2020年中考数学专题训练7.圆的证明与计算
中考数学专题复习《圆的证明与计算》检测题(含答案)
专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。
2020年九年级中考数学 专题复习 圆的性质与计算(含答案)
2020中考数学专题复习圆的性质与计算(含答案)一、选择题(本大题共7道小题)1. 如图,△ABC是☉O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°2. 如图,AB,AC分别是☉O的直径和弦,OD⊥AC于点D,连接BD,BC,若AB=10,AC=8,则BD的长为 ()A.2B.4C.2D.4.83. 如图,在边长为4的正方形ABCD中,以点B为圆心,AB长为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π) ()A.8-πB.16-2πC.8-2πD.8-π4. 如图,已知AB是☉O的直径,点P在BA的延长线上,PD与☉O相切于点D,过点B作PD的垂线交PD的延长线于点C.若☉O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.55. 如图,将☉O沿弦AB折叠,恰好经过圆心O,若☉O的半径为3,则的长为()A.πB.πC.2πD.3π6. 如图,在半径为的☉O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.47. 如图,AB为☉O的直径,BC为☉O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是☉O的切线;②CO⊥DB;③△EDA∽△EBD;④ED·BC=BO·BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共5道小题)8. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O的半径是.9. 用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面圆的面积为.10. 如图,☉O分别切∠BAC的两边AB,AC于点E,F,点P在优弧上.若∠BAC=66°,则∠EPF等于度.11. 如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6 cm,则该莱洛三角形的周长为cm.12. 如图,以AB为直径的☉O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①=;②扇形OBC的面积为π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP·OP有最大值20.25.三、解答题(本大题共5道小题)13. 如图,在等腰三角形ABC中,AB=AC.以AC为直径作☉O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是☉O的切线.(2)若DE=,∠C=30°,求的长.14. 如图所示,☉O的半径为4,点A是☉O上一点,直线l经过点A.P是☉O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交☉O于点E,直径PD 的延长线交直线l于点F,点A是的中点.(1)求证:直线l是☉O的切线;(2)若PA=6,求PB的长.15. 如图,在Rt△ABC中,∠ABC=90°,以AB为直径作☉O,点D为☉O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与☉O的位置关系,并说明理由;(2)若BE=2,DE=4,求☉O的半径及AC的长.16. 如图,过☉O外一点P作☉O的切线PA,切☉O于点A,连接PO并延长,与☉O交于C,D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC,CM.(1)求证:CM2=MN·MA;(2)若∠P=30°,PC=2,求CM的长.17. 如图,AB是☉O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作☉O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求☉O的半径.2020中考数学专题复习圆的性质与计算-答案一、选择题(本大题共7道小题)1. 【答案】A[解析]记线段OP交☉O于点F.连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°.∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.2. 【答案】C[解析]∵AB是直径,∴∠C=90°,∴BC==6.∵OD⊥AC,∴CD=AD=AC=4,∴BD==2,故选C.3. 【答案】C[解析]在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=·AD·AB=8,S扇形ABE==2π,∴S阴影=S△ABD-S扇形ABE=8-2π.故选C.4. 【答案】A[解析]如图,连接OD.∵PC切☉O于点D,∴OD⊥PC.∵☉O的半径为4,∴PO=PA+4,PB=PA+8.∵OD⊥PC,BC⊥PD,∴OD∥BC,∴△POD∽△PBC,∴=,即=,解得PA=4.故选A.5. 【答案】C[解析]连接OA,OB,过点O作OD⊥AB交于点E,由题可知OD=DE=OE=OA,在Rt△AOD中,sin A==,∴∠A=30°,∴∠AOD=60°,∠AOB=120°,∴的长==2π,故选C.6. 【答案】C[解析]过点O作OF⊥CD于点F,OG⊥AB于G,连接OB,OD,OE,如图所示,则DF=CF,AG=BG=AB=3,∴EG=AG-AE=2.在Rt△BOG中,OG===2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=OG=2.∵∠DEB=75°,∴∠OEF=30°,∴OF=OE=.在Rt△ODF中,DF===,∴CD=2DF=2.故选C.7. 【答案】A[解析]连接DO,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,∵OA=OD,∴∠OAD=∠ODA,∴∠COB=∠COD,∴△COD≌△COB,∴∠ODC=∠OBC,∵BC为☉O的切线,∴∠OBC=90°,∴∠ODC=90°,∴CD是☉O的切线,故①正确;∵OB=OD,∠COB=∠COD,∴CO⊥DB,故②正确;∵∠EDA+∠ADO=90°,∠DBA+∠DAO=90°,∴∠EDA=∠DBA,∴△EDA∽△EBD,故③正确;∵△EDA∽△EBD,∴=,易证△COB∽△BAD,∴=,∴=,∴=,即ED·BC=BO·BE,故④正确.因此本题选A.二、填空题(本大题共5道小题)8. 【答案】2[解析]连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.9. 【答案】4π[解析]设此圆锥的底面半径为r,由题意可得2πr=,解得r=2,故这个圆锥的底面圆的面积为4π.10. 【答案】57[解析]连接OE,OF.∵☉O分别切∠BAC的两边AB,AC于点E,F,∴OF⊥AC,OE⊥AB,∴∠BAC+∠EOF=180°,∵∠BAC=66°,∴∠EOF=114°.∵点P在优弧上,∴∠EPF=∠EOF=57°.故填:57.11. 【答案】6π[解析]以正三角形的顶点为圆心,边长为半径画弧,这三段弧的半径为6 cm,圆心角为60°,每段弧长为=2π(cm),所以周长为2π×3=6π(cm).12. 【答案】①③④[解析]∵AB是☉O的直径,CD⊥AB,∴=,故①正确.∵∠A=30°,∴∠COB=60°,∴扇形OBC的面积=·π·2=π,故②错误.∵CE是☉O的切线,∴∠OCE=90°,∴∠OCE=∠OFC,又∵∠EOC=∠COF,∴△OCF∽△OEC,故③正确.设AP=x,则OP=9-x,∴AP·OP=x(9-x)=-x2+9x=-x-2+,∴当x=时,AP·OP取最大值,=20.25,故④正确.故答案为①③④.三、解答题(本大题共5道小题)13. 【答案】解:(1)证明:如图,连接OD,∵OC=OD,AB=AC,∴∠1=∠C,∠C=∠B.∴∠1=∠B.∵DE⊥AB,∴∠2+∠B=90°.∴∠2+∠1=90°,∴∠ODE=90°,∴DE为☉O的切线. (2)连接AD,∵AC为☉O的直径,∴∠ADC=90°.∵AB=AC,∴∠B=∠C=30°,BD=CD.∴∠AOD=60°.∵DE=,∴BD=CD=2,∴OC=2,∴的长=π×2=π.14. 【答案】解:(1)证明:连接OA.∵OA=OP,∴∠OAP=∠OPA.∵点A是的中点,∴=,∴∠DPA=∠APB,∴∠OAP=∠APB.∴OA∥PB.∵PB⊥l,∴OA⊥l,∴直线l是☉O的切线.(2)连接AD,∵PD是直径,∴∠PAD=90°,∴∠PAD=∠PBA.又∵∠DPA=∠APB,∴△PAD∽△PBA,∴=,即=,∴PB=.15. 【答案】解:(1)直线CD与☉O相切.理由如下:连接CO.∵点D在圆上,∴OD=OB,又∵CD=CB,CO=CO,∴△COD≌△COB(SSS).∵∠ABC=90°,∴∠ODC=∠ABC=90°,∴OD⊥DC,∴直线CD与☉O相切.(2)设☉O的半径为x,∵DE=4,∴OE=4-x.在Rt△OBE中,BE2+BO2=OE2,即22+x2=(4-x)2,解得x=1.5,∴OD=OB=1.5.AB=2OB=3.∵CB,CD是圆的切线,∴CB=CD.则设CB=CD=y,在Rt△CDE中,CD2+DE2=CE2,即y2+42=(y+2)2,解得y=3,∴BC=3.在Rt△ABC中,AC==3.16. 【答案】解:(1)证明:∵在☉O中,点M是半圆CD的中点,∴∠CAM=∠DCM,又∵∠CMA是△CMN和△AMC的公共角,∴△CMN∽△AMC,∴=,∴CM2=MN·M A.(2)连接OA,DM,∵PA是☉O的切线,∴∠PAO=90°,又∵∠P=30°,∴OA=PO=(PC+CO).设☉O的半径为r,∵PC=2,∴r=(2+r),解得r=2.又∵CD是直径,∴∠CMD=90°,∵点M是半圆CD的中点,∴CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,∴2CM2=(2r)2=16,∴CM2=8,∴CM=2.17. 【答案】解:(1)证明:如图①,∵DC⊥OA,∴∠1+∠3=90°.∵BD为切线,∴OB⊥BD,∴∠2+∠5=90°.∵OA=OB,∴∠1=∠2.∵∠3=∠4,∴∠4=∠5,∴DE=DB.(2)如图②,作DF⊥AB于F,连接OE,∵DB=DE,∴EF=BE=3.在Rt△DEF中,EF=3,DE=BD=5,∴DF==4,∴sin∠DEF==.∵∠AOE=∠DEF,∴在Rt△AOE中,sin∠AOE==,∵AE=6,∴AO=.即☉O的半径为.。
中考数学专题训练圆的证明与计算(含答案)
