扶余市一中2018-2019学年下学期高二期中数学模拟题
2018-2019学年高二数学下学期期中试题(含解析)
2018-2019学年高二数学下学期期中试题(含解析)一、选择题:本题共12小题,每小题5分,共60分。
1.复数 (为虚数单位)的虚部是( )A. B. C. D.【答案】D【解析】试题分析:注意弄清概念,复数的虚部是而不是.本题易错选.考点:复数的运算及基本概念2.下列曲线中离心率为的是()A. B. C. D.【答案】B【解析】由得,选B.3.“”是“”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】B【解析】【详解】试题分析:,故正确答案是充分不必要条件,故选B.考点:充分必要条件.4.下列判断正确的是()A. “若,则”的否命题为真命题B. 函数的最小值为2C. 命题“若,则”的逆否命题为真命题D. 命题“”否定是:“”。
【答案】C【解析】【分析】取特殊值验证A选项中命题的真假,利用基本不等式“一正、二定、三相等”来验证B选项命题的真假,由原命题的真假判断C选项命题的真假,根据全称命题的否定来判断D选项命题的真假。
【详解】对于A选项,“若,则”的否命题为“若,则”,不妨取,,则成立,但不成立,A选项中的命题不正确;由基本不等式可得,当且仅当时,即当时,等号成立,但,B选项中的命题错误;对于C选项,命题“若,则”是真命题,其逆否命题也为真命题,C选项中的命题正确;对于D选项,由全称命题的否定可知,命题“”的否定是:“”,D选项中的命题错误。
故选:C。
【点睛】本题考查命题真假性的判断,考查四种命题以及全称命题的否定,意在考查学生对这些知识的理解和掌握情况,属于基础题。
5.函数的单调递减区间是( )A. B. C. D.【答案】B【解析】【分析】求出函数的导数,解关于导函数的不等式,求出函数的递减区间即可.【详解】函数的定义域是(0,+∞),y′=1﹣+=,令y′(x)<0,解得:0<x<1,故函数在(0,1)递减,故选:B.【点睛】本题考查了利用导数判断函数的单调性问题,是一道常规题.6.由直线,曲线及轴所围成的封闭图形的面积是( )A. B. C. D.【答案】A【解析】根据题意可知面积为:7.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.【答案】D【解析】【分析】连接交于点,连接,可证∠A1C1O即为所求角,则在Rt△A1C1O中,,即可得到答案.【详解】如图所示:连接交于点,连接,在正方体中,∵AB⊥平面AD1,∴AB⊥A1D,又A1D⊥AD1,且AD1∩AB=A,∴A1D⊥平面AD1C1B,所以∠A1C1O即为所求角,在Rt△A1C1O中,,所以A1C1与平面ABC1D1所成角的正弦值为,故选D.【点睛】本题考查线面角的求法,属中档题.8. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A. 1440种 B. 960种 C. 720种 D. 480种【答案】B【解析】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B。
2018-2019高二下学期期中考试数学试卷
19.(本小题满分 12 分)已知以点 C (t,2 )( t R且 t t
与 y 轴交于点 O 和点 B ,其中 O 为原点.
0 )为圆心的圆与 x轴交于点 O 和点 A ,
( 1)求证:△ OAB 的面积为定值; ( 2)设直线 y 2x 4 与圆 C 交于点 M , N ,若 OM
ON ,求圆 C 的方程.
当 4< a≤5时,每件产品的售价为 -a 万元.
35 元,该产品一年的利润 L( x) 最大,最大为 500(5 - (31 +a) 元,该产品一年的利润 L( x) 最大,最大为 500e9
19. 解:( 1)
圆 C过原点 O ,设圆 C 的方程是 ( x t) 2
(y
2)2 t
t2
4 t2
令 x 0 ,得 y1
20. (Ⅰ)证明:∵ PC⊥平面 ABCD,AC? 平面 ABCD,∴ AC⊥ PC,
∵ AB=2,AD=CD=,1 ∴ AC=BC= ,∴ AC2+BC2=AB,2 ∴ AC⊥ BC, 又 BC∩PC=C,∴ AC⊥平面 PBC,∵ AC? 平面 EAC,∴平面 EAC⊥平面 PBC.……4 分
得:
g (x0) min x0 (3, 4) ,故 k x0 .
13.1 14. 4
或 1 15. 4
16. { x | x 2}
17. 解:(Ⅰ)由 0.001 100 m 100 0.004 100 0.002 100 m 100 1 得
m 0.0015 , 。。。。。。3 分
(Ⅱ)平均数估计值为
20.(本小题满分 12 分)如图,在四棱锥 P﹣ABCD中, PC⊥底 面 ABCD, ABCD是直角梯形, AB⊥ AD, AB∥ CD, AB=2AD=2CD=.2 E 是 PB的中点.
2018-2019学年高二数学下学期期中试题(含解析)_3
2018-2019学年高二数学下学期期中试题(含解析)一、选择题:本大题共13小题,每小题4分,共52分.第1至10小题为单选题,在每小题给出的四个选项中,只有一项是符合题目要求的;第11至13为多选题,有多个正确选项,选对一个即可得到2分,全部选对得4分,有一个错误选项不得分.1.已知函数,则()A. 15B. 30C. 32D. 77【答案】B【解析】【分析】先求得导函数,由此求得.【详解】依题意,所以.故选:B.【点睛】本题主要考查了导数的计算,属于基础题.2.函数的导函数为()A. B. C. D.【答案】B【分析】利用导数运算公式,求得所求导函数【详解】由于,所以.故选:B【点睛】本小题主要考查乘法的导数运算,考查基本初等函数的导数,属于基础题.3.椭圆的焦点在轴上,且,,则这样的椭圆的个数为()A. 10B. 12C. 20D. 21【答案】D【解析】【分析】结合椭圆的几何性质,利用列举法判断出椭圆的个数.【详解】由于椭圆焦点在轴上,所以.有三种取值,有七种取值,故椭圆的个数有种.故选:D【点睛】本小题主要考查椭圆的几何性质,属于基础题.4.函数的单调递增区间是()A. B. C. D. 和【解析】【分析】先求得函数的定义域,然后利用导数求得的单调递增区间.【详解】的定义域为,且,所以当时,,单调递增,的单调递增区间为.故选:B【点睛】本小题主要考查利用导数求函数的单调区间,属于基础题.5.已知在上是增函数,则实数的最大值是()A. 0B. 1C. 3D. 不存在【答案】C【解析】【分析】利用在上恒成立列不等式,由此求得的取值范围.【详解】由于在上是增函数,所以在上恒成立,即在上恒成立,而,所以,所以的最大值为.故选:C【点睛】本小题主要考查根据函数在给定区间上的单调性求参数,属于基础题.6.二项式的展开式中,常数项的值是()A. 240B. 192C. 60D. 15【答案】A【解析】【分析】利用二项式展开式的通项公式,求得常数项.【详解】二项式展开式的通项公式为,令,解得,所以常数项为.故选:A【点睛】本小题主要考查二项式展开式中指定项的求法,属于基础题.7.若,则等于()A. B. C. D.【答案】D【解析】【分析】利用赋值法,分别令与,代入式子后两式相加即可求得.【详解】令,代入可得①令,代入可得②由①+②得所以故选:D【点睛】本题考查了赋值法在二项式定理中的应用,偶项系数和的求法,属于基础题.8.已知函数,若中,角C是钝角,那么()A.B.C.D.【答案】A【解析】试题分析:因为,所以,故函数在区间上是减函数,又都是锐角,且,所以,所以,故,选A.考点:1.应用导数研究函数的单调性;2.三角函数的图象和性质.9.展开式中项的系数为()A. B. C. D.【答案】A【解析】试题分析:由题意,,从二项式展开中,出现在中,所以前的系数为,故选A.考点:1.二项式定理的应用;2.二项式的系数.10.已知函数,,若,,使得,则实数a的取值范围是()A. B. C. D.【答案】A【解析】【分析】由题意可转化为,利用导数分别研究两个函数最小值,求解即可.【详解】解:当时,由得,=,当时,在单调递减,是函数的最小值,当时,为增函数,是函数的最小值,又因为,都,使得,可得在的最小值不小于在的最小值,即,解得:,故选:.【点睛】本题考查指数函数和对勾函数的图像及性质,考查利用导数研究单调性问题的应用,属于基础题.11.如图是函数导函数的图象,下列选项中正确的是()A. 在处导函数有极大值B. 在,处导函数有极小值C. 在处函数有极大值D. 在处函数有极小值【答案】ABCD【解析】【分析】根据极大值、极小值的定义,判断出正确选项.【详解】根据导函数的图像可知:的两侧左减右增,所以在,处导函数有极小值;的两侧左增右减,所以在处导函数有极大值.根据导函数的图像可知:的左侧导数大于零,右侧导数小于零,所以在处函数有极大值.的左侧导数小于零,右侧导数大于零,所以在处函数有极小值.而左右两侧导函数符号相同,原函数不取得极值.故选:ABCD【点睛】本小题主要考查极大值、极小值的定义和判断,属于基础题.12.若直线与曲线满足以下两个条件:点在曲线上,直线方程为;曲线在点附近位于直线的两侧,则称直线在点处“切过”曲线.下列选项正确的是()A. 直线在点处“切过”曲线B. 直线在点处“切过”曲线C. 直线在点处“切过”曲线D. 直线点处“切过”曲线【答案】AC【解析】【分析】对四个选项逐一判断直线是否是曲线在点的切线方程,然后结合图像判断直线是否满足“切过”,由此确定正确选项.【详解】对于A选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处“切过”曲线,故A选项正确.对于B选项,曲线,,,所以曲线在点的切线方程为,故B选项错误.对于C选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处“切过”曲线,故C选项正确.对于D选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处没有“切过”曲线,故D选项错误.故选:AC【点睛】本小题主要考查曲线的切线方程,考查数形结合的数学思想方法,属于基础题.13.已知曲线,则下列曲线中与曲线有公共点的是()A. B.C. D.【答案】BD【解析】【分析】首先根据曲线过点确定BD选项.化简曲线的方程,得到,结合图像判断AC选项中的曲线与没有公共点.【详解】由于曲线过点,而曲线也过,所以B选项符合.由于曲线过点,而曲线也过,所以D选项符合.由于,所以,所以,两边平方并化简得,两边平方并化简得,所以.所以曲线的方程为.对于A选项,画出、图像如下图所示,由图可知,两个曲线没有公共点.(圆圆心,半径为,圆心到直线的距离,所以直线和圆没有公共点.)对于C选项,画出、图像如下图所示,由图可知,两个曲线没有公共点.(的一条渐近线方程为,而可化为与平行,故与没有公共点.)故选:BD【点睛】本小题主要考查曲线与方程,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.二、填空题:本大题共4小题,每小题4分,共16分.14.函数的单调递减区间是________.【答案】【解析】【分析】先求得函数的定义域,然后利用导数求得的单调减区间.【详解】依题意的定义域为,令,解得,所以的单调减区间是.故答案为:【点睛】本小题主要考查利用导数求函数的单调区间,属于基础题.15.在二项式的展开式中,系数最大项的项数为第________项.【答案】7【解析】【分析】利用二项式展开式的通项公式,求得展开式中数最大项的项数.【详解】二项式的展开式的通项公式为,各项的系数为,由于题目要求系数最大项的项数,所以为偶数.故,对应的系数为,根据的单调性可知,或时,最大,故最大的项的系数为,对应为第项.故答案为:【点睛】本小题主要考查二项式展开式的通项公式的运用,属于基础题.16.