第三章 线性系统的时域分析法
线性系统的时域分析法
1
即 100Kh
0.1
3,
得
K h 0.3
• 解题关键:化闭环传递函数为标准形式。
30
3-3 二阶系统的时域分析
• 本节主要内容:
• • 二阶系统的数学模型 • • 二阶系统的单位阶跃响应 • • 欠阻尼二阶系统的动态过程分析 • • 过阻尼二阶系统的动态过程分析 • • 二阶系统性能的改善
33
3-3–2 二阶系统的单位阶跃响应
- ξ>ζ 1>1
S1,2=
ξω ω√ ±j 1
1
n T2
T1
n ξ2
-
1ζ
=1
0
jj 00
= - hξ=(t)1
t
t
+ + 1 e = 过TTS阻211,尼21T1
ξωTe1 n=T12 -ωn T2
h(t)= 1临-(1界+阻ω尼nt)0je-ωnt
0<0<ξ<ζ 1<1 S1,2= -ξ ωn ±jj ωn√1-ξζ2 =0
来 一阶系统的参数与标准式的参数之间有 • 着对的应0.1的倍,关且保系证。原放求大出倍数标不准变,形试式确定的参动数 态Ko 和性K能H 的指取值。
标与其参数间的关系,便可求得任何一阶系 统的性能指标。
10KO
10KO
(s) KOG(S) 0.2s 1 1 K HG(s) 1 10K H
11
性能指标图解
超调量σp
延迟时
间td
上升时
间tr
峰值时
间tp
调整时
间ts
12
其它性能指标
• 振荡次数N:在0≤t≤ts时间内,过渡过程c(t) 穿越其稳态值c(∞)次数的一半。
线性系统的时域 分析法
证明:对负反馈控制,根据特征方程1+G(s)H(s)=0
m
Kr (s zi )
G(s)H (s)
i 1 n
1
(s pj)
j 1
n
m
(s p j ) Kr (s zi ) 0
4.1.1 根轨迹的定义
所谓根轨迹就是当开环系统的某个参数从0→+∞变化时,闭环系
统特征根(闭环极点)在s复平面上移动所形成的轨迹。
例4-1 控制系统结构如图所示,其开环传递函数为
试绘出当Kr 从0→+∞变化时的根轨迹。
G(s)H (s)
Kr
(s 1)(s 2)
R(s)
-
Kr
C(s)
(s 1)(s 2)
▪ 1948年,伊万斯(Evans)根据反馈控制系统中开、闭环传递 函数之间的关系,首先提出了一种根据开环传递函数的零、极 点分布,用图解方法来确定闭环传递函数极点随参数变化的运 动轨迹,这种方法被称为根轨迹法。
▪ 轨迹法是一种图解的方法,具有直观、形象的特点,且可以避 免繁琐的计算,故在控制工程领域中获得了广泛地应用。
jω
Kr=4.25
2
Kr=0.25 Kr=0
-2
Kr=1.25 Kr=0 -1
Kr=1.25
1
0
σ
-1
Kr=4.25
-2
4.1.2 根轨迹与系统性能
1. 稳定性
当Kr 从0→+∞变化时,显然,由上图可知,闭环系统的根轨迹均在s平 面的左半平面,故系统对所有大于0的Kr 值都是稳定的。如果系统根 轨迹越过了虚轴而进入右半s平面,则在相应Kr 值下系统是不稳定的, 其中根轨迹与虚轴交点处的Kr 值,一般称为临界根增益。
自动控制第三章s讲解
trtp ts
稳态误差
t
振荡系统定义为从零第一次上升到终值所需时间。
峰值时间tp:响应到达第一个峰值所需时间。 调节时间ts:到达并保持在终值 5%误差带内所需的最短时间 超调量%:最大偏离量c(tp)与终值c(∞)之差的百分比,即
% c(t p ) c() 100 %
c()
❖稳态性能:由稳态误差ess描述。
跟踪误差:e(t)=r(t)-c(t)=Tt-T2(1-e-t/T)随时间推 移而增长,直至无穷。因此一阶系统 不能跟踪加速度函数。
线性定常系统的特性
单位脉冲信号 r(t) (t) R(s) 1
单位阶跃信号 r(t) 1 单位斜坡信号 r(t) t
R(s) 1 s
R(s)
1 s2
单位加速度信号 r (t ) t 2 2 R(s) 1 s3
3.1 时间响应性能指标
3.1.1 典型输入信号
典型输入信号
单位阶跃信号、单位斜坡信号、单位脉冲信号、 单位加速度信号、正弦信号。
对应的输出分别被称为 单位阶跃响应 、单位斜坡响应 、单位脉冲响应 、 单位加速度响应。
一.阶跃函数
r(t)
A
0 r(t) A
t0 t0
R(s) A s
o
t
A=1时称为单位阶跃函数, 其数学表达式为
k Ts+1
输入R(s)
1 s2
输出速度 dc(t) 1 et T
dt
位置误差随时间增
单
大,最后为常值T
位
斜
T
坡
响
应
0T
3.2.5 一阶系统的单位加速度响应
无零点的一阶系统 Φ(s) =
k Ts+1
第三章线性系统的时域分析典型输入信号
T
c(t )
1
t2
Tt
T 2 (1
t
eT
)
2
§3 二阶系统的时域分析
二阶系统的定义:用二阶微分方程描述的系统 微分方程的标准形式:
d 2 c(t ) dt 2
2 n
dc(t) dt
n 2 c(t )
n 2 r (t )
—阻尼比,n —无阻尼自振频率。
传递函数及方框图
d 1 2
cos d t p )
0
- n (cos d t p
1 2
sin d t )
d (-sin d t p
d 1 2
cos d t p )
0
sin d t p 0, d t p 0, ,2 ,3 .......
