP Q =30°,则正数a 的取值范围是________.解析:由圆C :(x -a )2+(y -a )2=2a 2,得圆心为C (a ,a ),半径r =2a , ∴CP =a 2+a -22,设过P 的一条切线与圆的切点是T , 则CT =2a ,当Q 为切点时,∠CP Q 最大. ∵圆C 上存在点Q 使得∠CP Q =30°, ∴CT CP≥sin 30°,即2aa 2+a -22≥12,整理可得3a 2+2a -2≥0,解得a ≥7-13或a ≤-7-13(舍去).又点 P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,∴a 2+(2-a )2>2a 2,解得a <1.故正数a 的取值范围是⎣⎢⎡⎭⎪⎫7-13,1.答案:⎣⎢⎡⎭⎪⎫7-13,19.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD =410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径CD =410, 所以PA =210, 所以(a +1)2+b 2=40.② 由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,因为该直线与圆有公共点, 所以圆心到直线的距离d =|2+2×7-t |12+22≤22, 解上式得,16-210≤t ≤16+210, 所以所求的最大值为16+210. (2)记点Q(-2,3), 因为n -3m +2表示直线M Q 的斜率k , 所以直线M Q 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线M Q 与圆C 有公共点, 得|2k -7+2k +3|1+k2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3. 三上台阶,自主选做志在冲刺名校1.(2019·宁海中学模拟)如果直线2ax -by +14=0(a >0,b >0)和函数f (x )=mx +1+1(m >0,m ≠1)的图象恒过同一个定点,且该定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,那么b a 的取值范围是________.解析:函数f (x )=m x +1+1的图象恒过点(-1,2),代入直线2ax -by +14=0,可得-2a -2b +14=0,即a +b =7.∵定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,∴a 2+b 2≤25.设b a=t ,则b =at ,代入a +b =7,可得a =71+t ,b =7t 1+t ,代入a 2+b 2≤25,可得()1+t 2×⎝ ⎛⎭⎪⎫71+t 2≤25,∴12t 2-25t +12≤0,∴34≤t ≤43.故b a 的取值范围是⎣⎢⎡⎦⎥⎤34,43. 答案:⎣⎢⎡⎦⎥⎤34,43 2.(2018·启东中学检测)已知点A (0,2)为圆M :x 2+y 2-2ax -2ay =0(a >0)外一点,圆M 上存在点T ,使得∠MAT =45°,则实数a 的取值范围是________.解析:圆M 的方程可化为(x -a )2+(y -a )2=2a 2.圆心为M (a ,a ),半径为2a .当A ,M ,T 三点共线时,∠MAT =0°最小,当AT 与圆M 相切时,∠MAT 最大.圆M 上存在点T ,使得∠MAT =45°,只需要当∠MAT 最大时,满足45°≤∠MAT <90°即可. MA =a -02+a -22=2a 2-4a +4, 此时直线AT 与圆M 相切,所以sin ∠MAT =MTMA =2a 2a 2-4a +4.因为45°≤∠MAT <90°,所以22≤sin∠MAT <1, 所以22≤2a 2a 2-4a +4<1, 解得3-1≤a <1.答案:[3-1,1)3.如图所示,一隧道内设双行线公路,其截面由一段圆弧和一个长方形构成.已知隧道总宽度AD 为6 3 m ,行车道总宽度BC 为211m ,侧墙EA ,FD 高为2 m ,弧顶高MN 为5 m.(1)建立直角坐标系,求圆弧所在的圆的方程;(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5 m .请计算车辆通过隧道的限制高度是多少.解:(1)以EF 所在直线为x 轴,MN 所在直线为y 轴,1 m 为单位长度建立如图所示的平面直角坐标系.则E (-33,0),F (33,0),M (0,3).由于所求圆的圆心在y 轴上,所以设圆的方程为x 2+(y -b )2=r 2,因为F (33,0),M (0,3)都在圆上, 所以⎩⎨⎧ 332+b 2=r 2,02+3-b 2=r 2,解得b =-3,r 2=36. 所以圆的方程是x 2+(y +3)2=36.(2)设限高为h ,作CP ⊥AD 交圆弧于点P ,则CP =h +0.5.将点P 的横坐标x =11代入圆的方程,得11+(y +3)2=36,解得y =2或y =-8(舍去).所以h =CP -0.5=(y +DF )-0.5=(2+2)-0.5=3.5(m).答:车辆的限制高度为3.5 m.。
(江苏专版)2020版高考数学一轮复习 抛物线教案(理)(含解析)苏教版
第七节抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.2.抛物线的标准方程和几何性质1.抛物线2x 2+y =0的准线方程为________. 解析:∵抛物线的标准方程为x 2=-12y ,∴2p =12,∴ p 2=18,故准线方程为y =18. 答案:y =182.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 解析:M 到准线的距离等于M 到焦点的距离, 又准线方程为y =-116,设M (x ,y ),则y +116=1,所以y =1516.答案:15163.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为________.解析:由题意知,抛物线的准线为x =-p2.因为点P (2,y 0)到其准线的距离为4,所以⎪⎪⎪⎪⎪⎪-p 2-2=4,所以p =4.所以抛物线的标准方程为y 2=8x . 答案:y 2=8x1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视,只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.[小题纠偏]1.平面内到点(1,1)与到直线x +2y -3=0的距离相等的点的轨迹是________. 答案:一条直线2.抛物线8x 2+y =0的焦点坐标为________. 解析:由8x 2+y =0,得x 2=-18y .所以2p =18,p =116,所以焦点为⎝ ⎛⎭⎪⎫0,-132. 答案:⎝⎛⎭⎪⎫0,-132考点一 抛物线定义及应用重点保分型考点——师生共研[典例引领]1.(2019·徐州调研)在平面直角坐标系xOy 中,抛物线y 2=16x 上横坐标为1的点到其焦点的距离为________.解析:抛物线y 2=16x 中,p =8,∴准线方程为x =-4,∵抛物线y 2=16x 上横坐标为1的点到其焦点的距离即为到其准线的距离, ∴d =1-(-4)=5. 答案:52.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则PF 的最小值为________. 解析:设点P 到准线的距离为d ,则有PF =d , 又抛物线的方程为y =2x 2,即x 2=12y,则其准线方程为y =-18,所以当点P 在抛物线的顶点时,d 有最小值18,即PF 的最小值为18.答案:183.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是________.解析:由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于PF ,故动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.答案:2[由题悟法]应用抛物线定义的2个关键点(1)涉及抛物线的焦点和准线的有关问题,应充分利用抛物线的定义求解.由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离PF =|x |+p 2或PF =|y |+p2.[即时应用]1.(2018·南京、盐城二模)在平面直角坐标系xOy 中,抛物线y 2=6x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.若直线AF 的斜率k =-3,则线段PF 的长为________.解析:由题意AF 与x 轴正半轴所成角为120°,PA =PF ,所以△PAF 为正三角形. 因为p =3,所以PF =AF =2p =6. 答案:62.(2019·镇江调研)已知抛物线y 2=2px (p >0)上一点P 到焦点的距离为5,到y 轴的距离为3,则p =________.解析:抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p2,由题意可得P 到准线的距离为5,又P 到y 轴的距离为3,故p2=5-3,解得p =4.答案:4考点二 抛物线的标准方程与几何性质 题点多变型考点——多角探明[锁定考向]抛物线的标准方程及性质是高考的热点. 常见的命题角度有: (1)根据性质求方程; (2)抛物线的对称性;(3)抛物线性质的实际应用.[题点全练]角度一:根据性质求方程1.顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是________. 解析:设抛物线为y 2=mx ,代入点P (-4,-2),解得m =-1,则抛物线方程为y 2=-x ;设抛物线为x 2=ny ,代入点P (-4,-2),解得n =-8,则抛物线方程为x 2=-8y .答案:y 2=-x 或x 2=-8y 角度二:抛物线的对称性2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________.解析:双曲线的渐近线方程为y =±b ax , 因为双曲线的离心率为2,所以1+b 2a 2=2,ba= 3. 由⎩⎨⎧y =3x ,y 2=2px ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2p 3,y =23p 3.由曲线的对称性及△AOB 的面积得,2×12×23p 3×2p3=3,解得p 2=94,即p =32⎝ ⎛⎭⎪⎫p =-32舍去.答案:32角度三:抛物线性质的实际应用3.如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m ,水位下降1 m 后,水面宽________ m.解析:建立如图所示的平面直角坐标系,设水面与拱桥的一个交点为A ,则点A 的坐标为(2,-2).设抛物线方程为x 2=-2py (p>0),则22=-2p ×(-2),得p =1.所以抛物线方程为x 2=-2y .设水位下降1 m 后水面与拱桥的交点坐标为(x 0,-3),则x 20=6,解得x 0=±6,所以水面宽为2 6 m.答案:2 6[通法在握]求抛物线标准方程的方法(1)抛物线的标准方程有四种不同的形式,要掌握焦点到准线的距离,顶点到准线、焦点的距离,通径长与标准方程中系数2p 的关系.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).(3)焦点到准线的距离简称为焦准距,抛物线y 2=2px (p >0)上的点常设为⎝ ⎛⎭⎪⎫y 22p ,y .[提醒] 求抛物线的标准方程时,一定要先确定抛物线的焦点坐标,即抛物线标准方程的形式,否则极易发生漏解的情况.[演练冲关]1.已知抛物线的顶点在原点,对称轴是x 轴,焦点在直线3x -4y -12=0上,则该抛物线的方程为________.解析:由题意知,抛物线的焦点在x 轴上. ∵直线3x -4y -12=0交x 轴于点(4,0), ∴抛物线的焦点为(4,0). 设抛物线方程为y 2=2px (p >0),由p2=4,得p =8,∴该抛物线的方程为y 2=16x . 答案:y 2=16x2.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点A (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为________.解析:依题意设P 在抛物线准线的射影为P ′,抛物线的焦点为F ,则F ⎝ ⎛⎭⎪⎫12,0,由抛物线的定义知P 到该抛物线准线的距离PP ′=PF ,则点P 到点A (0,2)的距离与点P 到该抛物线准线的距离之和d =PF +PA ≥AF =⎝ ⎛⎭⎪⎫122+22=172. 答案:172考点三 直线与抛物线的位置关系重点保分型考点——师生共研 [典例引领]已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且OP =PB ,求△FAB 的面积.解:(1)易知直线与抛物线的交点坐标为(8,-8), 所以(-8)2=2p ×8,所以2p =8, 所以抛物线的方程为y 2=8x .(2)由直线l 2与l 1垂直,且不过原点,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0,Δ=64+32m >0,所以m >-2. y 1+y 2=8,y 1y 2=-8m ,所以x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, 所以m =8或m =0(舍去),所以直线l 2的方程为x =y +8,M (8,0). 故S △FAB =S △FMB +S △FMA =12·FM ·|y 1-y 2|=3y 1+y 22-4y 1y 2=24 5.[由题悟法]解决直线与抛物线的位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线相交的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式AB =|x A |+|x B |+p 或AB =|y A |+|y B |+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[提醒] 涉及弦的中点、斜率时一般用“点差法”求解.[即时应用]已知过点(2,0)的直线l 1交抛物线C :y 2=2px (p >0)于A ,B 两点,直线l 2:x =-2交x 轴于点Q.(1)设直线Q A ,Q B 的斜率分别为k 1,k 2,求k 1+k 2的值;(2)点P 为抛物线C 上异于A ,B 的任意一点,直线PA ,PB 交直线l 2于M ,N 两点, OM ―→·ON ―→=2,求抛物线C 的方程.解:(1)设直线l 1的方程为x =my +2,点A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =my +2,y 2=2px ,得y 2-2pmy -4p =0,则y 1+y 2=2pm ,y 1y 2=-4p . 由题意知,点Q(-2,0), 所以k 1+k 2=y 1x 1+2+y 2x 2+2=y 1my 1+4+y 2my 2+4=2my 1y 2+4y 1+y 2my 1+4my 2+4=-8mp +8mpmy 1+4my 2+4=0.(2)设点P (x 0,y 0),直线PA :y -y 1=y 1-y 0x 1-x 0(x -x 1), 当x =-2时,y M =-4p +y 1y 0y 1+y 0,同理y N =-4p +y 2y 0y 2+y 0.因为OM ―→·ON ―→=2,所以4+y N y M =2,即-4p +y 2y 0y 2+y 0·-4p +y 1y 0y 1+y 0=16p 2-4py 0y 2+y 1+y 20y 1y 2y 2y 1+y 0y 2+y 1+y 20=16p 2-8p 2my 0-4py 20-4p +2pmy 0+y 20=-4p -4p +2pmy 0+y 2-4p +2pmy 0+y 2=-2,故p =12,所以抛物线C 的方程为y 2=x .一抓基础,多练小题做到眼疾手快1.在平面直角坐标系xOy 中,若抛物线y 2=2px (p >0)上横坐标为2的点到焦点的距离为4,则该抛物线的准线方程为________.解析:抛物线y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,准线方程x =-p2,由抛物线的定义可知,2+p2=4,则p =4,∴抛物线的准线方程为x =-2.答案:x =-22.(2018·扬州期末)若抛物线y 2=2px (p >0)的焦点也是双曲线x 2-y 2=8的一个焦点,则p =________.解析:抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0,双曲线x 2-y 2=8的右焦点为(4,0),故p2=4,即p =8.答案:83.已知P 为抛物线y 2=8x 上动点,定点A (3,1),F 为该抛物线的焦点,则PF +PA 的最小值为________.解析:易知点A 在抛物线内部,抛物线的准线方程为x =-2,过点P 作准线的垂线,垂足为M ,则PF +PA =PM +PA ,当A ,P ,M 三点共线时取得最小值,所以PF +PA =3-(-2)=5.答案:54.(2018·前黄中学检测)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为________.解析:由于抛物线y 2=2px (p >0)的准线方程为x =-p 2,由题意得-p2=-1,p =2,所以焦点坐标为 (1,0) . 答案:(1,0)5.已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x Px P --1=12,解得x P =1,所以y 2P =4,所以|y P |=2.答案:26.(2019·连云港模拟)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则S △BCFS △ACF=________. 解析:∵抛物线方程为y 2=2x ,∴焦点F 的坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.如图,设A (x 1,y 1),B (x 2,y 2),过A ,B 分别向抛物线的准线作垂线,垂足分别为E ,N ,则BF =BN =x 2+12=2,∴x 2=32,把x 2=32代入抛物线y 2=2x ,得y 2=-3,∴直线AB 过点M (3,0)与B ⎝ ⎛⎭⎪⎫32,-3. 则直线AB 的方程为3x +⎝ ⎛⎭⎪⎫32-3y -3=0,与抛物线方程联立,解得x 1=2, ∴AE =2+12=52.∵在△AEC 中,BN ∥AE ,∴BC AC =BN AE =252=45,故S △BCF S △ACF =12BC ·h12AC ·h=45. 答案:45二保高考,全练题型做到高考达标1.(2019·宿迁一模)抛物线x 2=4y 的焦点坐标为________.解析:∵抛物线x 2=4y 的焦点在y 轴上,开口向上,且2p =4,∴p2=1.∴抛物线x 2=4y 的焦点坐标为(0,1). 答案:(0,1)2.过抛物线x 2=-12y 的焦点F 作直线垂直于y 轴,交抛物线于A ,B 两点,O 为抛物线的顶点,则△OAB 的面积是________.解析:由题意F (0,-3),将y =-3代入抛物线方程得x =±6, 所以AB =12,所以S △OAB =12×12×3=18.答案:183.已知过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则AF BF=________.解析:设A (x 1,y 1),B (x 2,y 2),由题意知AB 所在的直线方程为y =3⎝ ⎛⎭⎪⎫x -p 2,联立⎩⎪⎨⎪⎧y 2=2px ,y =3⎝ ⎛⎭⎪⎫x -p 2得x 2-5p 3x +p24=0,解得x 1=3p 2,x 2=p6,所以AF BF =32p +p 2p 2+p6=3.答案:34.(2019·南通调研)已知F 是抛物线C :y 2=12x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 是FN 的中点,则FN 的长度为________.解析:∵F (3,0),∴由题意可得M 的横坐标为32,∴FM =32+3=92,FN =2FM =9.答案:95.已知抛物线y 2=2x 的弦AB 的中点的横坐标为32,则AB 的最大值为________.解析:设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3,由抛物线的定义可知,AF +BF =x 1+x 2+1=4,由图可知AF +BF ≥AB ,AB ≤4,当且仅当直线AB过焦点F 时,AB 取得最大值4.答案:46.一个顶点在原点,另外两点在抛物线y 2=2x 上的正三角形的面积为________. 解析:如图,根据抛物线的对称性得∠AOx =30°. 直线OA 的方程y =33x , 代入y 2=2x ,得x 2-6x =0, 解得x =0或x =6. 即得A 的坐标为(6,23).∴AB =43,正三角形OAB 的面积为12×43×6=12 3.答案:12 37.(2018·无锡调研)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且PA =12AB ,则点A 到抛物线C 的焦点的距离为________.解析:设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为D ,E (图略),因为PA =12AB ,所以⎩⎪⎨⎪⎧3x 1+2=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.答案:538.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且MF =4OF ,△MFO 的面积为43,则抛物线的方程为________.解析:设M (x ,y ),因为OF =p 2,MF =4OF ,所以MF =2p ,由抛物线定义知x +p2=2p ,所以x =32p ,所以y =±3p .又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p=-4舍去).所以抛物线的方程为y 2=8x .答案:y 2=8x9.已知抛物线y 2=2x 的焦点为F ,点P 是抛物线上的动点,点A (3,2),求PA +PF 的最小值,并求取最小值时点P 的坐标.解:将x =3代入抛物线方程y 2=2x ,得y =± 6. 因为6>2,所以A 在抛物线内部.设抛物线上的点P 到准线l :x =-12的距离为d ,由定义知PA +PF =PA +d .当PA ⊥l 时,PA +d 最小,最小值为72,即PA +PF 的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,所以点P 的坐标为(2,2).10.(2018·扬州中学检测)在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于A ,B 两点.(1)如果直线l 过抛物线的焦点,求OA ―→·OB ―→的值;(2)如果OA ―→·OB ―→=-4,证明直线l 必过一定点,并求出该定点. 解:(1)由题意:抛物线焦点为(1,0), 设l :x =ty +1,代入抛物线y 2=4x , 消去x ,得y 2-4ty -4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4, 所以OA ―→·OB ―→=x 1x 2+y 1y 2=(ty 1+1)(ty 2+1)+y 1y 2 =t 2y 1y 2+t (y 1+y 2)+1+y 1y 2=-4t 2+4t 2+1-4=-3. (2)证明:设l :x =ty +b ,代入抛物线y 2=4x ,消去x ,得y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4b ,所以OA ―→·OB ―→=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2=t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-4bt 2+4bt 2+b 2-4b =b 2-4b . 令b 2-4b =-4,得b 2-4b +4=0,解得b =2. 所以直线l 过定点(2,0).三上台阶,自主选做志在冲刺名校1.(2018·连云港二模)从抛物线x 2=4y 上一点P 引抛物线准线的垂线,垂足为M ,且PM =5,设抛物线的焦点为F ,则△MPF 的面积S =________.解析:设P (x 0,y 0),依题意可知抛物线的准线方程为y =-1, ∴y 0=5-1=4,∴|x 0|=4×4=4, ∴△MPF 的面积S =12PM ·|x 0|=12×5×4=10.答案:102.过抛物线x 2=4y 的焦点F 作直线AB ,CD 与抛物线交于A ,B ,C ,D 四点,且AB ⊥CD ,则FA ―→·FB ―→+FC ―→·FD ―→的最大值等于________.解析:依题意可得,FA ―→·FB ―→=-(|FA ―→|·|FB ―→|).又因为|FA ―→|=y A +1,|FB ―→|=y B +1, 所以FA ―→·FB ―→=-(y A y B +y A +y B +1). 设直线AB 的方程为y =kx +1(k ≠0), 联立x 2=4y ,可得x 2-4kx -4=0, 所以x A +x B =4k ,x A x B =-4. 所以y A y B =1,y A +y B =4k 2+2. 所以FA ―→·FB ―→=-(4k 2+4). 同理FC ―→·FD ―→=-⎝ ⎛⎭⎪⎫4k 2+4.所以FA ―→·FB ―→+FC ―→·FD ―→=-⎝⎛⎭⎪⎫4k 2+4k2+8≤-16.当且仅当k =±1时等号成立. 答案:-163.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1), 因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2), 所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).。
2020届高考数学(理)一轮复习精品特训专题九:解析几何(3)圆的方程
解析几何(3)圆的方程1、已知点(2,0),(0,2)A B ,点M 是圆22220x y x y +++=上的动点,则点M 到直线AB 的距离的最小值为( )A .2 BC .2D . 2、若方程220x y x y m -++=+表示一个圆,则m 的取值范围是( )A .12m <B .2m <C .12m ≤ D .2m ≤ 3、已知圆的方程22290x y ax +++=圆心坐标为()5,0,则它的半径为( )A. 3?C. 5D. 44、圆()222224121600x y ax ay a a +-++=<的周长等于( )A. aB. a -C. 22a πD. a5、如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线422x y +=围成的平面区域的直径为( )6、以为()1,1A -圆心且与直线20x y +-=相切的圆的方程为( )A. ()()221+1=4x y -+B. ()()221+1=2x y -+C. ()()22+1-1=4x y +D. ()()22+1-1=2x y +7、已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3440x y ++=相切,则圆的方程是( )A. 2240x y x +-=B. 2240x y x ++=C. 22230x y x +--=D. 22230x y x ++-=8、若一动圆的圆心在抛物线216x y =上,且与直线40y +=相切,则此圆恒过定点( )A. ()0,8-B. (0,4)C. (0,4)-D. ()0,89、已知点()()5,0,1,3A B ---,若圆()222:0C x y r r +=>上恰有两点,M N ,使得MAB ∆和NAB ∆的面积均为5,则r 的取值范围是( )A. (B. (1,5)C. ()2,5D. ( 10、若,x y 满足222420? 0x y x y +-+-=,则22x y +的最小值是( )5B. 5-C. 30-D.无法确定11、已知R a ∈,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是________,半径是________.12、已知直线240x y +-=和坐标轴交于A 、B 两点, O 为原点,则经过,,O A B 三点的圆的方程为__________.13、若直线:1l ax by +=与圆22:1C x y +=有两个不同交点,则点(),P a b 与圆C 的位置关系是__________(点在圆内、圆上或圆外)14、圆22:2210O x y x y +--+=上的动点 Q 到直线:3480l x y ++=的距离的最大值是__________.15、已知圆22:1O x y +=和定点()3,2T ,由圆O 外一动点(),P x y 向圆O 引切线PQ ,切 点为Q ,且满足PQ PT =.1.求证:动点P 在定直线上;2.求线段PQ 长的最小值并写出此时点P 的坐标.答案以及解析1答案及解析:答案:B解析:2答案及解析:答案:A解析:2211()40m -+->,12m ∴<.3答案及解析:答案:D解析:由题得252a -=,5a ∴=-842==,故答案为:D 点睛:(1)本题主要考查圆的一般方程,意在考查学生对该基础知识的掌握能力.(2) 当2240D E F +->时, 220x y Dx Ey F ++++=表示圆心为,22D E ⎛⎫-- ⎪⎝⎭,半径为2的圆.4答案及解析:答案:B解析:原方程配方得()()22232x a y a a -++=.∵0a <,∴半径r =.∴圆的周长为()2πa ⨯=-.5答案及解析:答案:B解析:6答案及解析:答案:B解析:7答案及解析:答案:A解析:解:因为圆的半径为2,圆心在x 轴的正半轴上设为(a,0),a>0,那么利用与直线相切,点到直线的距离公式得到为a=2,故圆的方程是,选A8答案及解析:答案:B解析:9答案及解析:答案:B解析:10答案及解析:答案:C解析:设(),P x y 是圆22:24200C x y x y +-+-=上一点.配方,得()()221?2? 25x y -++=,圆心坐标为()1,2C -,半径5r =.=,则线段PO 最短.如图,当点,,P O C 在同一直线上时,min 55PO PC OC =-==,即()22min 30x y +=-.11答案及解析:答案:();2,45--解析:由题意22a a =+, 1a =-或2, 1a =-时方程为224850x y x y +++-=,即22(2)(4)25x y +++=,圆心为(2,4)--,半径为5,2a =时方程为224448100x y x y ++++=,2215()(1)24x y +++=-不表示圆.12答案及解析:答案:22(2)(1)5x y -+-=解析:13答案及解析:答案:点在圆外解析:直线:1l ax by +=与圆22:1C x y +=有两个不同交点, 则2211a b<+,∴221a b +>,点(),P a b 在圆C 外部,故选C.14答案及解析:答案:4解析:∵圆 O 的标准方程为()()22111x y -+-=,圆心()1,1到直线l 的距离为31=>,∴动点 Q 到直线l 的距离的最大值为3+1=4.15答案及解析:答案:1.证明:由2221PQ PT PQ OP PT =⇒=-=,∴3270x y +-= 即动点P 在定直线3270x y +-=上.2.由221PQ OP =-,要求PQ 的最小值,只需求OP 的最小值,又点P 在直线3270x y +-=上,所以min min OP PQ ===== 此时直线OP 的方程为230x y -=,联立直线3270x y +-= 解得点2114,1313P ⎛⎫ ⎪⎝⎭. 已知圆()()221:4220C x y -+-=与y 轴交于O ,A 两点,圆2C 过O ,A 两点,且直线2C O与圆1C 相切.解析:。
