高中数学解题方法谈 线性规划求最值问题
解析运用简单线性规划思想求最值问题
JIETI JIQIAOYUFANGFA 解题技巧与方法105•、一 •解析运用简单线性规划思想求最值问题◎纪智斌(尤溪县第七中学,福建三明365100)【摘要】划高中数学的,是高考点,尤其 划思想求最值在高考中出现的频率较高.研究得知,这类题目 不大,为学生在高考中失分,教学实践中教师应 相关题型的讲解,不断提高学生的解题能力,使学生在高考中取得理想成绩.【关键词】划;思想;求最值;问题一、线目标函数求最值数求最值是学生最先接触的一类题型,难 不大,解答该类题目的 在于 已知条件正确画出可行域.对于可行域为 的试题而言,数的最值一般在顶点或 的边界取得,因此,学生还应正确计算出交点坐标.{! -4j$ - 3,3!+5y$25,求z=2!+(的最值$分析解答该题目时,首先画出可行 ,1戶J,画出2!+(=0的,通平移可知^在Q点得最小值,在)点取得最大值.通过联立对应不等式,不难解出5(1,1),)(5,2)代入的^的最小值为3,最大值为12.数最值时,为证解题正确性,应意)(1)对于选择题型,可通 特殊值进行判断,,若 原点,可原点行分析.2)清件中的不等号是否有等号,含等 画 ,不等号画虚线.二、非线性目标函数求最值非 数求最值 的题目难度中等,解题时需要学生行适化,或 出数的‘意义,数结合方法进行,因此,解答该类题目时,学生先不要动笔,应静的分析,找到题口.%y—)^0,例2已知实数!,(满足卜—(+ 1(0,若J= !& % (&,%$2,求z的最大值与最小值.分析解答该题目时,根件正确画出可行域对学生而言难度不大,但部分学生对J=!& % (&的理解不 ,不知 .事实上,其 的意义为可行域上点到原点距离的平方.通过这的分析,便不 行.由已知条件,画出图2可行域.原点作和! +(-3m0垂的F垂足为[,/的方程为(=!,联立方程组{!=(,_3m0,可得[点坐标(夺,夺),其在线段上,也 在可行域内.由图形可知点;到原点的距离最大,点[到原点的距离最小,显然IOMI = /1),l〇[ =/^f,即,J=!2 %(的最大值为13,最小值为非线性函数求最值 其几何意义进行求解,其中(!-8)2 %((-p2,(p 1)%5(%7类型的非线性函! 一8数较为常见,其中(!-«)& %( )&表示的几何意义为点(!,()和点(8,P距离的平方表示点(!,()和点(8,P 连线的斜率•E! % % C I表示点(!,()到直线)! %% c=0距离的/) +Q2倍.三、实应用中求最值在 问题中应 ,题在高考中多有体现.该类题目需要学生从题干中找到 件,而 行 ,难 对较大,重点查学生运学 :问题的 ,因此,教学实践中,教应多该 !题 的.例3某 花费500 买及 ,其中价60 ,价70 ,买数量不能少于3套,不能少于2个,共有多少种选择方法?两种品最多能买多少?分析该题 设的情 不复杂,需 题件,准确找到 件而 行解答,但需 意的是该题一般的题不同,的数均为整数.设软件 套数为!套,个数为(个,一买J长,题 ,得出以 件)其中 数为(!3,7(2,60! % 70500,0 —<,时件画出图3.由图3可清晰 到件的坐 有 7 个,分别为(3,4),(4,3),(3,3),(6,2 ),(5,2),(4,2 ),(3,2)说明 题意的方7 套. 平行法 最点,可知最优点为(6,2) ,,软件 6 套, 2 .,应用线性规划,?问题时,为证解题的正确性,学生应认真读题,理清参数间的 ,列出正确的约件,正确确定 数,一定 意参数的取值,既要件,又 情况.四、结论是高中数学 的知识点,题型常出现在高考中,包括 数求最值、非 数求最值、应题型等,难一般不大.为学生失分,提高题正确率,教学实践中,教应该类题型的总结,并不同题 具体的题目,使学生掌握解答 题型的意事项.【参考文献】$1]营.例 划思想在高中数学教学中的应用[J].求,2016(10):105.$2 ].浅议高中数学中线性规划思想在解题中的应用[J].中囯培训,2016(2):247%[3 ]凤芹.数形 思想在线性规划中的应用[J].学周刊,2013(5):128.数学学习与研究2019. 2。
线性规划问题
线性规划问题为了更好地解决高中数学中线性规划问题,笔者进行了简单总结。
一、利用线性规划求最值(一)目标函数为一次函数形式求的最大值,最小值。
分析:一般的直线的规划区域只要求出区域的交点坐标(最大值,最小值存在),将坐标点代入目标函数就可以。
线性规划区域的边界点坐标分别为(3,1),(7,9),(1,3),代入目标函数可以得到最大值为(7,9)取到为21,最小值为(3,1)取到为1。
含有参数的如:目标函数最大值为12,最小值为3,那么实数k 的值为()分析:直线x=1,x-4y+3=0,3x+5y-25=0的交点分别为a(1,1),b(1,22/5),c(5,2),所以最值的取得是根据直线的斜率k的范围,把变为,结合图形分析当时,由题意可得得到时,结合图形分析可知,不存在满足题意的k,因此k=2(二)目标函数为二次函数能转化为完全平方形式例2.求的最小值。