R(s) Ts 1
1 TS 1
一.单 位 阶 跃 响 应
r(t) 1(t) R(s) 1 s
C(s) (s)R(s) 1 1 1 T Ts 1 s s Ts 1
t
c(t) 1 e T
说明:
1.可以用时间常数去度量系统输出量的数值
t t
T时, c(t) 1 e1 0.632 3T时, c(t) 0.95 95%
好 等 于c(), 令N m , 得 2
n
N
1 2 t s arctg
1 2
2
将t s
1
n
ln
1 代入,并取整数得
1- 2
N N(
1- 2 2
ln
1
自动控制原理(3-1)
动态性能指标定义1
hh((tt))
AA
超超调调量量σσ%% ==
AA BB
110000%%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttrr
调调节节时时间间ttss
tt
动态性能指标定义2 h(t)
调节时间 ts
上升时间tr
t
动态性能指标定义3
h(t)
A
σ%=
A B
100%
B tr tp
一阶系统对典型输入的输出响应
输入信号
输出响应
1(t) 1-e-t/T t≥0
δ(t)
1 et T t 0
T
t
t-T(1-e-t/T) t≥0
1 t2
1 t 2 Tt T 2 (1 et T ) t 0
2
2
由表可见,单位脉冲 响应与单位阶跃响应 的一阶导数、单位斜 坡响应的二阶导数、 单位加速度响应的三 阶导数相等。
自动控制原理
朱亚萍 zhuyp@ 杭州电子科技大学自动化学院
第三章 线性系统的时域分析法
3.1 系统时间响应的性能指标 3.2 一阶系统的暂态响应 3.3 二阶系统的暂态响应 3.4 高阶系统的暂态响应 3.5 线性系统的稳定性分析 3.6 控制系统的稳态误差 3.7 利用MATLAB对控制系统进行时域分析
超调量σ%:指响应的最大偏离量h(tp)与终值 h(∞)的差与终值h(∞)比的百分数,即
% h(tp ) h() 100%
h()
在实际应用中,常用的动态性能指标多为上升 时间tr、调整时间ts和超调量σ%。 用上升时间tr或峰值时间tp评价系统的响应速度; 用超调量σ%评价系统的阻尼程度;
信号与线性系统第3章
由于激励加入系统前,系统未储能,所以有y(j)(0-)=0。
但是由于在t=0时刻激励的加入,可能使得yf(j)(0+)不为 零。 因此需要根据激励来确定yf(j)(0+),从而确定零状态响应中 齐次解系数的值。
用δ(t)函数匹配法求0+初始值
若激励f(t)在t=0时刻接入系统,则确定待定系数Ci时用 t=0+ 时刻的值,y(j)(0+)(j=0,1,2,……n-1).
激励为0,因此令方程右端为0:
y(n) (t) + an−1y(n−1) (t) +L+ a1y′(t) + a0 y(t) = 0
可知,零输入响应与经典解法中的齐次解形式相 同。 由于对yx(t)而言,t ≥0时,f(t)=0
所以: { yx(k)(0+) }= { yx(k)(0-) } 因此:零输入响应的系数Ci(i=1,2,…,n)可以由系统的起
y(t) = yx (t) + yf (t)
其中: yx (t) = T[x1(0− ), x2 (0− ),L xn (0− ),0] = T[{x(0− )},0] yf (t) = T[0, f1(t), f2 (t),L, fn (t)] = T[0,{ f (t)}]
求解零输入响应yx(t)
¾ 在每次平衡低阶冲激函数项时,若方程左端所有同阶次δ(t) 函数项不能和右端平衡,则应返回到y(t)的最高阶次项进行补 偿,但已平衡好的高阶次δ(t)函数项系数不变。
系统全响应 y(t) = yx (t) + yf (t)
yf’(0+) = 2+ yf’(0-) = 2 代入初始值求得: yf(t) = -7e-t+4e-2t+3, t>0
线性系统的时域分析法二阶系统
04
二阶系统的稳定性分析稳定性定义平衡状态
线性系统在平衡状态下的输出称为平衡状态输出。
稳定性
如果一个系统的平衡状态输出对于所有初始条件和输入都是稳定的,则称该系统是稳定 的。
稳定性判据
劳斯-赫尔维茨判据
数值法
数值法是通过数值计算来求解二阶系 统的方法。它通过将时间轴离散化, 将微分方程转化为差分方程,然后使 用迭代或直接计算的方法求解。