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为________.【答案】.【解析】【分析】先记“第一次闭合后出现红灯”为事件,“第二次闭合后出现红灯”为事件,根据条件概率计算公式,即可求出结果.【详解】记“第一次闭合后出现红灯”为事件,“第二次闭合后出现红灯”为事件,则,,所以,在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为.故答案为【点睛】本题主要考查条件概率,熟记条件概率的计算公式即可,属于常考题型.17.设函数,当时,恒成立,则的取值范围是________.【答案】【解析】【分析】求得在处的切线的斜率,结合图像,求得的取值范围.【详解】函数,.对于一次函数,.,令,解得(负根舍去),所以在上递增,在上递减,画出的图像如下图所示.由图可知,要使当时,恒成立,只需大于或等于在处切线的斜率.而,所以.故答案为:【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题:共82分.解答应写出文字说明,证明过程或演算步骤.18.设离散型随机变量的分布列为02求:(1)的分布列;(2)求的值.【答案】(1)见解析;(2)0.7【解析】【分析】根据概率和为列方程,求得的值.(1)根据分布列的知识,求得对应的分布列.(2)利用求得的值.【详解】由分布列的性质知:,解得(1)由题意可知,,,所以的分布列为:10.2(2)【点睛】本小题主要考查分布列的计算,属于基础题.19.设,其中,曲线在点处的切线与y轴相交于点.(1)确定a的值;(2)求函数的单调区间.【答案】(1);(2)增区间是,减区间是.【解析】【分析】(1)先由所给函数的表达式,求导数,再根据导数的几何意义求出切线的斜率,最后由曲线在点处的切线与轴相交于点列出方程求的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到函数的单调区间.【详解】(1)因为,所以.令,得,所以曲线在点处的切线方程为,由点在切线上,可得,解得.(2)由(1)知,,.令,解得或.当或时,;当时,,故函数的单调递增区间是,单调递减区间是.【点睛】本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.20.计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.【答案】(1)丙;(2)【解析】【分析】(1)分别计算三者获得合格证书的概率,比较大小即可(2)根据互斥事件的和,列出三人考试后恰有两人获得合格证书事件,由概率公式计算即可求解.【详解】(1)设“甲获得合格证书”为事件A,“乙获得合格证书”为事件B,“丙获得合格证书”为事件C,则,,.因为,所以丙获得合格证书的可能性最大.(2)设“三人考试后恰有两人获得合格证书”为事件D,则.【点睛】本题主要考查了相互独立事件,互斥事件,及其概率公式的应用,属于中档题.21.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数在区间上的最大值和最小值.【答案】(Ⅰ);(Ⅱ)最大值1;最小值.【解析】试题分析:(Ⅰ)根据导数的几何意义,先求斜率,再代入切线方程公式中即可;(Ⅱ)设,求,根据确定函数的单调性,根据单调性求函数的最大值为,从而可以知道恒成立,所以函数是单调递减函数,再根据单调性求最值.试题解析:(Ⅰ)因为,所以.又因为,所以曲线在点处的切线方程为.(Ⅱ)设,则.当时,,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过不能直接判断函数的单调性,所以需要再求一次导数,设,再求,一般这时就可求得函数的零点,或是()恒成立,这样就能知道函数的单调性,再根据单调性求其最值,从而判断的单调性,最后求得结果.22.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.【答案】(1);(2)分布列见解析【解析】【分析】(1)计算出接受甲种心理暗示的志愿者中包含A1但不包含B1的事件数,计算出总的选择方法数,根据古典概型概率计算公式计算出所求概率.(2)利用超几何分布的概率计算方法,计算出的分布列.【详解】(1)接受甲种心理暗示的志愿者中包含A1但不包含B1的事件数为,总的事件数为,所以接受甲种心理暗示的志愿者中包含A1但不包含B1的概率为.(2)的所有可能取值为.,,,,,故的分布列为:【点睛】本小题主要考查古典概型的计算,考查超几何分布的分布列的计算,属于基础题.23.已知函数,其中实数a为常数.(I)当a=-l时,确定的单调区间:(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;(Ⅲ)当a=-1时,证明.【答案】(Ⅰ)在区间上为增函数,在区间上为减函数.(Ⅱ). (Ⅲ)见解析.【解析】【详解】试题分析:(Ⅰ)通过求导数,时,时,,单调函数的单调区间.(Ⅱ)遵循“求导数,求驻点,讨论区间导数值正负,确定端点函数值,比较大小”等步骤,得到的方程.注意分①;②;③,等不同情况加以讨论.(Ⅲ)根据函数结构特点,令,利用“导数法”,研究有最大值,根据, 得证.试题解析:(Ⅰ)当时,,∴,又,所以当时,在区间上为增函数,当时,,在区间上为减函数,即在区间上为增函数,在区间上为减函数.(Ⅱ)∵,①若,∵,则在区间上恒成立,在区间上为增函数,,∴,舍去;②当时,∵,∴在区间上为增函数,,∴,舍去;③若,当时,在区间上增函数,当时,,在区间上为减函数,,∴.综上.(Ⅲ)由(Ⅰ)知,当时,有最大值,最大值为,即,所以,令,则,当时,,在区间上为增函数,当时,,在区间上为减函数,所以当时,有最大值,所以,即.考点:应用导数研究函数的单调性、极值、最值、证明不等式.2018-2019学年高二数学下学期期中试题(含解析)一、选择题:本大题共13小题,每小题4分,共52分.第1至10小题为单选题,在每小题给出的四个选项中,只有一项是符合题目要求的;第11至13为多选题,有多个正确选项,选对一个即可得到2分,全部选对得4分,有一个错误选项不得分.1.已知函数,则()A. 15B. 30C. 32D. 77【答案】B【解析】【分析】先求得导函数,由此求得.【详解】依题意,所以.故选:B.【点睛】本题主要考查了导数的计算,属于基础题.2.函数的导函数为()A. B. C. D.【答案】B【解析】【分析】利用导数运算公式,求得所求导函数【详解】由于,所以.故选:B【点睛】本小题主要考查乘法的导数运算,考查基本初等函数的导数,属于基础题.3.椭圆的焦点在轴上,且,,则这样的椭圆的个数为()A. 10B. 12C. 20D. 21【答案】D【解析】【分析】结合椭圆的几何性质,利用列举法判断出椭圆的个数.【详解】由于椭圆焦点在轴上,所以.有三种取值,有七种取值,故椭圆的个数有种.【点睛】本小题主要考查椭圆的几何性质,属于基础题.4.函数的单调递增区间是()A. B. C. D. 和【答案】B【解析】【分析】先求得函数的定义域,然后利用导数求得的单调递增区间.【详解】的定义域为,且,所以当时,,单调递增,的单调递增区间为.故选:B【点睛】本小题主要考查利用导数求函数的单调区间,属于基础题.5.已知在上是增函数,则实数的最大值是()A. 0B. 1C. 3D. 不存在【答案】C【解析】【分析】利用在上恒成立列不等式,由此求得的取值范围.【详解】由于在上是增函数,所以在上恒成立,即在上恒成立,而,所以,所以的最大值为.故选:C【点睛】本小题主要考查根据函数在给定区间上的单调性求参数,属于基础题.6.二项式的展开式中,常数项的值是()A. 240B. 192C. 60D. 15【答案】A利用二项式展开式的通项公式,求得常数项.【详解】二项式展开式的通项公式为,令,解得,所以常数项为.故选:A【点睛】本小题主要考查二项式展开式中指定项的求法,属于基础题.7.若,则等于()A. B. C. D.【答案】D【解析】【分析】利用赋值法,分别令与,代入式子后两式相加即可求得.【详解】令,代入可得①令,代入可得②由①+②得所以故选:D【点睛】本题考查了赋值法在二项式定理中的应用,偶项系数和的求法,属于基础题.8.已知函数,若中,角C是钝角,那么()A.B.C.D.试题分析:因为,所以,故函数在区间上是减函数,又都是锐角,且,所以,所以,故,选A.考点:1.应用导数研究函数的单调性;2.三角函数的图象和性质.9.展开式中项的系数为()A. B. C. D.【答案】A【解析】试题分析:由题意,,从二项式展开中,出现在中,所以前的系数为,故选A.考点:1.二项式定理的应用;2.二项式的系数.10.已知函数,,若,,使得,则实数a的取值范围是()A. B. C. D.【答案】A【解析】【分析】由题意可转化为,利用导数分别研究两个函数最小值,求解即可.【详解】解:当时,由得,=,当时,在单调递减,是函数的最小值,当时,为增函数,是函数的最小值,又因为,都,使得,可得在的最小值不小于在的最小值,即,解得:,故选:.【点睛】本题考查指数函数和对勾函数的图像及性质,考查利用导数研究单调性问题的应用,属于基础题.11.如图是函数导函数的图象,下列选项中正确的是()A. 在处导函数有极大值B. 在,处导函数有极小值C. 在处函数有极大值D. 在处函数有极小值【答案】ABCD【解析】【分析】根据极大值、极小值的定义,判断出正确选项.【详解】根据导函数的图像可知:的两侧左减右增,所以在,处导函数有极小值;的两侧左增右减,所以在处导函数有极大值.根据导函数的图像可知:的左侧导数大于零,右侧导数小于零,所以在处函数有极大值.的左侧导数小于零,右侧导数大于零,所以在处函数有极小值.而左右两侧导函数符号相同,原函数不取得极值.故选:ABCD【点睛】本小题主要考查极大值、极小值的定义和判断,属于基础题.12.若直线与曲线满足以下两个条件:点在曲线上,直线方程为;曲线在点附近位于直线的两侧,则称直线在点处“切过”曲线.下列选项正确的是()A. 直线在点处“切过”曲线B. 直线在点处“切过”曲线C. 直线在点处“切过”曲线D. 直线点处“切过”曲线【答案】AC【解析】【分析】对四个选项逐一判断直线是否是曲线在点的切线方程,然后结合图像判断直线是否满足“切过”,由此确定正确选项.【详解】对于A选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处“切过”曲线,故A选项正确.对于B选项,曲线,,,所以曲线在点的切线方程为,故B选项错误.对于C选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处“切过”曲线,故C 选项正确.对于D选项,曲线,,,所以曲线在点的切线方程为,图像如下图所示,由图可知直线在点处没有“切过”曲线,故D选项错误.故选:AC【点睛】本小题主要考查曲线的切线方程,考查数形结合的数学思想方法,属于基础题.13.已知曲线,则下列曲线中与曲线有公共点的是()A. B.C. D.【答案】BD【解析】【分析】首先根据曲线过点确定BD选项.化简曲线的方程,得到,结合图像判断AC选项中的曲线与没有公共点.【详解】由于曲线过点,而曲线也过,所以B选项符合.由于曲线过点,而曲线也过,所以D选项符合.由于,所以,所以,两边平方并化简得,两边平方并化简得,所以.所以曲线的方程为.对于A选项,画出、图像如下图所示,由图可知,两个曲线没有公共点.(圆圆心,半径为,圆心到直线的距离,所以直线和圆没有公共点.)对于C选项,画出、图像如下图所示,由图可知,两个曲线没有公共点.(的一条渐近线方程为,而可化为与平行,故与没有公共点.)故选:BD【点睛】本小题主要考查曲线与方程,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.二、填空题:本大题共4小题,每小题4分,共16分.14.