高考数学一轮总复习 第九篇 解析几何初步教案 理 苏教版
第九篇 解析几何初步第1讲 直线的方程知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0. ②倾斜角的范围为[0,π). (2)直线的斜率①定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α,倾斜角是90°的直线斜率不存在. ②过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. 2.直线方程的五种形式111222(1)若x 1≠x 2,且y 1≠y 2时,方程为y -y 1y 2-y 1=x -x 1x 2-x 1. (2)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1. (3)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1. 4.线段的中点坐标公式若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.辨 析 感 悟1.对直线的倾斜角与斜率的理解(1)坐标平面内的任何一条直线均有倾斜角与斜率.(³) (2)过点M (a ,b ),N (b ,a )(a ≠b )的直线的倾斜角是45°.(³)(3)(教材习题改编)若三点A (2,3),B (a,1),C (0,2)共线,则a 的值为-2.(√) 2.对直线的方程的认识(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.(³)(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.(√)(6)直线l 过点P (1,2)且在两坐标轴上的截距相等,则直线l 的方程为x +y -3=0.(³) [感悟²提升]1.直线的倾斜角与斜率的关系 斜率k 是一个实数,当倾斜角α≠90°时,k =tan α.直线都有斜倾角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率,如(1). 2.三个防范 一是根据斜率求倾斜角,要注意倾斜角的范围,如(2);二是求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论,如(4);三是在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论,如(6).考点一 直线的倾斜角和斜率【例1】 (1)直线x sin α+y +2=0的倾斜角的取值范围是________.(2)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.解析 (1)设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1],又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.(2)依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 (1)⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π (2)-13 规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,求直线l 的倾斜角α的范围. 解 法一如图所示,k PA =-2- -11-0=-1,k PB =1- -12-0=1,由图可观察出:直线l 倾斜角α的范围是⎣⎢⎡⎭⎪⎫3π4,π∪⎣⎢⎡⎦⎥⎤0,π4.法二 由题意知,直线l 存在斜率.设直线l 的斜率为k ,则直线l 的方程为y +1=kx ,即kx -y -1=0.∵A ,B 两点在直线的两侧或其中一点在直线l 上. ∴(k +2-1)(2k -1-1)≤0,即2(k +1)(k -1)≤0. ∴-1≤k ≤1.∴直线l 的倾斜角α的范围是⎣⎢⎡⎭⎪⎫3π4,π∪⎣⎢⎡⎦⎥⎤0,π4.考点二 求直线的方程【例2】 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14.(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5.解 (1)法一 设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意k =-14³3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k x -1 ,得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行) 则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2.由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.规律方法 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. 【训练2】 △ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: (1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由点斜式得直线DE 的方程为y-2=2(x -0),即2x -y +2=0.【例3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.审题路线 根据截距式设所求直线l 的方程⇒把点P 代入,找出截距的关系式⇒运用基本不等式求S △ABO ⇒运用取等号的条件求出截距⇒得出直线l 的方程. 解 设A (a,0),B (0,b ),(a >0,b >0),则直线l 的方程为x a +y b=1, ∵l 过点P (3,2),∴3a +2b=1.∴1=3a +2b ≥26ab,即ab ≥24.∴S △ABO =12ab ≥12.当且仅当3a =2b ,即a =6,b =4.△ABO 的面积最小,最小值为12. 此时直线l 的方程为:x 6+y4=1.即2x +3y -12=0.规律方法 (1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的某函数,借助函数的性质解决;(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.【训练3】 在例3的条件下,求直线l 在两轴上的截距之和最小时直线l 的方程. 解 设l 的斜率为k (k <0),则l 的方程为y =k (x -3)+2,令x =0,得B (0,2-3k ),令y=0,得A ⎝⎛⎭⎪⎫3-2k,0,∴l 在两轴上的截距之和为2-3k +3-2k=5+⎣⎢⎡⎦⎥⎤ -3k +⎝ ⎛⎭⎪⎫-2k ≥5+26,当且仅当k =-63时,等号成立. ∴k =-63时,l 在两轴上截距之和最小, 此时l 的方程为6x +3y -36-6=0.1.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”. 2.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.思想方法9——分类讨论思想在求直线方程中的应用【典例】 在平面直角坐标系中,已知矩形ABCD ,AB =2,BC =1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合.将矩形折叠,使A 点落在线段DC 上.若折痕所在直线的斜率为k ,试写出折痕所在直线的方程.解 (1)当k =0时,此时A 点与D 点重合,折痕所在的直线方程为y =12.(2)当k ≠0时,将矩形折叠后A 点落在线段CD 上的点为G (a,1). 所以A 与G 关于折痕所在的直线对称, 有k AG ²k =-1,1ak =-1⇒a =-k .故G 点坐标为G (-k,1),从而折痕所在的直线与AG 的交点坐标(线段AG 的中点)为M ⎝ ⎛⎭⎪⎫-k 2,12. 折痕所在的直线方程为y -12=k ⎝ ⎛⎭⎪⎫x +k 2,即y =kx +k 22+12.∴k =0时,y =12;k ≠0时,y =kx +k 22+12.[反思感悟] (1)求直线方程时,要考虑对斜率是否存在、截距相等时是否为零以及相关位置关系进行分类讨论.(2)本题需对斜率k 为0和不为0进行分类讨论,易错点是忽略斜率不存在的情况. 【自主体验】1.若直线过点P ⎝ ⎛⎭⎪⎫-3,-32且被圆x 2+y 2=25截得的弦长是8,则该直线的方程为____________________.解析 若直线的斜率不存在,则该直线的方程为x =-3,代入圆的方程解得y =±4,故该直线被圆截得的弦长为8,满足条件;若直线的斜率存在,不妨设直线的方程为y +32=k (x+3),即kx -y +3k -32=0,因为该直线被圆截得的弦长为8,故半弦长为4.又圆的半径为5,则圆心(0,0)到直线的距离为52-42=⎪⎪⎪⎪⎪⎪3k -32k 2+1,解得k =-34,此时该直线的方程为3x+4y +15=0.答案 x =-3或3x +4y +15=02.已知两点A (-1,2),B (m,3),则直线AB 的方程为________. 解析 当m =-1时,直线AB 的方程为x =-1, 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1), 即y =1m +1(x +1)+2. 答案 x =-1或y =1m +1(x +1)+2基础巩固题组(建议用时:40分钟)一、填空题1.直线3x -y +a =0(a 为常数)的倾斜角为________.解析 直线的斜率为k =tan α=3,又因为α∈[0,π),所以α=π3.答案π32.已知直线l 经过点P (-2,5),且斜率为-34.则直线l 的方程为________.解析 由点斜式,得y -5=-34(x +2),即3x +4y -14=0. 答案 3x +4y -14=03.(2014²长春模拟)若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________. 解析 ∵k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4. 答案 44.(2014²泰州模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________. 解析 令x =0,得y =k 4;令y =0,得x =-k3.则有k 4-k3=2,所以k =-24.答案 -245.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m =________. 解析 由题意可知2m 2+m -3≠0,即m ≠1且m ≠-32,在x 轴上截距为4m -12m 2+m -3=1,即2m2-3m -2=0,解得m =2或-12.答案 2或-126.(2014²佛山调研)直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足________.①ab >0,bc <0;②ab >0,bc >0;③ab <0,bc >0;④ab <0,bc <0.解析 由题意,令x =0,y =-c b >0;令y =0,x =-c a>0.即bc <0,ac <0,从而ab >0. 答案 ①7.(2014²淮阳模拟)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析 设直线的斜率为k ,如图,过定点A 的直线经过点B 时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C 时,直线l 在x 轴的截距为-3,此时k =12,满足条件的直线l 的斜率范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞. 答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞8.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析 设所求直线的方程为x a +yb=1,∵A (-2,2)在直线上,∴-2a +2b=1.①又因直线与坐标轴围成的三角形面积为1, ∴12|a |²|b |=1.② 由①②可得(1)⎩⎪⎨⎪⎧a -b =1,ab =2或(2)⎩⎪⎨⎪⎧a -b =-1,ab =-2.由(1)解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =-2,方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1, 即x +2y -2=0或2x +y +2=0为所求直线的方程. 答案 x +2y -2=0或2x +y +2=0 二、解答题9.(2014²临沂月考)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为0,当然相等.∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, 得a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧- a +1 >0,a -2≤0或⎩⎪⎨⎪⎧- a +1 =0,a -2≤0.∴a ≤-1.综上可知a 的取值范围是(-∞,-1].10.已知直线l 过点M (2,1),且分别与x 轴、y 轴的正半轴交于A ,B 两点,O 为原点,是否存在使△ABO 面积最小的直线l ?若存在,求出直线l 的方程;若不存在,请说明理由. 解 存在.理由如下:设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),△AOB 的面积S =12(1-2k )⎝ ⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+ -4k +⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4.当且仅当-4k =-1k ,即k =-12时,等号成立,故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.能力提升题组 (建议用时:25分钟)一、填空题1.(2014²北京海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为________.解析 |AB |= cos α+1 2+sin 2α=2+2cos α=3,所以cos α=12,sin α=±32,所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y =-33x -33. 答案 y =33x +33或y =-33x -332.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是________. 解析如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k PA =33,则直线PA 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2. 答案 ⎝⎛⎭⎪⎫π6,π23.已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.解析 直线方程可化为x2+y =1,故直线与x 轴的交点为A (2,0),与y 轴的交点为B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b=-2b 2+2b =-2⎝ ⎛⎭⎪⎫b -122+12,由于0≤b ≤1,故当b =12时,ab 取得最大值12.答案 12二、解答题 4.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33,所以直线l OA :y =x ,l OB :y =-33x , 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12²m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.第2讲 两条直线的位置关系知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2的关系为平行.(2)两条直线垂直①如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.②如果l 1、l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直. 2.两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式P 1P 2= x 1-x 2 2+ y 1-y 2 2. 特别地,原点O (0,0)与任一点P (x ,y )的距离OP =x 2+y 2. (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B2.辨 析 感 悟1.对两条直线平行与垂直的理解(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(³) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.(³)(3)(2013²天津卷改编)已知过点P (2,2)斜率为-12的直线且与直线ax -y +1=0垂直,则a=2.(√)2.对距离公式的理解(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(³) (5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√) (6)(教材习题改编)两平行直线2x -y +1=0,4x -2y +1=0间的距离是0.(³) [感悟²提升]三个防范 一是在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑.如(2)中忽视了斜率不存在的情况;二是求点到直线的距离时,若给出的直线不是一般式,则应化为一般式,如(4); 三是求两平行线之间的距离时,应先将方程化为一般式,且x ,y 的系数对应相同,如(6).考点一 两条直线平行与垂直【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值. 解 (1)法一 当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠- a +1 ,解得a =-1,综上可知,a =-1时,l 1∥l 2,否则l 1与l 2不平行.法二 由A 1B 2-A 2B 1=0,得a (a -1)-1³2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1³6≠0, ∴l 1∥l 2⇔⎩⎪⎨⎪⎧a a -1 -1³2=0,a a 2-1 -1³6≠0,⇔⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-1 ≠6⇒a =-1,故当a =-1时,l 1∥l 2,否则l 1与l 2不平行.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由⎝ ⎛⎭⎪⎫-a 2²11-a=-1⇒a =23.法二 由A 1A 2+B 1B 2=0得a +2(a -1)=0⇒a =23.规律方法 (1)也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (2014²长沙模拟)已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为________.解析 ∵l 1∥l 2,∴k AB =4-m m +2=-2,解得m =-8,又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ³(-2)=-1,解得n =-2,∴m +n =-10. 答案 -10考点二 两条直线的交点问题【例2】 求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.解 法一 先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l :y -2=-53(x +1),即5x +3y -1=0.法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1,l 2的交点(-1,2), 故5³(-1)+3³2+C =0,由此求出C =-1,故l 的方程为5x +3y -1=0.法三 由于l 过l 1,l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条, 将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0. 其斜率-3+5λ2+2λ=-53,解得λ=15,代入直线系方程即得l 的方程为5x +3y -1=0.规律方法 运用直线系方程,有时会给解题带来方便,常见的直线系方程有: (1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0;(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中λ∈R ,此直线系不包括l 2).【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎪⎨⎪⎧4x 0+y 0+3=0,3 -2-x 0 -5 4-y 0 -5=0,即⎩⎪⎨⎪⎧4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎪⎨⎪⎧x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x - -1 -2- -1,即3x +y +1=0.法二 设直线l 的方程为y -2=k (x +1), 即kx -y +k +2=0.由⎩⎪⎨⎪⎧kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4.由⎩⎪⎨⎪⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3.则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此直线l 的方程为y -2=-3(x +1),即3x +y +1=0.考点三 距离公式的应用【例3】 已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+ -12=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72,又a >0,解得a =3. (2)假设存在点P ,设点P (x 0,y 0),若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0; 由于P 在第一象限, 所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12 舍去 ;联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.规律方法 (1)在应用两条平行直线间的距离公式时.要注意两直线方程中x ,y 的系数必须对应相同.(2)第(2)问是开放探索性问题,要注意解决此类问题的一般策略.【训练3】 (1)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.(2)已知两条平行直线,l 1:mx +8y +n =0与l 2:2x +my -1=0间的距离为5,则直线l 1的方程为________.解析 (1)由题意可知所求直线斜率存在,故设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, ∴k =2或-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.(2)∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0, ∴|n +2|16+64=5,解得n =-22或18.故所求直线的方程为2x +4y -11=0或2x +4y +9=0.②当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为4x -8y -2=0, ∴|-n +2|16+64=5,解得n =-18或22.故所求直线的方程为2x -4y +9=0或2x -4y -11=0.答案 (1)2x +3y -18=0或2x -y -2=0 (2)2x ±4y +9=0或2x ±4y -11=0两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1²k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.思想方法10——对称变换思想的应用【典例】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解 (1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1²23=-1,2³x -12-3³y -22+1=0.解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2³⎝ ⎛⎭⎪⎫a +22-3³⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2³23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.[反思感悟] (1)解决点关于直线对称问题要把握两点:点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果是直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题. (3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上. 【自主体验】 (2013²湖南卷改编)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于________. 解析 以AB 、AC 所在直线分别为x 轴、y 轴建立平面直角坐标系,则A (0,0),B (4,0),C (0,4),得△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43,设AP =x ,从而P (x,0),x ∈(0,4),由光的几何性质可知点P 关于直线BC 、AC 的对称点P 1(4,4-x ),P 2(-x,0)与△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43共线,所以4343+x =43- 4-x 43-4,求得x =43.答案 43基础巩固题组(建议用时:40分钟)一、填空题1.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是________.解析 由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y-1=0.答案 3x +2y -1=02.(2014²济南模拟)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a =________.解析 若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线若平行,则有a -11=2a ≠13,解得a =-1或2.答案 -1或23.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.解析 ∵直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x +4y +12=0,∴直线l 1与l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32.答案 324.(2014²金华调研)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k得两直线的交点坐标为⎝⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限. 答案 二5.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点________. 解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2). 答案 (0,2)6.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0,即m ³1+2³2+5=0, ∴m =-9. 答案 -97.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是________.解析 由a sin A =bsin B ,得b sin A -a sin B =0.∴两直线垂直. 答案 垂直8.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是:①15°;②30°;③45°;④60°;⑤75°. 其中正确答案的序号是________.解析 很明显直线l 1∥l 2,直线l 1,l 2间的距离为d =|1-3|2=2,设直线m 与直线l 1,l 2分别相交于点B ,A ,则|AB |=22,过点A 作直线l 垂直于直线l 1,垂足为C ,则|AC |=d =2,则在Rt △ABC 中,sin ∠ABC =|AC ||AB |=222=12,所以∠ABC =30°,又直线l 1的倾斜角为45°,所以直线m 的倾斜角为45°+30°=75°或45°-30°=15°. 答案 ①⑤ 二、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得: (1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合. 解 (1)由已知1³3≠m (m -2),即m 2-2m -3≠0, 解得m ≠-1且m ≠3.故当m ≠-1且m ≠3时,l 1与l 2相交. (2)当1²(m -2)+m ²3=0,即m =12时,l 1⊥l 2.(3)当1³3=m (m -2)且1³2m ≠6³(m -2)或m ³2m ≠3³6,即m =-1时,l 1∥l 2. (4)当1³3=m (m -2)且1³2m =6³(m -2),即m =3时,l 1与l 2重合.10.求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)的距离为2的直线方程.解 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴l 1,l 2的交点为(1,2),设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵P (0,4)到直线的距离为2,∴2=|-2-k |1+k 2, 解得k =0或43.∴直线方程为y =2或4x -3y +2=0.能力提升题组 (建议用时:25分钟)一、填空题1.