数值法具有简单易行和适用性广的优 点,适用于各种类型的二阶系统。但 是,对于某些特殊类型的系统,数值 法可能存在精度和稳定性问题。
实验法
实验法是通过实际实验来测试二阶系统的方法。它通过在系统中输入激励信号,然后测量系统的输出 响应,从而得到系统的性能参数。
线性系统的时域分析 法二阶系统
目录
CONTENTS
• 线性系统的时域分析法概述 • 二阶系统的基本概念 • 二阶系统的时域分析方法 • 二阶系统的稳定性分析 • 二阶系统的性能指标分析 • 二阶系统的应用实例
01
线性系统的时域分
析法概述
定义与特点
定义
时域分析法是一种通过在时间域 内对系统进行直接分析的方法, 用于研究系统的动态性能和响应 特性。
通过计算系统特征方程的根来判断系统 的稳定性。如果所有根都位于复平面的 左半部分,则系统稳定;如果有根位于 右半部分,则系统不稳定。
VS
Nyquist稳定判据
通过绘制系统的开环传递函数的Nyquist 曲线,判断曲线是否不穿越复平面的右半 部分,从而判断系统的稳定性。
稳定性分析方法
直接法
第3章 线性系统的时域分析第九节_3
(3)根轨迹起始于开环极点,终止于开环零点
说明 当根轨迹增益K1从0变化到∞时,在s平面就会画 出一条一条的根轨迹,每条根轨迹都有起点和终 点,对应于K1 =0的s点叫根轨迹的起点,对应于 K1 →∞的s点叫根轨迹的终点。 由幅值条件
可见 当s=pj时, K1 =0 ;根轨迹起始于开环极点; 当s=zi时, K1 →∞ ;终止于开环零点; 当|s|→∞且n≥m时, K1 →∞。如果开环零点个 数m少于开环极点个数n,则有(n-m)条根轨迹终 止于无穷远处。
(5)两条根轨迹的交点方程为
其中sd为交点。
说明: 交点sd是指两支根轨迹会合后分离的点, 该点为闭环特征方程的重根
假设闭环特征方程有2个重根,则可将其 改写为
例3-6 单位负反馈系统开环传递函数为
试画出系统实轴上的根轨迹并求出系统根轨迹 的交点。
解: 由规则1),系统有3条根轨迹; 由规则3),3条根轨迹的起点为
(4)实轴上的根轨迹 实轴上的某一区域,若其右边开环实数零、 极点个数之和为奇数,则该区域必是根轨迹。 (如红线所示)
红色部分 为根轨迹
说明:以实轴上的s0点为例,根据相角条 件,分三个方面说明这个法则。
G ( s ) H ( s )
m n
(s z ) (s p )
解 系统有3条根轨迹分支,且3条根轨迹都趋 于无穷远处。 实轴上的根轨迹: ,2 1,0 渐近线:
根轨迹的交点满足以下方程
交点必须在根轨迹上,所以交点取
根轨迹与虚轴的交点及临界增益。
令s=iω
令实部及虚部分别为0
解得
第一组解为根迹的起点,第二组得根迹和虚轴的 交点 ,临界根轨迹增益为6
K s ( s 1)( s 2) K 1 s ( s 1)( s 2)
线性系统的时域分析法
三、动态性Leabharlann 和稳态性能动态性能:通常在阶跃函数作用下,测定或计算系统的动
态性能。一般认为阶跃输入对系统来说是最严峻的工作状态。
描述稳定的系统在阶跃函数作用下,动态过程随时间的
变化状况的指标称为动态性能指标。通常包括:
延迟时间 td :指响应曲线第一次到达稳态值一半所需的时间。
上升时间 tr :指响应第一次 h(t) % 误差带
洛比特法则
lim lim
(s pi )N (s)
(s pi )N (s) N (s) N ( pi )
s pi
D(s)
s pi
D(s)
D( pi )
f (t) L1
F (s)
L1
n i1
Ai s pi
n i 1
Aie pi t
② 具有多重极点的有理函数的反变换
F (s)
误差平方积分(ISE,Integral of Square Error)
ISE e2 (t)dt 0
( e(t)是输入输出之间存在的误差)
时间乘误差平方积分(ITSE,Integral of Timed Square Error)
ITSE te2 (t)dt 0
误差绝对值积分(IAE,Integral of Absoluted Error)
(s a
j)F (s) sa j
N (s) D(s)
sa j
k1
e j
思考:为何 k1,k2 必为共轭复数?
f
(t)
L1 F (s)
L1
s
A1 p1
k1 sa
j
k2 sa
j
A1e p1t
k1e(a j)t
第三章信号的时域分解线性系统分析...