函数的单调递减区间是________.【答案】【解析】【分析】先求得函数的定义域,然后利用导数求得的单调减区间.【详解】依题意的定义域为,令,解得,所以的单调减区间是.故答案为:【点睛】本小题主要考查利用导数求函数的单调区间,属于基础题.15.在二项式的展开式中,系数最大项的项数为第________项.【答案】7【解析】【分析】利用二项式展开式的通项公式,求得展开式中数最大项的项数.【详解】二项式的展开式的通项公式为,各项的系数为,由于题目要求系数最大项的项数,所以为偶数.故,对应的系数为,根据的单调性可知,或时,最大,故最大的项的系数为,对应为第项.故答案为:【点睛】本小题主要考查二项式展开式的通项公式的运用,属于基础题.16.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为________.【答案】.【解析】【分析】先记“第一次闭合后出现红灯”为事件,“第二次闭合后出现红灯”为事件,根据条件概率计算公式,即可求出结果.【详解】记“第一次闭合后出现红灯”为事件,“第二次闭合后出现红灯”为事件,则,,所以,在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为.故答案为【点睛】本题主要考查条件概率,熟记条件概率的计算公式即可,属于常考题型.17.设函数,当时,恒成立,则的取值范围是________.【答案】【解析】【分析】求得在处的切线的斜率,结合图像,求得的取值范围.【详解】函数,.对于一次函数,.,令,解得(负根舍去),所以在上递增,在上递减,画出的图像如下图所示.由图可知,要使当时,恒成立,只需大于或等于在处切线的斜率.而,所以.故答案为:【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题:共82分.解答应写出文字说明,证明过程或演算步骤.18.设离散型随机变量的分布列为02求:(1)的分布列;(2)求的值.【答案】(1)见解析;(2)0.7【解析】【分析】根据概率和为列方程,求得的值.(1)根据分布列的知识,求得对应的分布列.(2)利用求得的值.【详解】由分布列的性质知:,解得(1)由题意可知,,,所以的分布列为:10.2(2)【点睛】本小题主要考查分布列的计算,属于基础题.19.设,其中,曲线在点处的切线与y轴相交于点.(1)确定a的值;(2)求函数的单调区间.【答案】(1);(2)增区间是,减区间是.【解析】【分析】(1)先由所给函数的表达式,求导数,再根据导数的几何意义求出切线的斜率,最后由曲线在点处的切线与轴相交于点列出方程求的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到函数的单调区间.【详解】(1)因为,所以.令,得,所以曲线在点处的切线方程为,由点在切线上,可得,解得.(2)由(1)知,,.令,解得或.当或时,;当时,,故函数的单调递增区间是,单调递减区间是.【点睛】本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.。
2018-2019学年高二数学下学期期中试题(含解析)_2
2018-2019学年高二数学下学期期中试题(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,集合,则集合()A. B. C. D.【答案】B【解析】,,则,故选B.考点:本题主要考查集合的交集与补集运算.2.已知函数,则()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】根据分段函数的解析式,先求得,进而可求得的值,得到答案.【详解】由题意,函数,可得,所以,故答案为.【点睛】本题主要考查了分段函数的求值问题,其中解答中合理应用分段函数的解析式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.3.函数的单调增区间是()A. B. C. D. 不存在【答案】B【解析】【分析】求出二次函数的对称轴即得函数的增区间.【详解】由题得,所以函数的增区间为,故选:B【点睛】本题主要考查二次函数的单调性,意在考查学生对该知识的理解掌握水平和分析推理能力.4.若函数在上是增函数,则的范围是( )A. B. C. D.【答案】C【解析】【分析】直接利用一次函数的单调性求解.【详解】因为函数在上是增函数,所以.故选:C【点睛】本题主要考查一次函数单调性,意在考查学生对该知识的理解掌握水平和分析推理能力.5.下列函数求导运算正确的个数为( )①;②③;④;⑤A. B. C. D.【答案】B【解析】【分析】根据,,即可作出判断.【详解】①,故错误;②,故正确;③,故正确;④,故错误;⑤,故错误.故选:.【点睛】此题考查了求导的运算.要求学生掌握求导法则,锻炼了学生的计算能力,是一道基础题.6.下列四个函数中,在上为增函数是( )A. B. C. D.【答案】D【解析】【分析】利用函数的图像判断每一个选项得解.【详解】A. ,在上为减函数;B. ,在上不是单调函数;C. ,在上为减函数;D. ,在上为增函数.故选:D【点睛】本题主要考查函数的图像和单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.设曲线在点处的切线与直线垂直,则()A. 2B.C.D.【答案】D【解析】【详解】,直线的斜率为-a.所以a=-2, 故选D8.下列函数中,既是奇函数又存在极值的是( )A. B. C. D.【答案】D【解析】【分析】根据函数的图像和奇函数的判定方法,极值的判定方法分析每一个选项得解.【详解】A. ,由函数的图像得函数是奇函数,但是不存在极值,故该选项错误;B. ,由函数的图像得函数是偶函数,故该选项错误;C. ,,所以该函数不是奇函数,故该选项错误;D. ,,所以该函数是奇函数,由函数图像得函数在上是增函数,在上是减函数,所以函数存在极值.故该选项是正确的.故选:D【点睛】本题主要考查函数奇偶性的判断和极值的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知函数有极大值和极小值,则实数的取值范围是( )A. B. C. D.【答案】B【解析】根据题意可得:,解得或,故选C.点睛:由函数的极值点的定义知,首先满足函数在该点处的导数值为0,其次需要导函数在该点处左右两侧的导数值异号,我们称之为导函数的“变号零点”,则为函数的极值点,所以研究函数的极值点只需研究导函数的图像能“穿过”轴即可.10.已知,,直线与函数,的图象都相切,且与图象的切点为,则的值为( )A. B. C. D.【答案】A【解析】【分析】先利用导数求切线斜率,再根据点斜式方程得切线方程,最后根据判别式为零得结果.【详解】,直线是函数的图象在点处的切线,其斜率为(1),直线的方程为.又因为直线与的图象相切,,消去,可得,得△不合题意,舍去),故选:A【点睛】本题主要考查函数导数的几何意义,考查直线和曲线的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11.设集合,,若,则________;_________.【答案】 (1). 3 (2). {1,2,3}【解析】【分析】由求出m的值,再求.【详解】因为,所以m=3.所以.故答案为:3,{1,2,3}【点睛】本题主要考查集合交集并集的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.曲线在点处的切线的斜率是__________ ;切线方程为_________.【答案】 (1). (2).【解析】【分析】利用导数的几何意义求切线的斜率,再求切线的方程.【详解】由题得,所以切线的斜率为,所以切线的方程为故答案为:【点睛】本题主要考查导数的几何意义和切线方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.若函数在,则函数的最小值是 _______ ;最大值是_________.【答案】 (1). (2). 0【解析】【分析】先求出函数的导数,再令得x=2(舍去)或0,再比较端点和极值点的函数值的大小,即得函数的最值.【详解】由题得,令得x=2(舍去)或0,因为,所以函数的最小值是,最大值为0.故答案为:【点睛】本题主要考查利用导数求函数在闭区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知函数,则______ ;_________.【答案】 (1). 1 (2). 2【解析】【分析】由题得,再依次求出.【详解】由题得,所以所以,所以.故答案为:1;2【点睛】本题主要考查求导,意在考查学生对该知识的理解掌握水平和分析推理能力.15.已知在单调递减,则的取值是________.【答案】,.【解析】【分析】由函数在上是减函数,得,求导后分离参数得答案.【详解】由题意可知在上恒成立,即在上恒成立,令,,,要使,需,故的取值范围为,.【点睛】本题主要考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.已知函数,则函数在点处切线的斜率的最小值是________.【答案】2【解析】根据已知条件得到的导函数,根据限制性条件,和基本不等式进行解答.【详解】因为,所以.又因为,,所以(b),所以斜率的最小值是2.故答案是:2.【点睛】本题主要考查导数的计算和基本不等式求最值,根据导数的几何意义求出切线斜率是解决本题的关键.17.若函数同时满足:(1)对于定义域上的任意,恒有;(2)对于定义域上的任意,,当时,恒有,则称函数为“理想函数”.给出下列四个函数中:①;②;③;④,则被称为“理想数”的有________(填相应的序号).【答案】(4)分析】由“理想函数”的定义可知:若是“理想函数”,则为定义域上的单调递减的奇函数,将四个函数一一判断即可.【详解】若是“理想函数”,则满足以下两条:①对于定义域上的任意,恒有,即,则函数是奇函数;②对于定义域上的任意,,当时,恒有,,时,,即函数是单调递减函数.故为定义域上的单调递减的奇函数.(1)在定义域上既是奇函数,但不是减函数,所以不是“理想函数”;(2)在定义域上是偶函数,所以不是“理想函数”;(3)不是奇函数,所以不是“理想函数”;(4),在定义域上既是奇函数,又是减函数,所以是“理想函数”.故答案为:(4)【点睛】本题考查新定义的理解和运用,主要考查函数的奇偶性和单调性,注意运用定义法是解题的关键,属于中档题三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.设全集,集合,.(1)求集合;(2)求集合.【答案】(1);(2).【解析】分析】(1)利用补集定义求解;(2)利用交集的定义求解.【详解】(1)由题得.(2)由题得.【点睛】本题主要考查补集交集的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知函数满足且在时函数取得极值.(1)求,的值;(2)求函数单调递减区间.【答案】(1)a=-3,b=2;(2)(0,2)【解析】【分析】(1)通过(2)及(1),计算即得结论;(2)通过对函数求导,进而可判断单调递减区间.【详解】(1),,函数在时函数取得极值,(2),即,,又(1),,综上、;(2)由(1)可知,,时,,函数在上单调递减;函数的单调递减区间为:.【点睛】本题主要考查利用导数研究函数的极值和单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数.(1)求曲线在点,(1)处的切线方程;(2)若函数在区间上单调递增,求实数的取值范围.【答案】(1) ;(2).