分析:先将,可以发现表示的是点(x,y)到定点的距离的平方,过m作直线ac的垂线,易知,垂足n在线段ac上,故z的最小值是|nm|=2/9(三)目标函数是反比例形式例3.求。
(分析:把等号右边转化为斜率问题进行求解)表示可行域内任意一点与定点q(-1,-1/2)连线的斜率的2倍,因为故z的范围是[3/4,7/2]求的值域分析:因为所以z可以表示为单位圆上的点与(3,2)的斜率的取值范围,所以z的取值范围是两条斜率的取值范围[]二、线性规划的面积问题(一)与向量相结合例4.在平面直角坐标系里,o为坐标原点,,p点满足,则p点轨迹表示的平面区域面积是。
设p点坐标为(x,y)根据题意可得区域面积一目了然为2。
(二)与圆相结合例5.a=,b=;(1)p=的面积;(2)求点q的面积。
分析:p点转化x-3=x1,y-1=y1,所以(x-3)2+(y-1)21区域标识的是圆边界及其内部的面积。
q点横纵坐标转化x-x2=x1,y-y2=y1所以(x-x2)2+(y-y2)2=1,所以p点的轨迹是以线性规划目标区域中任意一点为圆心的圆。
线性规划最值问题
线性规划最值问题什么是线性规划线性规划是一种数学优化方法,用于解决一类最值问题。
在线性规划中,我们试图找到一组变量的值,使得目标函数取得最大(或最小)值,同时满足一组线性等式或不等式约束条件。
线性规划问题的一般形式线性规划问题可以用下列一般形式来表示:$$\max (或 \min) c^T x$$$$s.t.\quad Ax \leq b$$其中,$x$是变量向量,$c$是目标函数系数向量,$A$是约束条件系数矩阵,$b$是约束条件右侧常数向量。
求解线性规划最值问题的步骤求解线性规划最值问题的一般步骤如下:1. 确定目标函数:根据问题要求确定目标函数的系数向量$c$和优化目标(最大化或最小化)。
2. 设置约束条件:根据问题要求确定约束条件的系数矩阵$A$和右侧常数向量$b$。
3. 求解最值:应用线性规划算法,求解线性规划问题,找到使目标函数取得最大(或最小)值的变量向量$x$。
4. 解释结果:将最值代入目标函数,得到最终的最值结果,并解释其含义。
线性规划最值问题的应用线性规划最值问题在实际应用中具有广泛的应用,例如:- 产品混合问题:决定不同产品的生产数量,以最大化收益或最小化成本。
- 运输问题:确定不同货物在不同运输路线上的分配方案,以最小化运输成本。
- 资源分配问题:决定资源的最优分配,以最大化效益或实现平衡。
总结线性规划最值问题是一种在实际应用中常见的问题求解方法。
通过确定目标函数和约束条件,并应用线性规划算法,我们可以找到使目标函数取得最大(或最小)值的变量向量。
该方法可以应用于多个领域,帮助优化决策和资源分配。
特别解析:线性规划求最值
特别解析:线性规划求最值一、目标函数线的平移法:利用直线的截距解决最值问题例1 已知点()P x y ,在不等式组2010220x y x y -⎧⎪-⎨⎪+-⎩,,≤≤≥表示的平面区域上运动,则z x y =-的取值范围是( ).(A )[-2,-1] (B )[-2,1](C )[-1,2] (D )[1,2]解析:由线性约束条件画出可行域,考虑z x y =-,变形为y x z =-,这是斜率为1且随z 变化的一族平行 直线.z -是直线在y 轴上的截距.当直线满足约束条件且经过点(2,0)时,目标函数z x y =-取得最大值为2;直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ). 注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单.例2 已知实数x 、y 满足约束条件0503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,则24z x y =+的最小值为( )分析:将目标函数变形可得124z y x =-+,所求的目标函数的最小值即一组平行直12y x b =-+在经过可行域时在y 轴上的截距的最小值的4倍。
解析:由实数x 、y 满足的约束条件,作可行域如图所示:当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为min 234(3)6z =⨯+⨯-=-。