圆的证明与计算1.如图,已知八ABC内接于AO, P是圆外一点,PA为40的切线, = PB,连接0P ,线段AB与线段0P相交于点D.(1)求证:PB为40的切线;- 4⑵ 若PA=4P0, z\0的半径为10,求线段PD的长.5(1)证明:△△△△△0Az\0Bz\ZSPA/SPBA0AA0BA0PA0PA△ 3APz\8BP(SSS) △A210APA210BPA/SPAA210AAAAA210APA90 △A210BPA90 △A0BA210AAAA/SPBA210AAAA_ _ 4_ _ ............(2)解:APA/VP0A210AAAA 10A PA第1题图第1题解图△ △ Rt AOP A Z1OA A A J P O22\21|P O^ A10A人人八人50人A/POA V A3AO OD△ cos AOP/^O P A A O AAODA6A人_ _____ 32APD APOAODA-y.32.AAAAABCA/iAB^CA/lDABCAAAAADADCA/lAAB/SDAAAzOA AEA21OAAAAADE.A 1AAAACA/1OAAAAA2AA C OSA32^C A 24 A A A AE A A.第2题图(1)证明:AABAACAAD ADC △Az^CAz^BAz^DACA^CA△RAC△2△AAZEA21BA△RAC△任△Z^EA/IOAAAAA21ADEA90 △△任△21EAD"0° △A/DACA21EADA90 △△任AC490° △AOAA21OAAAAAACAODAAAA(2)解:AAAAADA DF 丛C△任△第2题解图DAADCCA…1… 人△CF A2ACA12ACF 3ARtzCDFAAA G(C/\C D A5A△DC A 20 △AAD A 20 △ARtzCDFAAAAAAA DF ,CD2-CF216 △A21ADEA21DFCA90 AEA21CAA21ADEA21DFCA噬噜△AE 20A— A20 AA Z^EA25A20 16A21OAA/AEA 25.3.如图,在AABC中,AB=BC,以AB为直径作AO,交BC于点D,交AC 于点E,过点E作AO的切线EF,交BC于点F.(1)求证:EFABC;(2)若 CD=2, tan C=2,求 AO 的半径.第3题图(1)证明:如解图,连接BE, OE.第3题解图AAB为AO的直径,△MEB=90 .AAB=BC,△点E是AC的中点,△点O是AB的中点,AOEABC,△EF是AO的切线,△EF4E.△EFABC;(2)解:如解图,连接AD,八AB为AO的直径,△ AADB=90 ,△CD=2, tan C=AD 2CDAAD=4.设 AB=x,贝U BD=x-2.在 RtAABD 中, 由勾股定理得AB2=AD2+BD2,即 x2=42+ (x— 2) 2, 解得x=5,即AB=5,△ 8的半径为5 .24.AAAAZOWZ1ABAAAAABCAAADA21BCAAAAAE.A 1AAA/SDACA21DCEA..................1人人人人A2A ABA 2A siD △不△ AAE4/X.第4题图(1)证明:Z^DA/IOAAAA△PAB A90 .Z^BA/IOAAAAA21ACBA90 .A/DACA21CABA90 2ICABA/^ABCA 90 △A/DACA/^BC.AOCAOBAA.BCBCOCOCBAAAZDCEAz^OCBAA21DACA21DCEA(2)解:AABA2 △AAOA1.△sinD A ODAODA3ZDC A2 △ARtzDAOAA△△△△△AD △ OD2AOA2A2 2 △A21DACA21DCEA21DA/1DAA21DECA21DCAA A DC A DE A DA A DC 人2人DEA2 ,2 A2△RE △ ,2 △AAEAAD ADE △ 2.5.AAABA21OAAZDAA/DAAAAAADACDAOAA21ABA21EAA/OA1AAACEACBAA2AAAFABFAA/ABFAAAA人人-人人人 DE人5人人…人人人A3A/CDA 15ABE4 1OZ A E A13AAZ O AA A-(:第5题图(1)证明:△△△△△OB4A第5题解图BBCAOJAAAAAOBABCA AzOBCA 90 △A21OBAA21CBEA90 △AOAAOBAA21OABA21OBAAA21OAB+ACBEA 90 △A21CDAOAAA21OABA21DEAA90 △AA/CEBA21DEAAA21CBEA21CEBAACEACBA(2)解:△△△△△/△ADA ADO ACD AOAA AAF AOF △Az^OAAOFAA21AOFAAAAAAA/AOF=60O△」_1 _____ ____ _A21ABFA2^AOFA30 △(3)解:△△△△△C\CG》B△工△△CD AOAAA21ADEA21CGEA900△AA/AEDA21CEGAA21ADEA21CGEA人DE人EG人5人A AE A CE A13AACEABCAACEA13A人 (26)△DE -旌.-------- 24△ △•■△△△△△△" ..AE DE△石△486.AAAA/lABCDAAAzO^BA/lOAAAADADCAAAABAACDAAA EA/®FAECA21ECAAAAA/W\AZBD.△ 1 △△△ ABFC△2DAAA2AAE/^OAA cosADEAA3AAA 2AAAA/BCA6AzBFAA.第6题图(1)证明:Z^BA/IOAAAAA21BDAA90 .ABF /SECAA21BFCA90 △AAAABCDA/1OAAAAAAAA21BCFA21BADAA21BFCA21BDAA(2)解:△△△△△OD3C4A21BFCA21BDAABF BC△BD'^A B'AODA/lOAAAzADACDA AODAAAACAZ^BA/IOAAAA△ AACB=90 △AODABCA △任OD△心X OE ODA BE A BC AZ^E^OA21OEA2OB/SBEA3OBAOD OE 2△■占M—— -ABC BE 3ABC Z^ODA3瑞瑞舄△:△△ 21ADB A 90 △A21ADEA21BDFA90 △A21BDFA21DBFA90 △A21ADEA21DBFAR第6题解图/SRt/SBDFAA cosDBF 混率△ cos ADE2^A4(3)解:ABCz^ODABCA6AAODA4A /^EA4ZBEA12 △ △任OD△心CA 人DE人OD人A CE A BC A…人3 人ACEA2DEA △ △/EDA△八EBC△任△小£△A21AEDA21CEBA 人AE人DE人A C E A BE AADE CEAAE BEAADE 3D E A4X 12 △ /SDEA4V2( AAAA )△ACDA2V2A/^DA2V2AA21BFCA21BDAA 人CF 人AD 人A CF A2_J A△BC△母△造△ 8 △… 3 2ACF A^AARtzBCFAAAAAAAAAABFA . BC2A CF2Z^3~214.7.AAABAA OAAA/ICD^BAAAzHAAAAC△△知作EG3C交CD的延长线于点 G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:z\ECF△&CE;(2)求证:EG是AO的切线;(3)延长AB交GE的延长线于点 M ,若tan工=3 ,AH=3,4求EM的值.第7题图(1)证明:3cAEG,△8=3CG,「AB是AO的直径,ABACD,△A D = A C ,△3EF=AACD,△8=MEF,△任CF=4ECG,△任CF△&CE;(2)证明:如解图,连接OE,第7题解图△GF=GE,△&FE=^GEF=AAFH,△OA=OE,△3AE=4OEA,△AAFH+^FAH=90 ,△&EF+AAEO=90 ,△&EO=90 ,AGEAOE,VOEMAO的半径,△EG是AO的切线;(3)解:如解图,连接OC,设AO的半径为r.在 Rt「AHC 中,一一AH 3tan zACH=tan 应=空=± , HC 4AAH=3,AHC=4.在 Rt^HOC 中,△OC=r, OH=r—3, HC=4, △ (r —3) 2+42=r2,解得r= 25 ,6△GM AAC,△ 3AH=2\M,△ 3EM=AAHC=90 △ AAHC/XNEO,AH HCEM OE ,即高8.如图,AB 为AO 的直径,C 、G 是AO 上两点,过点 C 的直线CD^BG 交BG 的延长线于点D,交BA 的延长线于点E,连接BC,交OD 于点F, 且BC 平分4ABD.(1)求证:CD 是AO 的切线;⑵若OF 2,求4E 的度数; FD 3⑶连接AD,在(2)的条件下,若CD=2V3,求AD 的长.H第8题图(1)证明:如解图,连接OC,△ EM 25 8△OC=OB, BC 平分 AABD, △3CB=z\OBC, AOBC=ADBC,AzX)BC=AOCB,AOC ABD,Az^BDC=AECO,△CD ABD,△ z!BDC=90 ,△任CO=90 ,△OC 是AO 的半径,△CD 是AO 的切线;(2)解:由(1)知,OC^BD, △8CF=4DBF, △COFMBDF,A21OCFA21DBF, △.史FD△器AOC ABD, △任OC △任BD,△如 FD3,设 OE=2a,则 EB=3a,△OB=a,△OC=a,△3CE=90 , OC=1OE, 2△任=30 ;(3)解:△任=30 , ABDE=90 ,△任BD=60 ,VBC 平分 ADBE,/. AOBC=ADBC=1 EBD=30 , 2△CD=2 .3 ,ABC=4 3, BD=6,△空2 , DB 3△OC=4,如解图,过点D作DM3B于点M ,△RMB=90 ,ABD=6, ADBM=60 ,ABM=3, DM=3 3 ,△OC=4,△AB=8,AAM=AB—BM=5,△ RMA=90 , DM=3J3,AAD= VDM 2 AM 2 2V13 .9.如图,在3BC中,八ACB=90°,。
2020年中考数学 压轴专题 圆的证明与计算
中考数学压轴专题圆的证明与计算(含答案)1.如图,在△ABC中,△ABC=90°,D是边AC上的一点,连接BD,使△A=2△1,E是BC上的一点,以BE为直径的△O经过点D.(1)求证:AC是△O的切线;(2)若△A=60°,△O的半径为2,求阴影部分的面积.(结果保留根号和π)第2题图(1)证明:如解图,连接OD,第2题解图△OB=OD,△△1=△ODB,△△DOC=△1+△ODB=2△1,又△△A=2△1,△△DOC=△A,△△ABC=90°,△△A+△C=△DOC+△C=90°,△△ODC=90°,即OD△AC,△点D在△O上,OD是半径,△AC是△O的切线;(2)解:△△A=60°,△△DOE=60°,△C=30°,在Rt△OCD 中,OD =2,△CD =OD ·tan60°=23, △S 阴影=S △OCD -S 扇形ODE =12×2×23-60π×22360=23-23π.2. 如图,点C 在以AB 为直径的△O 上,AD 与过点C 的切线垂直,垂足为D ,AD 交△O于点E .(1)求证:AC 平分△DAB;(2)连接BE 交AC 于点F ,若cos△CAD =45,求AFFC的值.第2题图(1) 证明:连接OC ,如解图△,第2题解图△△CD 是△O 的切线, △OC △CD , △AD △CD , △OC △AD , △△DAC =△OCA ,△OC =OA , △△OCA =△OAC , △△DAC =△OAC , △AC 平分△DAB ;(2)解:如解图△,连接BC ,第2题解图△△AB 是△O 的直径, △△ACB =90°, △cos△CAD =45,设AD =4x ,则AC =5x ,CD =3x ,△tan△DAC =34,△△EBC =△DAC ,由(1)得,△BAC =△DAC , △△EBC =△BAC ,△tan△EBC =tan△BAC =tan△DAC =34,△CF BC =BC AC =34, △BC AC ·CF BC =34×34, △CF AC =916,△CF AF =97,△AF FC =79. 3. 如图,已知⊙O 的直径CD =6,A ,B 为圆周上两点,且四边形OABC 是平行四边形,过A 点作直线EF ∥BD ,分别交CD 、CB 的延长线于点E ,F ,AO 与BD 交于G 点. (1)求证:EF 是△O 的切线;(2)求AE的长.第3题图(1)证明:△CD是△O的直径,△BD△CB.△在平行四边形OABC中,OA△CB,△OA△BD,又△EF△BD,△OA△EF,△OA是△O的半径,△EF是△O的切线;(2)解:△四边形OABC是平行四边形,在△O中,OA=OC,△四边形OABC是菱形,如解图,连接OB,则OB=OC=BC,第3题解图即△OBC是等边三角形.△△C=60°,△△AOE=60°,在Rt△AOE中,AE=AO·tan△AOE=3 3.4.如图,在Rt△ABC中,△C=90°,以BC为直径的△O交AB于点D,切线DE交AC于点E.(1)求证:△A=△ADE;(2)若AD=16,DE=10,求BC的长.