【解析】【分析】(1)求得的导数,可得切线的斜率和切点,由点斜式方程可得切线的方程;(2)设函数,求得导数,由题意可得在区间上,恒成立,结合指数函数的值域,及恒成立思想可得的范围;【详解】(1)求导得,又因为(1),(1),所以曲线在点,(1)处的切线方程为;(2)设函数,求导,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,又因为函数在区间上单调递减,所以(e),所以.【点睛】本题考查导数的运用:求切线方程和单调性、极值和最值,考查构造函数法,以及转化思想,考查化简整理的运算能力,属于综合题.21.已知函数,其中为常数.(1)若曲数在点处的切线与直线y=-x+1平行,求函数极小值;(2)若函数在区间上的最小值为,求的值.【答案】(1)ln2;(2).【解析】【分析】(1)求出原函数的导函数,由已知可得(1),即,再利用导数求函数的极小值;(2)由(1)知,分类讨论求出函数的单调性,再求出函数最小值即得解.【详解】(1)由,得,函数在点,(1)处的切线与直线y=-x+1平行,(1),即.此时函数的增区间为(2,+∞),减区间为(0,2),所以函数的极小值为.(2)由(1)知,当时,在,上恒成立,在,上为增函数,,得(舍;当时,由,解得,当时,,当时,,在上为减函数,在上为增函数,,解得;当时,在上恒成立,在上为减函数,,解得(舍.综上,.【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数求函数的最值,体现了分类讨论的数学思想方法,是中档题.22.已知函数,.(1)若,判断函数的奇偶性,并加以证明;(2)若函数在上是增函数,求实数的取值范围.【答案】(1)奇函数,证明见解析;(2)-1≤a≤1.【解析】【分析】(1)若,根据函数奇偶性的定义即可判断函数的奇偶性;(2)根据函数单调性的定义和性质,利用二次函数的性质即可求实数的取值范围;【详解】(1)函数为奇函数.当时,,,函数为奇函数;(2),当时,的对称轴为:;当时,的对称轴为:;当时,在上是增函数,即时,函数在上是增函数.【点睛】本题主要考查函数奇偶性和单调性的应用,掌握分段函数的性质是解决本题的关键.综合性较强.2018-2019学年高二数学下学期期中试题(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,集合,则集合()A. B. C. D.【答案】B【解析】,,则,故选B.考点:本题主要考查集合的交集与补集运算.2.已知函数,则()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】根据分段函数的解析式,先求得,进而可求得的值,得到答案.【详解】由题意,函数,可得,所以,故答案为.【点睛】本题主要考查了分段函数的求值问题,其中解答中合理应用分段函数的解析式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.3.函数的单调增区间是()A. B. C. D. 不存在【答案】B【解析】【分析】求出二次函数的对称轴即得函数的增区间.【详解】由题得,所以函数的增区间为,故选:B【点睛】本题主要考查二次函数的单调性,意在考查学生对该知识的理解掌握水平和分析推理能力.4.若函数在上是增函数,则的范围是( )A. B. C. D.【答案】C【解析】【分析】直接利用一次函数的单调性求解.【详解】因为函数在上是增函数,所以.故选:C【点睛】本题主要考查一次函数单调性,意在考查学生对该知识的理解掌握水平和分析推理能力.5.下列函数求导运算正确的个数为( )①;②③;④;⑤A. B. C. D.【答案】B【解析】【分析】根据,,即可作出判断.【详解】①,故错误;②,故正确;③,故正确;④,故错误;⑤,故错误.故选:.【点睛】此题考查了求导的运算.要求学生掌握求导法则,锻炼了学生的计算能力,是一道基础题.6.下列四个函数中,在上为增函数是( )A. B. C. D.【答案】D【解析】【分析】利用函数的图像判断每一个选项得解.【详解】A. ,在上为减函数;B. ,在上不是单调函数;C. ,在上为减函数;D. ,在上为增函数.故选:D【点睛】本题主要考查函数的图像和单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.设曲线在点处的切线与直线垂直,则()A. 2B.C.D.【答案】D【解析】【详解】,直线的斜率为-a.所以a=-2, 故选D8.下列函数中,既是奇函数又存在极值的是( )A. B. C. D.【答案】D【解析】【分析】根据函数的图像和奇函数的判定方法,极值的判定方法分析每一个选项得解.【详解】A. ,由函数的图像得函数是奇函数,但是不存在极值,故该选项错误;B. ,由函数的图像得函数是偶函数,故该选项错误;C. ,,所以该函数不是奇函数,故该选项错误;D. ,,所以该函数是奇函数,由函数图像得函数在上是增函数,在上是减函数,所以函数存在极值.故该选项是正确的.故选:D【点睛】本题主要考查函数奇偶性的判断和极值的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知函数有极大值和极小值,则实数的取值范围是( )A. B. C. D.【答案】B【解析】根据题意可得:,解得或,故选C.点睛:由函数的极值点的定义知,首先满足函数在该点处的导数值为0,其次需要导函数在该点处左右两侧的导数值异号,我们称之为导函数的“变号零点”,则为函数的极值点,所以研究函数的极值点只需研究导函数的图像能“穿过”轴即可.10.已知,,直线与函数,的图象都相切,且与图象的切点为,则的值为( )A. B. C. D.【答案】A【解析】【分析】先利用导数求切线斜率,再根据点斜式方程得切线方程,最后根据判别式为零得结果.【详解】,直线是函数的图象在点处的切线,其斜率为(1),直线的方程为.又因为直线与的图象相切,,消去,可得,得△不合题意,舍去),故选:A【点睛】本题主要考查函数导数的几何意义,考查直线和曲线的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11.设集合,,若,则________;_________.【答案】 (1). 3 (2). {1,2,3}【解析】【分析】由求出m的值,再求.【详解】因为,所以m=3.所以.故答案为:3,{1,2,3}【点睛】本题主要考查集合交集并集的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.曲线在点处的切线的斜率是__________ ;切线方程为_________.【答案】 (1). (2).【解析】【分析】利用导数的几何意义求切线的斜率,再求切线的方程.【详解】由题得,所以切线的斜率为,所以切线的方程为故答案为:【点睛】本题主要考查导数的几何意义和切线方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.若函数在,则函数的最小值是 _______ ;最大值是_________.【答案】 (1). (2). 0【解析】【分析】先求出函数的导数,再令得x=2(舍去)或0,再比较端点和极值点的函数值的大小,即得函数的最值.【详解】由题得,令得x=2(舍去)或0,因为,所以函数的最小值是,最大值为0.故答案为:【点睛】本题主要考查利用导数求函数在闭区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知函数,则______ ;_________.【答案】 (1). 1 (2). 2【解析】【分析】由题得,再依次求出.【详解】由题得,所以所以,所以.故答案为:1;2【点睛】本题主要考查求导,意在考查学生对该知识的理解掌握水平和分析推理能力.15.已知在单调递减,则的取值是________.【答案】,.【解析】【分析】由函数在上是减函数,得,求导后分离参数得答案.【详解】由题意可知在上恒成立,即在上恒成立,令,,,要使,需,故的取值范围为,.【点睛】本题主要考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.已知函数,则函数在点处切线的斜率的最小值是________.【答案】2【解析】【分析】根据已知条件得到的导函数,根据限制性条件,和基本不等式进行解答.【详解】因为,所以.又因为,,所以(b),所以斜率的最小值是2.故答案是:2.【点睛】本题主要考查导数的计算和基本不等式求最值,根据导数的几何意义求出切线斜率是解决本题的关键.17.若函数同时满足:(1)对于定义域上的任意,恒有;(2)对于定义域上的任意,,当时,恒有,则称函数为“理想函数”.给出下列四个函数中:①;②;③;④,则被称为“理想数”的有________(填相应的序号).【答案】(4)【解析】分析】由“理想函数”的定义可知:若是“理想函数”,则为定义域上的单调递减的奇函数,将四个函数一一判断即可.【详解】若是“理想函数”,则满足以下两条:①对于定义域上的任意,恒有,即,则函数是奇函数;②对于定义域上的任意,,当时,恒有,,时,,即函数是单调递减函数.故为定义域上的单调递减的奇函数.(1)在定义域上既是奇函数,但不是减函数,所以不是“理想函数”;(2)在定义域上是偶函数,所以不是“理想函数”;(3)不是奇函数,所以不是“理想函数”;(4),在定义域上既是奇函数,又是减函数,所以是“理想函数”.故答案为:(4)【点睛】本题考查新定义的理解和运用,主要考查函数的奇偶性和单调性,注意运用定义法是解题的关键,属于中档题三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.设全集,集合,.(1)求集合;(2)求集合.【答案】(1);(2).【解析】分析】(1)利用补集定义求解;(2)利用交集的定义求解.【详解】(1)由题得.(2)由题得.【点睛】本题主要考查补集交集的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知函数满足且在时函数取得极值.(1)求,的值;(2)求函数单调递减区间.【答案】(1)a=-3,b=2;(2)(0,2)【解析】【分析】(1)通过(2)及(1),计算即得结论;(2)通过对函数求导,进而可判断单调递减区间.【详解】(1),,函数在时函数取得极值,(2),即,,又(1),,综上、;(2)由(1)可知,,时,,函数在上单调递减;函数的单调递减区间为:.【点睛】本题主要考查利用导数研究函数的极值和单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数.(1)求曲线在点,(1)处的切线方程;(2)若函数在区间上单调递增,求实数的取值范围.【答案】(1) ;(2).【解析】【分析】(1)求得的导数,可得切线的斜率和切点,由点斜式方程可得切线的方程;(2)设函数,求得导数,由题意可得在区间上,恒成立,结合指数函数的值域,及恒成立思想可得的范围;【详解】(1)求导得,又因为(1),(1),所以曲线在点,(1)处的切线方程为;(2)设函数,求导,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,又因为函数在区间上单调递减,所以(e),所以.【点睛】本题考查导数的运用:求切线方程和单调性、极值和最值,考查构造函数法,以及转化思想,考查化简整理的运算能力,属于综合题.21.已知函数,其中为常数.(1)若曲数在点处的切线与直线y=-x+1平行,求函数极小值;(2)若函数在区间上的最小值为,求的值.【答案】(1)ln2;(2).【解析】【分析】(1)求出原函数的导函数,由已知可得(1),即,再利用导数求函数的极小值;(2)由(1)知,分类讨论求出函数的单调性,再求出函数最小值即得解.【详解】(1)由,得,函数在点,(1)处的切线与直线y=-x+1平行,(1),即.此时函数的增区间为(2,+∞),减区间为(0,2),所以函数的极小值为.(2)由(1)知,当时,在,上恒成立,在,上为增函数,,得(舍;当时,由,解得,当时,,当时,,在上为减函数,在上为增函数,,解得;当时,在上恒成立,在上为减函数,,解得(舍.综上,.【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数求函数的最值,体现了分类讨论的数学思想方法,是中档题.22.已知函数,.(1)若,判断函数的奇偶性,并加以证明;(2)若函数在上是增函数,求实数的取值范围.【答案】(1)奇函数,证明见解析;(2)-1≤a≤1.【解析】【分析】(1)若,根据函数奇偶性的定义即可判断函数的奇偶性;(2)根据函数单调性的定义和性质,利用二次函数的性质即可求实数的取值范围;【详解】(1)函数为奇函数.当时,,,函数为奇函数;(2),当时,的对称轴为:;当时,的对称轴为:;当时,在上是增函数,即时,函数在上是增函数.【点睛】本题主要考查函数奇偶性和单调性的应用,掌握分段函数的性质是解决本题的关键.综合性较强.。