设两条直线的方程分别为x +y +a =0和x +y +b =0,已知a ,b 是关于x 的方程x 2+x+c =0的两个实数根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别为________.解析 ∵d =|a -b |2,a +b =-1,ab =c ,又|a -b |=1-4c ∈⎣⎢⎡⎦⎥⎤22,1,从而d max =22,d min =12.答案22,122.(2014²武汉调研)已知A ,B 两点分别在两条互相垂直的直线2x -y =0与x +ay =0上,且AB 线段的中点为P ⎝ ⎛⎭⎪⎫0,10a ,则线段AB 的长为________. 解析 由两直线垂直,得-1a²2=-1,解得a =2.所以中点P 的坐标为(0,5).则OP =5,在直角三角形中斜边的长度AB =2OP =2³5=10,所以线段AB 的长为10. 答案 103.已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.解析 由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,如图,所以四边形的面积S =2k 2³2+(4-k +4)³2³12=4k 2-k +8,故面积最小时,k =18.答案 18二、解答题4.(1)在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大; (2)在直线l :3x -y -1=0上求一点Q ,使得Q 到A (4,1)和C (3,4)的距离之和最小.图1解 (1)如图1,设点B 关于l 的对称点B ′的坐标为(a ,b ),直线l 的斜率为k 1,则k 1²k BB ′=-1.即3²b -4a=-1.∴a +3b -12=0.① 又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,∴3³a 2-b +42-1=0.即3a -b -6=0.②解①②得a =3,b =3,∴B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解⎩⎪⎨⎪⎧3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5,即l 与AB ′的交点坐标为P (2,5).图2(2)如图2,设C 关于l 的对称点为C ′,求出C ′的坐标为⎝ ⎛⎭⎪⎫35,245.∴AC ′所在直线的方程为19x +17y -93=0,AC ′和l 交点坐标为⎝⎛⎭⎪⎫117,267,故Q 点坐标为⎝ ⎛⎭⎪⎫117,267.知 识 梳 理1.圆的标准方程(1)方程(x -a )2+(y -b )2=r 2(r >0)表示圆心为(a ,b ),半径为r 的圆的标准方程. (2)特别地,以原点为圆心,半径为r (r >0)的圆的标准方程为x 2+y 2=r 2. 2.圆的一般方程方程x 2+y 2+Dx +Ey +F =0可变形为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4,故有:(1)当D 2+E 2-4F >0时,方程表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,以D 2+E 2-4F 2为半径的圆;(2)当D 2+E 2-4F =0时,方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E2;(3)当D 2+E 2-4F <0时,方程不表示任何图形. 3.P (x 0,y 0)与圆(x -a )2+(y -b )2=r 2(r >0)的位置关系 (1)若(x 0-a )2+(y 0-b )2>r 2,则点P 在圆外; (2)若(x 0-a )2+(y 0-b )2=r 2,则点P 在圆上; (3)若(x 0-a )2+(y 0-b )2<r 2,则点P 在圆内.4.确定圆的方程主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; (3)解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程.辨 析 感 悟1.对圆的方程的理解(1)确定圆的几何要素是圆心与半径.(√) (2)方程x 2+y 2=a 2表示半径为a 的圆.(³) (3)方程x 2+y 2+4mx -2y +5m =0表示圆.(³)(4)(2013²江西卷改编)若圆C 经过坐标原点和点(4,0)且与直线y =1相切,则圆C 的方程是(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.(√)2.对点与圆的位置关系的认识(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.(√) (6)已知圆的方程为x 2+y 2-2y =0,过点A (1,2)作该圆的切线只有一条.(³) [感悟²提升]1.一个性质 圆心在任一弦的中垂线上,如(4)中可设圆心为(2,b ).2.三个防范 一是含字母的圆的标准方程中注意字母的正负号,如(2)中半径应为|a |; 二是注意一个二元二次方程表示圆时的充要条件,如(3);三是过一定点,求圆的切线时,首先判断点与圆的位置关系.若点在圆外,有两个结果,若只求出一个,应该考虑切线斜率不存在的情况,如(6).考点一 求圆的方程【例1】 根据下列条件,求圆的方程.(1)求过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43的圆的方程. (2)已知圆的半径为10,圆心在直线y =2x 上,圆被直线x -y =0截得的弦长为4 2. 解 (1)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).① 将P ,Q 点的坐标分别代入①得⎩⎪⎨⎪⎧4D -2E +F =-20, ②D -3E -F =10, ③令x =0,由①得y 2+Ey +F =0.④由已知|y 1-y 2|=43,其中y 1,y 2是方程④的两根, 所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48.⑤解②、③、⑤组成的方程组得⎩⎪⎨⎪⎧D =-2,E =0,F =-12或⎩⎪⎨⎪⎧D =-10,E =-8,F =4.故所求圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0. (2)法一 设圆的方程为(x -a )2+(y -b )2=10. 由圆心在直线y =2x 上,得b =2a .① 由圆在直线x -y =0上截得的弦长为42, 将y =x 代入(x -a )2+(y -b )2=10, 整理得2x 2-2(a +b )x +a 2+b 2-10=0.由弦长公式得 2 a +b 2-2 a 2+b 2-10 =42, 化简得a -b =±2.②解①、②得a =2,b =4或a =-2,b =-4.故所求圆的方程为(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.法二 根据图形的几何性质:半径、弦长的一半、弦心距构成直角三角形.如图,由勾股定理,可得弦心距d =r 2-⎝⎛⎭⎪⎫4222=10-8= 2. 又弦心距等于圆心(a ,b )到直线x -y =0的距离, 所以d =|a -b |2,即|a -b |2= 2.③又已知b =2a .④解③、④得a =2,b =4或a =-2,b =-4. 故所求圆的方程是(x -2)2+(y -4)2=10 或(x +2)2+(y +4)2=10.规律方法 求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线. (2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.【训练1】 (1)(2014²济南模拟)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________.(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为________. 解析 (1)由于圆心在第一象限且与x 轴相切,故设圆心为(a,1),又由圆与直线4x -3y =0相切,得|4a -3|5=1,解得a =2或-12(舍去).故圆的标准方程为(x -2)2+(y -1)2=1.(2)依题意设所求圆的方程为(x -a )2+y 2=r 2,将A ,B 点坐标分别代入方程得⎩⎪⎨⎪⎧5-a 2+1=r 2,1-a 2+9=r 2,解得⎩⎪⎨⎪⎧a =2,r 2=10.所以所求圆的方程为(x -2)2+y 2=10.答案 (1)(x -2)2+(y -1)2=1 (2)(x -2)2+y 2=10考点二 与圆有关的最值问题【例2】 已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.解 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)y x的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如。
高考数学一轮复习 第九章 解析几何9.3圆的方程教学案 理 新人教A版
9.3 圆的方程考纲要求掌握确定圆的几何要素,掌握圆的标准方程与圆的一般方程.1.圆的定义在平面内,到____的距离等于____的点的____叫做圆. 确定一个圆最基本的要素是____和____. 2.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中______为圆心,____为半径长. 特别地,当圆心在原点时,圆的方程为________. 3.圆的一般方程对于方程x 2+y 2+Dx +Ey +F =0.(1)当____________时,表示圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径长为12D 2+E 2-4F 的圆;(2)当____________时,表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2; (3)当____________时,它不表示任何图形;(4)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎪⎨⎪⎧① ,② ,③ .4.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),点M (x 0,y 0), (1)点在圆上:____________________; (2)点在圆外:____________________; (3)点在圆内:____________________.1.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ). A .14<m <1 B .m >1 C .m <14 D .m <14或m >12.圆心在y 轴上,半径为1且过点(-1,2)的圆的方程为( ).A .x 2+(y -3)2=1B .x 2+(y -2)2=1C .(x -2)2+y 2=1D .(x +2)2+y 2=13.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ). A .-1<a <1 B .0<a <1 C .a >1或a <-1 D .a =±14.圆心在原点且与直线x +y -2=0相切的圆的方程为__________.5.圆C :x 2+y 2-2x -4y +4=0的圆心到直线3x +4y +4=0的距离d =__________.一、求圆的方程【例1-1】 圆心在y 轴上且过点(3,1)的圆与x 轴相切,则该圆的方程是( ).A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0【例1-2】 已知A (0,1),B (2,1),C (3,4),D (-1,2),问这四点能否在同一个圆上?为什么?方法提炼常见的求圆的方程的方法有两种:一是利用圆的几何特征,求出圆心坐标和半径长,写出圆的标准方程;二是利用待定系数法,它的应用关键是根据已知条件选择标准方程还是一般方程.如果给定的条件易求圆心坐标和半径长,则选用标准方程求解;如果所给条件与圆心、半径关系不密切或涉及圆上多点,常选用一般方程求解.请做演练巩固提升1二、与圆有关的最值问题【例2】 若实数x ,y 满足方程x 2+y 2-4x +1=0,则yx +1的最大值为__________,最小值为__________.方法提炼处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见的有以下几种类型:(1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.请做演练巩固提升3三、与圆有关的轨迹问题【例3】 如下图所示,圆O 1和圆O 2的半径长都等于1,|O 1O 2|=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN (M ,N 为切点),使得|PM |=2|PN |.试建立平面直角坐标系,并求动点P 的轨迹方程.方法提炼1.解答与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法——直接根据题目提供的条件列出方程;定义法——根据圆、直线等定义列方程;几何法——利用圆的几何性质列方程;代入法——找到所求点与已知点的关系,代入已知点满足的关系式.2.求与圆有关的轨迹问题时,题目的设问有两种常见形式,作答也应有不同:若求轨迹方程,把方程求出化简即可;若求轨迹,则必须根据轨迹方程,指出轨迹是什么样的曲线.请做演练巩固提升4易忽视斜率不存在的直线而致误【典例】 (12分)从圆(x -1)2+(y -1)2=1外一点P (2,3)向该圆引切线,求切线方程. 规范解答:当切线斜率存在时,设切线方程为y -3=k (x -2),即kx -y +3-2k =0.(2分)∵圆心为(1,1),半径长r =1, ∴|k -1+3-2k |k 2+-12=1,∴k =34.(6分)∴所求切线方程为y -3=34(x -2),即3x -4y +6=0.(8分)当切线斜率不存在时,因为切线过点P (2,3),且与x 轴垂直,此时切线的方程为x =2. 综上,所求切线方程为x =2或3x -4y +6=0.(12分)答题指导:求圆的切线方程,一般设为点斜式方程.首先判断点是否在圆上,如果过圆上一点,则有且只有一条切线,如果过圆外一点,则有且只有两条切线.若利用点斜式方程求得过圆外一点的切线只有一条,则需结合图形把斜率不存在的那条切线补上.1.圆x2+y2-4x+6y=0的圆心坐标是( ).A.(2,3) B.(-2,3)C.(-2,-3) D.(2,-3)2.(2012安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( ).A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)3.平移直线x-y+1=0使其与圆(x-2)2+(y-1)2=1相切,则平移的最短距离为( ).A.2-1 B.2- 2C. 2 D.2-1与2+14.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( ).A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=15.如果实数x,y满足方程(x-3)2+(y-3)2=6,求x+y的最大值与最小值.参考答案基础梳理自测知识梳理1.定点 定长 集合 圆心 半径2.(a ,b ) r x 2+y 2=r 23.(1)D 2+E 2-4F >0 (2)D 2+E 2-4F =0 (3)D 2+E 2-4F <0 (4)①A =C ≠0②B =0 ③D 2+E 2-4AF >04.(1)(x 0-a )2+(y 0-b )2=r 2(2)(x 0-a )2+(y 0-b )2>r 2(3)(x 0-a )2+(y 0-b )2<r 2基础自测1.D 解析:方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是(4m )2+(-2)2-4×5m>0,即m <14或m >1.2.B 解析:设圆心(0,b ),半径为r ,则r =1.∴x 2+(y -b )2=1.又圆过点(-1,2),代入得b =2,∴圆的方程为x 2+(y -2)2=1.3.A 解析:∵点(1,1)在圆(x -a )2+(y +a )2=4的内部,∴(1-a )2+(1+a )2<4,即-1<a <1.4.x 2+y 2=2 解析:设圆的方程为x 2+y 2=a 2(a >0), 由|-2|1+1=a ,∴a = 2.∴x 2+y 2=2.5.3 解析:圆C :x 2+y 2-2x -4y +4=0的圆心为C (1,2), 所以圆心C 到直线的距离为 |3×1+4×2+4|32+42=155=3. 考点探究突破【例1-1】 B 解析:设圆心为(0,b ),半径为R ,则R =|b |,∴圆的方程为x 2+(y -b )2=b 2. ∵点(3,1)在圆上,∴9+(1-b )2=b 2,解得b =5.∴圆的方程为x 2+y 2-10y =0.【例1-2】 解:设经过A ,B ,C 三点的圆的方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧a 2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2,(3-a )2+(4-b )2=r 2,解此方程组,得⎩⎪⎨⎪⎧a =1,b =3,r 2=5.所以,经过A ,B ,C 三点的圆的标准方程是(x -1)2+(y -3)2=5.把点D 的坐标(-1,2)代入上面方程的左边,得(-1-1)2+(2-3)2=5.所以,点D 在经过A ,B ,C 三点的圆上,故A ,B ,C ,D 四点在同一个圆上,圆的方程为(x -1)2+(y -3)2=5.【例2】 22 -22 解析:∵y x +1=y -0x -(-1),∴1y x +表示过点P(-1,0)与圆(x -2)2+y 2=3上的点(x ,y )的直线的斜率. 由图象知1yx +的最大值和最小值分别是过P 与圆相切的直线PA ,PB 的斜率.又∵k PA =CA PA =36=22,k PB =-||||CB PB =36-=22-,即1yx +的最大值为22,最小值为22-.【例3】 解:以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立如图所示的平面直角坐标系,则O 1(-2,0),O 2(2,0).由已知|PM |=2|PN |,得|PM |2=2|PN |2. 因为两圆的半径长均为1,所以|PO 1|2-1=2(|PO 2|2-1).设P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1],化简,得(x -6)2+y 2=33,所以所求轨迹方程为(x -6)2+y 2=33. 演练巩固提升1.D 解析:∵D =-4,E =6, ∴圆心坐标为(2,-3).2.C 解析:由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2, 解得-3≤a ≤1.3.A 解析:如图,圆心(2,1)到直线l 0:x -y +1=0的距离d =|2-1+1|2=2,圆的半径为1,则直线l 0与l 1的距离为2-1,所以平移的最短距离为2-1.4.A 解析:设圆上任一点坐标为(x 0,y 0),则x 02+y 02=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+4,2y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.代入x 02+y 02=4中得(x -2)2+(y +1)2=1.5.解:设x +y =b ,则y =-x +b ,由图知,当直线与圆C 相切时,截距b 取最值.而圆心C 到直线y =-x +b 的距离为d =|6-b |2.因为当|6-b |2=6,即b =6±23时,直线y =-x +b 与圆C 相切,所以x +y 的最大值与最小值分别为6+23与6-2 3.。
(江苏专版)2020版高考数学一轮复习 直线与圆锥曲线教案(理)(含解析)苏教版
第九节 直线与圆锥曲线直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y =0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. [小题体验]1.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是________.解析:双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线y =kx 与双曲线相交,数形结合得k ∈⎝ ⎛⎭⎪⎫-23,23.答案:⎝ ⎛⎭⎪⎫-23,23 2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),F (2,0)为其右焦点,过点F 且垂直于x 轴的直线与椭圆相交所得的弦长为2,则椭圆C 的方程为________.解析:由题意得⎩⎪⎨⎪⎧c =2,2b2a =2,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,所以椭圆C 的方程为x 24+y 22=1.答案:x 24+y 22=13.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点.设O为坐标原点,则OA ―→·OB ―→等于________.解析:依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝ ⎛⎭⎪⎫43,13,所以OA ―→·OB ―→=-13,同理,直线l 经过椭圆的左焦点时,也可得OA ―→·OB ―→=-13.故OA ―→·OB ―→的值为-13.答案:-131.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[小题纠偏]1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有________条.解析:结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).答案:32.直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点有_______个.解析:因为直线y =ba x +3与双曲线的渐近线y =b ax 平行, 所以它与双曲线只有1个交点. 答案:1考点一 直线与圆锥曲线的位置关系重点保分型考点——师生共研[典例引领]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-2,0),F 2(2,0),离心率为63.过点F 2的直线l (斜率不为0)与椭圆C 交于A ,B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于M ,N 两点.(1)求椭圆C 的方程;(2)当四边形MF 1NF 2为矩形时,求直线l 的方程.解:(1)由题意可知⎩⎪⎨⎪⎧c =2,c a =63,a 2=b 2+c 2,解得a =6,b = 2.故椭圆C 的方程为x 26+y 22=1. (2)由题意可知直线l 的斜率存在.设其方程为y =k (x -2), 点A (x 1,y 1),B (x 2,y 2),M (x 3,y 3),N (-x 3,-y 3),由⎩⎪⎨⎪⎧x 26+y 22=1,y =k x -2得(1+3k 2)x 2-12k 2x +12k 2-6=0,所以x 1+x 2=12k 21+3k2,则y 1+y 2=k (x 1+x 2-4)=-4k1+3k2,所以AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫6k 21+3k 2,-2k 1+3k 2,因此直线OD 的方程为x +3ky =0(k ≠0).由⎩⎪⎨⎪⎧x +3ky =0,x 26+y22=1,解得y 23=21+3k2,x 3=-3ky 3. 因为四边形MF 1NF 2为矩形, 所以F 2M ―→·F 2N ―→=0,即(x 3-2,y 3)·(-x 3-2,-y 3)=0, 所以4-x 23-y 23=0. 所以4-29k 2+11+3k 2=0. 解得k =±33.故直线l 的方程为y =±33(x -2). [由题悟法]1.直线与圆锥曲线位置关系的判定方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 2.判定直线与圆锥曲线位置关系的注意点(1)联立直线与圆锥曲线的方程消元后,应注意讨论二次项系数是否为零的情况. (2)判断直线与圆锥曲线位置关系时,判别式Δ起着关键性的作用,第一:可以限定所给参数的范围;第二:可以取舍某些解以免产生增根.[即时应用](2019·泰州中学高三学情调研) 已知椭圆的离心率为22,焦距为2,直线y =kx (x ≠0)与椭圆C 交于A ,B 两点,M 为其右准线与x 轴的交点,直线AM ,BM 分别与椭圆C 交于A 1,B 1两点,记直线A 1B 1的斜率为k 1.(1)求椭圆C 的方程;(2)是否存在常数λ,使得k 1=λk 恒成立?若存在,求出λ的值;若不存在,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的焦距2c =2,得c =1.由椭圆的离心率e =c a =22,得a =2, 则b 2=a 2-c 2=1,所以椭圆C 的方程为x 22+y 2=1.(2)设A (x 0,y 0),则B (-x 0,-y 0),k =y 0x 0,2y 20=2-x 20,又右准线方程为x =2,则M (2,0),直线AM 的方程为y =y 0x 0-2(x -2),联立⎩⎪⎨⎪⎧y =y 0x 0-2x -2,x22+y 2=1,消去y ,整理得[(x 0-2)2+2y 20]x 2-8y 20x +8y 20-2(x 0-2)2=0,因为方程的两个根为x 0,xA 1,所以x 0·xA 1=8y 20-2x 0-22x 0-22+2y 20=42-x 20-2x 0-22x 0-22+2-x 20=4-3x 03-2x 0·x 0, 则xA 1=4-3x 03-2x 0,yA 1=y 0x 0-2(xA 1-2)=y 03-2x 0,则A 1⎝ ⎛⎭⎪⎫4-3x 03-2x 0,y 03-2x 0,同理可得B 1⎝ ⎛⎭⎪⎫4+3x 03+2x 0,-y 03+2x 0,则k 1=-6y 02x 0=-3k , 即存在λ=-3,使得k 1=λk 恒成立. 考点二 定点、定值问题重点保分型考点——师生共研[典例引领](2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.解:(1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22.则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得 (4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).[由题悟法]定点、定值问题的求解策略(1)定点问题的求解策略把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然直线或曲线过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)定值问题的求解策略在解析几何中,有些几何量与参数无关,这就是“定值”问题,解决这类问题常通过取特殊值,先确定“定值”是多少,再进行证明,或者将问题转化为代数式,再证明该式是与变量无关的常数或者由该等式与变量无关,令其系数等于零即可得到定值.[即时应用](2019·徐州一模)已知中心在原点,对称轴为坐标轴的椭圆C 的一个焦点F 在抛物线y 2=4x 的准线上,且椭圆C 过点P ⎝⎛⎭⎪⎫1,32,直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的方程;(2)若直线l 的斜率为12,且不过点P ,设直线PA ,PB 的斜率分别为k 1,k 2,求证:k 1+k 2为定值.解:(1)抛物线y 2=4x 的准线方程为x =-1,由题意知F (-1,0).设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).则由题意可得⎩⎪⎨⎪⎧a 2-b 2=1,1a 2+94b2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.(2)证明:因为直线l 的斜率为12,且不过点P ⎝ ⎛⎭⎪⎫1,32, 所以可设直线l 的方程为y =12x +m (m ≠1).联立方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =12x +m消去y 得x 2+mx +m 2-3=0.设A (x 1,y 1),B (x 2,y 2),故有⎩⎪⎨⎪⎧Δ=m 2-4m 2-3>0,x 1+x 2=-m ,x 1x 2=m 2-3.所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=⎝ ⎛⎭⎪⎫y 1-32x 2-1+⎝⎛⎭⎪⎫y 2-32x 1-1x 1-1x 2-1=⎝ ⎛⎭⎪⎫12x 1+m -32x 2-1+⎝ ⎛⎭⎪⎫12x 2+m -32x 1-1x 1-1x 2-1=x 1x 2+m -2x 1+x 2-2m +3x 1x 2-x 1+x 2+1=m 2-3+m -2-m -2m +3m 2-3--m +1=0,所以k 1+k 2为定值0. 考点三 最值、范围问题重点保分型考点——师生共研[典例引领](2018·苏北四市期末)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线的距离为6 2.(1)求椭圆C 的标准方程;(2)设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线PA 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .①当直线PA 的斜率为12时,求△FMN 的外接圆的方程;②设直线AN 交椭圆C 于另一点Q ,求△AP Q 的面积的最大值.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,c +a 2c =62,解得⎩⎨⎧a =4,c =22,则b =22,所以椭圆C 的方程为x 216+y 28=1.(2)由题意可设直线PA 的方程为y =k (x +4),k >0,则M (0,4k ), 所以k MF =0-4k 22-0=-2k ,k FN =12k ,所以直线FN 的方程为y =12k(x -22),则N ⎝ ⎛⎭⎪⎫0,-2k .①当直线PA 的斜率为12,即k =12时,M (0,2),N (0,-4),F (22,0),因为MF ⊥FN ,所以圆心为(0,-1),半径为3, 所以△FMN 的外接圆的方程为x 2+(y +1)2=9.②联立⎩⎪⎨⎪⎧y =k x +4,x 216+y28=1消去y ,整理得(1+2k 2)x 2+16k 2x +32k 2-16=0,解得x 1=-4或x 2=4-8k 21+2k 2,所以P ⎝ ⎛⎭⎪⎫4-8k 21+2k 2,8k 1+2k 2,又直线AN 的方程为y =-12k (x +4),同理可得,Q ⎝ ⎛⎭⎪⎫8k 2-41+2k 2,-8k 1+2k 2,所以P ,Q 关于原点对称,即P Q 过原点.所以△AP Q 的面积S =12OA ·(y P -y Q )=2×16k 1+2k 2=322k +1k≤82, 当且仅当2k =1k ,即k =22时取“=”.所以△AP Q 的面积的最大值为8 2.[由题悟法]圆锥曲线中的最值问题解决方法(1)代数法:从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值.