第4题图(1)证明:如解图,连接OD,△DE是△O的切线,△△ODE=90°,△△ADE+△BDO=90°.△△ACB=90°,△△A+△B=90°,又△OD=OB,△△B=△BDO,△△A=△ADE;(2)解:如解图,连接CD,第4题解图△△ADE=△A,△AE=DE,△BC是△O的直径,△ACB=90°,△EC是△O的切线,△DE=EC,△AE=EC,又△DE=10,△AC=2DE=20,在Rt△ADC中,DC=202-162=12,设BD=x.在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,△x2+122=(x+16)2-202,解得x=9,△BC=122+92=15.5.如图,已知AB是△O的直径,CD与△O相切于C,BE△CO.(1)求证:BC是△ABE的平分线;(2)若DC=8,△O的半径OA=6,求CE的长.第5题图(1)证明:△BE△CO,△△OCB=△EBC,△△OCB =△OBC , △△OBC =△EBC , △BC 是△ABE 的平分线; (2)解:设AD =x ,则DO =x +6, △CD 是△O 的切线,△CD △CO , △△DCO =90°,在Rt△DCO 中,有DC 2+CO 2=DO 2, △82+62=(x +6)2,解得x =4, △DO =10,△CO △BE ,△CE DC =BODO ,△CE 8=610,△CE =245. 6. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD . (1)求证:BD =BF ;(2) 若AB =10,CD =4,求BC 的长.第6题图(1)证明:△BF 是△O 的切线,△CF △AB ,△△F =90°,△ABC =△FCB , ∵AB 是△O 的直径, △△ADB =△BDC =90°, △△F =△BDC , △AB =AC , △△ABC =△ACB , △△ACB =△FCB , 在△BCD 和△BCF 中, ⎩⎪⎨⎪⎧ △F =△BDC △FCB =△DCB BC =BC, △△BCD △△BCF (AAS), △BD =BF ;(2)解:△AB =AC ,AB =10, △AC =10, △CD =4, △AD =6,在Rt△ADB 中,由勾股定理得BD =102-62=8, 在Rt△BCD 中,由勾股定理得BC =82+42=45,△BC 的长为4 5.7. 如图,在△O 中,AC 与BD 是△O 的直径,BE △AC ,CF △BD ,垂足分别为E ,F .(1)四边形ABCD 是什么特殊的四边形?请判断并说明理由; (2)求证:BE =CF .第7题图(1)解:四边形ABCD 是矩形,理由如下: △AC 与BD 是△O 的直径,△△ABC =△ADC =90°,△BAD =△BCD =90°, △四边形ABCD 是矩形 ; (2)证明:△BE △AC ,CF △BD , △△BEO =△CFO =90°, 在△BOE 和△COF 中, ⎩⎪⎨⎪⎧ △BEO =△CFO △BOE =△COF , OB =OC△△BOE △△COF (AAS). △BE =CF .8. 如图,PB 为△O 的切线,B 为切点,直线PO 交△O 于点E 、F ,过点B 作PO 的垂线BA ,垂足为点D ,交△O 于点A ,延长AO 与△O 交于点C ,连接BC ,AF . (1)求证:直线P A 为△O 的切线; (2)若BC =6,tan F =12,求△O 的半径.第8题图(1)证明:如解图,连接OB ,第8题解图△PB 是△O 的切线, △△PBO =90°,△OA =OB ,BA △PO 于点D , △AD =BD ,△点D 为AB 的中点,即OP 垂直平分AB , △△AOP =△BOP , 在△P AO 和△PBO 中, ⎩⎪⎨⎪⎧OA =OB △AOP =△BOP OP =OP, △△P AO △△PBO (SAS), △△P AO =△PBO =90°,△OA 为△O 的半径 ,△直线P A 为△O 的切线; (2)解:△OA =OC ,AD =BD ,BC =6,△OD =12BC =3,设AD =x ,则tan F =AD DF =x DF =12,△DF =2x ,△OA =OF =2x -3,在Rt△AOD 中,由勾股定理得(2x -3)2=x 2+32, 解得x 1=4,x 2=0(不合题意,舍去), △OA =2x -3=5,即△O 的半径为5.9. 如图,AB 是△O 的直径,弦CD △AB 于点E ,点P 在△O 上,△1=△BCD . (1)求证:CB △PD ;(2)若BC =3,sin△BPD =35,求△O 的直径.第9题图(1)证明:△△BPD =△BCD, △1=△BCD , △△1=△BPD , △CB △PD ;(2)解:如解图,连接AC ,第9题解图△AB 是△O 的直径, △△ACB =90°, △CD △AB , △BD ︵=BC ︵, △△BPD =△CAB , △sin△BPD =sin△CAB =35,即BC AB =35, △BC =3, △AB =5, 即△O 的直径是5.10. 如图,AB 是△O 的直径,点P 是AB 延长线上一点,PC 切△O 于点C ,在线段P A 上截取PD =PC ,连接CD 并延长交△O 于点E ,连接BC 、BE . (1)求证:△ABE =△BCE ;(2)若△O 的半径为52,BC =3,求tan△BEC 的值.第10题图(1)证明:如解图,连接CO 并延长交△O 于点F ,连接BF ,则△BFC =△BEC ,△FBC =90°.第10题解图△PD =PC , △△PDC =△PCD . △PC 切△O 于点C , △△PCB +△BCF =90°, 又△△BFC +△BCF =90°, △△PCB =△BFC , △△PCB =△BEC .△△ABE =△PDC -△BEC ,△BCE =△PCD -△PCB , △△ABE =△BCE ;(2)解:△BC =3,CF =2OC =5, △在Rt△BCF 中,由勾股定理得,BF =CF 2-BC 2=4,△tan△BFC =BC BF =34,由(1)知△BFC =△BEC , △tan△BEC =tan△BFC =34.11. 如图,AB 是△O 的直径,点C 是△O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分△ACB ,交直径AB 于点F ,连接BE .(1)求证:AC 平分△DAB ;(2)若tan△PCB =34,BE =52,求PF 的长.第11题图(1)证明:如解图,连接OC , △OA =OC , △△OAC =△OCA ,△PC 是△O 的切线,且AD △CD , △△OCP =△D =90°, △OC △AD ,△△CAD =△OCA =△OAC ,即AC 平分△DAB ; (2)解:如解图,连接AE ,第11题解图△弦CE 平分△ACB , △△ACE =△BCE , △AE ︵=BE ︵,△AE =BE , 又△AB 是直径,△△AEB =90°,AB =2BE =10,△OB =OC =5, △△PCB =△P AC ,△P =△P , △△PCB △△P AC ,△PB PC =BCCA,△tan△PCB =tan△CAB =34,△PB PC =BC CA =34,设PB =3x ,则PC =4x ,在Rt△POC 中,根据勾股定理得,(3x +5)2=(4x )2+52, 解得x 1=0,x 2=307.△x >0,△x =307,△PC =1207,又△△PCB =△P AC ,△BCE =△ACF ,△△PCB +△BCE =△P AC +△ACF ,即△PCF =△PFC , △PF =PC =1207.12. 如图,已知△ABC 的边AB 是△O 的切线,切点为B ,AC 经过圆心O 并与圆相交于点D 、C ,过C 作直线CE △AB ,交AB 的延长线于点E . (1)求证:CB 平分△ACE ;(2)若BE =3,CE =4,求△O 的半径.第12题图(1) 证明:如解图,连接OB ,第12题解图△AB 是△O 的切线, △OB △AB , △CE △AB , △OB △CE , △△1=△3, △OB =OC , △△1=△2, △△2=△3, △CB 平分△ACE ; (2)如解图,连接BD , △CE △AB , △△E =90°, △BC =BE 2+CE 2=32+42=5,△CD 是△O 的直径, △△DBC =90°, △△E =△DBC , △△DBC △△BEC , △CD BC =BC CE , △BC 2=CD ·CE ,△CD =524=254,△OC =12CD =258,△△O 的半径为258.13. 如图,AB 为△O 的直径,直线CD 切△O 于点M ,BE △CD 于点E . (1)求证:△BME =△MAB ;(2)若BE =185,sin△BAM =35,求△O 的半径.第13题图(1)证明:如解图,连接OM , △直线CD 切△O 于点M , △△OMD =90°,第13题解图△△BME +△OMB =90°, △AB 为△O 的直径, △△AMB =90°,△△AMO +△OMB =90°, △△BME =△AMO . △OA =OM ,△△MAB =△AMO . △△BME =△MAB ;(2)解:由(1)可得,△BME =△MAB . △sin△BAM =35,△sin△BME =35,在Rt△BEM 中,BE =185,sin△BEM =BE BM =35.△BM =6,在Rt△ABM 中,△sin△BAM =BM AB =35.△AB =35BM =10.△△O 的半径为5.14. 如图,在△ABC 中,AB =AC ,以AB 为直径的△O 与BC 交于点D ,过点D 作△O 的切线交AC 于点E . (1)求证:△ABD =△ADE ;(2)若△O 的半径为256,AD =203,求CE 的长.第14题图(1) 证明:如解图,连接OD .第14题解图△DE 为△O 的切线,△OD △DE , △△ADO +△ADE =90°.△AB 为△O 的直径, △△ADB =90°,△△ADO +△ODB =90°.△△ADE =△ODB , △OB =OD ,△△OBD =△ODB , △△ABD =△ADE ;(2)解:△AB =AC =2×256=253,△ADB =△ADC =90°,△△ABC =△C ,BD =CD . △O 为AB 的中点, △OD 为△ABC 的中位线, △OD △AC ,△OD △DE ,△AC △DE , 在Rt△ACD 中,CD =AC 2-AD 2=(253)2-(203)2=5, △△C =△C ,△DEC =△ADC =90°, △△DEC △△ADC , △CE DC =DC AC ,即CE 5=5253, △CE =3.。
2020年中考数学专项训练:与圆有关的证明及计算(含答案)