2018-2019学年高二下学期期中考试数学试题
第Ⅰ卷(选择题,共 60分)一、选择题(每小题5分,共60分,第11,12题为多选题)1、若复数z =a 2-1+(a +1)i(a ∈R)是纯虚数,则1z +a的共轭复数的虚部为( ) A .-25 B .-25i C.25 D.25i 2、已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE ·AF 的值为( )A .a 2B .12a 2 C .14a 2 D .34a 2 3.如图所示,已知正方体ABCD A 1B 1C 1D 1,E ,F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°4、已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 5、曲线xe y 2 在点(0,1)处的切线方程为( )A .y =12x +1 B .y =-2x +1 C .y =2x -1 D .y =2x +1 6、设函数f (x )=x e x ,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点7、过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( )A .3条B .2条C .1条D .0条8、已知f (x )=-12x 2+2xf ′(2018)+2018ln x ,则f ′(1)=( ) A .2017 B .6049 C .2018 D .60519、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则点A 1到平面BDM 的距离是( ) A.66a B.306a C.34a D.63a 10.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)11、如图,正方体ABCD —A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC ,则下列结论中错误的是( )A 、EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥ACC .EF 与BD 1相交 D .EF 与BD 1异面12、对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且 只有一个结论是错误的,则正确的结论是( )A.-1是f (x )的零点B.1是f (x )的极值点C.3是f (x )的极值D.点(2,8)在曲线y =f (x )上第Ⅱ卷(非选择题,共 90分)二、填空题(每小题5分,共20分)13、已知333222101+-+-+=+x x x x x A C C ,则x= 14、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于15、已知函数f (x )=x +1ax在(-∞,-1)上单调递增,则实数a 的取值范围是 16、已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是三、解答题(共6小题,70分)17、(8分)定义:若z 2=a +b i(a ,b ∈R ,i 为虚数单位),则称复数z 是复数a +b i 的平方根.根据定义,求复数-3+4i 的平方根。
吉林省扶余市第一中学2018-2019高二下学期月考数学(理)试卷(附答案)
扶余市第一中学2018--2019学年度下学期月考试题高二数学(理)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试结束后,只交答题纸和答题卡,试题自己保留。
第I卷(60分)注意事项1.答题前,考生在答题纸和答题卡上务必用直径0.5毫米黑色签字笔将自己的班级、姓名、考号填写清楚。
请认真核准考号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
一.选择题(共 12 小题,每小题5分,共 60 分,在每小题给出的四个选项中,只有一项最符合要求)1.若,a b都是小于3的自然数,则虚数a bi(i是虚数单位)的个数为 ( )A.4B.5C.6D.92.某小型剧场要安排3个歌舞类节目, 2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.1683. 某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的选法种数为( )A.85B.86C.91D.904.12个相同的小球分给3个小朋友,每人至少有1个,则不同的分法共有( )A.110种B.84种C.55种D.396种5. 盒中有10支螺丝钉,其中3支是坏的,现在从盒中不放回地依次抽取两支,那么在第一支抽取为好的条件下,第二支是坏的概率为( )A. 112 B.13C.8384D.1846. 若()2nx +的展开式中的第4项是52,第3项的二项式系数是15,则 x 的值为( ) A.12 B. 14C. 8D. 187. 已知某批零件的长度误差(单位:毫米)服从正态分布()20,3,N 从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,,N μσ则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=.)A.4.56%B.13.59%C.27.18%D.31.74%8. 用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有( ) A.72种 B .48种C .24种D .12种9.已知(51a =+a , b 为有理数),则a b += ( )A.44B.46C.110D.12010. 设()102100121012x a a x a x a x -=+++⋅⋅⋅+,则3102129 (222)a a a a ++++的值为( ) A. 2 B. 2046 C. 2043 D. 2-11. 如图所示,使电路接通,开关不同的开闭方式有( )A. 11种B. 20种C. 21种D. 12种12. 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400第II 卷 (90分)二.填空题(共20分,每小题5分)13. 用数字1,2,3,4,5组成无重复数字的四位偶数的个数为 .14. 将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为____ . 15. 在204)3(y x +的展开式中,系数为有理数的项共有_____________项.16. 某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9 ②他恰好击中目标3次的概率是30.90.1⨯③他至少击中目标1次的概率是410.1- ④他恰好有连续2次击中目标的概率为330.90.1⨯⨯ 其中正确结论的序号是__________. 三.解答题(共70分) 17. (本题满分10分)已知21nx x ⎛⎫+ ⎪⎝⎭的展开式中所有系数之和比)nx 的展开式中所有系数之和大240. (1)求21nx x ⎛⎫+ ⎪⎝⎭的展开式中的常数项(用数字作答);(2)求12nx x ⎛⎫- ⎪⎝⎭的展开式的二项式系数之和(用数字作答).18. (本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?19. (本小题满分12分)甲、乙两名射击运动员分别对一个目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求: (1)2人中恰有1人射中目标的概率; (2)2人至少有1人射中目标的概率.20. (本小题满分12分)一个盒子中装有大量形状、大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25], (25,35], (35,45],由此得到样本的重量频率分布直方图(如图).(1)求a 的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率).21. (本小题满分12分)在10件产品中有2件次品,连续抽3次,每次抽1件,求: (1) 不放回抽样时,抽到次品数X 的分布列;(2) 放回抽样时,抽到次品数Y 的分布列。
吉林省扶余市第一中学2018-2019高二下学期月考数学(文)试卷(附答案)
扶余市第一中学2018—2019学年度下学期月考考试高二数学(文)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题共60分)注意事项:1、答第I 卷前,考生务必将自己的姓名、考号用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