-5 53O x yC AB L二、数行结合,构造斜率法:利用直线的斜率解决最值问题例3 设实数x y ,满足20240230x y xc y y --⎧⎪+-⎨⎪-⎩,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),00y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点. ∴312P ⎛⎫ ⎪⎝⎭,.故答案为32. 注:解决本题的关键是理解目标函数00y y z x x -==-的 几何意义,当然本题也可设y t x=,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时,t 最大.代入y tx =,求出32t =, 即得到的最大值是32. 例3.已知实数x 、y 满足不等式组2240x y x ⎧+≤⎨≥⎩,求函数31y z x +=+的值域. 解析:所给的不等式组表示圆224x y +=的右半圆(含边界),31y z x +=+可理解为过定点(1,3)P --,斜率为z 的直线族.问题的几何意义:求过半圆域224(0)x y x +≤≥上任一点与点(1,3)P --的直线斜率的最大、最小值.由图知,过点P 和点(0,2)A 的直线斜率最大,max 2(3)50(1)z --==--.过 -2 2 Ox y •(-1,-3) -2。
线性规划的定义及解题方法
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
高中数学解线性规划问题的方法与思路总结
高中数学解线性规划问题的方法与思路总结一、引言线性规划是高中数学中的重要内容,也是数学建模和实际问题求解中常用的方法之一。
本文将总结解线性规划问题的方法与思路,帮助高中学生和他们的父母更好地理解和应用线性规划。
二、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求解一个线性目标函数的最优值的问题。
其中,线性约束条件可以用一组线性不等式或等式表示,线性目标函数是一次函数。
三、线性规划问题的解题步骤1. 建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件,并将其转化为数学表达式。
2. 确定可行域:根据约束条件,确定决策变量的取值范围,即可行域。
3. 确定最优解:通过图像、代数或单纯形表等方法,确定最优解的存在性和唯一性。
4. 求解最优解:利用图像、代数或单纯形表等方法,求解最优解,并进行验证。
5. 分析最优解:对最优解进行解释和分析,得出结论。
四、线性规划问题的解题技巧1. 图像法:将线性规划问题转化为几何问题,在平面直角坐标系中绘制可行域和目标函数的图像,通过观察图像找到最优解。
例如,解决如下问题:求函数 f(x, y) = 3x + 4y 在约束条件x ≥ 0, y ≥ 0, 2x + y ≤ 6 的可行域中的最大值。
通过绘制可行域和目标函数的图像,可以观察到最优解在可行域的顶点处取得。
2. 代数法:通过代数计算,利用不等式关系和线性目标函数的性质,求解最优解。
例如,解决如下问题:求函数 f(x, y) = 2x + 3y 在约束条件x ≥ 0, y ≥ 0, x + y ≤ 4 的可行域中的最大值。
通过列出不等式组成的方程组,利用代数方法求解方程组,得到最优解。
3. 单纯形表法:适用于多个决策变量和多个约束条件的线性规划问题。
通过构建单纯形表,利用迭代计算的方法求解最优解。
例如,解决如下问题:求函数 f(x, y, z) = 5x + 4y + 3z 在约束条件x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 6 的可行域中的最大值。
高中数学线性规划解题技巧
高中数学线性规划解题技巧在高中数学中,线性规划是一个重要的内容,也是考试中常见的题型。
线性规划是一种优化问题,通过建立数学模型,找出使目标函数达到最优值的变量取值。
在解题过程中,我们需要掌握一些技巧和方法,下面就来具体介绍一下。
一、确定变量和目标函数在解线性规划问题时,首先要明确变量和目标函数。
变量是我们要求解的未知数,而目标函数则是我们要优化的目标。
例如,假设我们要求解一个生产问题,生产两种产品A和B,我们可以将A的产量表示为x,B的产量表示为y,目标函数可以是总利润或总成本。
二、列出约束条件约束条件是限制变量取值范围的条件,也是我们解题的关键。
要列出准确的约束条件,需要仔细分析题目并进行逻辑推理。
约束条件可以是生产能力、资源限制、市场需求等各种限制条件。
例如,假设某工厂生产产品A和B,A的生产需要2个单位的资源1和3个单位的资源2,B的生产需要4个单位的资源1和1个单位的资源2。
工厂拥有资源1的总量为10个单位,资源2的总量为12个单位。
那么我们可以得到以下约束条件:2x + 4y ≤ 103x + y ≤ 12三、确定可行域可行域是指满足所有约束条件的变量取值范围。
在解线性规划问题时,我们需要确定可行域的范围,以便找到最优解。
为了确定可行域,我们可以将约束条件转化为不等式,并将其绘制在坐标系中。
通过求解这些不等式的交集,我们可以确定可行域的范围。
以前面的例子为例,我们可以将约束条件绘制在坐标系中,得到以下图形:[图1]根据图中的交集部分,我们可以确定可行域的范围。
四、确定最优解确定最优解是线性规划的核心问题。