提分专练与圆有关的证明及计算|类型1|平面直角坐标系中的圆1.[2019·无锡]如图T9-1,一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且,△OAB的外接圆的圆心M的横坐标为-3.sin∠ABO=√32(1)求这个一次函数的表达式;(2)求图中阴影部分的面积.图T9-12.[2017·酒泉]如图T9-2,AN是☉M的直径,NB∥x轴,AB交☉M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是☉M的切线.图T9-2|类型2|垂径定理与勾股定理联手⏜上的一点,过点P作PC⊥OA,垂足为C.PC与AB交于3.[2019·苏州]如图T9-3,扇形OAB中∠AOB=90°,P为AB点D.若PD=2,CD=1,则该扇形的半径长为.图T9-3|类型3|与圆有关的图形的面积4.[2018·达州]已知,如图T9-4,以等边三角形ABC的边BC为直径作☉O,分别交AB,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是☉O的切线;⏜,DF,EF围成的阴影部分的面积.(2)若等边三角形ABC的边长为8,求由DE图T9-4|类型4|与圆的切线有关的问题5.[2019·巴中]如图T9-5,在菱形ABCD中,连接BD,AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH 为半径的半圆交AC于点M.(1)求证:DC是☉O的切线;(2)若AC=4MC且AC=8,求图中阴影部分的面积;(3)在(2)的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.图T9-5|类型5|圆与四边形结合的问题6.[2019·温州]如图T9-6,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的☉O交AB于另一点F,作直径AD,连接DE并延长交AB于点G,连接CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=3AB时,求☉O的直径长.8图T9-6|类型6|圆与三角函数结合的问题7.如图T9-7,AB是☉O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB. (1)判断BD与☉O的位置关系,并说明理由;,求☉O的直径.(2)若CD=15,BE=10,tan A=512图T9-7|类型7|圆与相似三角形结合的问题8.[2019·滨州]如图T9-8,在△ABC中,AB=AC,以AB为直径的☉O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线DF是☉O的切线;(2)求证:BC2=4CF·AC;(3)若☉O的半径为4,∠CDF=15°,求阴影部分的面积.图T9-8【参考答案】1.解:(1)作MN ⊥BO 于N ,由垂径定理得N 为OB 中点,∴MN=12OA ,∵MN=3,∴OA=6,即A (-6,0). ∵sin ∠ABO=√32,OA=6, ∴AB=4√3,OB=2√3,B (0,2√3), 将A ,B 点坐标代入y=kx +b , 得{b =2√3,-6k +b =0,解得{b =2√3,k =√33,∴y=√33x +2√3.(2)由(1)得∠ABO=60°,连接OM ,则∠AMO=120°,AM=MB=12AB=2√3.∴阴影部分面积为S=120π360×(2√3)2-12×6×√3=4π-3√3.2.解:(1)∵A 的坐标为(0,6),N 的坐标为(0,2),∴AN=4, ∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8, ∴由勾股定理可知:NB=4√3,∴B (4√3,2). (2)证明:连接MC ,NC.∵AN 是☉M 的直径, ∴∠ACN=90°, ∴∠NCB=90°,在Rt △NCB 中,D 为NB 的中点, ∴CD=12NB=ND , ∴∠CND=∠NCD.∵MC=MN ,∴∠MCN=∠MNC. ∵∠MNC +∠CND=90°, ∴∠MCN +∠NCD=90°, 即MC ⊥CD ,∴直线CD 是☉M 的切线.3.5 [解析] 连接OP ,∵∠AOB=90°,PC ⊥OA ,∴∠DCA=∠AOB=90°,又∠DAC=∠BAO ,∴△ACD ∽△AOB , ∴ACAO =CDOB ,∵OA=OB ,∴AC=CD=1, 又PD=2,∴CP=3, 设CO=x ,则OP=OA=x +1,∵∠PCO=90°,∴OP 2=OC 2+CP 2,∴x 2+32=(x +1)2,解得x=4,∴OA=x +1=5. 4.解:(1)证明:连接OD ,CD.∵BC 是直径,∴∠BDC=90°.∵△ABC 是等边三角形,∴点D 是AB 的中点. ∵点O 是BC 的中点,∴OD ∥AC. ∵DF ⊥AC ,∴OD ⊥DF .∵OD 是半径,∴DF 是☉O 的切线. (2)连接OD ,OE ,DE.∵同(1)可知点E 是AC 的中点,∴DE 是△ABC 的中位线,△ADE 是等边三角形. ∵等边三角形ABC 的边长为8, ∴等边三角形ADE 的边长为4. ∵DF ⊥AC ,∴EF=2,DF=2√3.∴△DEF 的面积=12EF ·DF=12×2×2√3=2√3.△ADE 的面积=△ODE 的面积=4√3. 扇形ODE 的面积=60·π·42360=8π3.∴阴影部分的面积=△DEF 的面积+△ODE 的面积-扇形ODE 的面积=2√3+4√3−83π=6√3−8π3.5.[解析](1)过点O 作CD 的垂线,通过证明其与半径相等,得到CD 是切线;(2)通过三角函数计算边长和圆心角度数,得到三角形和扇形的面积,继而可得阴影部分面积;(3)根据轴对称的性质找到点P 的位置,进而计算最小值,利用三角函数求PD 的长度.解:(1)证明:过点O 作OG ⊥CD 于点G , ∵菱形ABCD 中,AC 是对角线, ∴CA 平分∠BCD , ∵OH ⊥BC ,∴OH=OG , ∵OH 是☉O 的半径, ∴OG 长等于☉O 的半径长, ∴CD 是☉O 的切线. (2)∵AC=4MC 且AC=8, ∴OC=2MC=4,MC=OM=2, ∴OH=OM=2.在Rt △OHC 中,OH=2,OC=4, ∴HC=√OC 2-OH 2=2√3, ∴tan ∠HOC=HCOH =√3,∴∠HOC=60°,∴S 阴影=S △OCH -S 扇形OHM =12CH ·OH -60π·OH 2360=12×2√3×2-60π·22360=2√3−23π.(3)作点M 关于BD 的对称点N ,连接HN 交BD 于点P ,此时PH +PM 的值最小. ∵ON=OM=OH ,∠MOH=60°, ∴∠MNH=30°,∠MNH=∠HCM , ∴HN=HC=2√3,即PH +PM 的最小值为2√3. 在Rt △NPO 中,OP=ON tan30°=2√33, 在Rt △COD 中,OD=OC tan30°=4√33, ∴PD=OP +OD=2√3.6.解:(1)证明:连接AE.∵∠BAC=90°, ∴CF 是☉O 的直径.∵AC=EC ,∴CF ⊥AE.∵AD 为☉O 的直径,∴∠AED=90°, 即GD ⊥AE ,∴CF ∥DG.∵AD 为☉O 的直径,∴∠ACD=90°, ∴∠ACD +∠BAC=180°,∴AB ∥CD , ∴四边形DCFG 为平行四边形.(2)由CD=38AB ,可设CD=3x ,AB=8x ,由(1)可知FG=CD=3x. ∵∠AOF=∠COD ,∴AF=CD=3x , ∴BG=8x -3x -3x=2x. ∵GE ∥CF ,∴BE EC =BG GF =23. 又∵BE=4,∴AC=CE=6, ∴BC=6+4=10,∴AB=√102-62=8=8x ,∴x=1. 在Rt △ACF 中,AF=3,AC=6, ∴CF=√32+62=3√5, 即☉O 的直径长为3√5.7.解:(1)BD 与☉O 相切.理由如下:连接OB , ∵OB=OA ,DE=DB ,∴∠A=∠OBA ,∠DEB=∠ABD , 又∵CD ⊥OA ,∴∠A +∠AEC=∠A +∠DEB=90°, ∴∠OBA +∠ABD=90°, ∴OB ⊥BD ,∴BD 是☉O 的切线.(2)如图,过点D 作DG ⊥BE 于G , ∵DE=DB ,∴EG=12BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED , ∴△ACE ∽△DGE , ∴∠GDE=∠A , ∵tan A=512,∴sin A=513,∴sin ∠EDG=sin A=EGDE =513,∴DE=13, 在Rt △EDG 中,DG=√DE 2-EG 2=12,∵CD=15,DE=13,∴CE=2, ∵△ACE ∽△DGE ,∴ACDG =CEGE ,∴AC=CE GE·DG=245,∴☉O 的直径=2OA=4AC=965. 8.解:(1)证明:如图所示,连接OD ,∵AB=AC ,∴∠ABC=∠C , ∵OB=OD ,∴∠ODB=∠ABC=∠C , ∵DF ⊥AC ,∴∠CDF +∠C=90°, ∴∠CDF +∠ODB=90°, ∴∠ODF=90°,∴直线DF 是☉O 的切线. (2)证明:连接AD ,则AD ⊥BC , ∵AB=AC ,∴DB=DC=12BC.∵∠CDF +∠C=90°,∠C +∠DAC=90°, ∴∠CDF=∠DAC ,又∠DFC=∠ADC=90°,∴△CFD ∽△CDA , ∴CD AC =CFCD ,∴CD 2=AC ·CF ,∴BC 2=4CF ·AC.(3)连接OE ,作OG ⊥AE 于G.∵∠CDF=15°,∴∠C=75°,∠OAE=30°=∠OEA ,∴∠AOE=120°, ∴AE=2EG=2OE ·cos30°=2×4×√32=4√3. ∴S △OAE =12AE ·OE ·sin ∠OEA=12×4√3×4×12=4√3, ∴S 阴影部分=S 扇形OAE -S △OAE =120360×π×42-4√3=16π3-4√3.。
北京中考专题 圆的有关计算及证明(解析版)
北京中考专题07 圆的有关计算及证明一.选择题(共9小题)1.(2020•丰台区一模)在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心,DO长为半径画弧,交⊙O于B,C两点;(3)连接DB,DC,AB,AC,BC.根据以上作图过程及所作图形,下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD̂=CD̂,根据垂径定理即可判断A、B、C正确,再【分析】根据作图过程可知:AD是⊙O的直径,BD根据DC=OD,可得AD=2CD,进而可判断D选项.【解答】解:根据作图过程可知:AD是⊙O的直径,∴∠ABD=90°,∴A选项正确;∵BD=CD,̂=CD̂,∴BD∴∠BAD=∠CBD,∴B选项正确;根据垂径定理,得AD⊥BC,∴C选项正确;∵DC=OD,∴AD=2CD,∴D选项错误.故选:D.2.(2020•海淀区一模)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若OC=12OA,则∠C等于()A.15°B.30°C.45°D.60°【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,OC=12 OA,∴∠C=∠OBC,OB=12OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选:B.3.(2020•平谷区一模)已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧DE,交射线OB于点F,连接CF;(2)以点F为圆心,CF长为半径作弧,交弧DE于点G;(3)连接FG,CG.作射线OG.根据以上作图过程及所作图形,下列结论中错误的是()A.∠BOG=∠AOB B.若CG=OC,则∠AOB=30°C.OF垂直平分CG D.CG=2FG【分析】依据作图即可得出△OCF≌△OGF(SSS),即可得到对应角相等;再根据等边三角形的性质,即可得到∠AOB=30°;依据OC=OE,FC=FG,即可得出OF垂直平分CG,CG=2MG<2FG.【解答】解:由作图可得,OC=OE,FC=FG,OF=OF,∴△OCF≌△OGF(SSS),∴∠BOG=∠AOB,故A选项正确;若CG=OC=OG,则△OCG是等边三角形,∴∠COG=60°,∴∠AOB=12∠COG=30°,故B选项正确;∵OC=OE,FC=FG,∴OF垂直平分CG,故C选项正确;∴CG=2MG<2FG,故D选项错误;故选:D.4.(2020•石景山区一模)如图,点A ,B ,C ,D 在⊙O 上,弦AD 的延长线与弦BC 的延长线相交于点E .用①AB 是⊙O 的直径,②CB =CE ,③AB =AE 中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为( )A .0B .1C .2D .3【分析】根据题意和图形,可以写出其中的两个为题设,一个为结论时的命题是否为真命题,然后写出理由即可.