(2)几何法:从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.[即时应用]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝ ⎛⎭⎪⎫1,32,过它的两个焦点F 1,F 2分别作直线l 1与l 2,l 1交椭圆于A ,B 两点,l 2交椭圆于C ,D 两点,且l 1⊥l 2.(1)求椭圆的标准方程;(2)求四边形ABCD 的面积S 的取值范围.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝ ⎛⎭⎪⎫1,32的坐标代入椭圆方程得c 2=1,故所求椭圆方程为x 24+y 23=1.(2)若l 1与l 2中有一条直线的斜率不存在,则另一条直线的斜率为0,此时四边形的面积为S =6.若l 1与l 2的斜率都存在,设l 1的斜率为k ,则l 2的斜率为-1k.不妨设直线l 1的方程为y =k (x +1), 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =k x +1,x 24+y23=1,消去y 整理得,(4k 2+3)x 2+8k 2x +4k 2-12=0,Δ=64k 4-4(3+4k 2)(4k 2-12)=144k 2+144>0,所以x 1+x 2=-8k 24k 2+3,x 1·x 2=4k 2-124k 2+3,所以|x 1-x 2|=x 1+x 22-4x 1x 2=12k 2+14k 2+3, 所以AB =1+k 2|x 1-x 2|=12k 2+14k 2+3, 同理可得CD =12k 2+13k 2+4, 所以S =12AB ·CD =721+k224k 2+3·3k 2+4, 令k 2=t ∈(0,+∞), 所以S =721+t24t +3·3t +4=612t 2+25t +12-6t12t 2+25t +12=6-612t +12t+25≥6-649=28849,所以S ∈⎣⎢⎡⎭⎪⎫28849,6.综上可知,四边形ACBD 面积的取值范围是⎣⎢⎡⎦⎥⎤28849, 6.一保高考,全练题型做到高考达标1.(2019·徐州第一中学检测)若双曲线x 29-y 24=1与直线y =kx -1有且仅有一个公共点,则这样的直线有______条.解析:把直线y =kx -1代入双曲线x 29-y 24=1中,消去y ,得(4-9k 2)x 2+18kx -45=0,当4-9k 2=0,即k =±23时,直线与双曲线相交,有一个交点;当4-9k 2≠0,即k ≠±23时,令Δ=0,得182k 2+4(4-9k 2)×45=0,解得k =±53,此时直线与双曲线相切,有一个交点. 综上,k 的值有4个,即这样的直线有4条. 答案:42.已知椭圆C :x 24+y 23=1的左、右顶点分别为M ,N ,点P 在C 上,且直线PN 的斜率是-14,则直线PM 的斜率为________.解析:设P (x 0,y 0),则x 204+y 203=1,直线PM 的斜率k PM =y 0x 0+2,直线PN 的斜率k PN =y 0x 0-2,可得k PM ·k PN =y 20x 20-4=-34,故k PM =-34·1k PN=3. 答案:33.已知抛物线y 2=2px 的焦点F 与椭圆16x 2+25y 2=400的左焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且AK =2AF ,则点A 的横坐标为________.解析:16x 2+25y 2=400可化为x 225+y 216=1,则椭圆的左焦点为F (-3,0),又抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p2,所以p2=-3,即p =-6,即y 2=-12x ,K (3,0).设A (x ,y ),则由AK =2AF 得(x -3)2+y 2=2[(x +3)2+y 2],即x 2+18x +9+y 2=0, 又y 2=-12x ,所以x 2+6x +9=0,解得x =-3. 答案:-34.(2019·江都中学检测)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y2=2px (p >0)的准线分别交于A ,B 两点,若双曲线的离心率为2,O 为坐标原点,△AOB 的面积为33,则p =________. 解析:∵双曲线x 2a 2-y 2b 2=1的渐近线方程是y =±bax ,抛物线y 2=2px (p >0)的准线方程是x =-p2,∴A ,B 两点的纵坐标分别是y =±pb2a ,∵双曲线的离心率为2,∴b 2a 2=c 2-a 2a 2=e 2-1=3,则ba=3, ∴A ,B 两点的纵坐标分别是y =±pb 2a =±3p 2,又△AOB 的面积为33, ∴12×3p ×p 2=33,解得p =233. 答案:2335.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是___________.解析:设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2). 则x 2136+y 219=1,且x 2236+y 229=1, 两式相减并化简得y 1-y 2x 1-x 2=-x 1+x 24y 1+y 2. 又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12, 故直线l 的方程为y -2=-12(x -4),即x +2y -8=0. 答案:x +2y -8=06.(2018·海门中学检测)如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x 2+(y -1)2=1交于A ,B ,C ,D 四点,则AB ―→·DC ―→=________.解析:不妨设直线AB 的方程为y =1,联立⎩⎪⎨⎪⎧y =1,y =14x 2,解得x =±2,则A (-2,1),D (2,1),因为B (-1,1),C (1,1),所以AB ―→=(1,0),DC ―→=(-1,0),所以AB ―→·DC ―→=-1.答案:-17.(2019·宁海中学调研)已知椭圆x 2a 2+y 2b2=1(a >b >0),点A ,B 1,B 2,F 依次为其左顶点、下顶点、上顶点和右焦点,若直线AB 2与直线B 1F 的交点恰在椭圆的右准线上,则椭圆的离心率为________.解析:根据题意得,直线AB 2的方程为:y =b ax +b , 直线B 1F 的方程为:y =b cx -b , 联立两直线方程解得x =2aca -c. 又由题意可得2ac a -c =a2c ,化简得2c 2+ac -a 2=0, 即2e 2+e -1=0, 又0<e <1,解得e =12.答案:128.已知直线l 过抛物线C :y 2=2px (p >0)的焦点,且与抛物线的对称轴垂直,直线l 与抛物线C 交于A ,B 两点,且AB =12,若M 为抛物线C 的准线上一点,则△ABM 的面积为________.解析:由题意知,抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,对称轴为x 轴,准线为x =-p2.因为直线l 与x 轴垂直,所以AB =2p =12,p =6,又点M 在抛物线C 的准线上,所以点M 到直线AB 的距离为6,所以△ABM 的面积S =12×6×12=36.答案:369.(2018·镇江期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝ ⎛⎭⎪⎫-3,12在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 交椭圆C 于P ,Q 两点,线段P Q 的中点为H ,O 为坐标原点,且OH =1,求△PO Q 面积的最大值.解:(1)由已知得⎩⎪⎨⎪⎧c a =32,3a 2+14b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)设l 与x 轴的交点为D (n,0),直线l :x =my +n ,P (x 1,y 1),Q(x 2,y 2),联立⎩⎪⎨⎪⎧x =my +n ,x 24+y 2=1消去x ,整理得(4+m 2)y 2+2mny +n 2-4=0,所以y 1+y 2=-2mn 4+m 2,y 1y 2=n 2-44+m 2,故y 1+y 22=-mn 4+m 2,x 1+x 22=my 1+y 2+2n2=4n4+m2, 即H ⎝ ⎛⎭⎪⎫4n 4+m2,-mn 4+m 2, 由OH =1,得n 2=4+m 2216+m2, 则S △PO Q =12OD |y 1-y 2|=12|n ||y 1-y 2|.令T =n 2(y 1-y 2)2=n 2[(y 1+y 2)2-4y 1y 2]=1924+m216+m22,设t =4+m 2(t ≥4),则4+m216+m22=t t 2+24t +144=1t +144t+24≤12t ·144t+24=148, 当且仅当t =144t,即t =12时,S △PO Q =1,所以△PO Q 面积的最大值为1.10.如图,在平面直角坐标系xOy 中,过椭圆C :x 24+y 2=1的左顶点A 作直线l ,与椭圆C 和y 轴正半轴分别交于点P ,Q.(1)若AP =P Q ,求直线l 的斜率;(2)过原点O 作直线l 的平行线,与椭圆C 交于点M ,N ,求证:AP ·A QMN 2为定值. 解:(1)依题意,椭圆C 的左顶点A (-2,0), 设直线l 的斜率为k (k >0),点P 的横坐标为x P , 则直线l 的方程为y =k (x +2).联立⎩⎪⎨⎪⎧y =k x +2,x 24+y 2=1,得(4k 2+1)x 2+16k 2x +16k 2-4=0,则-2·x P =16k 2-44k 2+1,从而x P =2-8k21+4k2.因为AP =P Q ,所以x P =-1.所以2-8k 21+4k 2=-1,解得k =32(负值舍去).(2)证明:设点N 的横坐标为x N .结合(1)知,直线MN 的方程为y =kx .联立⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1,得x 2N =41+4k2. 从而AP ·A Q MN 2=2x P +22x N2=2⎝ ⎛⎭⎪⎫2-8k 21+4k 2+24×41+4k2=12(定值). 二上台阶,自主选做志在冲刺名校1.(2019·苏州调研)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上的动点P 到一个焦点的距离的最小值为3(2-1).(1)求椭圆C 的标准方程;(2)已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.解:(1)由题意得ca =22,故a =2c . 又椭圆上的动点P 到一个焦点的距离的最小值为3(2-1), 所以a -c =3(2-1),所以c =3,a =32,所以b 2=a 2-c 2=9, 所以椭圆C 的标准方程为x 218+y 29=1.(2)当直线l 的斜率为0时,对于x 218+y 29=1,令y =-1,得x =±4,此时以线段AB 为直径的圆的方程为x 2+(y +1)2=16.当直线l 的斜率不存在时,以线段AB 为直径的圆的方程为x 2+y 2=9.联立⎩⎪⎨⎪⎧x 2+y +12=16,x 2+y 2=9,解得⎩⎪⎨⎪⎧x =0,y =3,即两圆的交点为(0,3),记T (0,3).猜想以线段AB 为直径的圆恒过定点T (0,3).当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx -1(k ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 218+y29=1,得(1+2k 2)x 2-4kx -16=0,所以Δ=(-4k )2+64(1+2k 2)=144k 2+64>0,x 1+x 2=4k 1+2k 2,x 1x 2=-161+2k2. 因为TA ―→·TB ―→=(x 1,y 1-3)·(x 2,y 2-3)=x 1x 2+y 1y 2-3(y 1+y 2)+9=x 1x 2+(kx 1-1)(kx 2-1)-3(kx 1-1+kx 2-1)+9=(k 2+1)x 1x 2-4k (x 1+x 2)+16=-16k 2+11+2k2-16k 21+2k 2+16=-161+2k21+2k2+16=0,所以TA ⊥TB ,故以线段AB 为直径的圆过点T (0,3).综上,以线段AB 为直径的圆恒过定点(0,3).2.(2019·盐城模拟)如图,已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a>b >0)的左、右焦点,点P (-2,3)是椭圆C 上一点,且PF 1⊥x 轴.(1)求椭圆C 的方程;(2)设圆M :(x -m )2+y 2=r 2(r >0).①设圆M 与线段PF 2交于A ,B 两点,若MA ―→+MB ―→=MP ―→+MF 2―→,且AB =2,求r 的值; ②设m =-2,过点P 作圆M 的两条切线分别交椭圆C 于G ,H 两点(均异于点P ).试问:是否存在这样的正数r ,使得G ,H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.解:(1)因为点P (-2,3)是椭圆C 上一点,且PF 1⊥x 轴, 所以椭圆的半焦距c =2,由c 2a 2+y 2b 2=1,得y =±b 2a ,所以b 2a =a 2-4a=3, 化简得a 2-3a -4=0,解得a =4,所以b 2=12, 所以椭圆C 的方程为x 216+y 212=1.(2)①因为MA ―→+MB ―→=MP ―→+MF 2―→, 所以MA ―→-MP ―→=MF 2―→-MB ―→,即PA ―→=BF 2―→. 所以线段PF 2与线段AB 的中点重合(记为点Q),由(1)知Q ⎝ ⎛⎭⎪⎫0,32. 因为圆M 与线段PF 2交于A ,B 两点, 所以k M Q ·k AB =k M Q ·kPF 2=-1,即0-32m ·3-0-2-2=-1,解得m =-98, 所以M Q =⎝ ⎛⎭⎪⎫-98-02+⎝ ⎛⎭⎪⎫0-322=158,又AB =2,所以r =⎝ ⎛⎭⎪⎫1582+12=178.②假设存在正数r 满足题意.由G ,H 两点恰好关于原点对称,设G (x 0,y 0),则H (-x 0,-y 0),不妨设x 0<0. 因为P (-2,3),m =-2,所以两条切线的斜率均存在, 设过点P 与圆M 相切的直线的斜率为k ,则切线方程为y -3=k (x +2),即kx -y +2k +3=0, 由该直线与圆M 相切,得r =31+k2,即k =±9-r2r 2,所以两条切线的斜率互为相反数,即k PG =-k PH , 所以y 0-3x 0+2=--y 0-3-x 0+2,化简得x 0y 0=-6,即y 0=-6x 0, 代入x 2016+y 2012=1,化简得x 40-16x 20+48=0, 解得x 0=-2(舍去)或x 0=-23, 所以y 0=3,所以G (-23,3),H (23,-3), 所以k PG =3-3-2+23=32,所以r =31+⎝⎛⎭⎪⎫322=677. 故存在满足条件的正数r ,且r =677.命题点一 椭圆1.(2018·浙江高考)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP ―→=2PB ―→,则当m =________时,点B 横坐标的绝对值最大.解析:设A (x 1,y 1),B (x 2,y 2),由AP ―→=2PB ―→,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-1,即x 1=-2x 2,y 1=3-2y 2. 因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+3-2y 22=m ,x224+y 22=m ,解得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大. 答案:52.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:将y =b2代入椭圆的标准方程,得x 2a 2+b 24b2=1,所以x =±32a ,故B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2. 又因为F (c,0),所以BF ―→=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF ―→=⎝ ⎛⎭⎪⎫c -32a ,-b 2.因为∠BFC =90°,所以BF ―→·CF ―→=0, 所以⎝ ⎛⎭⎪⎫c +32a ⎝ ⎛⎭⎪⎫c -32a +⎝ ⎛⎭⎪⎫-b 22=0, 即c 2-34a 2+14b 2=0,将b 2=a 2-c 2代入并化简,得a 2=32c 2,所以e 2=c 2a 2=23,所以e =63(负值舍去).答案:633.(2017·江苏高考)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标. 解:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以c a =12,2a 2c=8,解得a =2,c =1,于是b =a 2-c 2=3, 因此椭圆E 的标准方程是x 24+y 23=1.(2)由(1)知,F 1(-1,0),F 2(1,0). 设P (x 0,y 0),因为P 为第一象限的点, 故x 0>0,y 0>0.当x 0=1时,l 2与l 1相交于F 1,与题设不符. 当x 0≠1时,直线PF 1的斜率为y 0x 0+1,直线PF 2的斜率为y 0x 0-1.因为l 1⊥PF 1,l 2⊥PF 2,所以直线l 1的斜率为-x 0+1y 0,直线l 2的斜率为-x 0-1y 0, 从而直线l 1的方程为y =-x 0+1y 0(x +1), ① 直线l 2的方程为y =-x 0-1y 0(x -1). ② 由①②,解得x =-x 0,y =x 20-1y 0,所以Q ⎝ ⎛⎭⎪⎫-x 0,x 20-1y 0. 因为点Q 在椭圆上,由对称性,得x 20-1y 0=±y 0,即x 20-y 20=1或x 20+y 20=1. 又点P 在椭圆E 上,故x 204+y 203=1.联立⎩⎪⎨⎪⎧ x 20-y 20=1,x 204+y 23=1,解得⎩⎪⎨⎪⎧x 0=477,y 0=377;联立⎩⎪⎨⎪⎧x 20+y 20=1,x 204+y 23=1,无解.因此点P 的坐标为⎝⎛⎭⎪⎫477,377.4.(2018·北京高考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q ⎝ ⎛⎭⎪⎫-74,14共线,求k .解:(1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.所以|AB |=x 2-x 12+y 2-y 12=2x 2-x 12=2[x 1+x 22-4x 1x 2]=12-3m22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6. (3)设A (x 1,y 1),B (x 2,y 2), 由题意得x 21+3y 21=3,x 22+3y 22=3. 直线PA 的方程为y =y 1x 1+2(x +2).由⎩⎪⎨⎪⎧y =y 1x 1+2x +2,x 2+3y 2=3,得[(x 1+2)2+3y 21]x 2+12y 21x +12y 21-3(x 1+2)2=0.设C (x C ,y C ),所以x C +x 1=-12y 21x 1+22+3y 21=4x 21-124x 1+7. 所以x C =4x 21-124x 1+7-x 1=-12-7x 14x 1+7.所以y C =y 1x 1+2(x C +2)=y 14x 1+7. 设D (x D ,y D ),同理得x D =-12-7x 24x 2+7,y D =y 24x 2+7.记直线C Q ,D Q 的斜率分别为k C Q ,k D Q ,则k C Q -k D Q =y 14x 1+7-14-12-7x 14x 1+7+74-y 24x 2+7-14-12-7x 24x 2+7+74=4(y 1-y 2-x 1+x 2).因为C ,D ,Q 三点共线,所以k C Q -k D Q =0. 故y 1-y 2=x 1-x 2. 所以直线l 的斜率k =y 1-y 2x 1-x 2=1.5.(2017·天津高考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E 的坐标为(0,c ), △EFA 的面积为b 22.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,|F Q|=32c ,延长线段F Q 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥Q N ,且直线PM 与直线Q N 间的距离为c ,四边形P Q NM 的面积为3c .①求直线FP 的斜率; ②求椭圆的方程.解:(1)设椭圆的离心率为e . 由已知,可得12(c +a )c =b22.又由b 2=a 2-c 2,可得2c 2+ac -a 2=0,即2e 2+e -1=0. 又因为0<e <1,解得e =12.所以椭圆的离心率为12.(2)①依题意,设直线FP 的方程为x =my -c (m >0), 则直线FP 的斜率为1m.由(1)知a =2c ,可得直线AE 的方程为x 2c +yc =1,即x +2y -2c =0,与直线FP 的方程联立, 可解得x =2m -2c m +2,y =3cm +2,即点Q 的坐标为⎝⎛⎭⎪⎫2m -2c m +2,3c m +2.由已知|F Q|=32c ,有⎣⎢⎡⎦⎥⎤2m -2c m +2+c 2+⎝ ⎛⎭⎪⎫3c m +22=⎝ ⎛⎭⎪⎫3c 22,整理得3m 2-4m =0,所以m =43,即直线FP 的斜率为34. ②由a =2c ,可得b =3c ,故椭圆方程可以表示为x 24c 2+y 23c2=1.由①得直线FP 的方程为3x -4y +3c =0,联立⎩⎪⎨⎪⎧3x -4y +3c =0,x 24c 2+y 23c2=1消去y ,整理得7x 2+6cx -13c 2=0,解得x =c 或x =-13c7(舍去).因此可得点P ⎝⎛⎭⎪⎫c ,3c 2,进而可得|FP |=c +c2+⎝ ⎛⎭⎪⎫3c 22=5c2, 所以|P Q|=|FP |-|F Q|=5c 2-3c2=c .由已知,线段P Q 的长即为PM 与Q N 这两条平行直线间的距离, 故直线PM 和Q N 都垂直于直线FP . 因为Q N ⊥FP ,所以|Q N |=|F Q |·tan∠Q FN =3c 2×34=9c8,所以△F Q N 的面积为12|F Q||Q N |=27c232,同理,△FPM 的面积等于75c232,由四边形P Q NM 的面积为3c , 得75c 232-27c 232=3c ,整理得c 2=2c . 又由c >0,得c =2. 所以椭圆的方程为x 216+y 212=1.命题点二 双曲线1.(2018·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c,0)到一条渐近线的距离为32c ,则其离心率的值为________. 解析:∵双曲线的渐近线方程为bx ±ay =0, ∴焦点F (c,0)到渐近线的距离d =|bc ±0|b 2+a 2=b ,∴b =32c ,∴a =c 2-b 2=12c ,∴e =ca=2. 答案:22.(2016·江苏高考)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.解析:由双曲线的标准方程,知a 2=7,b 2=3,所以c 2=a 2+b 2=10, 所以c =10,从而焦距2c =210. 答案:2103.(2017·江苏高考)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.解析:由题意得,双曲线的右准线x =32与两条渐近线y =±33x 的交点坐标为⎝ ⎛⎭⎪⎫32,±32.不妨设双曲线的左、右焦点分别为F 1,F 2, 则F 1(-2,0),F 2(2,0), 故四边形F 1PF 2Q 的面积是 12|F 1F 2|·|P Q|=12×4×3=2 3. 答案:2 34.(2018·北京高考)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.解析:由e =ca=a 2+b 2a 2,得a 2+4a 2=54, ∴a 2=16. ∵a >0,∴a =4. 答案:45.(2018·全国卷Ⅲ改编)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为________.解析:法一:不妨设一条渐近线的方程为y =b ax , 则F 2到y =b ax 的距离d =|bc |a 2+b 2=b .在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得 cos ∠POF 1=a 2+c 2-6a22ac=-cos ∠POF 2=-a c,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca= 3. 法二:如图,过点F 1向OP 的反向延长线作垂线,垂足为P ′,连接P ′F 2,由题意可知,四边形PF 1P ′F 2为平行四边形,且 △PP ′F 2是直角三角形.因为|F 2P |=b ,|F 2O |=c ,所以|OP |=a .又|PF 1|=6a =|F 2P ′|,|PP ′|=2a ,所以|F 2P |=2a =b ,所以c =a 2+b 2=3a ,所以e =c a= 3.答案: 36.(2015·江苏高考)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点,若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.解析:所求的c 的最大值就是双曲线的一条渐近线x -y =0与直线x -y +1=0的距离,此距离d =12=22. 答案:22命题点三 抛物线1.(2017·全国卷Ⅱ改编)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为________.解析:法一:由题意,得F (1,0), 则直线FM 的方程是y =3(x -1).由⎩⎨⎧y =3x -1,y 2=4x ,得x =13或x =3.由M 在x 轴的上方,得M (3,23), 由MN ⊥l ,得|MN |=|MF |=3+1=4.又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°, 因此△MNF 是边长为4的等边三角形, 所以点M 到直线NF 的距离为4×32=2 3.法二:依题意,得直线FM 的倾斜角为60°, 则|MN |=|MF |=21-cos 60°=4.又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°, 因此△MNF 是边长为4的等边三角形, 所以点M 到直线NF 的距离为4×32=2 3. 答案:2 32.(2018·北京高考)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为________.解析:由题知直线l 的方程为x =1,则直线与抛物线的交点为(1,±2a )(a >0). 又直线被抛物线截得的线段长为4, 所以4a =4,即a =1.所以抛物线的焦点坐标为(1,0). 答案:(1,0)3.(2017·天津高考)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为________________.解析:由题意知该圆的半径为1,设圆心坐标为C (-1,a )(a >0),则A (0,a ). 又F (1,0),所以AC ―→=(-1,0),AF ―→=(1,-a ), 由题意得AC ―→与AF ―→的夹角为120°, 故cos 120°=-11×1+-a2=-12,解得a =3, 所以圆的方程为(x +1)2+(y -3)2=1. 答案:(x +1)2+(y -3)2=14.(2017·浙江高考)如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q.(1)求直线AP 斜率的取值范围; (2)求|PA |·|P Q|的最大值.解:(1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)设直线AP 的斜率为k ,则直线B Q 的斜率为-1k.则直线AP 的方程为y -14=k ⎝ ⎛⎭⎪⎫x +12,即kx -y +12k +14=0,直线B Q 的方程为y -94=-1k ⎝ ⎛⎭⎪⎫x -32,即x +ky -94k -32=0,联立⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +32k 2+1. 因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|P Q|=1+k 2(x Q -x )=-k -1k +12k 2+1,所以|PA |·|P Q|=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减, 因此当k =12时,|PA |·|P Q|取得最大值2716.命题点四 圆锥曲线中的综合问题1.(2018·江苏高考)如图,在平面直角坐标系xOy 中,椭圆C 过点⎝⎛⎭⎪⎫3,12,焦点为F 1(-3,0),F 2(3,0),圆O 的直径为F 1F 2.(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为267,求直线l 的方程. 解:(1)因为椭圆C 的焦点为F 1(-3,0),F 2(3,0),可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).又点⎝ ⎛⎭⎪⎫3,12在椭圆C 上, 所以⎩⎪⎨⎪⎧3a 2+14b2=1,a 2-b 2=3,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.因为圆O 的直径为F 1F 2, 所以圆O 的方程为x 2+y 2=3.(2)①设直线l 与圆O 相切于点P (x 0,y 0)(x 0>0,y 0>0),则x 20+y 20=3, 所以直线l 的方程为y =-x 0y 0(x -x 0)+y 0,即y =-x 0y 0x +3y 0.由⎩⎪⎨⎪⎧x 24+y 2=1,y =-x 0y 0x +3y消去y ,得(4x 20+y 20)x 2-24x 0x +36-4y 20=0.(*)因为直线l 与椭圆C 有且只有一个公共点,所以Δ=(-24x 0)2-4(4x 20+y 20)·(36-4y 20)=48y 20(x 20-2)=0. 因为x 0>0,y 0>0,所以x 0=2,y 0=1. 所以点P 的坐标为(2,1). ②因为△OAB 的面积为267,所以12AB ·OP =267,从而AB =427.设A (x 1,y 1),B (x 2,y 2),由(*)得x 1,2=24x 0± 48y 20x 20-224x 20+y 20, 所以AB 2=(x 1-x 2)2+(y 1-y 2)2=⎝ ⎛⎭⎪⎫1+x 20y 20·48y 20x 20-24x 20+y 202. 因为x 20+y 20=3,所以AB 2=16x 20-2x 20+12=3249, 即2x 40-45x 20+100=0,解得x 20=52(x 20=20舍去),则y 20=12, 因此P 的坐标为⎝ ⎛⎭⎪⎫102,22. 所以直线l 的方程为y -22=-5⎝ ⎛⎭⎪⎫x -102, 即y =-5x +3 2.2.(2017·天津高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12. (1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线B Q 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 解:(1)设点F 的坐标为(-c,0),依题意⎩⎪⎨⎪⎧c a =12,p 2=a ,a -c =12,解得⎩⎪⎨⎪⎧ a =1,c =12,p =2, 于是b 2=a 2-c 2=34. 所以椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x . (2)设直线AP 的方程为x =my +1(m ≠0),与直线l 的方程x =-1联立,可得点P ⎝ ⎛⎭⎪⎫-1,-2m ,故点Q ⎝ ⎛⎭⎪⎫-1,2m .联立⎩⎪⎨⎪⎧ x =my +1,x 2+4y 23=1消去x , 整理得(3m 2+4)y 2+6my =0,解得y =0或y =-6m 3m 2+4. 由点B 异于点A ,可得点B ⎝ ⎛⎭⎪⎫-3m 2+43m 2+4,-6m 3m 2+4. 由Q ⎝ ⎛⎭⎪⎫-1,2m ,可得直线B Q 的方程为⎝ ⎛⎭⎪⎫-6m 3m 2+4-2m (x +1)-⎝ ⎛⎭⎪⎫-3m 2+43m 2+4+1⎝ ⎛⎭⎪⎫y -2m =0,令y =0,解得x =2-3m 23m 2+2,故点D ⎝ ⎛⎭⎪⎫2-3m23m 2+2,0.所以|AD |=1-2-3m 23m 2+2=6m23m 2+2.又因为△APD 的面积为62, 故12×6m 23m 2+2×2|m |=62,整理得3m 2-26|m |+2=0,解得|m |=63,所以m =±63.所以直线AP 的方程为3x +6y -3=0或3x -6y -3=0.。