我们需要找到使目标函数达到最大或最小值的变量取值。
在确定最优解时,有两种常用的方法:图形法和单纯形法。
图形法通过绘制等高线图来找到最优解,而单纯形法通过迭代计算来逐步逼近最优解。
以目标函数为总利润的例子为例,我们可以通过图形法找到最优解。
在可行域中,我们需要找到使总利润最大化的点。
通过绘制等高线图,我们可以找到目标函数的等高线与可行域的交点,从而确定最优解。
线性规划求最值
线性规划求最值线性规划(Linear Programming)是一种优化问题的数学方法,通过建立线性模型来求解最大或最小值。
线性规划的目标是在给定的限制条件下,找到一个最优解,使得目标函数取得最大(或最小)值。
线性规划的数学模型可以表示为:目标函数:max(min)Z = c₁x₁ + c₂x₂ + … + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙ其中x₁, x₂, …, xₙ为决策变量,c₁, c₂, …, cₙ为目标函数的系数,a₁₁, a₁₂, …, a₈ₙ为约束条件中的系数,b₁, b₂, …,bₙ为约束条件的常数。
解线性规划问题的过程可以分为以下几个步骤:1. 建立数学模型:根据实际问题,确定目标函数以及约束条件。
2. 线性规划的几何表示:将目标函数和约束条件用图形表示,目标函数是一个线性函数,而约束条件则是一组线性不等式。
3. 求解可行解:通过图形方法,找到目标函数与所有约束条件的交点,得到一组可行解。
4. 求解最优解:在可行解中,通过计算目标函数在每个可行解点的函数值,找到使目标函数取得最大(或最小)值的可行解,即为最优解。
5. 检验最优解的可行性:将最优解代入到原始线性规划问题中,检验是否满足所有约束条件。
如果不满足,则需要重新调整模型。
线性规划在实际应用中广泛使用,例如生产计划、资源分配、运输调度等领域。
通过线性规划,可以有效地进行决策,并找到最优解,提高效率,节约资源。
然而,线性规划也有一些局限性,如对问题的要求较高,不能解决非线性的问题等。
总之,线性规划是一种数学方法,通过建立线性模型,在给定的约束条件下求解最大或最小值,可以在各种实际问题中应用,并得到最优解。
通过线性规划,可以优化决策,提高效率,实现最大化利益。
高考数学中的线性规划算法解题技巧
高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。
而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。
本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。
一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。
线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。
在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。
通常情况下,我们可以将线性规划问题表示为标准型或非标准型。
标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。
二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。
其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。
2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。
3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。
4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。
5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。
需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。
高中线性规划
高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。
在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。
本文将详细介绍高中线性规划的概念、应用以及解题方法。
一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。
1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。
例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。