【解答】解:当①②为题设时,③为结论,这个命题是真命题, 理由:∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠ACB =∠ACE =90°, 在△ACB 和△ACE 中, {AC =AC∠ACB =∠ACE BC =EC, ∴△ACB ≌△ACE (SAS ), ∴AB =AC ;当①③为题设,②为结论时,这个命题是真命题, 理由:∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠ACB =∠ACE =90°, 在Rt △ACB 和Rt △ACE 中, {AB =AE AC =AC, ∴Rt △ACB ≌Rt △ACE (HL ), ∴CB =CE ;当②③为题设,①为结论时,这个命题是真命题, 理由:在△ACB 和△ACE 中,{AB =AE AC =AC CB =CE, ∴△ACB ≌△ACE (SSS ), ∴∠ACB =∠ACE ,又∵∠ACB +∠ACE =180°, ∴∠ACB =∠ACE =90°, ∴AB 是⊙O 的直径; 故选:D .5.(2020•西城区一模)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点.若∠CAB =65°,则∠ADC 的度数为( )A .65°B .35°C .32.5°D .25°【分析】首先利用直径所对的圆周角是直角确定∠ACB =90°,然后根据∠CAB =65°求得∠ABC 的度数,利用同弧所对的圆周角相等确定答案即可. 【解答】解:∵AB 是直径, ∴∠ACB =90°, ∵∠CAB =65°,∴∠ABC =90°﹣∠CAB =25°, ∴∠ADC =∠ABC =25°, 故选:D .6.(2020•延庆区一模)如图,在⊙O 中,点C 在优弧AB ̂上,将弧BC ̂沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为√5,AB =4,则BC 的长是( )A .2√3B .3√2C .5√32D .√652【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD =BD =12AB =2,于是根据勾股定理可计算出OD =1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到AĈ=CD ̂,所以AC =DC ,利用等腰三角形的性质得AE =DE =1,接着证明四边形ODEF 为正方形得到OF =EF =1,然后计算出CF 后得到CE =BE =3,于是得到BC =3√2.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图, ∵D 为AB 的中点, ∴OD ⊥AB ,∴AD =BD =12AB =2,在Rt △OBD 中,OD =√(√5)2−22=1, ∵将弧BĈ沿BC 折叠后刚好经过AB 的中点D . ∴弧AC 和弧CD 所在的圆为等圆, ∴AC ̂=CD ̂, ∴AC =DC , ∴AE =DE =1,易得四边形ODEF 为正方形, ∴OF =EF =1,在Rt △OCF 中,CF =√(√5)2−12=2, ∴CE =CF +EF =2+1=3, 而BE =BD +DE =2+1=3, ∴BC =3√2.故选:B.7.(2020•朝阳区一模)如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=12,则AB的长为()A.2.5B.4C.5D.10【分析】首先根据垂径定理和CD的长求得CE和DE的长,然后根据同弧所对的圆周角相等确定∠B=∠C,根据正切的定义求得AE和BE的长即可求得答案.【解答】解:∵AB⊥CD,CD=4,∴CE=DE=2,∵∠B=∠C,tan C=1 2,∴tan B=1 2,∴AE=1,BE=4,∴AB=AE+BE=1+4=5,故选:C.8.(2020•朝阳区一模)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),连接AC,AD,BC,CD,其中AD交l2于点E.若∠ECA=40°,则下列结论错误的是()A.∠ABC=70°B.∠BAD=80°C.CE=CD D.CE=AE 【分析】根据平行线的性质得出∠CAB=40°,进而利用圆的概念判断即可.【解答】解:∵直线l1∥l2,∴∠ECA=∠CAB=40°,∵以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,∴BA=AC=AD,∴∠ABC=180°−40°2=70°,故A正确;∵以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),∴CB=CD,∴∠CAB=∠DAC=40°,∴∠BAD=40°+40°=80°,故B正确;∵∠ECA=40°,∠DAC=40°,∴CE=AE,故D正确;故选:C.9.(2020•大兴区一模)如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于()A.100°B.80°C.50°D.40°【分析】由圆周角定理知,∠ACB=12∠AOB=40°.【解答】解:∵∠AOB=80°∴∠ACB=12∠AOB=40°.故选:D.二.填空题(共6小题)10.(2020•北京一模)已知⊙O.如图,(1)作⊙O的直径AB;(2)以点A为圆心,AO长为半径画弧,交⊙O于C,D两点;(3)连接CD交AB于点E,连接AC,BC.根据以上作图过程及所作图形,有下面三个推断:①CE=DE;②BE=3AE;③BC=2CE.所有正确推断的序号是.̂=AD̂,再根据垂径定理即可判断;【分析】①连接OC,根据作图过程可得AC②根据作图过程可得AC=OA=OC,即△AOC是等边三角形,再根据等边三角形的性质即可判断;③可以根据直角三角形30度角所对直角边等于斜边的一半,也可以根据三角形相似对应边成比例得结论.【解答】解:如图,连接OC,①∵AB是⊙O的直径,∴∠ACB=90°,∵以点A为圆心,AO长为半径画弧,交⊙O于C,D两点,̂=AD̂,∴AC根据垂径定理,得AB⊥CE,CE=DE,所以①正确;②∵AC=OA=OC,∴△AOC是等边三角形,∵AB⊥CE,∴AE=OE,∴BE=BO+OE=3AE,∴②正确; ③方法一:∵∠CAO =60°,∠ACB =90°,∠CBE =30°, ∴BC =2CE . 所以③正确. 方法二:由△ACE ∽△CBE ,∴AC :AE =BC :CE =2:1, ∴BC =2CE , 所以③正确.11.(2020•东城区一模)如图,半径为√3的⊙O 与边长为8的等边三角形ABC 的两边AB 、BC 都相切,连接OC ,则tan ∠OCB = .【分析】根据切线长定理得出∠OBC =∠OBA =12∠ABC =30°,解直角三角形求得BD ,即可求得CD ,然后解直角三角形OCD 即可求得tan ∠OCB 的值. 【解答】解:连接OB ,作OD ⊥BC 于D , ∵⊙O 与等边三角形ABC 的两边AB 、BC 都相切, ∴∠OBC =∠OBA =12∠ABC =30°, ∴tan ∠OBC =ODBD , ∴BD =ODtan30°=√333=3,∴CD =BC ﹣BD =8﹣3=5, ∴tan ∠OCB =ODCD =√35. 故答案为√35.12.(2020•石景山区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为寸.【分析】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE 的长,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB的长.【解答】解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=12CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.13.(2020•延庆区一模)把光盘、含60°角的三角板和直尺如图摆放,AB=2,则光盘的直径是.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=CB=2,∠OBA=60°,根据OA=AB tan∠OBA可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,如图所示:由切线长定理知AB=CB=2,OA平分∠ABC,∴∠OBA=60°,在Rt△ABO中,OA=AB tan∠OBA=2√3,∴光盘的直径为4√3,故答案为:4√3.14.(2020•房山区一模)如图,AC是⊙O的弦,AC=6,点B是⊙O上的一个动点,且∠ABC=60°,若点M、N分别是AC、BC的中点,则MN的最大值是.【分析】作直径AD,如图,先判断NM为△CAB的中位线得到MN=12AB,再根据圆周角定理得到∠ACD=90°,利用含30度的直角三角形三边的关系得到AD=4√3,由于AB=AD时,AB的值最大,从而得到MN的最大值.【解答】解:作直径AD,如图,∵点M、N分别是AC、BC的中点,∴NM为△CAB的中位线,∴MN=12AB,∵AD为直径,∴∠ACD=90°,∵∠ADC=∠ABC=60°∴CD=√33AC=2√3,AD=2CD=4√3,当AB=AD时,AB的值最大,∴AB最大值为4√3,MN的最大值为2√3.故答案为2√3.15.(2020•密云区一模)如图,AB为⊙O直径,点C为⊙O上一点,点D为AĈ的中点,且OD与AC相交于点E,若⊙O的半径为4,∠CAB=30°,则弦AC的长度为.【分析】利用垂径定理得到OD⊥AC,AE=CE,然后利用含30度的直角三角形三边的关系求出AE,从而得到AC的长.【解答】解:∵点D为AĈ的中点,∴OD⊥AC,∴AE=CE,在Rt△OAE中,∵∠OAE=30°,∴OE=12OA=2,AE=√3OE=2√3,∴AC=2AE=4√3.故答案为4√3.三.解答题(共14小题)16.(2020•北京一模)如图,AB为⊙O的直径,AC为弦,点D为BĈ中点,过点D作DE⊥直线AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若EF=4,sin∠F=35,求⊙O的半径.【分析】(1)如图,连接BC,OD,根据圆周角定理得到∠ACB=90°,求得OD⊥BC,得到OD⊥EF,于是得到结论;(2)解直角三角形得到AE=3,AF=5,根据相似三角形的性质即可得到结论.【解答】(1)证明:如图,连接BC,OD,∵AB 是⊙O 的直径, ∴∠ACB =90°, 又∵EF ⊥AE , ∴BC ∥EF , ∵点D 为BC ̂中点, ∴OD ⊥BC , ∴OD ⊥EF ,又∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:在Rt △AEF 中,∠AEF =90°,EF =4,sin ∠F =35, ∴AE =3,AF =5, ∵OD ∥AE , ∴△ODF ∽△AEF , ∴OD AE=OF AF,设⊙O 的半径为r ,则OD =r ,OF =AF ﹣AO =5﹣r , ∴r3=5−r 5,解得r =158, ∴⊙O 的半径为158.17.(2020•海淀区一模)如图,在Rt △ABC 中,∠BAC =90°,点D 为BC 边的中点,以AD 为直径作⊙O ,分别与AB ,AC 交于点E ,F ,过点E 作EG ⊥BC 于G . (1)求证:EG 是⊙O 的切线;(2)若AF =6,⊙O 的半径为5,求BE 的长.【分析】(1)先判断出EF是⊙O的直径,进而判断出OE∥BC,即可得出结论;(2)先根据勾股定理求出AE,再判断出BE=AE,即可得出结论.