第三章信号的时域分解§3-1 引言●线性系统分析方法,是将复杂信号分解为简单信号之和(或积分),通过系统对简单信号的响应求解系统对复杂信号的响应。
●在时域中,近代时域法将信号分解为冲激信号的积分,根据系统的冲激响应通过卷积计算出系统对信号的响应。
●而在频域法中,我们将信号分解为一系列正弦函数的和(或积分),通过系统对正弦信号的响应求解系统对信号的响应。
●频域在工程中也有很重要的意义。
很多信号的特性与频域都有很重要的关系。
研究频域可以得到很多具有实用价值的结论。
如上章所述,通过信号分解的方法求解响应要研究下面几个问题:1)如何将任意信号分解为一系列正弦信号之和(或积分)。
2)如何求系统对各个正弦子信号的响应,这个内容在电路分析课程中已经有详细介绍;3) 如何将各子信号的响应相叠加,从而合成系统对激励信号的响应。
本章将要研究的就是如何对信号进行分解和合成。
§3-2 信号在正交函数集中的分解为了形象地说明信号的分解,首先我们讨论矢量的分解。
一、矢量的分解 1、矢量的定义2、矢量运算:加,标量乘法,矢量乘法3、矢量的分解:1) 矢量的单矢量基的分解:11A c 近似矢量A ——误差尽可能小。
ε+=11A A c从几何或者解析角度,都可以得到使误差最小的系数为:1111A A A A =c其中的1c 称为矢量A 和1A 的相似系数。
如果01=c (或01=A A ),则表明A 和1A 相垂直(又称为正交)。
2) 矢量的多矢量基分解:将矢量表示成为一系列标准矢量(基)的线性组合:∑==+++=ni i i n n c c c c 12211...A A A A A✧ 显然,如果知道了标准矢量i A 和相应的系数i c ,就可以确定任意矢量。
✧ 如何确定最佳的系数i c 情况比较复杂,对于特定的i 而言,i c 不仅与特定的i A 有关,与其它的标准矢量也有关系。
但是如果矢量i A 两两正交,可以证明:ii i i c A A AA =4、标准矢量基的几个限制条件:1)归一化:标准矢量的模等于1——方便计算 2)正交化:标准矢量两两正交3)完备性:可以不失真地组合出任意矢量二、信号的分解与矢量分解相似,我们也可以推导出信号分解。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
自动控制原理-胡寿松-第三章-线性系统时域分析法
课前提问
3-3 二阶系统的时域分析(非常重点、难点)
二阶系统定义:能够用二阶微分方程描述的系统称为二阶系统。 本节内容
0. 预备知识 1. 二阶系统的数学模型 2. 二阶系统的单位阶跃响应 3. 欠阻尼二阶系统的动态过程分析 4. 过阻尼二阶系统的动态过程分析 5. 二阶系统的单位斜坡响应 6. 二阶系统性能的改善 7. 非零初始条件下二阶系统的响应过程
超调量 % :
显然 h(tp) hmax
若 h(tp) h() 则响应无超调
实际中,常用的动态性能指标
tr
tp
评价系统起始段的响应速度;
ts
评价系统整个过渡过程的响应速度,是响应速度和阻尼程度的综合指标。
%
评价系统的阻尼程度;
思考:稳态误差从图中怎么看?
3-2 一阶系统的时域分析
一阶系统定义:能够用一阶微分方程描述的系统称为一阶系统。
第三章 线性系统的时域分析法
系统的数序模型确定后,便可以用多种不同的方 法去分析控制系统的动态性能和稳态性能。
在经典控制理论中
时域分析的一般思路:
时域分析法 根轨迹法 频域分析法
数数数数
数数数数数数数 求解微分方程
数数数数
数数数数
优点:直接在时间域对系统进行分析,具有直观、准确的 优点,并可以提供系统时间响应的全部信息。
本章内容
▪ 3-1 系统时间响应的性能指标 ▪ 3-2 一阶系统的时域分析 ▪ 3-3 二阶系统的时域分析 ▪ 3-4 高阶系统的时域分析 ▪ 3-5 线性系统的稳定性分析 ▪ 3-6 线性系统的稳态误差计算 ▪ 3-7 控制系统时域设计
第三章-线性系统的时域分析法(简)
劳斯表出现全零行:
系统在s平面有对称分布的根:
①大小相等符号相反的实根
j
0
②共轭虚根
j
③对称于实轴的两对共轭复根
j
0
0
• 特殊情况3:多行元素全为零
Routh表出现多个全零行,系统在s平面有重共轭虚根, 则系统不稳定。
参看:《现代控制系统》第八版 Richard C.Dorf Robert H.Bishop著
名称
时域表达式 复数域表达式
单位阶跃信号 1(t) , t 0
1 s
单位斜坡信号 t , t 0
1 s2
单位加速度信号 1 t 2 , t 0
2
1 s3
单位脉冲信号 (t) , t 0
1
正弦信号
A
As
Asint Acost s2 2 s2 2
二、 动态过程与稳态过程 P78
➢ 动态过程(过渡过程、瞬态过程): 在典型输入信号作用下,系统输出量从初始状
s5
1
5
6 解决方法:
s4
1
由全0行的上一行元素构
5
6 成辅助方程F(s)=0,并
s3 0 4 0 10 0 对其求导后,用所得系数
s2 5/2
6
代替全0行的元素。
s1 2/ 5
例如:F(s) s4 5s2 6 0
s0
6
求导得: F(s) 4s3 10s1 0
s1,2 j 2 s3,4 j 3 s5 1
第三章 线性系统的时域分析法