一、选择题(每小题5分,共60分)1.直线l 的参数方程为 ( t 为参数),则直线l 与坐标轴的交点分别为( )A .B .C .D . 2.将点M 的直角坐标()1,3-化成极坐标为( )A .B .C .D . 3.在同一坐标系中,将曲线 变为曲线 的伸缩变换是( ) A . B . C . D . 4.直线 (t 为参数)和圆 交于A ,B 两点,则AB 的中点坐标为( ) A. B. C. D. 5.在极坐标系中,已知点A ,B ,O ,则△ABO 为 ( ) A .正三角形 B .直角三角形 C .等腰锐角三角形 D .等腰直角三角形 6.已知曲线的参数方程为 则它的普通方程是( )A .B .C .D .7.椭圆 的离心率是( )A .B .C .D . 8.在极坐标系中,点到直线 的距离为( ) )0,21(),52,0()0,21(),51,0()65,2(π()(),8,4,0-)0,8(),95,0()32,2(π)35,2(π)611,2(πxy 3sin 2=xy '='sin ⎪⎩⎪⎨⎧'='=y y x x 213⎪⎩⎪⎨⎧='='y y x x 213⎩⎨⎧'='=y y x x 23⎩⎨⎧='='y y x x 23)2,2(π--)43,2(π)0,0()0(,1112≠⎪⎩⎪⎨⎧-=-=t t y t x ()()11122=-+-y x ()()212x x x y --=()1112--=x y 112+-=x x y ),20(,sin 4cos 3为参数t t t y tx π≤≤⎩⎨⎧==47372757)3,2(π6)sin 3(cos =+θθρ)23,23(--)32,21()3,3(--)3,52(--⎪⎪⎩⎪⎪⎨⎧+=+=t t y t x 23332111622=+y xA .4B .3C .2D .19.在极坐标系中,曲线关于 ( ) A .直线θ=π3轴对称B .直线θ=5π6轴对称C .点 中心对称D .极点中心对称10.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)和参数方程 所表示的 图形分别是( )A. 直线、射线和圆B. 圆、射线和双曲线C. 两直线和椭圆D. 圆和抛物线11.极坐标方程 与 的图形是 ()12. 已知直线 的参数方程为 ,椭圆C 的参数方程为且它们总有公共点.则a 的取值范围是( )A. B. C. D.第II 卷二 填空题:(本大题共4小题,每小题5分,共20分)13. 参数方程 表示的曲线的普通方程是_________ )3,2(π为参数)θθθ(cos 2tan ⎪⎩⎪⎨⎧==y x θρcos =21cos =θρl 为参数)t t a y at x (12⎩⎨⎧-==为参数)θθθ(sin 2cos 1⎩⎨⎧=+=y x ),0()0,23[+∞⋃-),1(+∞),23[+∞-)4,23[-为参数)θθ(2sin ⎨⎧=x )3sin(4πθρ-=14.直线的参数方程为 为参数),圆 的参数方程为 为参数),则直线 被圆 截得的弦长_________15.双曲线,那么它的两条渐近线所成的锐角是 __________16.在直角坐标系xOy 中,椭圆C 的参数方程为 .在极坐标系中,直线 的极坐标方程为 ,若直线l 与x 轴、y 轴的交点分别是椭圆C 的右焦点、短轴端点,则 =__________.三.解答题: (解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在极坐标系中,直线l 的方程为ρsin(θ+π6)=2,求极点在直线l 上的射影的极坐标.18.(本小题满分12分)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |和|MA |+|MB |的值.19.(本小题满分12分)在平面直角坐标系xOy 中,已知曲线C 的参数方程为x tt y =⎧⎪⎨=⎪⎩为参数),直线l 的参数方程为12(2x t ty ⎧=+⎪⎪⎨⎪=⎪⎩为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)若直线l 与曲线C 交于M ,N 两点,求MON △的面积.20.(本小题满分12分).在直角坐标系中,以原点O 为极点,以x 轴非负半轴为极轴, 与直角坐标系取相同的长度单位,建立极坐标系.设曲线C 的参数方程为 C l 为参数)θθθ(sec tan 3⎩⎨⎧==y x )0(sin cos >>⎩⎨⎧==b a b y a x 为参数,θθθ23)3cos(=+πθρal ClxOy xOy,直线l 的极坐标方程为(1)写出曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的最大距离. 21.(本小题满分12分)22.(本小题满分12分).32,,,,3)2(;,)1(.6,.,0(,cos )sin 1(:131231121的值,求的面积为若的交点为与,的交点为与设的方程为若直线的方程化为极坐标方程并将是哪一种曲线说明)(:坐标系中,曲线轴的正半轴为极轴的极在以坐标原点为极点为参数)中,曲线在直角坐标系a OMN N O C C M O C C x y C C C R C x t a t a y t a x C xOy ∆-=∈=>⎩⎨⎧=+=ρπθ的最大值两点,求交于与曲线两点,射线交于与曲线射线且得到射线了顺时针旋转将射线已知射线(的极坐标方程和曲线)求曲线(极坐标系。
扶余市第一中学2018-2019学年下学期高二期中数学模拟题
扶余市第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2 ③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .32. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q3. 设数集M={x|m ≤x ≤m+},N={x|n﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.B.C.D.4. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a 5. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥6. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 7. 设复数z 满足(1﹣i )z=2i ,则z=( ) A .﹣1+i B .﹣1﹣iC .1+iD .1﹣i8. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则的值为( )A .﹣2或﹣1B .1或2C .±2或﹣1D .±1或29. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 10.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A .B .C .D .12.实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)二、填空题13.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 14.△ABC 中,,BC=3,,则∠C=.15.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .16.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .17.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 .18.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若22x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.20.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.21.已知函数f (x )=(sinx+cosx )2+cos2x (1)求f (x )最小正周期;(2)求f (x )在区间[]上的最大值和最小值.22.已知函数f (x )=.(1)求f (f (﹣2));(2)画出函数f (x )的图象,根据图象写出函数的单调增区间并求出函数f (x )在区间(﹣4,0)上的值域.23.某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.24.已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.(Ⅰ)求实数m的值;(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.扶余市第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.2.【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.3.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.4. 【答案】A【解析】解:∵a=0.52=0.25, b=log 20.5<log 21=0, c=20.5>20=1, ∴b <a <c . 故选:A .【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.5. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 6. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性.7. 【答案】A【解析】解:∵复数z 满足z (1﹣i )=2i ,∴z==﹣1+i故选A .【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.8. 【答案】C【解析】解:由题设知a 1≠0,当q=1时,S 4=4a 1≠10a 1=5S 2;q=1不成立.当q ≠1时,S n =,由S 4=5S 2得1﹣q 4=5(1﹣q 2),(q 2﹣4)(q 2﹣1)=0,(q ﹣2)(q+2)(q ﹣1)(q+1)=0,解得q=﹣1或q=﹣2,或q=2.==q ,∴=﹣1或=±2.故选:C .【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键.9. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 10.【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x=为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B.考点:1、函数的定义域;2、函数的单调性. 11.【答案】B【解析】解:∵y=f (|x|)是偶函数, ∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,x <0部分的图象关于y 轴对称而得到的.故选B .【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.12.【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.二、填空题13.【答案】.【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.14.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.15.【答案】(0,5).【解析】解:∵y=a x的图象恒过定点(0,1),而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,∴函数f(x)=a x+4的图象恒过定点P(0,5),故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.16.【答案】.【解析】解:直线x﹣y=1的斜率为1,(m+3)x+my﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.17.【答案】6.【解析】解:由抛物线y2=4x可得p=2.设A(x1,y1),B(x2,y2).∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.∵直线AB过焦点F,∴|AB|=x1+x2+p=4+2=6.故答案为:6.【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.18.【答案】3.【解析】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.三、解答题19.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.20.【答案】【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C9r=C9r2r,由﹣r=0,得r=3,∴常数项为:C9323=672;(2)令x=1,得(1+2)9=39.【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.21.【答案】【解析】解:(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.22.【答案】【解析】解:(1)函数f(x)=.f(﹣2)=﹣2+2=0,f(f(﹣2))=f(0)=0.3分(2)函数的图象如图:…单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…由图可知:f(﹣4)=﹣2,f(﹣1)=1,函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.23.【答案】【解析】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率p=.【点评】本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题.24.【答案】【解析】解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2|∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(﹣2)2+12]≥(a﹣2b+c)2,∵a﹣2b+c=m=1,∴,当,即时取等号,∴a2+b2+c2的最小值为.【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.。