【解答】(1)证明:如图,连接EF,∵∠BAC=90°,∴EF是⊙O的直径,∴OA=OE,∴∠BAD=∠AEO,∵点D是Rt△ABC的斜边BC的中点,∴AD=BD,∴∠B=∠BAD,∴∠AEO=∠B,∴OE∥BC,∵EG⊥BC,∴OE⊥EG,∵点E在⊙O上,∴EG是⊙O的切线;(2)∵⊙O的半径为5,∴EF=2OE=10,在Rt△AEF中,AF=6,根据勾股定理得,AE=2−AF2=8,由(1)知OE∥BC,∵OA=OD,∴BE=AE=8.18.(2020•平谷区一模)如图,等边△ABC,作它的外接圆⊙O,连接AO并延长交⊙O于点D,交BC于点E,过点D作DF∥BC,交AC的延长线于点F.(1)依题意补全图形并证明:DF与⊙O相切;(2)若AB=6,求CF的长.【分析】(1)根据题意补全图形即可;(2)连接DC,根据等边三角形的性质和直径所对圆周角是直径即可求出CF的长.【解答】解:(1)如图,依题意补全图形.证明:∵等边△ABC,∴AB=AC,̂=AĈ,∴AB∵AD过圆心O,由垂径定理,∠AEC=90°,∵DF∥BC,∴∠ADF=90°,∴DF与⊙O相切.(2)解:连接DC,∵等边△ABC,∴AB=AC=BC=6,∠BAC=60°,∵AD⊥BC,∴∠DAC=30°,∵AD是直径,∴∠ACD=90°,∴DC=2√3,∵∠DCF=90°,∠F=60°,∴CF=2.19.(2020•顺义区一模)如图,在▱ABCD中,∠B=45°,点C恰好在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)连接BD,若AB=8,求BD的长.【分析】(1)连接OC,欲证明CD是⊙O的切线,只要证明CD⊥OC即可.(2)连接AC,BD交于点E.求出BE,再根据BD=2BE可得结论.【解答】(1)证明:连接OC.∵OB=OC,∠B=45°,∴∠BCO=∠B=45°.∴∠BOC=90°,∵四边形ABCD是平行四边形,∴AB∥DC.∴∠OCD=∠BOC=90°,∴OC⊥CD,∴CD是⊙O的切线.(2)解:连接AC,BD交于点E.∵AB是直径,AB=8,∴∠ACB=90°.∴BC=AC=4√2,∵四边形ABCD是平行四边形,∴CE=12AC=2√2,∴BE=2+CE2=√40=2√10,∴BD=2BE=4√10.20.(2020•东城区一模)如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l 上一点,连接CP并延长,交⊙O于点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若tan∠ACB=12,求线段BP的长.【分析】(1)连接OB,由等腰三角形的性质可得∠ACB=∠ABC,∠OBP=∠OPB=∠CP A,由余角的性质可求∠ABO=90°,可得结论;(2)过点O作OD⊥BP于D,设AP=x,AC=2x,由勾股定理可求AP=2,AC=4,由勾股定理可求CP的长,通过证明△ACP∽△DOP,可求PD的长,由等腰三角形的性质可求BP的长.【解答】证明:(1)连接OB,则OP=OB,∴∠OBP=∠OPB=∠CP A,∵AB=AC,∴∠ACB=∠ABC,∵OA⊥l,∴∠OAC=90°,∴∠ACB+∠CP A=90°,∴∠ABP+∠OBP=90°,∴∠ABO=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)如图,过点O作OD⊥BP于D,∵tan ∠ACB =AP AC =12, ∴设AP =x ,AC =2x , ∴AB =2x ,OP =OB =5﹣x , ∵AO 2=OB 2+AB 2, ∴25=(5﹣x )2+4x 2, ∴x =2, ∴AP =2,AC =4 ∴OB =OP =3, ∴CP =√AC 2+AP2=√16+4=2√5,∵∠CAP =∠ODP =90°,∠APC =∠OPD , ∴△ACP ∽△DOP , ∴PD PA=OP CP=OD CA,∴PD =OP⋅PA CP=35√5, ∵OB =OP ,OD ⊥BP , ∴BP =2PD =6√55. 21.(2020•石景山区一模)如图,AB 是⊙O 的直径,直线PQ 与⊙O 相切于点C ,以OB ,BC 为边作▱OBCD ,连接AD 并延长交⊙O 于点E ,交直线PQ 于点F . (1)求证:AF ⊥CF ;(2)连接OC ,BD 交于点H ,若tan ∠OCB =3,⊙O 的半径是5,求BD 的长.【分析】(1)连接OC,如图,根据平行四边形的性质得到DC∥OB,DC=OB,推出四边形OCDA是平行四边形,得到AF∥OC,根据切线的性质得到∠OCQ=90°,于是得到结论;(2)过点B作BN⊥OC于点N,如图,根据平行四边形的性质得到BD=2BH,CH=12CO=52.tan∠NCB=BNCN=3,设CN=x,BN=3x,求得ON=5﹣x.根据勾股定理即可得到结论.【解答】(1)证明:连接OC,如图,∵四边形OBCD是平行四边形,∴DC∥OB,DC=OB,∵AO=OB,∴DC∥AO,DC=AO,∴四边形OCDA是平行四边形,∴AF∥OC,∵直线PQ与⊙O相切于点C,OC是半径,∴∠OCQ=90°,∴∠AFC=∠OCQ=90°,即AF⊥CF;(2)解:过点B作BN⊥OC于点N,如图,∵四边形OBCD是平行四边形,∴BD=2BH,CH=12CO=52.在Rt△BNC中,tan∠NCB=BNCN=3,设CN=x,BN=3x,∴ON=5﹣x.在Rt△ONB中,(5﹣x)2+(3x)2=52,解得x1=0(舍),x2=1.∴BN=3x=3,HN=52−x=32.在Rt△HNB中,由勾股定理可得BH=3√5 2.∴BD=2BH=3√5.22.(2020•西城区一模)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若AD̂=AĈ,①补全图形;②求证:OF=OB.【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【解答】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,̂=CD̂,∴AD̂=AĈ,∵AD̂=CD̂=AĈ,∴AD∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.23.(2020•通州区一模)已知:△ABC为等边三角形.(1)求作:△ABC的外接圆⊙O.(不写作法,保留作图痕迹)(2)射线AO交BC于点D,交⊙O于点E,过E作⊙O的切线EF,与AB的延长线交于点F.①根据题意,将(1)中图形补全;②求证:EF∥BC;③若DE=2,求EF的长.【分析】(1)直接利用外接圆的作法作出三角形任意两边的垂直平分线,进而得出外接圆圆心,进而得出答案;(2)①按题意画出图形即可;②连接OB,OC,证明AE⊥BC.可得出AE⊥EF,则结论得证;③得出∠BOD=60°,设OD=x,则OB=OE=2+x,得出cos∠BOD=ODOB=x2+x=12,求出x=2,得出tan∠BAD=EFAE=EF8=√33,则可求出EF的值.【解答】解:(1)如图所示:⊙O即为所求.(2)①如图2,补全图形:②证明:连接OB,OC,∵OB=OC,∴点O在线段BC的垂直平分线上,∵△ABC为等边三角形,∴AB=AC,∴点A在线段BC的垂直平分线上,∴AO垂直平分BC,∴AE⊥BC.∵直线EF为⊙O的切线,∴AE⊥EF,∴EF∥BC;③解:∵△ABC为等边三角形,∴∠BAC=60°,∵AB=AC,AE⊥BC,∴∠BAD=12∠BAC,∴∠BAD=30°,∴∠BOD=60°,∵DE=2,设OD=x,∴OB=OE=2+x,在Rt△OBD中,∵OD⊥BC,∠BOD=60°,∴cos∠BOD=ODOB=x2+x=12,∴x=2,∴OD=2,OB=4,∴AE=8,在△AEF中,∵AE⊥EF,∠BAD=30°,∴tan∠BAD=EFAE=EF8=√33,∴EF=8√3 3.24.(2020•延庆区一模)如图,AB是⊙O的直径,点C是⊙O上的一点,点D是弧BC的中点,连接AC,BD,过点D作AC的垂线EF,交AC的延长线于点E,交AB的延长线于点F.(1)依题意补全图形;(2)判断直线EF与⊙O的位置关系,并说明理由;(3)若AB=5,BD=3,求线段BF的长.【分析】(1)依据几何语言进行画图即可;(2)连接OD.求得∠FDO=90°,即可得到直线EF是⊙O的切线;(3)连接AD.依据△ABD∽ADE,即可得到AE=3.2.设BF=x,则OF=2.5+x,AF=5+x.再根据△ODF∽△AEF,即可得到BF=45 7.【解答】解:(1)如图所示:(2)相切,理由如下:如图,连接OD.∵点D是弧BC的中点,∴∠BOD=∠F AE.∴OD∥AE.∴∠FDO=∠E.∵AE⊥EF,∴∠E=90°.∴∠FDO=90°.∴直线EF是⊙O的切线.(3)如图,连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵AB=5,BD=3,∴AD=4.∵∠E =∠ADB =90°,∠BAD =∠DAE , ∴△ABD ∽ADE , ∴AE AD=AD AB,∴AE =3.2.设BF =x ,则OF =2.5+x ,AF =5+x . ∵OD ∥AE , ∴△ODF ∽△AEF , ∴OD OF=AE AF,∴2.52.5+x=3.25+x,解得x =457. ∴BF =457. 25.(2020•门头沟区一模)如图,∠APB ,点C 在射线PB 上,PC 为⊙O 的直径,在∠APB 内部且到∠APB 两边距离都相等的所有的点组成图形M ,图形M 交⊙O 于D ,过点D 作直线DE ⊥P A ,分别交射线P A ,PB 于E ,F .(1)根据题意补全图形; (2)求证:DE 是⊙O 的切线;(3)如果PC =2CF ,且DF =√3,求PE 的长.【分析】(1)根据要求画出图形即可.(2)欲证明DE 是⊙O 的切线,只要证明DE ⊥OD 即可.(3)首先证明OF =2OD ,推出∠OFD =30°,解直角三角形求出OD ,OF ,PF 即可解决问题. 【解答】(1)解:图形如图所示:(2)证明:连接OD.∵OD=OP,∴∠ODP=∠OPD,∴PD平分∠APB,∴∠APD=∠POD,∴∠APD=∠ODP,∴OD∥P A,∵DE⊥P A,∴DE⊥OD,∴DE是⊙O的切线.(3)解:∵PC=2CF,∴可以假设CF=x,则PC=2x,OD=12OF,∵∠ODF=90°,∴∠OFD=30°,∵DF=√3,∴OD=DF•tan30°=1,∴OF=2OD=2,PF=3,在Rt△PEF中,∵∠PEF=90°,∠PFE=30°,∴PE=12PF=32.26.(2020•朝阳区一模)如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O 到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.【分析】(1)根据题意可得三角形ABC是直角三角形,再根据切线长定理即可求出a的值;(2)①根据题意可得点O是三角形ABC的内心,再根据三角形内角和即可得结论;②作OE⊥MN于点E,根据角平分线的性质可得OD=OE,所以得OE为圆O的半径,进而可得MN为圆O的切线,即可得出结论.【解答】解:(1)如图,∵AB=3,AC=4,BC=5,∴33+42=52,∴∠A=90°,∴△ABC是直角三角形,由题意可知:图形G是以O为圆心,a为半径的圆,AB,AC,BC与圆O相切,设切点分别为F,D,Q,连接OF,OD,OQ,∴OF⊥AB,OD⊥AC,OQ⊥BC,∴四边形AFOD为正方形,∴AF=AD=OF=OD=a,根据切线长定理可知:BF=BQ=3﹣a,CD=CQ=4﹣a,∴3﹣a+4﹣a=5,解得a=1;(2)①由题意可知:点O是△ABC的内心,∴∠ABM=∠CBM,∵MA⊥AB,MB⊥BC,∴∠A=∠BNM=90°,∴∠BMA=∠BMN;②如图,作OE⊥MN于点E,∵∠BMA=∠BMN,∵OD⊥AC,∴OD=OE,∴OE为圆O的半径,∴MN为圆O的切线,∴直线MN与图形G的公共点个数为1.27.(2020•密云区一模)如图,AB为⊙O的直径,点C、点D为⊙O上异于A、B的两点,连接CD,过点C作CE⊥DB,交DB的延长线于点E,连接AC、AD.