本章主要内容: 3.I 系统时间响应的性能指标 3.2 一阶系统的时域分析 3.3 二阶系统的时域分析 3.4 高阶系统的时域分析 3.5 线性系统的稳定性分析 3.6 线性系统的稳态误差计算
时域分析法
16:19
一般的控制系统多数为高阶系统,但是它们有可 能在一定的条件下用二阶系统去近似。因此,对 于二阶系统的分析具有重要的实际意义。在系统 的分析与设计中,通常将二阶系统的响应特性作 为一种基准。
16:19
二阶系统传递函数的标准形式
某随动系统方块图
如图所示随动系统的微分方程式:
TM
d
2c t
/ TM
s2
n2 2ns
n2
3.4.4
其中 n为无阻尼自然振荡角频率(固有频率); 称为阻尼比;
均为二阶系统的特征参数,是系统本身的固有特性。
16:19
二阶系统的特征方程
s2
2
ns
2 n
0
3.4.5
由上式解得二阶系统的二个特征根(即闭环极点)为:
s1,2 n jn 1 2 3.4.6
当0 1时,特征根为一对实部为
16:19
当-1< <0 ,特征根是位于右半平面的共轭复根,呈发散振荡 状态。如图3 .6(e)所示。
当 < -1,呈单调发散状态。如图3 .6(f)所示 P53图3.7表明了极点分布与n、 的关系图。
16:19
二阶系统的单位阶跃响应 1. 欠阻尼状态
令r t 1t,则有Rs 1
s
二阶系统在单位阶跃函数作用下输出:
16:19
3.1 线性定常系统的时间响应及 暂态响应性能指标
一、时间响应
线性系统的动态方程
an y(n) (t) an1 y(n1) (t) L a1y&(t) a0 y(t) bm x(m) (t) bm1x(m1) (t) L b1x&(t) b0x(t)
经过拉氏变换得
自控原理(3)
§3.线性系统时域分析
3)欠阻尼即0<ζ<1时二阶系统的单位阶跃响应动态性能分析
设r(t)=1,即 R(s) 1 s
则二阶系统在时的单位阶跃响应式为:
C(s)
C(s()s) R(s)
R(sn2)2s2n2n s2n2nn2
s
1 s
n2
1 s
(sC(s1s)sn)2s22(ss)n22n(1R2(nss) 2n)
j
s1
,s2
为一对不等的负实数根。
j
s1、s2
0
0
t
② ζ = 1时,(临界阻尼) s1 ,s2 为一对相等的负实数根。
③ 0< ζ <1时,(欠阻尼) s1 ,s2 为一对具有负实部的共轭复根。
Automatic Control Theory
§3.线性系统时域分析
④ 当ζ =0时,(无阻尼,零阻尼) s1 ,s2 为一对幅值相等的虚根。
即
e tr
1
2
sin
d
tr
0
由于
e tr
1
2
0,
故只有
故只有 sin dtr 0
所以 t
r
d
1 2 n
sin t d
峰值时间 tp :指响应从0到达第一次峰值(最大值)时 所 需要的时 间; 由求c (t)极值的方法,即由 c’(t)=0 求得:
t
p
d
1 2 n
Automatic Control Theory
§3.线性系统时域分析
一般式拉氏变换 (S)
1
T s2 2 2Ts 1
二阶系统标准式
2
(s)
n
s2 2 s 2
线性系统的时域分析法
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 系统时间响应的性能指标1. 典型输入2. 性能指标•稳→基本要求 •准→稳态要求↓ss e :•快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=sp t h h t h %)()()(%σ§3.2 一阶系统的时域分析设系统结构图如右所示 开环传递函数sK s G =)(闭环传递函数)1(11111)(T Ts Ts T K s K s K s K s -=+=+=+=+=Φλ :)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c e t c t TTc e T t c t T 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-s t Ts et h05.095.011=-=-s t Te305.0ln 1-==-s t TT t s 3=∴一阶系统特征根1s T=-分布与时域响应的关系:21110 ()().(). ()s C s s R s h t t s s s •==Φ===时11() ()1()at a s a C s h t e s s a s s a•===-+=-+--时例1已知系统结构图如右其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
11012.0)101(10 1012.01012.010112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s K s K s G K s G K HH H H H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H 例2已知某单位反馈系统的单位阶跃响应为at e t h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
自动控制原理复习资料——卢京潮版第三章