(江苏专用)2020版高考数学大一轮复习第九章平面解析几何9.8抛物线教案(含解析)
§9.8抛物线考情考向分析抛物线的方程、几何性质及与抛物线相关的综合问题是命题的热点.题型既有基础性的填空题,又有综合性较强的解答题.1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质概念方法微思考1.若抛物线定义中定点F在定直线l上时,动点的轨迹是什么图形?提示过点F且与l垂直的直线.2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?提示直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a4,0,准线方程是x =-a4.( × )(3)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长AB =x 1+x 2+p .( √ )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ ) 题组二 教材改编2.[P53练习T2]过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则PQ =________. 答案 8解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,PQ =PF +QF =x 1+1+x 2+1=x 1+x 2+2=8.3.[P51T3]已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为____________________. 答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=2px (p ≠0)或x 2=2py (p ≠0). 将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y .4.[P74T14]若抛物线y 2=4x 的准线为l ,P 是抛物线上任意一点,则P 到准线l 的距离与P 到直线3x +4y +7=0的距离之和的最小值是________. 答案 2解析 由抛物线定义可知点P 到准线l 的距离等于点P 到焦点F 的距离,由抛物线y 2=4x 及直线方程3x +4y +7=0可得直线与抛物线相离.∴点P 到准线l 的距离与点P 到直线3x +4y +7=0的距离之和的最小值为点F (1,0)到直线3x +4y +7=0的距离,即|3+7|32+42=2.题组三 易错自纠5.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是________. 答案 y 2=±42x解析 由已知可知双曲线的焦点为(-2,0),(2,0). 设抛物线方程为y 2=±2px (p >0),则p2=2,所以p =22,所以抛物线方程为y 2=±42x .6.(2019·如皋调研)在平面直角坐标系xOy 中,抛物线y 2=2px (p >0)的焦点在直线2x +y -2=0上,则p 的值为________. 答案 2解析 直线2x +y -2=0与x 轴的交点坐标为(1,0), 所以抛物线的焦点坐标为(1,0),即p2=1,p =2.7.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是__________. 答案 [-1,1]解析 Q (-2,0),当直线l 的斜率不存在时,不满足题意,故设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0, 由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0, 解得-1≤k ≤1.题型一抛物线的定义和标准方程命题点1 定义及应用例1设P是抛物线y2=4x上的一个动点,若B(3,2),则PB+PF的最小值为________.答案 4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则P1Q=P1F.则有PB+PF≥P1B+P1Q=BQ=4,即PB+PF的最小值为4.引申探究1.若将本例中的B 点坐标改为(3,4),试求PB +PF 的最小值. 解 由题意可知点B (3,4)在抛物线的外部.∵PB +PF 的最小值即为B ,F 两点间的距离,F (1,0), ∴PB +PF ≥BF =22+42=25, 即PB +PF 的最小值为2 5.2.若将本例中的条件改为:已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,求d 1+d 2的最小值. 解 由题意知,抛物线的焦点为F (1,0). 点P 到y 轴的距离d 1=PF -1, 所以d 1+d 2=d 2+PF -1.易知d 2+PF 的最小值为点F 到直线l 的距离, 故d 2+PF 的最小值为|1+5|12+(-1)2=32,所以d 1+d 2的最小值为32-1. 命题点2 求标准方程例2 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,MF =5,若以MF 为直径的圆过点(0,2),则C 的标准方程为________________. 答案 y 2=4x 或y 2=16x解析 由题意知,F ⎝ ⎛⎭⎪⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝ ⎛⎭⎪⎫52,y M 2,所以圆的方程为⎝ ⎛⎭⎪⎫x -522+⎝ ⎛⎭⎪⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝ ⎛⎭⎪⎫5-p 2,解得p =2或p =8,所以抛物线C 的标准方程为y 2=4x 或y 2=16x .思维升华 (1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.跟踪训练1(1)设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________. 答案5解析 如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知点P到直线x=-1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,显然,连结AF与抛物线相交的点即为满足题意的点,此时最小值为[1-(-1)]2+(0-1)2= 5.(2)如图所示,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若BC=2BF,且AF=3,则此抛物线的标准方程为________.答案y2=3x解析分别过点A,B作AA1⊥l,BB1⊥l,且垂足分别为A1,B1,由已知条件BC=2BF,得BC =2BB1,所以∠BCB 1=30°. 又AA 1=AF =3, 所以AC =2AA 1=6,所以CF =AC -AF =6-3=3, 所以F 为线段AC 的中点. 故点F 到准线的距离为p =12AA 1=32,故抛物线的标准方程为y 2=3x .题型二 抛物线的几何性质例3(1)已知抛物线C :y 2=2px (p >0),过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的射影分别为M ,N 两点,则S △MFN =________. 答案233p 2解析 不妨设P 在第一象限,过Q 作QR ⊥PM ,垂足为R ,设准线与x 轴的交点为E ,∵直线PQ 的斜率为3,∴直线PQ 的倾斜角为60°.由抛物线焦点弦的性质可得PQ =PF +QF =p1-cos60°+p 1+cos60°=2p sin 260°=83p .在Rt△PRQ 中,sin∠RPQ =QRPQ,∴QR =PQ ·sin∠RPQ =83p ×32=433p ,由题意可知MN =QR =433p ,∴S △MNF =12MN ·FE =12×433p ×p =233p 2.(2)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且PA =12AB ,则点A 到抛物线C 的焦点的距离为________. 答案 53解析 设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为点D ,E .∵PA =12AB , ∴⎩⎪⎨⎪⎧3(x 1+2)=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.思维升华在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.跟踪训练2(1)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. 答案 94解析 由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0, 因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34, 即4x -43y -3=0.方法一 联立直线方程与抛物线方程化简得 4y 2-123y -9=0,解得y A ,B =123±(-123)2+4×4×98=33±62,即y A +y B =33,y A ·y B =-94,故|y A -y B |=(y A +y B )2-4y A y B =6. 因此S △OAB =12OF ·|y A -y B |=12×34×6=94.方法二 联立直线方程与抛物线方程得x 2-212x +916=0,即x A ,B =212± ⎝ ⎛⎭⎪⎫-2122-4×9162=214±27,故x A +x B =212.根据抛物线的定义有AB =x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12AB ·h =94.(2)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =________. 答案433解析 经过第一象限的双曲线C 2的渐近线方程为y =33x .抛物线C 1的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,双曲线C 2的右焦点为F 2(2,0).因为y =12p x 2,所以y ′=1p x .所以抛物线C 1在点M ⎝⎛⎭⎪⎫x 0,x 202p 处的切线斜率为33,即1p x 0=33,所以x 0=33p .因为F ⎝⎛⎭⎪⎫0,p 2,F 2(2,0),M ⎝ ⎛⎭⎪⎫33p ,p 6三点共线,所以p 2-00-2=p 6-p233p -0,解得p =433. 题型三 直线与抛物线例4设抛物线的顶点在坐标原点,焦点F 在y 轴正半轴上,过点F 的直线交抛物线于A ,B 两点,线段AB 的长是8,AB 的中点到x 轴的距离是3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且与抛物线交于P ,Q 两点.连结QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.解 (1)设抛物线的方程是x 2=2py (p >0),A (x 1,y 1),B (x 2,y 2),由抛物线定义可知y 1+y 2+p =8,又AB 的中点到x 轴的距离为3, ∴y 1+y 2=6,∴p =2, ∴抛物线的标准方程是x 2=4y .(2)由题意知,直线m 的斜率存在,设直线m :y =kx +6(k ≠0),P (x 3,y 3),Q (x 4,y 4),由⎩⎪⎨⎪⎧y =kx +6,x 2=4y消去y 得x 2-4kx -24=0,∴x 3,4=4k ±16k 2+24×42,∴⎩⎪⎨⎪⎧x 3+x 4=4k ,x 3·x 4=-24.(*)易知抛物线在点P ⎝ ⎛⎭⎪⎫x 3,x 234处的切线方程为y -x 234=x 32(x -x 3),令y =-1,得x =x 23-42x 3,∴R ⎝ ⎛⎭⎪⎫x 23-42x 3,-1,又Q ,F ,R 三点共线,∴k QF =k FR ,又F (0,1), ∴x 244-1x 4=-1-1x 23-42x 3,即(x 23-4)(x 24-4)+16x 3x 4=0,整理得(x 3x 4)2-4[(x 3+x 4)2-2x 3x 4]+16+16x 3x 4=0, 将(*)式代入上式得k 2=14,∴k =±12,∴直线m 的方程为y =±12x +6.思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要联立直线与抛物线方程求解.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 ①x 1x 2=p 24,y 1y 2=-p 2.②弦长AB =x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角). ③以弦AB 为直径的圆与准线相切.④通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.跟踪训练3(1)(2019·南京外国语学校阶段测试)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=________.答案 8解析 抛物线C :y 2=4x 的焦点为F (1,0),过点(-2,0)且斜率为23的直线为3y =2x +4,联立直线与抛物线C :y 2=4x , 消去x 可得y 2-6y +8=0,解得y 1=2,y 2=4,不妨设M (1,2),N (4,4),FM →=(0,2),FN →=(3,4). 则FM →·FN →=(0,2)·(3,4)=8.(2)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为________. 答案 2 3解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式可得直线MF 的方程为y =3(x -1).联立得方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23). ∴NF =(1+1)2+(0-23)2=4,MF =MN =3-(-1)=4.∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3.直线与圆锥曲线问题的求解策略例(14分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由. 规范解答解 (1)∵抛物线C :x 2=1m y ,∴它的焦点为F ⎝ ⎛⎭⎪⎫0,14m .[2分](2)∵RF =y R +14m ,∴2+14m =3,得m =14.[4分](3)存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0(m >0),依题意,有Δ=(-2)2-4×m ×(-2)=8m +4>0恒成立, 方程必有两个不等实根.[6分] 设A (x 1,mx 21),B (x 2,mx 22),∴x 1,2=2±4+8m2m,∴⎩⎪⎨⎪⎧x 1+x 2=2m,x 1·x 2=-2m. (*)∵P 是线段AB 的中点,∴P ⎝ ⎛⎭⎪⎫x 1+x 22,mx 21+mx 222, 即P ⎝ ⎛⎭⎪⎫1m,y P ,∴Q ⎝ ⎛⎭⎪⎫1m ,1m ,[9分]得QA →=⎝⎛⎭⎪⎫x 1-1m,mx 21-1m ,QB →=⎝⎛⎭⎪⎫x 2-1m ,mx 22-1m .若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则QA →·QB →=0, 即⎝ ⎛⎭⎪⎫x 1-1m ·⎝ ⎛⎭⎪⎫x 2-1m +⎝ ⎛⎭⎪⎫mx 21-1m ⎝ ⎛⎭⎪⎫mx 22-1m =0,[12分]结合(*)式化简得-4m2-6m+4=0,即2m 2-3m -2=0,∴m =2或m =-12,∵m >0,∴m =2.∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.[14分]解决直线与圆锥曲线的位置关系的一般步骤 第一步:联立方程,得关于x 或y 的一元二次方程;第二步:求出两根,并求出Δ>0时参数范围(或指出直线过曲线内一点);第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.1.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为________. 答案 5解析 依题意可知抛物线的准线方程为y =-1, ∴点A 到准线的距离为4+1=5, ∴点A 与抛物线焦点的距离为5.2.若抛物线y 2=8x 的焦点恰好是双曲线x 2a 2-y 23=1(a >0)的右焦点,则实数a 的值为________.答案 1解析 抛物线y 2=8x 的焦点为(2,0),双曲线x 2a 2-y 23=1(a >0)的右焦点为(a 2+3,0),由题意,得a 2+3=2,解得a =1.3.动点P 到点A (0,2)的距离比它到直线l :y =-4的距离小2,则动点P 的轨迹方程为____________. 答案 x 2=8y解析 ∵动点P 到点A (0,2)的距离比它到直线l :y =-4的距离小2,∴动点P 到点A (0,2)的距离与它到直线y =-2的距离相等.根据抛物线的定义可得点P 的轨迹为以A (0,2)为焦点,以直线y =-2为准线的抛物线,其标准方程为x 2=8y .4.(2018·盐城模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|FA →|+|FB →|+|FC →|的值为________. 答案 3解析 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,所以x 1+x 2+x 3=3×12=32,则|FA →|+|FB →|+|FC →|=⎝ ⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3. 5.抛物线x 2=4y 的焦点为F ,过点F 作斜率为33的直线l 与抛物线在y 轴右侧的部分相交于点A ,过点A 作抛物线准线的垂线,垂足为H ,则△AHF 的面积是________. 答案 4 3解析 由抛物线的定义可得AF =AH ,∵AF 的斜率为33,∴AF 的倾斜角为30°,∵AH 垂直于准线,∴∠FAH =60°,故△AHF 为等边三角形.设A ⎝ ⎛⎭⎪⎫m ,m 24,m >0,过F 作FM ⊥AH 于M ,则在△FAM 中,AM =12AF ,∴m 24-1=12⎝ ⎛⎭⎪⎫m 24+1,解得m =23,故等边三角形AHF 的边长AH =4,∴△AHF 的面积是12×4×4sin60°=4 3.6.抛物线C :y 2=2px (p >0)的焦点为F ,M 是抛物线C 上的点,若△OFM 的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p =________. 答案 8解析 ∵△OFM 的外接圆与抛物线C 的准线相切, ∴△OFM 的外接圆的圆心到准线的距离等于圆的半径. ∵圆的面积为36π,∴圆的半径为6. 又∵圆心在OF 的垂直平分线上,OF =p2,∴p 2+p4=6,∴p =8.7.已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若OA →·OB →=-12,则抛物线C 的方程为________. 答案 y 2=8x解析 由题意,设抛物线方程为y 2=2px (p >0),直线方程为x =my +p 2,联立⎩⎪⎨⎪⎧y 2=2px ,x =my +p 2,消去x 得y 2-2pmy -p 2=0,显然方程有两个不等实根.设A (x 1,y 1),B (x 2,y 2),则y 1,2=2pm ±4p 2m 2+4p 22,所以y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=⎝ ⎛⎭⎪⎫my 1+p 2⎝ ⎛⎭⎪⎫my 2+p 2+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12,得p =4(舍负),即抛物线C 的方程为y 2=8x .8.已知直线l :y =kx +t 与圆:x 2+(y +1)2=1相切,且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是____________. 答案 (-∞,-3)∪(0,+∞)解析 由题意知k ≠0.因为直线l 与圆相切,所以|t +1|1+k2=1,即k 2=t 2+2t .由k 2>0,得t >0或t <-2,再把直线l 的方程代入抛物线方程并整理得x 2-4kx -4t =0,于是由Δ=16k 2+16t =16(t 2+2t )+16t >0,得t >0或t <-3.综上,实数t 的取值范围是t >0或t <-3. 9.(2018·南京、盐城模拟)在平面直角坐标系xOy 中,抛物线y 2=6x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.若直线AF 的斜率k =-3,则线段PF 的长为________.答案 6解析 由抛物线方程为y 2=6x ,可知焦点坐标F ⎝ ⎛⎭⎪⎫32,0,准线方程为x =-32,因为直线AF的斜率为-3,所以直线AF 的方程为y =-3⎝ ⎛⎭⎪⎫x -32,当x =-32时,y =33,所以A ⎝ ⎛⎭⎪⎫-32,33, 因为PA ⊥l ,A 为垂足,所以点P 的纵坐标为33,可得点P 的坐标为⎝ ⎛⎭⎪⎫92,33,根据抛物线的定义可知PF =PA =92-⎝ ⎛⎭⎪⎫-32=6.10.(2018·南京模拟)已知直线l :y =kx -k (k ∈R )与抛物线C :y 2=4x 及其准线分别交于M ,N 两点,F 为抛物线的焦点,若2FM →=MN →,则实数k =________.答案 ± 3解析 抛物线C :y 2=4x 的焦点F (1,0),直线l :y =kx -k 过抛物线的焦点.当k >0时,如图所示,过点M 作MM ′垂直于准线x =-1,垂足为M ′,由抛物线的定义,得MM ′=MF ,易知∠M ′MN 与直线l 的倾斜角相等,由2FM →=MN →,得cos∠M ′MN =MM ′MN =12,则tan∠M ′MN =3,∴直线l 的斜率k =3;当k <0时,可得直线l 的斜率k =- 3.11.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且AB =9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解 (1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0.由题意知,Δ=25p 2-16p 2=9p 2>0,方程必有两个不等实根. 所以x 1,2=5p ±3p8,所以x 1+x 2=5p4,由抛物线定义得AB =x 1+x 2+p =5p4+p =9,所以p =4,从而抛物线方程为y 2=8x .(2)由于p =4,则4x 2-5px +p 2=0, 即x 2-5x +4=0,从而x 1=1,x 2=4, 于是y 1=-22,y 2=42,从而A (1,-22),B (4,42).设C (x 3,y 3), 则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22).又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1), 整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2.12.过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C 于A ,B 两点,且AB =8. (1)求l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标.解 (1)易知点F 的坐标为(1,0),则直线l 的方程为y =k (x -1),代入抛物线方程y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1,2=(2k 2+4)±16(k 2+1)2k 2, ∴x 1+x 2=2k 2+4k2,x 1x 2=1,由抛物线定义知AB =x 1+x 2+2=8, ∴2k 2+4k2=6,∴k 2=1,即k =±1,∴直线l 的方程为y =±(x -1).(2)由抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, ∴直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1,∵y 21=4x 1,y 22=4x 2,x 1x 2=1,∴(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号),∴直线BD 的方程为4(x +1)+(y 1-y 2)y =0,恒过点(-1,0).13.如图所示,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且AF=4,则线段AB的长为________.答案16 3解析方法一如图所示,设l与x轴交于点M,过点A作AD⊥l并交l于点D,由抛物线的定义知,AD =AF =4,由F 是AC 的中点,知AF =2MF =2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则AF =x 1+p2=x 1+1=4,所以x 1=3,解得y 1=23,所以A (3,23),又F (1,0),所以直线AF 的斜率k =233-1=3,所以直线AF 的方程为y =3(x -1),代入抛物线方程y 2=4x 得,3x 2-10x +3=0,所以x 2=13,AB =x 1+x 2+p =163.方法二 如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,AD =AF =4,由F 是AC 的中点,知AF =2MF =2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则AF =x 1+p 2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以AB =x 1+x 2+p =163.方法三 如图所示,设l 与x 轴交于点M ,过点A 作AD ⊥l 并交l 于点D ,由抛物线的定义知,AD =AF =4,由F 是AC 的中点,知AF =2MF =2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .因为1AF +1BF =2p ,AF =4,所以BF =43,所以AB =AF +BF =4+43=163.14.如图所示,抛物线y =14x 2,AB 为过焦点F 的弦,过A ,B 分别作抛物线的切线,两切线交于点M ,设A (x A ,y A ),B (x B ,y B ),M (x M ,y M ),则:①若AB 的斜率为1,则AB =4;②(AB )min =2;③y M =-1;④若AB 的斜率为1,则x M =1;⑤x A ·x B =-4.以上结论正确的个数是________.答案 2解析 由题意得,焦点F (0,1),对于①,l AB 的方程为y =x +1,与抛物线的方程联立,得⎩⎪⎨⎪⎧y =x +1,y =14x 2,消去x ,得y 2-6y +1=0,所以y A ,B =6±422=3±22,所以y A +y B =6,则AB =y A +y B +p =8,则①错误; 对于②,(AB )min =2p =4,则②错误; 因为y ′=x 2,则l AM :y -y A =x A2(x -x A ),即y =12x A x -x 2A 4,l BM :y -yB =x B2(x -x B ),即y =12x B x -x 2B4,联立l AM 与l BM的方程得⎩⎪⎨⎪⎧y =12x A x -x 2A 4,y =12x Bx -x2B4,解得M ⎝⎛⎭⎪⎫x A +x B 2,x A ·x B 4.设l AB 的方程为y =kx +1,与抛物线的方程联立,得⎩⎪⎨⎪⎧y =kx +1,y =14x 2,消去y ,得x 2-4kx -4=0,所以x A ,B =4k ±16k 2+162=2k ±2k 2+1,所以x A +x B =4k ,x A ·x B =-4, 所以y M =-1,③和⑤均正确;对于④,当AB 的斜率为1时,x M =2,则④错误.15.已知曲线G :y =-x 2+16x -15及点A ⎝ ⎛⎭⎪⎫12,0,若曲线G 上存在相异两点B ,C ,其到直线l :2x +1=0的距离分别为AB 和AC ,则AB +AC =________. 答案 15解析 曲线G :y =-x 2+16x -15,即为半圆M :(x -8)2+y 2=49(y ≥0),由题意得B ,C 为半圆M 与抛物线y 2=2x 的两个交点,由y 2=2x 与(x -8)2+y 2=49(y ≥0)联立方程组得x2-14x +15=0,方程必有两个不等实根,设B (x 1,y 1),C (x 2,y 2),则x 1,2=14±(-14)2-15×42.所以AB +AC =x 1+12+x 2+12=14+1=15.16.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________________.答案 (2,4)解析 如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).当l 的斜率k 不存在时,符合条件的直线l 必有两条. 当k 存在时,x 1≠x 2, 则有y 1+y 22·y 1-y 2x 1-x 2=2, 又y 1+y 2=2y 0,所以y 0k =2. 由CM ⊥AB ,得k ·y 0-0x 0-5=-1, 即y 0k =5-x 0,因此2=5-x 0,x 0=3, 即M 必在直线x =3上.将x =3代入y 2=4x , 得y 2=12,则有-23<y 0<23, 因为点M 在圆上, 所以(x 0-5)2+y 20=r 2, 故r 2=y 20+4<12+4=16.又y 20+4>4(为保证有4条,在k 存在时,y 0≠0), 所以4<r 2<16,即2<r <4.。
(江苏专用)2020版高考数学总复习第九章第三节圆的方程课件苏教版
所以设 y =k,即y=kx.
x
当直线y=kx与圆相切时,斜率k取最大值或最小值,此时 | 2k 0 |= 3 ,解得k k2 1
=± 3 .