扶余市第一中学2018-2019学年下学期高二期中数学模拟题
扶余市第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是()①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .32. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( )A .p ∧qB .¬p ∧qC .p ∧¬qD .¬p ∧¬q3. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .4. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( )A .b <a <cB .a <c <bC .a <b <cD .b <c <a 5. 下列命题正确的是()A .已知实数,则“”是“”的必要不充分条件,a b a b >22a b >B .“存在,使得”的否定是“对任意,均有”0x R ∈2010x -<x R ∈210x ->C .函数的零点在区间内131()(2xf x x =-11(,32D .设是两条直线,是空间中两个平面,若,则,m n ,αβ,m n αβ⊂⊂m n ⊥αβ⊥6. 已知函数()在定义域上为单调递增函数,则的最小值是( )2()2ln 2f x a x x x =+-a R ∈A .B .C .D .14127. 设复数z 满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i8. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则的值为( )A .﹣2或﹣1B .1或2C .±2或﹣1D .±1或29. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要10.下列函数中,定义域是R 且为增函数的是()A.xy e -=B.3y x =C.ln y x =D.y x=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A .B .C .D .12.实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是()A .(1,1)B .(0,3)C .(,2)D .(,0)二、填空题13.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .14.△ABC 中,,BC=3,,则∠C= .15.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .16.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .17.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 . 18.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐x l 标方程为,曲线的极坐标方程为.cos sin 2ρθρθ-=C 2sin 2cos (0)p p ρθθ=>(1)设为参数,若,求直线的参数方程;t 2x =-+l(2)已知直线与曲线交于,设,且,求实数的值.l C ,P Q (2,4)M --2||||||PQ MP MQ =⋅p 20.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和. 21.已知函数f (x )=(sinx+cosx )2+cos2x (1)求f (x )最小正周期;(2)求f (x )在区间[]上的最大值和最小值.22.已知函数f (x )=.(1)求f (f (﹣2));(2)画出函数f (x )的图象,根据图象写出函数的单调增区间并求出函数f (x )在区间(﹣4,0)上的值域.23.某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率. 24.已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.(Ⅰ)求实数m的值;(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.扶余市第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】D【解析】解:①∵x∈[0,],∴f n(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.2.【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.3.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.4. 【答案】A【解析】解:∵a=0.52=0.25,b=log 20.5<log 21=0,c=20.5>20=1,∴b <a <c .故选:A .【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用. 5. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),,p q q p ⇒⇒最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.6. 【答案】A 【解析】试题分析:由题意知函数定义域为,,因为函数),0(+∞2'222()x x a f x x++=2()2ln 2f x a x x x=+-()在定义域上为单调递增函数在定义域上恒成立,转化为在a R ∈0)('≥x f 2()222h x x x a =++),0(+∞恒成立,,故选A. 110,4a ∴∆≤∴≥考点:导数与函数的单调性.7. 【答案】A【解析】解:∵复数z 满足z (1﹣i )=2i ,∴z==﹣1+i故选A .【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算. 8. 【答案】C【解析】解:由题设知a 1≠0,当q=1时,S 4=4a 1≠10a 1=5S 2;q=1不成立.当q ≠1时,S n =,由S 4=5S 2得1﹣q 4=5(1﹣q 2),(q 2﹣4)(q 2﹣1)=0,(q ﹣2)(q+2)(q ﹣1)(q+1)=0,解得q=﹣1或q=﹣2,或q=2.==q ,∴=﹣1或=±2.故选:C .【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键. 9. 【答案】B 【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为p p q ∨p ⌝p q ∨p ⌝p ⌝假”时为真,必有“ 真”,故选B. p p q ∨考点:1、充分条件与必要条件;2、真值表的应用.10.【答案】B 【解析】试题分析:对于A ,为增函数,为减函数,故为减函数,对于B ,,故xy e =y x =-xy e -=2'30y x =>3y x =为增函数,对于C ,函数定义域为,不为,对于D ,函数为偶函数,在上单调递减,0x >R y x =(),0-∞在上单调递增,故选B. ()0,∞考点:1、函数的定义域;2、函数的单调性.11.【答案】B【解析】解:∵y=f (|x|)是偶函数,∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,x <0部分的图象关于y 轴对称而得到的.故选B .【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题. 12.【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题. 二、填空题13.【答案】 .【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.14.【答案】 【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.15.【答案】 (0,5) .【解析】解:∵y=a x的图象恒过定点(0,1),而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,∴函数f(x)=a x+4的图象恒过定点P(0,5),故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.16.【答案】 .【解析】解:直线x﹣y=1的斜率为1,(m+3)x+my﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.17.【答案】 6 .【解析】解:由抛物线y2=4x可得p=2.设A(x1,y1),B(x2,y2).∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.∵直线AB过焦点F,∴|AB|=x1+x2+p=4+2=6.故答案为:6.【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.18.【答案】 3 .【解析】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.三、解答题19.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.20.【答案】【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C9r=C9r2r,由﹣r=0,得r=3,∴常数项为:C9323=672;(2)令x=1,得(1+2)9=39.【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.21.【答案】【解析】解:(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.22.【答案】【解析】解:(1)函数f(x)=.f(﹣2)=﹣2+2=0,f(f(﹣2))=f(0)=0.3分(2)函数的图象如图:…单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…由图可知:f(﹣4)=﹣2,f(﹣1)=1,函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.23.【答案】【解析】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率p=.【点评】本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题. 24.【答案】【解析】解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2|∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(﹣2)2+12]≥(a﹣2b+c)2,∵a﹣2b+c=m=1,∴,当,即时取等号,∴a2+b2+c2的最小值为.【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.。