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 概述 1. 典型输入 2. 性能指标∙稳→基本要求 ∙准→稳态要求↓ss e :∙快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=sp t h h t h %)()()(%σ§3.2 一阶系统的时域响应及动态性能 设系统结构图如右所示开环传递函数sKs G =)(闭环传递函数)1(11111)(T Ts Ts T K s K s K s K s -=+=+=+=+=Φλ :)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c et c t TTc e T t c t T 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-s t Ts et h05.095.011=-=-s t Te305.0ln 1-==-s t TT t s 3=∴一阶系统特征根T1-=λ分布与时域响应的关系:t t h s s s s R s s C ===Φ==∙)( 11.1)().()( 02时λat e t h as s a s s a s C a +-=-+-=-==∙1)( 11)()( 时λ 例1 已知系统结构图如右其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
1101)101(10 1012.01012.0112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s s K s G K s G K H H H H H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H例2 已知某单位反馈系统的单位阶跃响应为at e t h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
自动控制原理-03-01
td
稳态误差(t→∞)
tr tp
t ts
6
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标 延迟时间td:响应曲线第一次达到其 终值一半所需时间。 上升时间tr:响应从终值10%上升到 终值90%所需时间; 对有振荡系统亦可定义为响应从零 第一次上升到终值所需时间。上升时间 是响应速度的度量。
3-2 一阶系统的时域分析
小结
一阶系统的典型响应与时间常数T密 切相关。只要时间常数T小,单位阶跃响 应调节时间小,单位斜坡响应稳态值滞后 时间也小。但一阶系统不能跟踪加速度函 数。 线性系统对输入信号导数的响应,等 于系统对输入信号响应的导数。
17
例: 某一阶系统如图,(1) Kh=0.1, 求调节时间ts, (2)若要求ts=0.1s,求反馈系数 Kh . R(s) E(s) (- )
ur (t )
C
uc (t )
结构图 :
R(s)
E(s) (- )
1/Ts
C(s)
10
3-2 一阶系统的时域分析
2. 一阶系统的单位阶跃响应
设一阶系统的输入信号为单位阶跃函数 r(t)=1(t) ,可得一阶系统的单位阶跃响应为
h(t ) 1 e
S平面 j
1 t T
(t 0)
P=-1/T
7
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标
峰值时间tp:响应超过其终值到达第一个峰 值所需时间。 调节时间ts:响应到达并保持在终值 ±5% 内 所需时间。 超调量%:响应的最大偏离量h(tp)与终值 h(∞)之差的百分比,即
%
h( t p ) h() h()
第三章线性系统的时域分析法
s
1 T2
1
T1s 1T2s 1
1
T1
n
2 1 ,
1 T2
n
2 1
【注】过阻尼二阶系统看作两个时间常数不同的一阶系统 的串联。
当系统的输入信号为单位阶跃函数时 R(s) 1 s
系统输出
c t L1 C s 1
T1
t
e T1
T2
t
e T2
T2 T1
T1 T2
c(t)
n 86.2, 0.2; t p 0.037, ts 0.174, % 52.7%, N 2.34
由此可见,KA越大, ξ越小, 越大n ,tp越小,б%越大, 而调节时间ts无多大变化。
3 KA 13.5
n 8.22, 2.1
系统工作在过阻尼状态,峰值时间,超调量和振荡 次数不存在,而调节时间可将二阶系统近似为大 时间常数T的一阶系统来估计或在响应曲线上求 得。
0.02 10
10KO (s) KOG(S) 0.2s 1 10KO
1 KHG(s) 1 10KH 0.2s 110KH 0.2s 1
0.2
110K 10KO
H
T* 0.02 K* 10
110KH
K H 0.9
KO
10
10KO 1 10K H
0.2 s 1 1 10K H
瞬态响应可以提供关于系统稳定性、响应速度及阻尼情 况等信息。
4. 稳态响应
指系统在典型输入信号作用下,当时间t趋于无穷时,系 统输出量的表现方式。稳态响应又称稳态过程。 稳态响应可以提供系统有关稳态误差的信息。
5. 稳定性
若控制系统在初始条件或扰动影响下,其瞬态响应随