所以 xy 的最大值为 3 ,最小值为- 3.
(2)y-x可看作是直线y=x+b在y轴上的截距,如图b,当直线y=x+b与圆相切
时,纵截距b取得最大值或最小值,此时 | 2 0 b | = 3,解得b=-2± 6 .
0(m>0,n>0)得m+n=7,m>0,n>0.又由定点(-1,2)始终落在圆(x-m+1)2+(y+n-
2)2=25的内部,得m2+n2<25,令 n =t,t>0,则n=mt,代入m+n=7(m>0,n>0)中得
m
m= 7 1 t
,代入m2+n2<25得
1
7
t
2
+
(2,-3),连接C'1C2,与x轴交于点P,连接PC1,易知|PC1|+|PC2|的最小值为
|C'1C2|=5 2 ,则|PM|+|PN|的最小值为5 2-4. 方法技巧 圆的几何性质在求解长度或距离的最值问题中具有重要应用,如圆上的 点到圆外一条定直线的距离的最大值、最小值分别等于圆心到直线的 距离加上、减去圆的半径.
2
所以y-x的最大值为-2+ 6 ,最小值为-2- 6 . (3)x2+y2表示圆上的一点与原点距离的平方,如图c,由平面几何知识及题 意知,在x轴与圆的两个交点处取得最大值和最小值. 又圆心到原点的距离为2, 所以x2+y2的最大值是(2+ 3 )2=7+4 3, x2+y2的最小值是(2- 3 )2=7-4 3 .
(江苏专用)2020版高考数学大一轮复习第九章平面解析几何9.1直线的方程教案(含解析)
第九章平面解析几何§9.1直线的方程考情考向分析以考查直线方程的求法为主,直线的斜率、倾斜角也是考查的重点.题型主要在解答题中与圆、圆锥曲线等知识交汇出现,有时也会在填空题中出现.1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°.(2)范围:直线l 倾斜角的范围是[0°,180°).2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式概念方法微思考1.直线都有倾斜角,是不是都有斜率?倾斜角越大,斜率k 就越大吗? 提示 倾斜角α∈[0,π),当α=π2时,斜率k 不存在;因为k =tan α⎝⎛⎭⎪⎫α≠π2.当α∈⎝⎛⎭⎪⎫0,π2时,α越大,斜率k 就越大,同样α∈⎝⎛⎭⎪⎫π2,π时也是如此,但当α∈(0,π)且α≠π2时就不是了.2.“截距”与“距离”有何区别?当截距相等时应注意什么?提示 “截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)若直线的斜率为tan α,则其倾斜角为α.( × ) (3)斜率相等的两直线的倾斜角不一定相等.( × )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )题组二 教材改编2.[P80T6]若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为. 答案 1解析 由题意得m -4-2-m=1,解得m =1.3.[P88T13]过点P (2,3)且在两坐标轴上截距相等的直线方程为. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +y a=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.题组三 易错自纠4.直线x +(a 2+1)y +1=0的倾斜角的取值范围是.答案 ⎣⎢⎡⎭⎪⎫3π4,π 解析 由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是⎣⎢⎡⎭⎪⎫3π4,π. 5.(2018·江苏省南京市秦淮中学期末)已知倾斜角为90°的直线经过点A (2m ,3),B (2,-1),则m 的值为. 答案 1解析 ∵倾斜角为90°的直线经过点A (2m ,3),B (2,-1), ∴2m =2,解得m =1.6.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为. 答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形的面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上可知,直线m 的方程为x -2y +2=0或x =2.题型一 直线的倾斜角与斜率例1(1)直线x sin α+y +2=0的倾斜角的取值范围是.答案 ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,π解析 设直线的倾斜角为θ,则有tan θ=-sin α,又sin α∈[-1,1],θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为.答案 (-∞,-3]∪[1,+∞)解析 如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3.2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的取值范围. 解 如图,直线PA 的倾斜角为45°,直线PB 的倾斜角为135°,由图象知l 的倾斜角的取值范围为[0°,45°]∪[135°,180°). 思维升华 (1)倾斜角α与斜率k 的关系①当α∈⎣⎢⎡⎭⎪⎫0,π2时,k ∈[0,+∞).②当α=π2时,斜率k 不存在.③当α∈⎝ ⎛⎭⎪⎫π2,π时,k ∈(-∞,0). (2)斜率的两种求法①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. ②公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)倾斜角α范围与直线斜率范围互求时,要充分利用y =tan α的单调性. 跟踪训练1(1)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =. 答案 1±2或0解析 ∵平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,∴k AB =k AC , 即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.(2)若直线l 经过A (3,1),B (2,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是.答案 ⎣⎢⎡⎭⎪⎫π4,π2 解析 直线l 的斜率k =1+m 23-2=1+m 2≥1,所以k =tan α≥1.又y =tan α在⎝⎛⎭⎪⎫0,π2上是增函数,因此π4≤α<π2.题型二 求直线的方程例2求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14;(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且AB =5. 解 (1)方法一 设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(3,2),∴3a +2a=1,∴a =5,∴l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. 方法二 由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k =2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时AB =5,即x =1为所求. 设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1),得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行).则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2. 由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.思维升华在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.跟踪训练2根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等; (3)直线过点(5,10),到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π),从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过(0,0)及(4,1)两点, ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1),∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上可知,所求直线方程为x -5=0或3x -4y +25=0.题型三 直线方程的综合应用命题点1 与基本不等式相结合求最值问题例3已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA →|·|MB →|取得最小值时直线l 的方程. 解 设A (a ,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +y b=1,所以2a +1b=1.|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5=(2a +b )⎝ ⎛⎭⎪⎫2a +1b -5=2b a +2a b≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 命题点2 由直线方程解决参数问题例4已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值. 解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,当a =12时,四边形的面积最小.思维升华与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.跟踪训练3过点P (4,1)作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线l 的方程; (2)当OA +OB 取最小值时,求直线l 的方程. 解 设直线l :x a +y b=1(a >0,b >0), 因为直线l 经过点P (4,1),所以4a +1b=1.(1)4a +1b=1≥24a ·1b=4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立, 所以当a =8,b =2时,△AOB 的面积最小, 此时直线l 的方程为x 8+y2=1,即x +4y -8=0. (2)因为4a +1b=1,a >0,b >0,所以OA +OB =a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a≥5+2a b ·4ba=9, 当且仅当a =6,b =3时等号成立,所以当OA +OB 取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.1.直线3x -y +a =0(a 为常数)的倾斜角为. 答案 60°解析 设直线的倾斜角为α,斜率为k , 化直线方程为y =3x +a ,∴k =tan α= 3. ∵0°≤α<180°,∴α=60°.2.过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是.答案 x =2解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4,依题意,所求直线的倾斜角为3π4-π4=π2,∴斜率不存在,∴过点(2,1)的直线方程为x =2.3.直线MN 的斜率为2,其中点N (1,-1),点M 在直线y =x +1上,则点M 的坐标为. 答案 M (4,5)解析 设M 的坐标为(a ,b ),若点M 在直线y =x +1上, 则有b =a +1.① 若直线MN 的斜率为2,则有b +1a -1=2.②联立①②可得a =4,b =5, 即M 的坐标为(4,5).4.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为.答案 k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.5.(2018·江苏江阴中学检测)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞解析 设直线的斜率为k ,如图,过定点A 的直线经过点B 时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C 时,直线l 在x 轴上的截距为-3,此时k =12,所以满足条件的直线l 的斜率的取值范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞. 6.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是. 答案3x -y -33=0解析 因为直线y =13x 的倾斜角为π6,所以所求直线的倾斜角为π3,即斜率k =tan π3= 3.又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0.7.不论实数m 为何值,直线mx -y +2m +1=0恒过定点. 答案 (-2,1)解析 直线mx -y +2m +1=0可化为m (x +2)+(-y +1)=0,∵m ∈R ,∴⎩⎪⎨⎪⎧x +2=0,-y +1=0,∴x =-2,y =1,∴直线mx -y +2m +1=0恒过定点(-2,1).8.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为.答案 x +13y +5=0解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在的直线方程为y -0-12-0=x +532+5,即x +13y +5=0.9.经过点A (4,2),且在x 轴上的截距等于在y 轴上的截距的3倍的直线l 的方程的一般式为.答案 x +3y -10=0或x -2y =0解析 当截距为0时,设直线方程为y =kx ,则4k =2, ∴k =12,∴直线方程为x -2y =0.当截距不为0时,设直线方程为x 3a +ya =1,由题意得,43a +2a =1,∴a =103.∴x +3y -10=0.综上,直线l 的一般式方程为x +3y -10=0或x -2y =0. 10.过点A (3,-1)且在两坐标轴上截距相等的直线有条. 答案 2解析 ①当所求的直线与两坐标轴的截距都不为0时, 设该直线的方程为x +y =a , 把(3,-1)代入所设的方程得a =2,则所求直线的方程为x +y =2,即x +y -2=0. ②当所求的直线与两坐标轴的截距为0时, 设该直线的方程为y =kx ,把(3,-1)代入所设的方程得k =-13,则所求直线的方程为y =-13x ,即x +3y =0.综上,所求直线的方程为x +y -2=0或x +3y =0.11.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,(m -0)·(-3n -1)=(n -0)·(m -1),解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0. 12.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.(1)证明 直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1). (2)解 直线l 的方程可化为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,故k 的取值范围是k ≥0.(3)解 依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,且k >0, 所以A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ), 故S =12OA ·OB =12×1+2k k ×(1+2k )=12⎝⎛⎭⎪⎫4k +1k +4≥12×(4+4)=4,当且仅当4k =1k ,即k =12时取等号,故S 的最小值为4,此时直线l 的方程为x -2y +4=0.13.已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为. 答案 150°解析 由y =2-x 2,得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,其图象如图所示.显然直线l 的斜率存在,设过点P (2,0)的直线l 为y =k (x -2), 则圆心到此直线的距离d =|-2k |1+k2, 弦长AB =22-⎝ ⎛⎭⎪⎫|-2k |1+k 22=22-2k21+k2, 所以S △AOB =12×|-2k |1+k2×22-2k 21+k 2≤(2k )2+2-2k22(1+k 2)=1, 当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,由图可得k =-33⎝ ⎛⎭⎪⎫k =33舍去, 故直线l 的倾斜角为150°.14.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是.答案 ⎝ ⎛⎭⎪⎫-43,52解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a , ∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52.2115.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+x ,则直线ax -by +c =0的倾斜角为.答案 2π3解析 由f ⎝ ⎛⎭⎪⎫π3-x =f ⎝ ⎛⎭⎪⎫π3+x 知函数f (x )的图象关于x =π3对称, 所以f (0)=f ⎝⎛⎭⎪⎫2π3,所以a =-3b , 由直线ax -by +c =0知其斜率k =a b =-3,所以直线的倾斜角为2π3. 16.已知动直线l 0:ax +by +c -3=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 0的最大距离为3,则12a +2c的最小值为. 答案 32解析 ∵动直线l 0:ax +by +c -3=0(a >0,c >0)恒过点P (1,m ),∴a +bm +c -3=0. 又Q (4,0)到动直线l 0的最大距离为3, ∴(4-1)2+m 2=3,解得m =0.∴a +c =3.则12a +2c =13(a +c )⎝ ⎛⎭⎪⎫12a +2c =13⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥13⎝ ⎛⎭⎪⎫52+2 c 2a ·2a c =32, 当且仅当c =2a =2时取等号.。
高考数学一轮复习专题 第九章 直线与圆的方程 第三节理 课件苏教版
解析:法一:如右图所示,设点Q(1,1)关于已知直线的对称点为 Q′(m,n),则入射光线所在的直线为PQ′.则直线PQ′与已知直线的 交点M为反射点.
1 由 m 1 n 1 m 2 n 2 m 1 n 1 1 2 2
利用“垂直”“平分”这两个条件建立方程组,就可求出对称
点的坐标. 设点P(x0 ,y0)关于直线y=kx+b 的对称点为P′( x′,y ′),则
y y0 k 1 , x x0 可求出x′、y′. y y k x x0 b 2 2
的对称点为P(x,y). (1)用θ表示点P的坐标x,y; (2)求证:点P到点B(2,0)的距离为常数. 解析:(1)由中点坐标公式,
x cos 1 x 2 cos 2 y sin y sin 0 2
故点P的坐标为P(2-cosθ,-sin θ). (2)∵|PB|= (2 cos 2) 2 ( sin 0) 2 = cos2 sin 2 =1 ∴点P到点B(2,0)的距离为常数.
变式探究
1.求直线l1:2x-y+2=0关于定点M(1,2)对称的直线 m的方程. 分析:设直线 m上的动点 P ( x,y)关于点M(1 ,2)的对称 点为Q(x0,y0),则Q必在直线l1上,结合中点坐标公式即可 求得. 解析:设直线 m上的动点 P ( x,y)关于点M(1 ,2)的对称 点为Q(x0,y0),则Q必在直线l1上,线段PQ的中点M,由中
故直线PQ′的方程为5x-4y+2=0.
由 5x-4y+2=0
x+y=-1
2020版高考数学一轮复习第九章解析几何9.3圆的方程课件文北师大版ppt版本
-10-
考点1
考点2
考点3
必备知识·预案自诊
对点训练 1(1)过三点 A(1,3),B(4,2),C(1,-7)的圆交 y 轴于 M,N 两 点,则|MN|=( C )
A.2√6
B.8
C.4√6
D.10
(2)一个圆与 y 轴相切,圆心在直线 x-3y=0 上,且在直线 y=x 上截
得的弦长为 2√7,则该圆的方程为
B=0,D2+E2-4F>0. ( √ )
必备知识·预案自诊
-5-
知识梳理 考点自诊
2.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的 标准方程为( C )
A.(x-1)2+y2=1 B.x2+(y+1)2=1 C.x2+(y-1)2=1 D.(x+1)2+y2=1 解析:由题得圆心坐标为(0,1),所以圆的标准方程为x2+(y-1)2=1. 故选C.
在圆C的方程中令y=0,得x2+Dx+F=0.③ 设x1,x2是方程③的两根, 由|x1-x2|=6,即(x1+x2)2-4x1x2=36, 得D2-4F=36,④ 由①②④解得D=-2,E=-4,F=-8或D=-6,E=-8,F=0. 故圆C的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
-
������ 2
,-������
,半径为
1 2
-3������2-4������ + 4的圆. ( × )
(4)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(xx2)+(y-y1)(y-y2)=0. ( √ )
(江苏专版)高考数学一轮复习 第九章 解析几何学案 文-人教版高三全册数学学案
第九章 解析几何第一节直线与方程本节主要包括3个知识点:1.直线的倾斜角与斜率、两直线的位置关系;2.直线的方程;3.直线的交点、距离与对称问题.突破点(一) 直线的倾斜角与斜率、两直线的位置关系基础联通抓主干知识的“源”与“流”1.直线的斜率P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.2.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的范围是[0,π). (3)直线l 的倾斜角为α≠π2,则斜率k =tan_α. 3.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.考点贯通抓高考命题的“形”与“神”直线的倾斜角与斜率1斜率k k =tan α>0 k =0 k =tan α<0 不存在倾斜角α锐角0°钝角90°2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k =tan α的单调性,如图所示:当α取值在⎣⎢⎡⎭⎪⎫0,π2内,由0增大到π2⎝ ⎛⎭⎪⎫α≠π2时,k 由0增大并趋向于正无穷大;当α取值在⎝ ⎛⎭⎪⎫π2,π内,由π2⎝ ⎛⎭⎪⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1] (1)直线x sin α+y +2=0的倾斜角的取值范围是________.(2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.[解析] (1)因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.(2)如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l=-1m .∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点.∴实数m 的取值范围为⎣⎢⎡⎦⎥⎤-23,12.[答案] (1)⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π (2)⎣⎢⎡⎦⎥⎤-23,12[易错提醒]直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).两直线的位置关系(1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.[例2] 已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)由已知可得l 2的斜率存在,所以k 2=1-a . 若k 2=0,则1-a =0,a =1.因为l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0.又因为l 1过点(-3,-1),所以-3a +4=0,即a =43(矛盾).所以此种情况不存在,所以k 2≠0.即k 1,k 2都存在,因为k 2=1-a ,k 1=a b,l 1⊥l 2, 所以k 1k 2=-1,即a b(1-a )=-1.①又因为l 1过点(-3,-1),所以-3a +b +4=0.② 由①②联立,解得a =2,b =2.(2)因为l 2的斜率存在,l 1∥l 2,所以直线l 1的斜率存在,k 1=k 2,即ab=1-a .③又因为坐标原点到这两条直线的距离相等,且l 1∥l 2, 所以l 1,l 2在y 轴上的截距互为相反数,即4b=b ,④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.所以a =2,b =-2或a =23,b =2.[方法技巧]已知两直线一般方程的两直线位置关系的表示到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.1.[考点一]直线2x cos α-y -3=0α∈6,3的倾斜角的取值范围是________.解析:直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.答案:⎣⎢⎡⎦⎥⎤π4,π3 2.[考点一](2018·苏北四市模拟)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为________.解析:由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案:⎣⎢⎡⎦⎥⎤-1,-12 3.[考点二](2018·苏州调研)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为________.解析:由题意知,直线l 1,l 2斜率均存在,因为l 1∥l 2,所以1a -2=a 3≠62a,所以⎩⎪⎨⎪⎧a a -2=3,2a 2≠18,a ≠2,a ≠0,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823.答案:8234.[考点二]已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =________.解析:因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.答案:13或-15.[考点一]直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析:如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞).答案:(-∞,- 3 ]∪[1,+∞)6.[考点二](2018·苏北四市一模)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)-2b =0,即2b +3a =ab ,2a +3b=1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b=13+6a b +6b a≥13+26a b ·6ba=25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:25突破点(二) 直线的方程基础联通抓主干知识的“源”与“流”直线方程的五种形式 形式 几何条件 方程适用范围 点斜式 过一点(x 0,y 0),斜率k y -y 0=k (x -x 0) 与x 轴不垂直的直线 斜截式纵截距b ,斜率ky =kx +b 与x 轴不垂直的直线 两点式 过两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1与x 轴、y 轴均不垂直的直线截距式 横截距a ,纵截距bx a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0,A 2+B 2≠0平面直角坐标系内所有直线考点贯通抓高考命题的“形”与“神”求直线方程[例1] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的3的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. (3)求过A (2,1),B (m,3)两点的直线l 的方程.[解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a=-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (3)①当m =2时,直线l 的方程为x =2;②当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,代入方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0. [易错提醒](1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).与直线方程有关的最值问题P l x y A B (1)当△AOB 面积最小时,求直线l 的方程; (2)当|OA |+|OB |取最小值时,求直线l 的方程. [解] 设直线l :x a +y b=1(a >0,b >0), 因为直线l 经过点P (4,1), 所以4a +1b=1.(1)4a +1b =1≥24a ·1b=4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,S △AOB =12ab 最小,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.(2)因为4a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a≥5+2a b ·4ba=9, 当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y -6=0. [方法技巧]1.给定条件求直线方程的思路(1)考虑问题的特殊情况,如斜率不存在的情况,截距等于零的情况. (2)在一般情况下准确选定直线方程的形式,用待定系数法求出直线方程. (3)重视直线方程一般形式的应用,因为它具有广泛的适用性. 2.与直线有关的最值问题的解题思路 (1)借助直线方程,用y 表示x 或用x 表示y . (2)将问题转化成关于x (或y )的函数.(3)利用函数的单调性或基本不等式求最值.解析:直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 答案:x +y +1=02.[考点一]已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案:4x -3y -4=03.[考点二]若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为________.解析:∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +ab ≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4. 答案:44.[考点二]若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________.解析:根据A (a,0),B (0,b )确定直线的方程为x a +y b=1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:165.[考点一]△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程. 解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.突破点(三) 直线的交点、距离与对称问题基础联通抓主干知识的“源”与“流”1.两条直线的交点2.三种距离类型 条件距离公式 两点间的距离点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=x 2-x 12+y 2-y 12点到直线的距离点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2两平行直线间的距离两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2考点贯通抓高考命题的“形”与“神”交点问题[例1] (1)当0<k <2时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.(2)已知直线l 经过点P (3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,则直线l 的方程为________.[解析] (1)由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0, 故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.(2)若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别为A ′(3,-4),B ′(3,-9),截得的线段A ′B ′的长|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧y =k x -3+1,x +y +1=0,得A ⎝⎛⎭⎪⎫3k -2k +1,-4k -1k +1,解方程组⎩⎪⎨⎪⎧y =k x -3+1,x +y +6=0,得B ⎝⎛⎭⎪⎫3k -7k +1,-9k -1k +1. 由|AB |=5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k -1k +1+9k -1k +12=52.解得k =0,即所求的直线方程为y =1.综上可知,所求直线l 的方程为x =3或y =1. [答案] (1)二 (2)x =3或y =1 [方法技巧]1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.距离问题最小值为________.(2)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.[解析] (1)因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|PQ |的最小值为2910. (2)设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.① 又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|42+32=2, 即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.[答案] (1)2910 (2)(1,-4)或⎝ ⎛⎭⎪⎫277,-87[易错提醒](1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; (2)利用两平行线间的距离公式要先把两直线方程中x ,y 的系数化为相等.对称问题1.中心对称问题的两种类型及求解方法2.轴对称问题的两种类型及求解方法(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________.(3)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.[解析] (1)设M (x ,y ),则⎩⎪⎨⎪⎧3+x2=1,2+y2=4,∴x =-1,y =6,∴M (-1,6).(2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.