1.3 可行解和最优解:满足所有约束条件的解称为可行解。
在可行解中,使目标函数达到最大或者最小值的解称为最优解。
二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。
通过考虑资源约束和市场需求,可以确定每种产品的生产量。
2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。
例如,可以确定每一个部门的资源分配,以满足不同项目的需求。
2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。
三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。
通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。
3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。
该方法通过迭代计算,逐步接近最优解。
3.3 整数规划:在某些情况下,变量的值必须是整数。
这种情况下,可以使用整数规划方法来解决问题。
整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。
四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。
高考数学线性规划常见题型及解法[1]
高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
高中数学解线性规划问题的步骤和技巧
高中数学解线性规划问题的步骤和技巧线性规划是高中数学中的一个重要内容,也是数学建模的基础。
它通过数学方法来解决实际问题,寻找最优解。
本文将介绍解线性规划问题的步骤和技巧,帮助高中学生和他们的父母更好地理解和应用线性规划。
一、了解线性规划问题的基本概念在解决线性规划问题之前,首先需要了解线性规划问题的基本概念。
线性规划问题是在一组线性约束条件下,求解一个线性目标函数的最大值或最小值。
其中,线性约束条件是指各个变量之间的关系是线性的,线性目标函数是指目标函数是线性的。
二、确定决策变量和目标函数解决线性规划问题的第一步是确定决策变量和目标函数。
决策变量是指需要决策的变量,目标函数是指需要优化的目标。
例如,假设有一个生产问题,需要确定生产不同产品的数量,那么生产不同产品的数量就是决策变量,而总利润就是目标函数。
三、列出线性约束条件在确定了决策变量和目标函数之后,需要列出线性约束条件。
线性约束条件可以是等式或不等式,用来限制决策变量的取值范围。
例如,假设生产不同产品的数量不能超过某个限制值,那么可以列出相应的不等式约束条件。
四、绘制可行域图为了更直观地理解线性规划问题,可以绘制可行域图。
可行域图是指将线性约束条件表示在坐标系中,形成的一个区域。
决策变量的取值必须在这个区域内,才满足线性约束条件。
通过绘制可行域图,可以更好地理解问题的约束条件和可行解的范围。
五、确定最优解在确定了可行域图之后,需要确定最优解。
最优解是指在满足线性约束条件的前提下,使目标函数取得最大值或最小值的决策变量取值。
通过观察可行域图和目标函数的变化趋势,可以推测最优解的位置。
六、检验最优解在确定了最优解之后,需要对最优解进行检验。
检验最优解的方法是将最优解代入目标函数和约束条件中,计算是否满足所有约束条件。
如果满足所有约束条件,则最优解是可行解;如果不满足所有约束条件,则需要重新调整决策变量的取值。
七、灵活运用线性规划的方法和技巧在解决线性规划问题时,可以灵活运用一些方法和技巧来简化计算过程。
高一数学中的线性规划问题如何解决
高一数学中的线性规划问题如何解决在高一数学的学习中,线性规划问题是一个重要且具有一定难度的知识点。
它不仅在数学领域有着广泛的应用,还能培养我们的逻辑思维和解决实际问题的能力。
那么,如何有效地解决高一数学中的线性规划问题呢?下面让我们一起来探讨一下。
首先,我们要明白线性规划问题的基本概念。
简单来说,线性规划就是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。
这些约束条件通常是由一些线性不等式组成,而目标函数则是一个关于变量的线性表达式。
为了更好地理解和解决线性规划问题,我们需要掌握以下几个关键步骤:第一步,准确地列出约束条件和目标函数。
这就要求我们能够读懂题目中的文字描述,将其转化为数学语言。
比如,如果题目中说“生产A 产品不超过 5 件,生产B 产品不少于 3 件”,那么我们可以列出约束条件:$A\leq5$,$B\geq3$。
同时,根据题目所给定的条件,确定目标函数,比如“利润最大”,那么可能就会有目标函数$Z =3A +5B$。
第二步,画出可行域。
可行域就是满足所有约束条件的点的集合。
我们可以通过把每个约束条件所对应的直线画出来,然后根据不等式的方向确定可行域的范围。