吉林省扶余一中高二下学期期中考试数学(理)试题.pdf
1、“您的知识更新了吗?” 活动过程: 1)进行小组竞赛,看哪些小组知道的代表最新知识的名词最多。
2)结合活动后面的三个问题,引导学生探讨、交流,从而把握当今时代的特征,了解时代对青少年提出的要求。
目的是通过列举代表最新知识的名词,使学生认识到知识更新的周期不断缩短,从中把握当今社会变化发展的总趋势,感受社会变化对青少年提出的新挑战。
2、比一比: 活动过程: 1)在同学间进行竞赛,看谁能富有创造性地解决课本上提出的两个问题。
2)探讨创新精神还可以表现在哪些方面,鼓励学生在学习和生活中时时注意培养自己的创新精神。
目的是激发学生的创新思维,体会创新精神的重要意义,鼓励学生在学习和生活中培养创新精神。
3、“王选谈团体精神” 活动过程: 1)呈现课本上的故事情境。
2)分小组讨论交流后面的问题。
3)在全班交流后。
教师进行总结:社会发展需要发挥优势个人的聪明才智,同时更需要发挥团体的力量。
因此,在平时我们就要培养自己的合作意识,学会与他人合作。
目的使学生认识到团体精神的重要性,培养学生的团队意识。
4、“说一说” 活动过程: 5、“填一填” 活动过程: 1)请学生根据个人的知识填写表格。
2)分小组进行交流。
3)教师总结,社会总是在不断发展变化,不断对我们提出新的要求,树立终身学习的观念,具备终身学习的能力。
目的是使学生认识到社会在不断发展变化,青少年只有不断学习,树立终身学习的观念,具备终身学习的能力,才能更好地应对未来社会的挑战,才能肩负起民族振兴的使命。
6、“许振超谈学习” 活动过程: 1)了解许振超的故事。
2)探讨、交流后面的三个问题 3)教师总结终身学习的意义,鼓励学生养成终身学习的习惯。
目的是帮助学生了解许振超的事迹,理解终身学习的意义,拓展对“学习”内涵的认识,树立终身学习的观念。
7、“回顾和总结” 活动过程: 1)教师提出问题。
2)请学生思考并进行交流。
3)教师总结:学校学习不仅使我们掌握了知识,而且增强了学习能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扶余市一中2018-2019学年下学期高二期中数学模拟题一、选择题1. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A .54B .162C .54+18 D .162+182. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( )A .3B .6C .7D .83. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( ) A .4 B .2 C. D .2 4. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.255. 设a ,b为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 6. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内7. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1} 8. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)9. 在△ABC 中,已知D 是AB边上一点,若=2,=,则λ=( )A.B.C.﹣D.﹣班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.11.函数f (x )=e ln|x|+的大致图象为( )A .B .C .D .12.函数f (x )=xsinx 的图象大致是( )A .B .C .D .二、填空题13.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .14.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .16.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______.18.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .三、解答题19.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.20.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.21.(本小题满分10分)已知曲线22:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩(为参数). (1)写出曲线C 的参数方程,直线的普通方程;(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.22.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.23.设函数f (x )=ax 2+bx+c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x ﹣6y ﹣7=0垂直,导函数f ′(x )的最小值为﹣12. (1)求a ,b ,c 的值;(2)求函数f (x )的单调递增区间,并求函数f (x )在[﹣1,3]上的最大值和最小值.24.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;扶余市一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D2. 【答案】B【解析】解:∵在等差数列{a n }中a 1=2,a 3+a 5=8, ∴2a 4=a 3+a 5=8,解得a 4=4,∴公差d==,∴a 7=a 1+6d=2+4=6 故选:B .3. 【答案】A【解析】解:∵正方体中不在同一表面上两顶点A (﹣1,2,﹣1),B (3,﹣2,3),∴AB 是正方体的体对角线,AB=,设正方体的棱长为x ,则,解得x=4.∴正方体的棱长为4,故选:A .【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.4. 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =310.5. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.6. 【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.7.【答案】D【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.8.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.9.【答案】A【解析】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.10.【答案】C11.【答案】C【解析】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.12.【答案】A【解析】解:函数f(x)=xsinx满足f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),函数的偶函数,排除B、C,因为x∈(π,2π)时,sinx<0,此时f(x)<0,所以排除D,故选:A.【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.二、填空题13.【答案】.【解析】解:点(m,0)到直线x﹣y+n=0的距离为d=,∵mn﹣m﹣n=3,∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),∴(m﹣1)+(n﹣1)≥2,∴m+n≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.14.【答案】1【解析】15.【答案】①④⑤【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π∴tan (A+B )=tan (π﹣C )=﹣tanC ,又∵tan (A+B )=,∴tanA+tanB=tan (A+B )(1﹣tanAtanB )=﹣tanC (1﹣tanAtanB )=﹣tanC+tanAtanBtanC , 即tanA+tanB+tanC=tanAtanBtanC ,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA ,tanB ,tanC 中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA :tanB :tanC=1:2:3,则6tan 3A=6tanA ,则tanA=1,故A=45°,故④正确;当tanB ﹣1=时, tanA •tanB=tanA+tanB+tanC ,即tanC=,C=60°,此时sin 2C=,sinA •sinB=sinA •sin (120°﹣A )=sinA •(cosA+sinA )=sinAcosA+sin 2A=sin2A+﹣cos2A=sin (2A ﹣30°)≤,则sin 2C ≥sinA •sinB .故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.16.【答案】 2 .【解析】解:函数可化为f (x )==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f (x )=的最大值与最小值的和为1+1+0=2.即M+m=2. 故答案为:2.17.【答案】e【解析】考查函数()()20{x x x f x ax lnx+≤=-,其余条件均不变,则:当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有ln xa x =有且只有一个实根。