(3)设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --3·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.[答案] (1)(-1,6) (2)x -2y +3=0 (3)6x -y -6=0 [方法技巧]解决两类对称问题的关键点解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.能力练通抓应用体验的“得”与“失”关于直线l 对称,那么直线l 的方程为________.解析:因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l 的方程为y =x +b ,由题意知直线l 过点⎝ ⎛⎭⎪⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0. 答案:x -y +1=02.[考点二]若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =________.解析:∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去).∴m +n =0.答案:03.[考点一]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),故|PA |·|PB |的最大值是5.答案:54.[考点三]若m >0,n >0,点(-m ,n )关于直线x +y -1=0的对称点在直线x -y +2=0上,那么1m +4n的最小值等于________.解析:由题意知(-m ,n )关于直线x +y -1=0的对称点为(1-n,1+m ).则1-n -(1+m )+2=0,即m +n =2.于是1m +4n =12(m +n )⎝ ⎛⎭⎪⎫1m +4n =12×⎝ ⎛⎭⎪⎫5+n m +4m n ≥12×(5+2×2)=92,当且仅当m =23,n =43时等号成立.答案:925.[考点一]经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).∵l ⊥l 3,直线l 3的斜率为34,∴直线l 的斜率k 1=-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=06.[考点二]已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程.(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1,因为k OP = -12,所以k l =-1k OP=2. 由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.1.直线x +3y +1=0的倾斜角是________. 解析:由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.答案:5π62.(2018·常州期中)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.解析:依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +72=1,b +12=-1,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案:-133.过点(1,0)且与直线x -2y -2=0平行的直线方程是________.解析:依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.答案:x -2y -1=04.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:∵63=m 4≠14-3,∴m =8,直线6x +8y +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2. 答案:25.(2018·徐州高三月考)已知平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六个部分,则实数k 的取值集合________.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k =0或2;若三条直线交于一点,也符合要求,此时k =1,故实数k 的取值集合为{0,1,2}.答案:{0,1,2}[练常考题点——检验高考能力]一、填空题1.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是________. 解析:由题意可知a ≠0.当x =0时,y =a +2.当y =0时,x =a +2a .故a +2a=a +2,解得a =-2或a =1.答案:-2或12.设直线l 的方程为(a +1)x +y +2-a =0 (a ∈R), l 在两坐标轴上截距相等,则l 的方程为________.解析:当直线过原点时,该直线在x 轴和y 轴上的截距为0,∴a =2,方程即为3x +y =0.当直线不经过原点时,截距存在且均不为0.令x =0,得y =a -2,令y =0,得x =a -2a +1,∴a -2a +1=a -2,即a +1=1.∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0.答案:3x +y =0或x +y +2=03.(2018·无锡一中高三模拟)已知△ABC 的两个顶点A (-1,5)和B (0,-1),若∠C 的平分线所在的直线方程为2x -3y +6=0,则BC 边所在直线的方程为_____________.解析:设A 点关于直线2x -3y +6=0的对称点为A ′(x 1,y 1),则⎩⎪⎨⎪⎧2·x 1-12-3·y 1+52+6=0,y 1-5x 1+1=-32,∴⎩⎪⎨⎪⎧2x 1-3y 1-5=0,3x 1+2y 1-7=0,解得⎩⎪⎨⎪⎧x 1=3113,y 1=-113,即A ′⎝⎛⎭⎪⎫3113,-113,∵角平分线是角的两边的对称轴,∴A ′点在直线BC 上. ∴直线BC 的方程为y =-113--13113-0x -1,整理得12x -31y -31=0.答案:12x -31y -31=04.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是________.解析:由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =|-10|2=52,即P 到原点距离的最小值为5 2.答案:5 25.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为________.解析:依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y2=0,2x +y2=5,解得⎩⎪⎨⎪⎧x =4,y =2,所以A (4,8),B (-4,2),∴|AB |=4+42+8-22=10.答案:106.(2018·南通期中)已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a 的值为________.解析:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,因为0<a <2,所以当a =12时,面积最小.答案:127.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为________. 解析:因为l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12.答案:128.(2018·苏州模拟)已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是__________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=09.(2018·泰州期初)若直线l :x a +yb=1(a >0,b >0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.解析:由直线经过点(1,2)得1a +2b=1.于是a +b =(a +b )×⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ,因为b a+2ab≥2b a ×2a b =22⎝ ⎛⎭⎪⎫当且仅当b a =2a b ,即a =1+2,b =2+2时取等号,所以a +b ≥3+2 2.答案:3+2 210.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4), ∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞) 二、解答题11.(2018·启东中学高三周练)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点.(1)若点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解:(1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,∵点A (5,0)到l 的距离为3,∴|10+5λ-5|2+λ2+1-2λ2=3,即2λ2-5λ+2=0,∴λ=2或λ=12,∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l的距离,则d ≤PA (当l ⊥PA 时等号成立).∴d max =PA =5-22+0-12=10.12.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解:(1)证明:直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意, 故k 的取值范围是[0,+∞). (3)由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0.∵S =12·OA ·OB =12· ⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k2k=12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,当且仅当k =12时等号成立,∴S min =4,此时直线l 的方程为x -2y +4=0.第二节圆的方程本节主要包括2个知识点:1.圆的方程;2.与圆的方程有关的综合问题.突破点(一) 圆的方程基础联通抓主干知识的“源”与“流”1.圆的定义及方程定义 平面内到定点的距离等于定长的点的轨迹叫做圆 标准方程(x -a )2+(y -b )2=r 2(r >0) 圆心:(a ,b ) 半径:r 一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝ ⎛⎭⎪⎫-D 2,-E 2半径:r =D 2+E 2-4F22.点与圆的位置关系点M (x 0,y 0),圆的标准方程(x -a )2+(y -b )2=r 2.理论依据点到圆心的距离与半径的大小关系 三种情况(x 0-a )2+(y 0-b )2=r 2⇔点在圆上(x 0-a )2+(y 0-b )2>r 2⇔点在圆外 (x 0-a )2+(y 0-b )2<r 2⇔点在圆内考点贯通抓高考命题的“形”与“神”求圆的方程1.求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择设圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的三种方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[例1] (1)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.(2)已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.(3)经过三点(2,-1),(5,0),(6,1)的圆的一般方程为________________. [解析] (1)依题意,设圆心坐标为C (a,0), 则|CA |=|CB |, 即a -52+0-12=a -12+0-32,则a =2.故圆心为(2,0),半径为10, 所以圆C 的方程为(x -2)2+y 2=10.(2)过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =3-12+-2+42=22,故所求圆的方程为(x -1)2+(y +4)2=8.(3)设所求圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧22+-12+2D -E +F =0,52+02+5D +0+F =0,62+12+6D +E +F =0,解得⎩⎪⎨⎪⎧D =-4,E =-8,F =-5,故所求圆的一般方程为x 2+y 2-4x -8y -5=0.[答案] (1)(x -2)2+y 2=10 (2)(x -1)2+(y +4)2=8 (3)x 2+y 2-4x -8y -5=0[方法技巧]1.确定圆的方程必须有三个独立条件不论圆的标准方程还是一般方程,都有三个字母(a ,b ,r 或D ,E ,F )的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a ,b ,r (或D ,E ,F )的三个方程组成的方程组,解之得到待定字母系数的值,从而确定圆的方程.2.几何法在圆中的应用在一些问题中借助平面几何中关于圆的知识可以简化计算,如已知一个圆经过两点时,其圆心一定在这两点连线的垂直平分线上,解题时要注意平面几何知识的应用.3.A (x 1,y 1),B (x 2,y 2),以AB 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.与圆有关的对称问题圆关于直径所在的直线对称. 2.圆关于点对称(1)求已知圆关于某点对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某点对称,则此点为两圆圆心连线的中点. 3.圆关于直线对称(1)求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某条直线对称,则此直线为两圆圆心连线的垂直平分线.[例2] (2018·江苏无锡模拟)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为________.[解析] 圆C 1的圆心坐标为(-1,1),半径为1, 设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1. [答案] (x -2)2+(y +2)2=1能力练通 抓应用体验的“得”与“失”1.[考点一]已知点A (-1,3),B (1,-3),则以线段AB 为直径的圆的方程是________. 解析:由题意知,AB 的中点为(0,0),即所求圆的圆心坐标为(0,0),设圆的方程为x 2+y 2=r 2,因为|AB |=[1--1]2+-3-32=4,所以圆的半径为2,所以圆的方程为x 2+y 2=4.答案:x 2+y 2=42.[考点一]若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________.解析:由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1.答案:(x -2)2+()y -12=13.[考点二]已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是________.解析:将圆的方程化成标准形式得(x +1)2+(y -2)2=4,若圆关于已知直线对称,则圆心(-1,2)在直线上,代入整理得a +b =1,故ab =a (1-a )=-⎝ ⎛⎭⎪⎫a -122+14≤14.答案:⎝⎛⎦⎥⎤-∞,14 4.[考点二]若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得,点(1,0)关于直线y =x 对称的点(0,1)为圆心,又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=15.[考点二]若圆(x +1)2+(y -3)2=9上的相异两点P ,Q 关于直线kx +2y -4=0对称,则k 的值为________.解析:圆是轴对称图形,过圆心的直线都是它的对称轴.已知圆的圆心为(-1,3),由题设知,直线kx +2y -4=0过圆心,则k ×(-1)+2×3-4=0,解得k =2.答案:26.[考点一](2018·盐城中学月考) 圆经过点A (2,-3)和B (-2,-5). (1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程. 解:(1)要使圆的面积最小,则AB 为圆的直径, 圆心C (0,-4),半径r =12|AB |=5,所以所求圆的方程为x 2+(y +4)2=5. (2)因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式得,半径r =10, 因此,所求的圆的方程为(x +1)2+(y +2)2=10.突破点(二) 与圆的方程有关的综合问题圆的方程是高中数学的一个重要知识点,高考中,除了圆的方程的求法外,圆的方程与其他知识的综合问题也是高考考查的热点,常涉及轨迹问题和最值问题.解决此类问题的关键是数形结合思想的运用.考点贯通抓高考命题的“形”与“神”与圆有关的轨迹问题[例1] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ). 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连结ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的四种方法与圆有关的最值问题[例2] 已知M ( (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. [解] (1)法一:因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22, 设m +2n =t ,将m +2n =t 看成直线方程, 因为该直线与圆有公共点, 所以圆心到直线的距离d =|1×2+2×7-t |12+22≤22, 解上式得:16-210≤t ≤16+210, 所以m +2n 的最大值为16+210.法二:由x 2+y 2-4x -14y +45=0,得(x -2)2+(y -7)2=8. 因为点M (m ,n )为圆上任意一点, 故可设⎩⎨⎧m -2=22cos θ,n -7=22sin θ,即⎩⎨⎧m =2+22cos θ,n =7+22sin θ,∴m +2n =2+22cos θ+2(7+22sin θ) =16+22cos θ+42sin θ =16+8+32sin(θ+φ)=16+210sin(θ+φ),⎝⎛⎭⎪⎫其中tan φ=12故m +2n 的最大值为16+210. (2)记点Q (-2,3). 因为n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有公共点,所以|2k -7+2k +3|k 2+1≤2 2.可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3. [方法技巧] 与圆有关最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:常见类型解题思路μ=y -b x -a 型转化为动直线斜率的最值问题t =ax +by 型 转化为动直线截距的最值问题,或用三角代换求解 m =(x -a )2+(y -b )2型转化为动点与定点的距离的平方的最值问题能力练通抓应用体验的“得”与“失”边形MONP ,求点P 的轨迹.解:如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.。
高考数学(苏教,理)一轮课件:第9章 9.3 圆的方程
-y0)2=r2, 根据已知条件得
(2)圆心在直线 y=-4x 上,且 y0=-4x0,
与直线 l:x+y-1=0 相切于 点 P(3,-2).
|x30-+xy020-2+1|=-r2,-y02=r2,
题型分类·深度剖析
题型一
求圆的方程
思维启迪
【例 1】 根据下列条件,求圆
解析 思维升华
的方程: (1)经过 P(-2,4)、Q(3,-1)
(1)经过 P(-2,4)、Q(3,-1)
将 P、Q 两点的坐标分别代入得
两点,并且在 x 轴上截得的弦 2D-4E-F=20,
①
长等于 6;
3D-E+F=-10.
②
(2)圆心在直线 y=-4x 上,且 又令 y=0,得 x2+Dx+F=0. ③
与直线 l:x+y-1=0 相切于 设 x1,x2 是方程③的两根,
与直线 l:x+y-1=0 相切于 线上;
点 P(3,-2).
题型分类·深度剖析
题型一
ห้องสมุดไป่ตู้
求圆的方程
思维启迪
【例 1】 根据下列条件,求圆
解析 思维升华
的方程:
②圆心在任一弦的中垂线上;
(1)经过 P(-2,4)、Q(3,-1) ③两圆内切或外切时,切点与两
两点,并且在 x 轴上截得的弦 圆圆心三点共线.
解得xy00= =- 1,4, r=2 2.
两点,并且在 x 轴上截得的弦
长等于 6;
因此所求圆的方程为
(2)圆心在直线 y=-4x 上,且 (x-1)2+(y+4)2=8.
与直线 l:x+y-1=0 相切于
点 P(3,-2).
题型分类·深度剖析
题型一
2020年【苏教版】一轮复习精品课件第九章9.7
思维启迪 解析 探究提高
(1)分
别
设
出
椭
圆
方
程
为
x2 a2
+
y2 b2
=1 (a>b>0),双曲线方程为mx22
-ny22=1 (m>0,n>0).
(2)由已知条件分别求出 a、b、
m、n 的值△.F1PF2 (3)利用椭圆与双曲线定义及余
弦定理求出 cos∠F1PF2.
基础知识
题型分类
思想方法
练出高分
(2)2a<F1F2. 这两点与椭圆的定义 有本质的不同.
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
` 2.双曲线的标准方程和几何性质
标 准 xa22-by22=1
方 (a>0,b>0)
程
ay22-xb22=1 (a>0,b>0)
图 形
难点正本 疑点清源
1.双曲线的定义用代数 式 表 示 为 |MF1 - MF2| =2a,其中 2a<F1F2, 这里要注意两点: (1)距离之差的绝对值. (2)2a<F1F2. 这两点与椭圆的定义 有本质的不同.
(2)∵双曲线经过点 M(0,12),∴M(0,12)为双曲线的一个顶点,故
焦点在 y 轴上,且 a=12. 又 2c=26,∴c=13.∴b2=c2-a2=25. ∴双曲线的标准方程为1y424-2x52 =1.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
双曲线的几何性质
【例 2】 中心在原点,焦点在 x 思维启迪 解析 探究提高 轴上的一椭圆与一双曲线有共 同的焦点 F1,F2,且 F1F2= 2 13,椭圆的长半轴长与双曲线 实半轴长之差为 4,离心率之比 为 3∶7. (1)求这两曲线方程; (2)若 P 为这两曲线的一个交点, 求 cos∠F1PF2 的值.
2020高考数学一轮复习第九章解析几何9-3圆的方程学案理
【2019最新】精选高考数学一轮复习第九章解析几何9-3圆的方程学案理考纲展示►1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.考点1 圆的方程1.圆的定义及方程答案:定点定长(a,b) r2.点与圆的位置关系(1)理论依据:________到________的距离与半径的大小关系.(2)三种情况:圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0).①(x0-a)2+(y0-b)2________r2⇔点在圆上;②(x0-a)2+(y0-b)2________r2⇔点在圆外;③(x0-a)2+(y0-b)2________r2⇔点在圆内.答案:(1)点圆心(2)①=②>③< (1)[教材习题改编]圆x2+y2-2ax+4ay=0(a≠0)的圆心坐标是________,半径r=________.答案:(a,-2a) |a|解析:根据圆的一般方程的圆心公式和半径公式,可得圆的圆心坐标为(a,-2a),半径为|a|.(2)[教材习题改编]以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为________.答案:(x-1)2+(y-1)2=2解析:线段AB :x +y -2=0(0≤x≤2)的两端点分别为(2,0),(0,2),所以圆心为(1,1),圆的半径为=,所以圆的方程为(x -1)2+(y -1)2=2.圆的一般方程:注意表示圆的条件.(1)方程x2+y2+ax +2ay +2a2+a -1=0表示圆,则a 的取值范围是________.232<a<答案:- 解析:∵方程x2+y2+ax +2ay +2a2+a -1=0表示圆,∴a2+(2a)2-4(2a2+a -1)>0,解得-2<a<.(2)圆x2+y2-2ax +4y +a =0的半径为2,则a =________.答案:0或1解析:由题意可知,==2,解得a =0或1,经检验都满足题意,所以a =0或1.[典题1] (1)求经过点P(-2,4),Q(3,-1)两点,并且在x 轴上截得的弦长等于6的圆的方程.[解] 设圆的方程为x2+y2+Dx +Ey +F =0(D2+E2-4F >0),将P ,Q 两点的坐标分别代入得又令y =0,得x2+Dx +F =0.③设x1,x2是方程③的两根,由|x1-x2|=6,得D2-4F =36,④⎩⎪⎨⎪⎧D =-6,E =-8,F =0.解得或①②④由 故所求圆的方程为x2+y2-2x -4y -8=0或x2+y2-6x -8y =0.(2)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为2,求圆C 的标准方程.[解] 解法一:因为圆C 的圆心在直线x -2y =0上,且与y 轴的正半轴相切,所以设圆心C(2b,b)(b>0),半径r=2b.又圆C截x轴所得弦的长为2,圆心C到x轴的距离为b,所以由勾股定理=,解得b=1.因此圆C的标准方程为(x-2)2+(y-1)2=4.解法二:因为圆C的圆心在直线x-2y=0上,设圆心C(2b,b),所以圆C的方程为(x-2b)2+(y-b)2=r2,因为圆C与y轴正半轴相切,则r=2b>0.①又圆C截x轴所得弦的长为2,由勾股定理,得圆心C到x轴的距离为=.②联立①②,得b=1,r=2.因此圆C的标准方程为(x-2)2+(y-1)2=4.[点石成金] 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线.(2)代数法,即设出圆的方程,用待定系数法求解.考点2 与圆有关的最值问题[考情聚焦] 与圆有关的最值问题也是命题的热点内容,它着重考查数形结合与转化思想.主要有以下几个命题角度:角度一斜率型最值问题[典题2] [2017·辽宁抚顺模拟]已知实数x,y满足方程x2+y2-4x+1=0,求的最大值和最小值.[解] 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.y的几何意义是圆上一点与原点连线的斜率,x所以设=k,即y=kx.当直线y=kx与圆相切时(如图),斜率k取最大值或最小值,此时=,解得k=±.所以的最大值为,最小值为-.角度二截距型最值问题[典题3] 在[角度一]条件下求y-x的最大值和最小值.[解] y-x可看作是直线y=x+b在y轴上的截距,如图所示,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±.所以y-x的最大值为-2+,最小值为-2-.角度三距离型最值问题[典题4] 在[角度一]条件下求x2+y2的最大值和最小值.[解] 如图所示,x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为=2,所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.角度四建立目标函数求最值问题[典题5] 已知圆C:(x-3)2+(y-4)2=1 和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为( )A .7B .6C .5D .4[答案] B⎩⎪⎨⎪⎧x0=3+cos θ,y0=4+sin θ.可化为y0),P(x0知,圆上点1=4)2-(y +3)2-(x 由 ]解析[ ∵∠APB =90°,即·=0,∴(x0+m)(x0-m)+y =0,∴m2=x +y =26+6cos θ+8sin θ=26+10sin(θ+φ)≤36,∴0<m ≤6,即m 的最大值为6.[点石成金] 求解与圆有关的最值问题的两大规律(1)借助几何性质求最值处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.(2)建立函数关系式求最值根据题目条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.考点3 与圆有关的轨迹问题(1)[教材习题改编]已知点P 与两个定点O(0,0),A(-3,3)的距离之比为,则点P 的轨迹方程是________.答案:x2+y2-2x +2y -6=0解析:依题意,得=.设P(x ,y),则=,整理得x2+y2-2x +2y -6=0.(2)[教材习题改编]若点(1,1)在圆(x -a)2+(y +a)2=4的内部,则实数a 的取值范围是________.答案:(-1,1)解析:因为点(1,1)在圆(x -a)2+(y +a)2=4的内部,所以(1-a)2+(1+a)2<4,即a2<1,故-1<a<1.1.求圆的标准方程:几何法.经过三点A(4,0),B(0,2),C(1,3)的圆的方程为________.答案:(x -2)2+(y -1)2=5解析:因为kBC·kAC=·=-1,所以AC⊥BC,所以△ABC 是直角三角形,AB 是斜边,所以所求圆的圆心坐标为(2,1),半径r =|AB|==,所以所求圆的方程为(x -2)2+(y -1)2=5.2.求圆的一般方程:待定系数法.△ABC 的三个顶点分别为A(-1,5),B(-2,-2),C(5,5),其外接圆的方程为________.答案:x2+y2-4x -2y -20=0解析:解法一:设所求圆的方程为x2+y2+Dx +Ey +F =0.⎩⎪⎨⎪⎧ -D +5E +F +26=0,-2D -2E +F +8=0,5D +5E +F +50=0,由题意有 ⎩⎪⎨⎪⎧D =-4,E =-2,F =-20. 解得 故所求圆的方程为x2+y2-4x -2y -20=0.解法二:由题意可求得线段AC 的中垂线方程为x =2,线段BC 的中垂线方程为x +y -3=0,则圆心是两中垂线的交点(2,1),半径r ==5.故所求圆的方程为(x -2)2+(y -1)2=25.[典题6] 设定点M(-3,4),动点N 在圆x2+y2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.[解] 如图所示,设P(x ,y),N(x0,y0),则线段OP 的中点坐标为,线段MN的中点坐标为.由于平行四边形的对角线互相平分,故=,=.从而又N(x+3,y-4)在圆上,故(x+3)2+(y-4)2=4.因此所求轨迹为圆(x+3)2+(y-4)2=4,但应除去两点和(点P在直线OM上时的情况).[点石成金] 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP的中点为M(x,y),由中点坐标公式可知,点P的坐标为(2x-2,2y).因为点P在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0. [方法技巧] 1.求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.(2)代数法,即设出圆的方程,用待定系数法求解.2.解答圆的问题,应注意数形结合,充分利用圆的几何性质,简化运算.3.圆心在过切点且垂直于切线的直线上.4.圆心在任一弦的中垂线上.5.两圆相切时,切点与两圆心三点共线.[易错防范] 求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.真题演练集训1.[2015·新课标全国卷Ⅰ]一个圆经过椭圆+=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.254=y2+2答案: 解析:由题意知,a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知,圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m)2+y2=r2(0<m <4,r >0),⎩⎪⎨⎪⎧m =32,r2=254.则解得 所以圆的标准方程为2+y2=.2.[2014·陕西卷]若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.答案:x2+(y -1)2=1解析:因为点(1,0)关于直线y =x 对称的点的坐标为(0,1),所以所求圆的圆心为(0,1),半径为1,于是圆C 的标准方程为x2+(y -1)2=1.3.[2016·江苏卷]如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x2+y2-12x -14y +60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.解:圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5. (1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+2,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),+=,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2 ].课外拓展阅读圆中避免求“交点”的几种策略有关圆锥曲线与圆的交点问题,若用解方程组的方法求出交点坐标,往往比较繁琐,有些甚至没有必要,下面举例介绍如何避免求“交点”的几种策略:1.整体代入法[典例1] 已知圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交于两点A,B,则公共弦AB所在的直线方程为________.[解析] 设圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0任一交点的坐标是(x0,y0),则x+y+D1x0+E1y0+F1=0,①x+y+D2x0+E2y0+F2=0.②①-②,得(D1-D2)x0+(E1-E2)y0+(F1-F2)=0,因为A,B的坐标都满足方程(D1-D2)x+(E1-E2)y+(F1-F2)=0,③所以③是过A,B两点的直线方程.而过A,B两点的直线是唯一的,故方程③就是公共弦AB所在的直线方程.[答案] (D1-D2)x+(E1-E2)y+F1-F2=02.数形结合法[典例2] 已知曲线xy=1与圆M:x2+y2-4x-4y+3=0相交于A,B两点,则AB的中垂线方程为________.[解析] 曲线xy=1是反比例函数,其图象关于直线y=x对称,而圆M的圆心(2,2)在直线y=x上,就是说圆M也关于直线y=x对称,故AB的中垂线方程为y=x.[答案] y=x方法点睛数形结合思想,通过“以形助数,以数解形”,使复杂问题简单化、抽象问题具体化,往往能起到化繁为简,化难为易的作用,使一些看似复杂的问题通过作图得以轻松解决.3.根与系数之间的关系[典例3] 过点A(0,3)作直线l与圆C:x2+y2-2x-4y-6=0交于P,Q两点,且OP⊥OQ,则直线l的方程为________.[解析] 由题意,斜率不存在的直线不符合题意,设直线l:y=kx+3,代入圆的方程式整理,得(1+k2)x2+2(k-1)x-9=0.设P(x1,y1),Q(x2,y2),则x1x2=,x1+x2=.①所以y1y2=(kx1+3)(kx2+3)=k2x1x2+3k(x1+x2)+9=.②而OP⊥OQ⇔x1x2+y1y2=0,联立①②解得,k=0或k=1,故所求直线为y=3或x-y+3=0.[答案] y=3或x-y+3=04.巧设方程法[典例4] 过点A(0,1),B(4,m)且与x轴相切的圆有且只有一个,求实数m的值和这个圆的方程.[解] 设所求的圆的方程为(x-a)2+(y-b)2=r2,其中r2=b2.将A,B的坐标代入,得消去b,得(1-m)a2-8a+(m2-m+16)=0.(*)由题设,得知方程(*)只有一解.因此(1)当1-m=0,即m=1时,方程(*)只有一解,此时a=2,b=.故所求方程为(x-2)2+2=2.(2)当m≠1时,方程(*)为关于a的一元二次方程,故Δ=0,解得m=0,此时a=4,b=.故所求方程(x-4)2+2=2.。