(1)若∠ABD=2∠BDC,求证:CE是⊙O的切线.(2)若⊙O的半径为√5,tan∠BDC=12,求AC的长.【分析】(1)连接OC,可证明OC∥DE,由于CE⊥DB,∠CED=90°,所以∠OCE=90°,OC⊥CE,根据切线的判定即可求出答案.(2)连接BC,由于∠BDC=∠BAC,所以tan∠BAC=tan∠BDC=12,设BC=x,AC=2x,所以AB=√5x,列出方程即可求出x的值.【解答】解:(1)连接OC,∵OC =OA ,∴∠OCA =∠OAC ,∴∠COB =2∠OAC ,∵∠BDC =∠OAC ,∠ABD =2∠BDC ,∴∠COB =∠ABD ,∴OC ∥DE ,∵CE ⊥DB ,∠CED =90°,∴∠OCE =90°,OC ⊥CE ,∴CE 是⊙O 的切线.(2)连接BC ,∵∠BDC =∠BAC ,∴tan ∠BAC =tan ∠BDC =12,∵AB 是⊙O 的直径,∴∠BCA =90°,∴BC AC =12, 设BC =x ,AC =2x ,∴AB =√5x ,∵⊙O 的半径为√5,∴√5x =2√5,∴x =2,∴AC =2x =4.28.(2020•大兴区一模)已知:如图,在△ABC 中,∠B =∠C .以AB 为直径的⊙O 交BC 于点D ,过点D作DE ⊥AC 于点E .(1)求证:DE 与⊙O 相切;(2)延长DE交BA的延长线于点F,若AB=8,sin B=√55,求线段F A的长.【分析】(1)要想证DE是⊙O的切线,只要连接OD,求证∠ODE=90°即可;(2)连接AD,根据圆周角定理得到∠ADB=90°,根据三角函数的定义得到AD=AB•sin B=8√55,求得∠B=∠ADE,得到sin B=sin∠ADE=AEAD=√55,求得AE=√55AD=√55×8√55=85,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,则OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C.∴∠ODB=∠C,∴OD∥AC.∴∠ODE=∠DEC=90°,∴DE是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=8,sin B=√5 5,∴AD=AB•sin B=8√5 5,∵∠ODB+∠ADO=∠ADO+∠ADE=90°,∴∠BDO=∠ADE,∴∠B=∠ADE,∴sin B=sin∠ADE=AEAD=√55,∴AE=√55AD=√55×8√55=85,∵OD∥AE,∴△F AE∽△FOD,∴FAFO =AEOD,∵AB=8,∴OD=AO=4,∴FAFA+4= 2 5∴F A=8 3.29.(2020•丰台区一模)在Rt ABC∆中,90A∠=︒,22.5B∠=︒,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D为线段BC 延长线上一点,且点D到点A的距离也等于a.(1)求直线DA与图形W的公共点的个数;(2)过点A作AE BD⊥交图形W于点E,EP的延长线交AB于点F,当2a=时,求线段EF的长.【分析】(1)连接AP,根据圆周角定理得到45APD∠=︒,求得DA AP a==,得到45D APD∠=∠=︒,推出D A PA⊥,于是得到结论;(2)根据等腰三角形的性质得到22.5BAP B∠=∠=︒,求得67.5PAC PCA∠=∠=︒,推出点C在P上,根据垂径定理得到AC CE=,求得90APE∠=︒,于是得到结论.【解答】解:(1)直线DA与图形W的公共点的个数为1个;点P到点A,B的距离都等于a,∴点P为AB的中垂线与BC的交点,到点P的距离等于a的所有点组成图形W,∴图形W是以点P为圆心,a为半径的圆,根据题意补全图形如图所示,连接AP,∠=︒,22.5B∴∠=︒,45APD点D到点A的距离也等于a,∴==,DA AP aD APD∴∠=∠=︒,45∴∠=︒,PAD90∴⊥,DA PA∴为P的切线,DA∴直线DA与图形W的公共点的个数为1个;(2)AP BP=,∴∠=∠=︒,BAP B22.5BAC∠=︒,90∴∠=∠=︒,PAC PCA67.5∴==,PA PC a∴点C在P上,⊥交图形W于点E,AE BD=,∴AE CE∴=,AC CEDPE APD∴∠=∠=︒,45APE∴∠=︒,90===,2EP AP a∴=,45AE∠=︒,E⊥,∠=︒,AE BDB22.567.5BAE ∴∠=︒,67.5AFE BAE ∴∠=∠=︒.EF AE ∴==。
2020年中考(通用)复习专题:圆的有关计算与证明(解答题,含答案)
中考专题复习:圆的有关计算与证明解答题1.△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=11cm,BC=16cm,CA=15cm,求AF、BD、CE的长?2.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).3.如图,直线y= 与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,求横坐标为整数的点P的个数.4.如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD= BF.5.如图,在△ABC 中,BE 是它的角平分线,∠C=90°,点D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F(1)求证:AC 是⊙O 的切线;(2)已知sinA=,⊙O 的半径为3,求图中阴影部分的面积 6.如图,已知是△ 的外角 的平分线,交 的延长线于点 ,延长 交△ 的外接圆于点 ,连接 , .(1)求证:.(2)已知,若 是△ 外接圆的直径, ,求 的长.7.已知:如图,在△ABC 中,AB=BC=10,以AB 为直径作⊙O 分别交AC ,BC 于点D ,E ,连接DE 和DB ,过点E 作EF ⊥AB ,垂足为F ,交BD 于点P .(1)求证:AD=DE ;(2)若CE=2,求线段CD 的长;(3)在(2)的条件下,求△DPE 的面积.8.如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .(1)求证:BC 是半圆O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.9.如图1,在正方形ABCD中,以BC为直径的正方形内,作半圆O,AE切半圆于点F交CD于点E,连接OA、OE.(1)求证:AO⊥EO;(2)如图2,连接DF并延长交BC于点M,求的值.10.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.11.如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP交⊙O于点D,作AB⊥OP于点C,交⊙O于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6 ,①求图中阴影部分的面积;12.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2 ,求AE的长.13.如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC 交⊙O于点E,连接BE交AC于点H.(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.14.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(2,8),且与x轴相切于点B.图①图②(1)当x>0,y=5时,求x的值;(2)当x = 6时,求⊙P的半径;(3)求y关于x的函数表达式,请判断此函数图象的形状,并在图②中画出此函数的图象(不必列表,画草图即可).15.如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA的中点,阴影部分的面积为,求⊙O的半径r.16.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF 的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.17.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,CE=2.(1)求AB的长;(2)求⊙O的半径.18.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD= ,BE= ,求OE的长.19.如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.20.如图,在Rt△ABC中,∠C=90°,点D,E,F分别在AC,BC,AB边上,以AF为直径的⊙O恰好经过D,E,且DE=EF.(1)求证:BC为⊙O的切线;(2)若∠B=40°,求∠CDE的度数;(3)若CD=2,CE=4,求⊙O的半径及线段BE的长.21.如图,⊙的圆心在反比例函数的图像上,且与轴、轴相切于点、,一次函数的图像经过点,且与轴交于点,与⊙的另一个交点为点.(1)求的值及点的坐标;(2)求长及的大小;(3)若将⊙沿轴上下平移,使其与轴及直线均相切,求平移的方向及平移的距离.参考答案解答题1.解:∵△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,∴AF=AE,BF=BD,CD=CE.设AF=AE=x,则BF=BD=11﹣x,EC=DC=15﹣x.根据题意得11﹣x+15﹣x=16.解得;x=5cm.∴AF=5cm.BD=11﹣x=11﹣5=6cm,EC=15﹣x=10cm.∴AF=5cm,BD=6cm,EC=10cm.2.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴==,扇形OAB的面积==2π.弧AB的长是:=π∴周长=弧AB的长+2OA=π+4.综上所述,扇形OAB的弧长是π,周长是π+4,面积是2π.3.解:∵直线y= 与x轴、y轴分别相交于A,B两点,∴A点的坐标为(-3,0),B点的坐标为(0, ),∴AB=2 .如图,将圆P沿x轴向左移动,当圆P与该直线相切于C1时,连结P1C1,则P1C1=1,易知△AP1C1∽△ABO,∴= ,∴AP1=2,∴P1的坐标为(-1,0),同理可得P2的坐标为(-5,0).-5与-1之间的整数(不含-5和-1)有:-4,-3,-2,故满足题意的点P的个数是34.证明:连接OA,交BF于点E,∵A是弧BF的中点,O为圆心,∴OA⊥BF,∴BE= BF,∵AD⊥BC于点D,∴∠ADO=∠BEO=90°,在△OAD与△OBE中,,∴△OAD≌△OBE(AAS),∴AD=BE,∴AD= BF5. (1)证明:连结OE,[MISSING IMAGE: , ]∵BE平分∠ABC,∴∠ABC=2∠ABE,∵OB=OE,∴∠OBE=∠OEB,∴∠AOE=∠OEB+∠OBE=2∠ABE,∴∠ABC=∠AOE,又∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+∠AOE=90°,∵∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线.(2)解:连结OF,∵sinA=,∴∠A=30°,由(1)知OE⊥AC,∴∠AOE=∠ABC=60°,∵⊙O半径为3,∴OD=OE=OF=OB=BF=3,∴∠BOF=∠EOF=∠ABC=60°,∴S扇形OEF=,在Rt△AOE中,∴AO=6,AE=3,在Rt△ACB中,∴AB=9,BC=,AC=,∴CE=AC-AE=-3,CF=BC-BF=-3=,∴S梯形OFCE===,∴S阴=S梯形OFCE-S扇形OEF=-.6.