着时间的推移而逐渐衰减并趋于零,则称系统稳定;反之, 不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 线性系统的时域分析法3.1 知识框架3.2 重难点控制系统的性能的评价分为动态性能指标和稳态性能指标,在确定系统的数学模型后,便可以用几种不同的方法去分析控制系统给的动态性能和稳态性能,在经典控制理论中,经常使用时域分析法、根轨迹分析法或频域分析法来分析线性控制系统的性能。
所谓时域分析法,是指控制系统在一定的输入信号作用下,根据系统输出量的时域表达式,分析系统的稳定性、瞬态和稳态性能。
时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
由于控制系统的传递函数和微分方程之间具有确定的关系,因此在系统初始条件为零时,常常利用传递函数来研究控制系统的特性。
3.2.1 典型输入信号名称时域表达式 复域表达式单位阶跃函数 1(),0t t ≥ 1s 单位斜坡函数 ,0t t ≥21s 单位加速度函数 21,02t t ≥ 31s 单位脉冲函数 (),0t t δ≥1 正弦函数sin A t ω22A ωω1) 二阶系统的时域分析;动态响应指标的求取;由动态响应指标确定一、二阶系统模型参数 2) 系统型别,开环放大增益,静态误差增益,根轨迹增益 3) 主导极点、附加闭环零、极点的概念,高阶系统简化为二阶系统 4) 劳斯稳定性判据;稳态误差5) 系统参数变化对系统稳定性、动态性能、稳定性的影响3.2.2 系统的时域性能指标(1) 一般认为,阶跃输入对系统来说是最严峻的工作状态。
描述稳态的系统在单位阶跃函数作用下,动态过程随时间t 的变化情况的指标,称为动态性能指标。
为了便于分析和比较,假定系统在单位阶跃输入信号作用前处于静止状态,而且输出量及其各阶倒数均等于零。
对大多数控制系统来说,这种假设是符合实际情况的。
如图:延迟时间d t :响应曲线第一次到达其终值一般所需的时间上升时间r t :指响应从终值10%上升到终值90%所需时间;对于有振荡的系统,亦可定义为响应从第一次上升到终值所需的时间。
上升时间是系统响应速度的一种度量。
上升时间越短,响应速度越快。
峰值时间p t :指响应超过其终值到达第一个峰值所需的时间 调节时间s t :指响应到达并保持在终值5%±内所需的最短时间超调量%σ:指响应的最大偏离量()p h t 与终值()h ∞的差与终值()h ∞比的百分数,即,()()%100%()p h t h h σ-∞=⨯∞,若()()p h t h <∞,则响应无超调。
在实际应用中,常用的动态性能指标多为上升时间、调节时间和超调量。
通常,用r t 或p t 来评价系统的响应速度,用%σ评价系统的阻尼程度,而s t 是同时反映响应速度和阻尼程度的综合性指标。
(2) 稳态误差是描述系统稳态性能的一种性能指标,若时间趋于无穷是,系统的输出量不等于输入量或输入量的确定函数,则系统存在稳态误差。
稳态误差是系统控制精度或抗干扰能力的一种度量。
3.2.3 二阶系统的分类一阶系统没考过,各位自行看一下就可以了。
直接讲二阶系统,如果为标准0.1()h ∞0.5(h ∞0.9(h ∞()h ∞()h t的二阶系统结构图:系统传递函数:222()()()2n n n C s s R s s s ωΦςωω==++ 可得二阶系统的特征方程:2220n n s s ςωω++=,其两个根(闭环极点)为:1,2n s ςωω=-±根据ς的值,可以分为如下几个系统:其中,欠阻尼、临界阻尼、过阻尼系统稳定。
临界阻尼的响应速度比过阻尼快。
3.2.4 欠阻尼系统的性能分析这里重点讲欠阻尼系统,其他三个系统各位也要有所了解,看书就可以了。
欠阻尼(01)ς<<二阶系统的单位阶跃响应:若令n σςω=(衰减系数),d ωω=阻尼振荡频率)1()R s s=时, 2221()2n n n C s s s sωςωω=++ 22221()()n n n d n ds s s s ςωςωςωωςωω+=--++++ 对上式去拉式反变换,求得单位阶跃响应为:()1c o s s i n n n t td d h te t e t ςωςωωω--=--1s i s i n ()n td t ςωωβ-=-+其中arccos cos βςςβ==⇒=,式中欠阻尼二阶系统的单位阶跃响应由两部分组成:稳态分量为1,表面系统在单位阶跃函数作用下不存在稳态位置误差;瞬态分量为阻尼正弦振荡。
欠阻尼二阶系统的动态过程:3.2.5 二阶系统的性能改善二阶系统的性能的改善,主要有两种方法:一是比例微-分控制系统,如下图:10.7%100%3.54.4(0.05),(0.02)d n r p s s nnt t t et t ςωσ∆∆ςωςω+====⨯====由图可见,系统输出量同时受误差信号及其速率的双重作用,因而,比例-微分控制是一种早期控制,可在出现位置误差前,提前产生修正作用,从而达到改善系统性能的目的。
2222()()(2)n p d n n d n pT T s s s T s T ωΦςωωω+=+++ 比例-微分控制可以增大系统的阻尼,使阶跃响应的超调量下降,调节时间缩短,且不影响常值稳态误差及系统的自然频率,采用微分控制后,允许选取较高的开环增益,因此在保证一定的动态性能条件下,可以减小稳态误差。