江苏专用2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案含解析
§9.3圆的方程考情考向分析以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以填空题为主,要求相对较低,但内容很重要,在解答题中也会出现.圆的定义与方程概念方法微思考1.如何确定圆的方程?其步骤是怎样的?提示确定圆的方程的主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系有几种?如何判断?提示点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的圆.( × ) (2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ ) (4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ ) 题组二 教材改编2.[P111练习T4]圆x 2+y 2-4x +6y =0的圆心坐标是________. 答案 (2,-3)解析 由(x -2)2+(y +3)2=13,知圆心坐标为(2,-3).3.[P111习题T1(3)]已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为________________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2, 解得a =2,∴圆心为(2,0),半径为10, ∴圆C 的标准方程为(x -2)2+y 2=10. 题组三 易错自纠4.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是________________. 答案 (-∞,-22)∪(22,+∞)解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2.由其表示圆可得m 24-2>0,解得m <-22或m >2 2.5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 答案 -1<a <1解析 ∵点(1,1)在圆内, ∴(1-a )2+(a +1)2<4,即-1<a <1.6.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________________. 答案 (x -2)2+(y -1)2=1解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a ,1)(a >0), 又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去). ∴圆的标准方程为(x -2)2+(y -1)2=1.题型一 圆的方程例1求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程. 解 方法一 设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0, 则圆心C ⎝ ⎛⎭⎪⎫-D 2,-E 2,∴k CB =6+E28+D 2.∵圆C 与直线l 相切,∴k CB ·k l =-1, 即6+E28+D 2·⎝ ⎛⎭⎪⎫-13=-1.①又有(-2)2+(-4)2-2D -4E +F =0, ② 又82+62+8D +6E +F =0.③联立①②③,可得D =-11,E =3,F =-30, ∴所求圆的方程为x 2+y 2-11x +3y -30=0. 方法二 设圆的圆心为C ,则CB ⊥l , 可得CB 所在直线的方程为y -6=3(x -8), 即3x -y -18=0.①由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1). 又k AB =6+48+2=1,∴AB 的垂直平分线的方程为y -1=-(x -3),即x +y -4=0.②由①②联立,解得⎩⎪⎨⎪⎧x =112,y =-32.即圆心坐标为⎝ ⎛⎭⎪⎫112,-32.∴所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫-32-62=1252, ∴所求圆的方程为⎝⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练1(1)(2018·如皋模拟)已知圆C 过点(2,3),且与直线x -3y +3=0相切于点(0,3),则圆C 的方程为________________. 答案 (x -1)2+y 2=4解析 设圆心为(a ,b ),半径为r , 则⎩⎪⎨⎪⎧b -3a×33=-1,(a -2)2+(b -3)2=a 2+(b -3)2,解得a =1,b =0,则r =2, 即所求圆的方程为(x -1)2+y 2=4.(2)一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0 解析 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27,圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7,即2r 2=(a -b )2+14.① 由于所求圆与y 轴相切,∴r 2=a 2,② 又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).②又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上,∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 题型二 与圆有关的最值问题例2已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线在y 轴上的截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1,解得t =2-1或t =-2-1. ∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法. ①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题. 跟踪训练2已知实数x ,y 满足方程x 2+y 2-4x +1=0. 求:(1)y x的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值. 解 原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.(1)y x 的几何意义是圆上一点与原点连线的斜率,所以设y x=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值和最小值,此时|2k -0|k 2+1=3,解得k =± 3.所以y x的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,其在y 轴上的截距b 取得最大值和最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.(3)如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.题型三 与圆有关的轨迹问题例3已知Rt△ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在, 所以k AC ·k BC =-1, 又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知CD =12AB =2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练3设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285,不符合题意,舍去,所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.1.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________. 答案 (-2,-4)解析 由题意得a 2=a +2,a =-1或2. 当a =-1时方程为x 2+y 2+4x +8y -5=0,即(x +2)2+(y +4)2=25,圆心为(-2,-4),半径为5;当a =2时方程为4x 2+4y 2+4x +8y +10=0,⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54不表示圆.2.已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为__________. 答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时,圆C 的面积最大,此时圆心C 的坐标为(0,-1).3.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解得m =-32.所以圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.4.已知圆C :x 2+y 2-2x +4y +1=0,那么与圆C 有相同的圆心,且经过点(-2,2)的圆的方程是______________. 答案 (x -1)2+(y +2)2=25解析 设出要求的圆的方程为(x -1)2+(y +2)2=r 2,再代入点(-2,2),可以求得圆的半径为5.5.已知圆M 与直线3x -4y =0及3x -4y +10=0都相切,圆心在直线y =-x -4上,则圆M 的方程为________. 答案 (x +3)2+(y +1)2=1解析 到直线3x -4y =0及3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎪⎨⎪⎧3x -4y +5=0,y =-x -4,解得⎩⎪⎨⎪⎧x =-3,y =-1,又两平行线之间的距离为2,所以所求圆的半径为1,从而圆M 的方程为(x +3)2+(y +1)2=1.6.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是________________. 答案 x 2+y 2-10y =0解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0. 7.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是________________. 答案 (x -1)2+(y -3)2=4解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ), 则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.8.如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是________________. 答案 [-3,-1]∪[1,3]解析 圆(x -a )2+(y -a )2=8的圆心(a ,a )到原点的距离为|2a |,半径r =22, 由圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,得22-2≤|2a |≤22+2,∴1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1. ∴实数a 的取值范围是[-3,-1]∪[1,3].9.平面内动点P 到两点A ,B 的距离之比为常数λ(λ>0,且λ≠1),则动点P 的轨迹叫做阿波罗尼斯圆,若已知A (-2,0),B (2,0),λ=12,则此阿波罗尼斯圆的方程为____________________.答案 x 2+y 2+203x +4=0 解析 由题意,设P (x ,y ),则(x +2)2+y 2(x -2)2+y 2=12, 化简可得x 2+y 2+203x +4=0. 10.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ), 则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,解得⎩⎪⎨⎪⎧ x 0=2x -4,y 0=2y +2, 代入x 20+y 20=4中,得(x -2)2+(y +1)2=1.11.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上,(1)求y x的最大值和最小值;(2)求x +y 的最大值和最小值.解 方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4,则圆C 的半径为2.(1)(转化为斜率的最值问题求解) y x表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆C 相切时,斜率最大或最小,如图所示.设切线方程为y =kx ,即kx -y =0,由圆心C (3,3)到切线的距离等于圆C 的半径,可得|3k -3|k 2+1=2,解得k =9±2145. 所以y x 的最大值为9+2145,最小值为9-2145. (2)(转化为截距的最值问题求解)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆C 相切时,b 取得最大值或最小值,如图所示.由圆心C (3,3)到切线x +y =b 的距离等于圆C 的半径,可得|3+3-b |12+12=2, 即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2.12.已知点A (-3,0),B (3,0),动点P 满足PA =2PB .(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求QM 的最小值.解 (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2.化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题意知直线l 2是此圆的切线,连结CQ ,则QM =CQ 2-CM 2=CQ 2-16,当QM 最小时,CQ 最小,此时CQ ⊥l 1, CQ =|5+3|2=42, 则QM 的最小值为32-16=4.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =PB 2+PA 2,其中A (0,1),B (0,-1),则d 的最大值为________.答案 74解析 设P (x 0,y 0),d =PB 2+PA 2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.14.已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,则圆C 的方程为__________________________. 答案 (x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2解析 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |. 由题意可知⎩⎪⎨⎪⎧ r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧ a =1,b =1,r 2=2. 故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.15.若圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b的最小值是________.答案 323解析 由圆x 2+y 2+4x -12y +1=0知,其标准方程为(x +2)2+(y -6)2=39,∵圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,∴该直线经过圆心(-2,6),即-2a -6b +6=0,∴a +3b =3(a >0,b >0), ∴2a +6b =23(a +3b )⎝ ⎛⎭⎪⎫1a +3b =23⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥23⎝ ⎛⎭⎪⎫10+2 3a b ·3b a =323, 当且仅当3b a =3a b,即a =b 时取等号. 16.已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,求x 2+y 2的最大值. 解 x 2+y 2表示曲线上的任意一点(x ,y )到原点的距离.当x ≥0,y ≥0时,x 2+y 2-2x -2y =0化为()x -12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y <0时,x 2+y 2+2x +2y =0化为()x +12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x ≥0,y <0时,x 2+y 2-2x +2y =0化为()x -12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y ≥0时,x 2+y 2+2x -2y =0化为()x +12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=2 2. 综上可知,x 2+y 2的最大值为2 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 圆与方程1.圆的定义及方程点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. [小题体验]1.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是________.解析:将圆的一般方程化成标准方程,得(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,即+a2++2>2a ,所以原点在圆外.答案:原点在圆外2.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________. 解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12AB =12[1--2+-2= 2.所以圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=23.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件.[小题纠偏]若点(1,-1)在圆x 2+y 2-x +y +m =0外,则m 的取值范围是________.解析:由题意可知⎩⎪⎨⎪⎧-2+12-4m >0,1+-2-1-1+m >0,解得0<m <12.答案:⎝ ⎛⎭⎪⎫0,12考点一 圆的方程基础送分型考点——自主练透[题组练透]1.(2019·东台中学检测)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为________.解析:设圆心坐标为(a,0),则a -2+-2=a -2+-2,解得a=2,∴圆心为(2,0),半径为10,∴圆C 的标准方程为(x -2)2+y 2=10.答案:(x -2)2+y 2=102.(2018·徐州模拟)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为____________.解析:因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.答案:x 2+y 2=13.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的标准方程为____________. 解析:因为AB :x +y -2=0(0≤x ≤2), 所以A (0,2),B (2,0),AB =-2+-2=2 2.所以点A ,B 的中点为(1,1),故所求圆的标准方程为(x -1)2+(y -1)2=2. 答案:(x -1)2+(y -1)2=24.(2019·盐城中学测试) 圆经过点A (2,-3)和B (-2,-5). (1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程. 解:(1)要使圆的面积最小,则AB 为圆的直径,所以圆心为(0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5. (2)因为k AB =12,AB 的中点为(0,-4),所以直线AB 的中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式得半径r =10, 因此所求圆的方程为(x +1)2+(y +2)2=10.[谨记通法]1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质. 考点二 与圆有关的最值问题 题点多变型考点——多角探明[锁定考向]与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想. 常见的命题角度有: (1)斜率型最值问题; (2)截距型最值问题;(3)距离型最值问题.[题点全练]角度一:斜率型最值问题1.(2019·涞水月考)已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求yx的最大值与最小值.解:方程(x -3)2+(y -3)2=6表示以(3,3)为圆心,6为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值, 此时|3k -3|k 2+1=6,解得k =3±2 2.所以y x的最大值为3+22,最小值为3-2 2. 角度二:截距型最值问题2.(2018·东海高级中学测试)已知实数x ,y 满足(x -2)2+(y +1)2=1,则2x -y 的最大值为________.解析:令b =2x -y ,当直线2x -y =b 与圆相切时,b 取得最值. 由|2×2+1-b |5=1,解得b =5±5,所以2x -y 的最大值为5+ 5. 答案:5+ 53.(2019·启东模拟)已知非负实数x ,y 满足x ≠y ,且x 2+y 2x +y≤4,则S =y -2x 的最小值是________.解析:由x 2+y 2x +y≤4,得x 2+y 2≤4(x +y ),移项配方得(x -2)2+(y -2)2≤8,此不等式表示以C (2,2)为圆心,以22为半径的圆及其内部在第一象限与x 轴、y 轴正半轴的部分(除去y =x ).将S =y -2x 变形为y =2x +S ,当直线l :y =2x +S 与圆相切于第一象限时,S 取得最小值,由圆的切线性质,圆心C (2,2)到l 的距离等于半径长,即|2+S |5=22,解得S =-2-210(S =-2+210舍去).故S =y -2x 的最小值是-2-210.答案:-2-210 角度三:距离型最值问题4.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为-2+-2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.[通法在握]与圆有关的最值问题的3种常见转化法 (1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题. (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.[演练冲关]1.(2019·淮安检测)已知x ,y 满足x 2+y 2-4x -6y +12=0,则x 2+y 2的最小值为________.解析:x 2+y 2-4x -6y +12=0可化为(x -2)2+(y -3)2=1,则圆心坐标为(2,3),圆的半径r =1.因为x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在圆心与原点连线与圆的两个交点处取得最值,又圆心到原点的距离为-2+-2=13,所以x 2+y 2的最小值为(13-1)2=14-213.答案:14-2132.在平面直角坐标系xOy 中,点A (-1,0),B (1,0).若动点C 满足AC =2BC ,则△ABC 的面积的最大值是________.解析:设C (x ,y ),则(x +1)2+y 2=2(x -1)2+2y 2,化简得(x -3)2+y 2=8.其中y ≠0,从而S △ABC =12×2×|y |≤22,即△ABC 的面积的最大值是2 2.答案:2 2考点三 圆的方程的简单应用重点保分型考点——师生共研 [典例引领](2018·扬州调研)设△ABC 顶点坐标A (0,a ),B (-3a ,0),C (3a ,0),其中a >0,圆M 为△ABC 的外接圆.(1)求圆M 的方程;(2)当a 变化时,圆M 是否过某一定点,请说明理由.解:(1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 因为圆M 过点A (0,a ),B (-3a ,0),C (3a ,0),所以⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a .所以圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2)因为圆M 的方程可化为(x 2+y 2+3y )-(3+y )a =0.由⎩⎪⎨⎪⎧x 2+y 2+3y =0,3+y =0,解得x =0,y =-3.所以圆M 过定点(0,-3).[由题悟法]圆的方程是一个二元二次方程,所以有时候我们可从函数和方程的角度对其相关问题进行分析,也可利用方程中x ,y 的取值范围来确定有关函数的值或范围.[即时应用]已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求P Q ―→·M Q ―→的取值范围.解:(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2. (2)设Q(x ,y ),则x 2+y 2=2,且P Q ―→·M Q ―→=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2. 令x =2cos θ,y =2sin θ,所以P Q ―→·M Q ―→=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝⎛⎭⎪⎫θ+π4-2, 所以P Q ―→·M Q ―→的取值范围为[-4,0].一抓基础,多练小题做到眼疾手快1.若圆的半径为3,圆心与点(2,0)关于点(1,0)对称,则圆的标准方程为________. 答案:x 2+y 2=92.在平面直角坐标系xOy 中,设点P 为圆O :x 2+y 2+2x =0上任意一点,点Q(2a ,a +3)(a ∈R),则线段P Q 长度的最小值为________.解析:圆O :x 2+y 2+2x =0,即 (x +1)2+y 2=1,表示以(-1,0)为圆心、半径为1的圆,则点Q(2a ,a +3)到圆心(-1,0)的距离d =a +2+a +2=5a 2+10a +10=a +2+5,所以当a =-1时,d 取得最小值为5,故线段P Q 长度的最小值为5-1.答案:5-13.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为________. 解析:由半径r =12D 2+E 2-4F =124a 2+4b 2=2得,a 2+b 2=2.所以点(a ,b )到原点的距离d =a 2+b 2=2. 答案:24.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得点(1,0)关于直线y =x 对称的点(0,1)为圆心, 又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1. 答案:x 2+(y -1)2=15.(2019·兴化月考)经过点(2,0)且圆心是直线x =2与直线x +y =4的交点的圆的标准方程为________.解析:由⎩⎪⎨⎪⎧x =2,x +y =4得⎩⎪⎨⎪⎧x =2,y =2,即两直线的交点坐标为(2,2),则圆心坐标为(2,2).又点(2,0)在圆上,所以半径r =2,则圆的标准方程为(x -2)2+(y -2)2=4.答案:(x -2)2+(y -2)2=46.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线 x =-3上的动点,则P Q 的最小值为________.解析:如图所示,圆心M (3,-1)与定直线x =-3的最短距离为M Q =3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.答案:4二保高考,全练题型做到高考达标1.(2019·无锡调研)设两条直线x +y -2=0,3x -y -2=0的交点为M ,若点M 在圆 (x -m )2+y 2=5内,则实数m 的取值范围为________.解析:联立⎩⎪⎨⎪⎧x +y -2=0,3x -y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1,则M (1,1),由交点M 在圆(x -m )2+y 2=5的内部,可得(1-m )2+1<5,解得-1<m <3.故实数m 的取值范围为(-1,3). 答案:(-1,3)2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点(2,1)连线的斜率.过两点连线的直线方程为kx -y +1-2k =0,当该直线与圆相切时,k 取得最大值与最小值,由|2k |k 2+1=1,解得k =±33.答案:33,-333.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为________________.解析:由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.答案:(x -1)2+(y +1)2=24.(2018·苏州期末)在平面直角坐标系xOy 中,已知过点A (2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________________.解析:根据题意,设圆C 的圆心为(m ,-2m ),半径为r ,则⎩⎪⎨⎪⎧m -2+-2m +2=r 2,|m -2m -1|2=r ,解得m =1,r =2,所以圆C 的方程为(x -1)2+(y +2)2=2. 答案:(x -1)2+(y +2)2=25.已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m =________.解析:因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.答案:-16.在平面直角坐标系xOy 内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).答案:(-∞,-2)7.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意可知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π48.(2018·滨海中学检测)已知点P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,若圆C 上存在点Q ,使得∠CP Q =30°,则正数a 的取值范围是________.解析:由圆C :(x -a )2+(y -a )2=2a 2,得圆心为C (a ,a ),半径r =2a , ∴CP =a 2+a -2,设过P 的一条切线与圆的切点是T , 则CT =2a ,当Q 为切点时,∠CP Q 最大. ∵圆C 上存在点Q 使得∠CP Q =30°, ∴CT CP≥sin 30°,即2aa 2+a -2≥12, 整理可得3a 2+2a -2≥0,解得a ≥7-13或a ≤-7-13(舍去).又点 P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,∴a 2+(2-a )2>2a 2,解得a <1.故正数a 的取值范围是⎣⎢⎡⎭⎪⎫7-13,1.答案:⎣⎢⎡⎭⎪⎫7-13,19.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD =410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径CD =410, 所以PA =210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,因为该直线与圆有公共点, 所以圆心到直线的距离d =|2+2×7-t |12+22≤22, 解上式得,16-210≤t ≤16+210, 所以所求的最大值为16+210. (2)记点Q(-2,3), 因为n -3m +2表示直线M Q 的斜率k , 所以直线M Q 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线M Q 与圆C 有公共点, 得|2k -7+2k +3|1+k2≤2 2. 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3. 三上台阶,自主选做志在冲刺名校1.(2019·宁海中学模拟)如果直线2ax -by +14=0(a >0,b >0)和函数f (x )=mx +1+1(m >0,m ≠1)的图象恒过同一个定点,且该定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,那么b a 的取值范围是________.解析:函数f (x )=m x +1+1的图象恒过点(-1,2),代入直线2ax -by +14=0,可得-2a -2b +14=0,即a +b =7.∵定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,∴a 2+b 2≤25.设b a=t ,则b =at ,代入a +b =7,可得a =71+t ,b =7t 1+t ,代入a 2+b 2≤25,可得()1+t 2×⎝ ⎛⎭⎪⎫71+t 2≤25,∴12t 2-25t +12≤0,∴34≤t ≤43.故b a 的取值范围是⎣⎢⎡⎦⎥⎤34,43. 答案:⎣⎢⎡⎦⎥⎤34,43 2.(2018·启东中学检测)已知点A (0,2)为圆M :x 2+y 2-2ax -2ay =0(a >0)外一点,圆M 上存在点T ,使得∠MAT =45°,则实数a 的取值范围是________.解析:圆M 的方程可化为(x -a )2+(y -a )2=2a 2.圆心为M (a ,a ),半径为2a .当A ,M ,T 三点共线时,∠MAT =0°最小,当AT 与圆M 相切时,∠MAT 最大.圆M 上存在点T ,使得∠MAT =45°,只需要当∠MAT 最大时,满足45°≤∠MAT <90°即可. MA =a -2+a -2=2a 2-4a +4, 此时直线AT 与圆M 相切,所以sin ∠MAT =MT MA =2a 2a 2-4a +4.因为45°≤∠MAT <90°,所以22≤sin∠MAT <1, 所以22≤2a 2a 2-4a +4<1, 解得3-1≤a <1.答案:[3-1,1)3.如图所示,一隧道内设双行线公路,其截面由一段圆弧和一个长方形构成.已知隧道总宽度AD 为6 3 m ,行车道总宽度BC 为211m ,侧墙EA ,FD 高为2 m ,弧顶高MN 为5 m.(1)建立直角坐标系,求圆弧所在的圆的方程;(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5 m .请计算车辆通过隧道的限制高度是多少.解:(1)以EF 所在直线为x 轴,MN 所在直线为y 轴,1 m 为单位长度建立如图所示的平面直角坐标系.则E (-33,0),F (33,0),M (0,3).由于所求圆的圆心在y 轴上,所以设圆的方程为x 2+(y -b )2=r 2,因为F (33,0),M (0,3)都在圆上,所以⎩⎨⎧ 32+b 2=r 2,02+-b 2=r 2, 解得b =-3,r 2=36. 所以圆的方程是x 2+(y +3)2=36.(2)设限高为h ,作CP ⊥AD 交圆弧于点P ,则CP =h +0.5.将点P 的横坐标x =11代入圆的方程,得11+(y +3)2=36,解得y =2或y =-8(舍去).所以h =CP -0.5=(y +DF )-0.5=(2+2)-0.5=3.5(m).答:车辆的限制高度为3.5 m.。