例如,对于不等式$A + B\leq8$,我们先画出直线$A + B = 8$,然后根据“小于等于”这个条件,确定可行域在直线的下方(包括直线上的点)。
第三步,找到最优解。
在可行域内,我们要找到使得目标函数取得最大值或最小值的点。
这个点可能在可行域的顶点处,也可能在边界上。
我们可以通过将可行域的顶点坐标代入目标函数,比较得出最大值或最小值。
在实际解题过程中,还需要注意一些常见的错误和容易忽略的地方。
一是在列出约束条件时,要注意不等式的方向不要搞错。
比如“大于等于”和“小于等于”的区别,如果弄错了,就会导致可行域的范围出错,从而影响最终的结果。
二是在计算顶点坐标时要仔细,避免计算错误。
有时候顶点坐标可能不是整数,计算过程中要保持耐心和细心。
线性规划最值问题
线性规划最值问题
线性规划是一种优化问题,它的目标是在一组线性约束条件下,找到使得目标函数最大或最小的变量值。
在线性规划最值问题中,
我们将面临以下几个步骤:
1. 定义目标函数:线性规划最值问题首先需要定义一个目标函数,该函数描述了需要最大化或最小化的目标。
目标函数是由一组
线性变量组成的数学表达式。
2. 设置约束条件:线性规划最值问题还需要设置一组线性约束
条件,这些约束条件用于限制变量的取值范围。
约束条件可以是大
于等于、小于等于或等于某个值的等式或不等式。
3. 制定模型:将目标函数和约束条件组合在一起,形成线性规
划模型。
这个模型可以通过数学表达式来描述。
4. 解决问题:通过线性规划算法,我们可以求解线性规划问题
的最优解。
最优解是使得目标函数取得最大或最小值的变量取值。
5. 分析结果:最后,我们对线性规划问题的解进行分析和解释。
我们可以判断最优解的可行性,以及根据最优解提供决策建议。
线性规划最值问题可以应用于多种实际场景中,如生产计划优化、资源分配、投资组合优化等。
通过解决线性规划最值问题,我
们可以在复杂的决策环境下,找到最优的决策方案,提高效率和效益。
参考文献:
[1] 王静.线性规划方法. 中国人民大学出版社, 2009.。
高三数学线性规划知识点
高三数学线性规划知识点线性规划是数学中的一个重要分支,广泛应用于经济、管理、工程等领域。
它通过建立数学模型,寻找一组最佳决策方案,以实现特定的目标。
在高三数学学习中,线性规划是一个重要的知识点,本文将介绍线性规划的基本概念、常见问题类型以及解题方法。
一、线性规划的基本概念1. 目标函数:线性规划的目标是在一组约束条件下,最大化或最小化一个线性函数,这个线性函数就是目标函数。
通常用Z表示目标函数的值。
2. 变量:目标函数中的每个变量都代表一个决策变量,这些变量的取值将影响目标函数的计算结果。
3. 约束条件:线性规划的一个重要特点是存在一组约束条件,这些约束条件限制了决策变量的取值范围。
约束条件通常是由一组线性不等式或等式表示。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使得目标函数达到最大值或最小值的解称为最优解。
二、线性规划的问题类型1. 单纯形法:单纯形法是一种常用的线性规划求解方法。
它通过不断优化目标函数的值,逐步接近最优解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
2. 对偶性定理:线性规划中的对偶性定理是指对于一个标准型的线性规划问题,它与其对偶问题具有相同的最优解。
3. 整数线性规划:当决策变量要求为整数时,这就是一个整数线性规划问题。
整数线性规划的求解更加困难,常常需要借助于分支定界等特殊算法。
4. 网络流线性规划:网络流线性规划是线性规划与图论相结合的一种问题类型。
它通常用于解决最小费用流、最大流等网络优化问题。
三、线性规划的解题方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制出约束条件所构成的区域,然后绘制目标函数的等高线,并找到最优解所在的点。
2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
3. 对偶问题:通过建立原始问题与对偶问题之间的关系,可以将原始问题的求解转化为对偶问题的求解。
高中数学中的线性规划与最优解
高中数学中的线性规划与最优解数学是一门抽象而又实用的学科,它在我们的日常生活中无处不在。
而在高中数学中,线性规划与最优解是一个重要的概念和技巧。
本文将探讨线性规划与最优解在高中数学中的应用和意义。
线性规划是一种数学模型,它的目标是在一组约束条件下,找到使目标函数取得最大或最小值的变量取值。
在高中数学中,线性规划经常出现在优化问题中,如最大利润、最小成本等。
它的基本思想是将问题转化为一组线性不等式或等式,然后通过图像、代数或其他方法求解最优解。
首先,我们来看一个简单的例子。
假设某工厂生产两种产品A和B,每单位产品A的利润为$5,每单位产品B的利润为$8。