由于微分对于噪声尤其是高频噪声有放大作用,所以系统在输入端噪声较强的情况下,不宜采用。
此时可以选用测速反馈系统。
如图:测速反馈会降低系统的开环增益,从而加大系统在斜坡输入时的稳态误差,与比例-微分控制相同的是,不影响系统的自然频率,并可增大系统的阻尼比。
在设计测速反馈控制系统时,可以适当增大原系统的开环增益,比弥补稳态误差的损3.2.6 主导极点在讲了二阶系统之后,就要将高阶系统,高阶系统的时域分析主要是通过闭环主导极点将高阶系统等效近似为二阶系统,再按照二阶系统的方法进行分析。
如果所在闭环极点中,距离虚轴最近的极点周围没有闭环零点,而其他闭环极点有远离虚轴,那么距离虚轴最近的闭环极点所在的响应分量,随时间的推移而衰减,在系统的时间响应过程中起主导作用,这样的闭环极点就成为闭环主导极点,作为闭环主导极点的条件是:1. 距S 平面虚轴较近,且周围没有其他闭环零极点,对应的暂态分量衰减缓慢,起主要作用。
不会构成闭环偶极子,产生零极点相消现象。
从第一章可知,对一个控制系统的要求可以归纳为:稳定性,快速性和准确性。
前面我们讲了系统的动态性能,即快速性。
现在讲稳定性,对于一个控制系统,第一要求就是系统要稳定,这是保证控制系统正常工作的先决条件。
任何系统在扰动作用下都会偏离原系统平衡状态,产生初始偏差。
所谓稳定性,是指系统在扰动消失后,由初始偏差状态恢复到原平衡状态的性能。
判断系统稳定性的方法有很多,每一章遇到的时候我会有针对的讲,在最后几章也会把所有的方法都归纳比较一遍,以免大家搞混。
上述稳定性定义表面,线性系统的稳定性仅取决于系统自身的固有特性,而与外界条件无关,在这一章中,主要是针对线性系统求稳定性,根据定义输入扰动()t δ,设扰动响应为()n C t ,如果当t →∞时,()n C t 收敛到原来的平衡点,即:lim ()0n s C s →∞=,根据一系列的推导,可得线性系统稳定的充分必要条件为:闭环系统特征方程的所有根均具有负实部;或者说,闭环传递函数的极点均位于S 的左半平面。
这里主要采用的方法是劳斯-赫尔维茨判据,考试的时候不会强制规定要用劳斯判据还是用赫尔维茨判据,所以我在此只将劳斯判据,如果各位比较担心的话,可自行学习赫尔维茨判据,内容不多,而这两种判据的原理也是一样的。
不管是劳斯判据还是赫尔维茨判据都是根据系统的特征方程来判断的: 设系统的特征方程为:10110()0,0n n n n D s a s a s a s a a --=++⋅⋅⋅++=>1) 根据这个特征方程,首先判断特征方程的系数,当系数全为正数且不缺项时,再进行下一步,如果不全为正,则直接判断该系统不稳定。
这句话就是说,使线性系统稳定的必要条件是:特征方程中,各系数为正数且不缺项。
2) 建立劳斯表(这个大家都会吧,详见102页)表中:1. 最左一列元素按S 的幂次排列,由高到低,只起标识作用,不参与计算。
2. 第一、二行元素,直接用特征方程式的元素填入。
3. 从第三行起各元素,是根据前二行的元素计算得到。
3) 判断劳斯表中第一列各数是否都大于零,都大于零则系统稳定,否则,第一列的各数符号变化几次,则有在S 右半平面有几个根。
劳斯稳定判据有两种特殊情况,一是劳斯表中某一行的第一列项为零,而其余各项不为零或不全为零;二是劳斯表中出现全零行,具体的方法和例子在3.2.8 线性系统的稳态误差求完稳定性,对于控制系统,就还差准确性,系统的准确性是通过稳态误差来衡量的。
下面介绍求稳态误差的方法。
(如果各位对控制系统的性能和衡量参数搞得不是很清楚的话,可以仔细阅读一下13页的1.基本要求的提法)。
首先是误差的定义:误差由两种定义方法,一是在系统输入端定义,二是在输出端定义,我们的整个考试,当提到误差时,都是采用的输入端定义,即:如图:当输入信号()R s 与主反馈信号()B s 不等时,比较装置的输出为:()()()()E s R s H s C s =-那么()E s 就是误差,一个系统的误差包含瞬态分量和稳态分量两部分,由于系统必须要稳定,讨论误差才有意义,所以控制系统的稳态误差定义为误差信号()e t 的稳态分量()ss e ∞,简写成ss e 。
1()[()]e t L E s -=121...n n n s s s ss --011......na a b a 232a a b 453a a b (1203)11140521a a a ab a a a a a b a -=-=ss e 有两种计算方法,第一是利用终值定理进行计算,即:0()()lim ()lim1()()ss s s sR s e sE s G s H s →→∞==+(一定要牢记,要清楚这些符号的意义)但是不是所有的系统都能用这种方法计算,需要满足终值定理的条件,即: 除原点外,在虚轴及S 平面的右半平面无极点。
终值定理仅限于()r t 或()n t 为21(),,,t t t ⋅⋅⋅或其线性组合,特别注意当外作用信号为正弦型号或余弦信号时不能使用终值定理,在这章的范围内,只能使用动态误差系数,而动态误差系数不用掌握。
在后面一章,会学到一种根据幅频特性计算的方法,到时候再讲。
第二种方法是静态误差系数。
从上面计算稳态误差的式子可以得知,控制系统的稳态误差数值,与开环传递函数的结构和输入信号的形式密切相关。