工厂每天的生产时间为8小时,产品A每小时需要2个工人,产品B每小时需要3个工人。
而工厂每天最多能雇佣10个工人。
现在我们要求工厂每天的最大利润是多少。
我们可以设产品A的产量为x,产品B的产量为y。
根据题目条件,我们可以列出以下不等式:2x + 3y ≤ 8 (工时约束)2x + 3y ≤ 10 (工人约束)x ≥ 0, y ≥ 0 (产量非负)我们要求的是最大利润,即目标函数为z = 5x + 8y。
现在我们将这个问题转化为一个线性规划问题,目标是求解z的最大值。
通过图像或代数方法,我们可以找到最优解。
在这个例子中,最优解是x = 2,y = 2,z = 34。
也就是说,工厂每天生产2个单位的产品A和2个单位的产品B时,可以获得最大利润34美元。
这个例子展示了线性规划在实际问题中的应用。
通过建立数学模型,我们可以找到最优解,从而在有限的资源下,达到最佳的效果。
除了图像和代数方法,线性规划还可以通过单纯形法等数值方法来求解。
这些方法可以帮助我们更快地找到最优解,尤其是在复杂的问题中。
通过计算机软件的辅助,我们可以处理更多的变量和约束条件,从而得到更精确的结果。
线性规划不仅在数学中有重要的应用,还在经济学、管理学等领域中起着重要的作用。
它可以帮助我们优化资源配置,提高效率,降低成本。
特别解析汇报:线性规划求最值
特别解析:线性规划求最值一、目标函数线的平移法:利用直线的截距解决最值问题例1 已知点()P x y ,在不等式组2010220x y x y -⎧⎪-⎨⎪+-⎩,,≤≤≥表示的平面区域上运动,则z x y =-的取值范围是( ).(A )[-2,-1] (B )[-2,1] (C )[-1,2] (D )[1,2]解析:由线性约束条件画出可行域,考虑z x y =-, 变形为y x z =-,这是斜率为1且随z 变化的一族平行直线.z -是直线在y 轴上的截距.当直线满足约束条件且经过点(2,0)时,目标函数z x y =-取得最大值为2;直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ).注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单.例2 已知实数x 、y 满足约束条件0503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,则24z x y =+的最小值为( )分析:将目标函数变形可得124zy x =-+,所求的目标函数的最小值即一组平行直12y x b =-+在经过可行域时在y 轴上的截距的最小值的4倍。
解析:由实数x 、y 满足的约束条件,作可行域如图所示:当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为min 234(3)6z =⨯+⨯-=-。
二、数行结合,构造斜率法:利用直线的斜率解决最值问题例3 设实数x y ,满足20240230x y xc y y --⎧⎪+-⎨⎪-⎩,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),0y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点. ∴312P ⎛⎫⎪⎝⎭,.故答案为32. 注:解决本题的关键是理解目标函数0y y z x x -==-的 几何意义,当然本题也可设yt x=,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时,t 最大.代入y tx =,求出32t =, 即得到的最大值是32. 例3.已知实数x 、y 满足不等式组2240x y x ⎧+≤⎨≥⎩,求函数31y z x +=+的值域.解析:所给的不等式组表示圆224x y +=的右半圆(含边界),-5 5 3Ox y CA BL31y z x +=+可理解为过定点(1,3)P --,斜率为z 的直线族.问题的几何意义:求过半圆域224(0)x y x +≤≥上任一点与点(1,3)P --的直线斜率的最大、最小值.由图知,过点P 和点(0,2)A 的直线斜率最大,max 2(3)50(1)z --==--.过点P 所作半圆的切线的斜率最小.设切点为(,)B a b ,则过B 点的切线方程为4ax by +=.又B 在半圆周上,P 在切线上,则有22434a b a b ⎧+=⎨--=⎩解得2565a b ⎧-+=⎪⎪⎨-⎪=⎪⎩因此min 33z =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划求最值问题一、与直线的截距有关的最值问题
例1已知点()
P x y
,在不等式组
20
10
220
x
y
x y
-
⎧
⎪
-
⎨
⎪+-
⎩
,
,
≤
≤
≥
表示的平面区域上运动,则z x y
=-的
取值范围是().
(A)[-2,-1](B)[-2,1]
(C)[-1,2](D)[1,2]
解析:由线性约束条件画出可行域如图1,考虑z x y
=-,
把它变形为y x z
=-,这是斜率为1且随z变化的一族平行
直线.z
-是直线在y轴上的截距.当直线满足约束条件且
经过点(2,0)时,目标函数z x y
=-取得最大值为2;
直线经过点(0,1)时,目标函数z x y
=-取得最小值为-1.故选(C).
注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y的取值范围为[-1,2]更为简单.这需要有最值在边界点取得的特殊值意识.
二、与直线的斜率有关的最值问题
例2设实数x y
,满足
20
240
230
x y
xc y
y
--
⎧
⎪
+-
⎨
⎪-
⎩
,
,
,
≤
≥
≤
,则
y
z
x
=的最大值是__________.
解析:画出不等式组所确定的三角形区域ABC(如图2),
y y
z
x x
-
==
-
表示两点
(00)()
O P x y
,,,确定的直线的斜率,要求z的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP的斜率最大,故P为240
x y
+-=与230
y-=的交点,即A点.
∴
3
1
2
P
⎛⎫
⎪
⎝⎭
,.故答案为
3
2
.
注:解决本题的关键是理解目标函数
y y
z
x x
-
==
-
的
几何意义,当然本题也可设y
t
x
=,则y tx
=,即为求
y tx
=的斜率的最大值.由图2可知,y tx
=过点A时,
t最大.代入y tx
=,求出
3
2
t=,
即得到的最大值是3
2
.
三、与距离有关的最值问题
例3已知
20
40
250
x y
x y
x y
-+
⎧
⎪
+-
⎨
⎪--
⎩
,
,
,
≥
≥
≤
,求221025
z x y y
=+-+的最小值.
解析:作出可行域如图3,并求出顶点的坐标A(1,3)、B(3,1)、C(7,9).而22
(5)
z x y
=+-
表示可行域内任一点(x,y)到定点M(0,5)的距离的平方,过M作直线AC的垂线,
易知垂足N在线段AC上,故z的最小值是29 2
M N=.
注:充分理解目标函数的几何意义,如两点间的距离(或平方)、点到直线的距离等.四、与实际应用有关的最值问题
例4预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行?
分析:先设出桌、椅的变数后,目标函数即为这两个变数
之和,再由此在可行域内求出最优解.解题中应当注意到问
题中的桌、椅数都应是自然数这个隐含条件,若从图形直观上
得出的最优解不满足题设条件时,应作出调整,直至满足题设.
解:设应买x张桌子,y把椅子,把所给的条件表示成
不等式组,即约束条件为
50202000
1.5
x y
y x
y x
x y*
+
⎧
⎪
⎪
⎨
⎪
⎪∈
⎩N
,
,
,
,,
≤
≥
≤
由
50202000
x y
y x
+=
⎧
⎨
=
⎩
,
,
解得
200
7
200
.
7
x
y
⎧
=
⎪⎪
⎨
⎪=
⎪⎩
,
.
∴A点的坐标为
200200
77
⎛⎫
⎪
⎝⎭
,,
由
50202000
1.5
x y
y x
+=
⎧
⎨
=
⎩
,
,
解得
25
75
.
2
x
y
=
⎧
⎪
⎨
=
⎪
⎩
,
.
∴B点的坐标为
75
25
2
⎛⎫
⎪
⎝⎭
,.
所以满足约束条件的可行域是以
20020075
25(00)
772
A B O
⎛⎫⎛⎫
⎪ ⎪
⎝⎭⎝⎭
,,,,,为顶点的三角形区
域(如图4).由图形可知,目标函数z x y
=+在可行域内的最优解为25,,但注意到x y*
∈N
,,故取37
y=.
答:应买桌子25张,椅子37把.。