(1)解:∵四边形内接于圆,∴,∵,∴,∵是△的外角平分线,∴,,∴,又∵,∴(2)解:由()得,又∵,∴△∽△,∴,∴,∴,又∵,∴,,∵是直径,∴,∴BD= ,又∵∠D=∠D,∴△DBF∽△DAC,∴,∴CD=24,解得:CD= .7.(1)解:∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌CBD∴∠ABD=∠CBD在⊙O中,AD与DE分别是∠ABD与∠CBD所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴,∵AB=BC=10,CE=2,D是AC的中点,∴CD= ;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD= ,AB=10,∴BD=3 ,∵EM⊥AB,AB是⊙O的直径,∴,∴∠BEP=∠EDB,∴△BPE∽△BED,∴,∴BP= ,∴DP=BD-BP= ,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE= .8.(1)证明:∵AB是半圆O的直径∴∠D=90°∴∠A+∠DBA=90°∵∠DBC=∠A∴∠DBC+∠DBA=90°∴BC⊥AB∴BC是半圆O的切线(2)解:∠BEC=∠D=90∘,∵BD⊥AD,BD=6,∴BE=DE=3,∵∠DBC=∠A,∴△BCE∽△BAD,∴,即∴AD=4.59.(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,AB∥CD,∴AB和CD为⊙O的切线,∵AE切半圆于点F,∴OA平分∠BAE,OE平分∠AEC,而AB∥CD,∴∠BAE+∠AEC=180°,∴∠OAE+∠OEA=90°,∴∠AOE=90°,∴OA⊥OE(2)解:作FH⊥CD于H,如图,设正方形ABCD的边长为4a,则AF=AB=4a,OB=OC=2a,∵∠AOE=90°,∴∠AOB+∠COE=90°,∵∠AOB+∠OAB=90°,∴∠OAB=∠EOC,∴Rt△ABO∽Rt△OCE,∴AB:OC=OB:CE,即4a:2a=2a:CE,解得CE=a,∴EF=EC=a,∴EA=5a,ED=3a,∵FH∥AD,∴△EFH∽△EAD,∴= = ,即= = ,∴FH= a,EH= a,∴DH=3a﹣a= a,∴CH=4a﹣a= a,∵FH∥CM,∴= = .10.(1)解:PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)解:∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM= BC=3,∴AC=AB=9,在Rt△AMC中,AM= =6 ,设⊙O的半径为r,则OC=r,OM=AM﹣r=6 ﹣r,在Rt△OCM中,OM2+CM2=OC2,即32+(6 ﹣r)2=r2,解得r= ,∴CE=2r= ,OM=6 ﹣= ,∴BE=2OM= ,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴= ,即= ,∴PC= .11.(1)证明:如图1,连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,∵OA=OB,OP=OP,∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O上,∴PB与⊙O相切于点B;(2)解:如图1,∵OP⊥AB,OP经过圆心O,∴BC= AB=3 ,∵∠PBO=∠BCO=90°,∴∠PBC+∠OBC=∠OBC+∠BOC=90°,∴∠PBC=∠BOC,∴△PBC∽△BOC,∴∴OC= = =3,∴在Rt△OCB中,OB= = =6,tan∠COB= = ,∴∠COB=60°,∴S△OPB= ×OP×BC= × =18 ,S扇DOB= =6π,∴S阴影=S△OPB﹣S扇DOB=18 ﹣6π;②若点E是⊙O上一点,连接AE,BE,当AE=6 时,BE= .3 ﹣3 或3 +312.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠CAD=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD(2)解:∵AB=2,∴OA=1,在Rt △AOC 中,AC=2,∴OC= =3,∴CD=OC ﹣OD=3﹣1=2,∵△CDE ∽△CAD ,∴ = ,即 = ,∴CE= .∴AE=AC ﹣CE=2﹣ = . 13.(1)证明:∵AB 为⊙O 的直径,∴∠ACB=90°,∵OE//BC ,∴OE ⊥AC ,∴ = ,∴∠1=∠2,∴BE 平分∠ABC(2)解:∵BD 是⊙O 的切线,∴∠ABD=90°,∵∠ACB=90°,BH=BD=2,∴∠CBD=∠2,∴∠1=∠2=∠CBD ,∴∠CBD=30°,∠ADB=60°,∵∠ABD=90°,∴AB=2 ,OB= ,∵OD 2=OB 2+BD 2 ,∴OD= .14.(1)解: 由y=5,得到P(x,5),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=5,由AP=PB,由勾股定理得,x=2+ =2+4=6,∴x=6(2)解: 由x=6,得到P(6,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=5,则圆P的半径为5(3)解: 同(2),由AP=PB,得到(x﹣2)2+(8﹣y)2=y2,整理得:= ,即图象为抛物线,画出函数图象,如图②所示;15.(1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC= r,∴∠AOB=120°,AB=2 r,∴S阴影部分=S△OAB﹣S扇形ODE= •OC•AB﹣= ﹣,∴•r•2 r﹣r2= ﹣,∴r=1,即⊙O的半径r为116. (1)证明:如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:如图,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF(3)由(2)得CD=HF,又CD=1,∴HF=1,在Rt△HFE中,EF= = ,∵EF⊥BE,∴∠BEF=90°,∴∠EHF=∠BEF=90°,∵∠EFH=∠BFE,∴△EHF∽△BEF,∴= ,即= ,∴BF=10,∴OE= BF=5,OH=5﹣1=4,∴Rt△OHE中,cos∠EOA= ,∴Rt△EOA中,cos∠EOA= = ,∴= ,∴OA= ,∴AF= ﹣5=17.(1)解:∵,∴在中∴∴∵,∴∵是的直径,∴∴(2)解:∵是的半径,,∴,∵,∴.∵,∴又∵∴∴即的半径是18.(1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE= BC,∴∠C=∠CDE,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为圆O的切线;(2)证明:∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE(3)解:∵cos∠BAD= ,∴sin∠BAC= = ,又∵BE= ,E是BC的中点,即BC= ,∴AC= .又∵AC=2OE,∴OE= AC=19.(1)解:连接OC,∵CD切⊙O于点C∴∠OCD=90°∵∠D=30°∵OA=OC∴∠A=∠ACO=30°;(2)解:∵CF⊥直径AB,CF=4∴CE=2∴在Rt△OCE中,tan∠COE= ,OE= =2,∴OC=2OE=4∴S扇形BOC= ,S△EOC= ×2×2 =2∴S阴影=S扇形BOC-S△EOC= -2 .20.(1)证明:连接OD、OE、DF,如图,∵AF为直径,∴∠ADF=90°,而∠C=90°,∴DF∥BC,∵DE=EF,∴=∴OE⊥DF,∴OE⊥BC,∴BC为⊙O的切线(2)解:∵∠OEB=90°,∠B=40°,∴∠BOE=90°﹣40°=50°,∴∠OFE= (180°﹣50°)=65°,∴∠CDE=∠AFE=65°(3)解:易得四边形CDHE为矩形,∴HE=CD=2,DH=CE=4,设⊙O的半径为r,则OH=OE﹣HE=r﹣2,OD=r,在Rt△OHD中,(r﹣2)2+42=r2,解得r=5,∵OH⊥DF,∴HF=DH=4,∵HF∥BE,∴△OHF∽△OEB,∴HF:BE=OH:OE,即4:BE=3:5,∴BE=21.(1)解:如图1中,连接AC、AB.∵⊙A与x轴、y轴相切于点B、C,∴AC⊥OC,AB⊥OB,AC=AB,四边形ABOC是正方形,设A(m,m),∵点A在y= 上,∴m2=3,∵m>0,∴点A坐标(,),∴OC= ,∴点C坐标(0,),∵一次函数y= x+b的图象经过点C,∴b= ,∴一次函数的解析式为y= ,令y=0得x=-3,∴D(-3,0),b=(2)解:如图2中,连接BC、BE,作AM⊥CE于M.在Rt△DOC中,∵tan∠CDO= ,∴∠CDO=30°,∵AC∥BD,∴∠ECA=∠CDO=30°,∠CAM=60°,∵AM⊥CE,∴∠CAM=∠EAM=60°,∴∠CAE=120°,在Rt△AMC中,CM=AC•cos30°= ,∴CE=2CM=3,∴∠CBE= ∠CAE=60°(3)解:如图3中,①当⊙A″与直线y= 相切于点E,AB与直线CD交于点K,∵AB∥OC,∴∠A″KE=∠DKB=∠DCO=60°,在Rt△A″EK中,A″E= ,A″K=A″E÷cos30°=2,在Rt△CKA中,AK=CA•tan30°=1,∴AA″=A″K+AK=1+2=3,∴⊙A向上平移3的单位⊙A与y轴及直线y= 均相切.②同理可得⊙A向下平移1个单位⊙A与y轴及直线y= 均相切。
江西省2020届中考数学单元专题练之圆的证明与计算综合大题(含答案)
江西省2020届中考数学单元专题练之圆的证明与计算综合大题类型一 与圆基本性质有关的证明与计算1. (8分)如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD .(1)求证:∠DAC =∠DBA ;(2)连接CD ,若CD =3,BD =4,求⊙O 的半径和线段DE 的长.第1题图2. (8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D . (1)求证:AO 平分∠BAC ;(2)若BC =6,sin ∠BAC =35,求AC 和CD 的长.第2题图 备用图3. (10分)如图,△ABC内接于⊙O,∠B>∠C,D是BC上一点(点D不与点B、C重合),将∠B沿AD翻折,点B正好落在⊙O上的点E处,折痕AD交⊙O 于K.(1)求证:AK是⊙O的直径;(2)设∠CAE=α,试用α的代数式表示∠CDE,并说明理由;(3)若∠B=β,∠C=γ,探究α,β,γ之间的等量关系,并加以证明.第3题图4. (10分)已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为点F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.第3题图类型二与切线有关的证明与计算5. (8分)如图,⊙O的直径AB=8,点E在圆外,AE交⊙O于点F,C是圆上一点,CD⊥AE于点D,AF=2CD=4 2.(1)求BF的长;(2)求证:CD是⊙O的切线.第5题图6. (8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.第6题图7. (8分)如图,正方形ABCD的边长为4,点P为线段AD上的一动点(不与点A、D重合),以BP为直径作半圆,圆心为点O,半圆O与边BC交于点K,线段OF∥AD,且与CD相交于点F,与半圆O相交于点E,设AP=x.(1)当x为何值时,四边形OBKE为菱形;(2)当半圆O 与CD 相切时,试求x 的值.第7题图8. (8分)如图,⊙P 过平面直角坐标系的原点O ,与x 轴交于点A (8,0),与y 轴交于点B (0,-6),⊙P 的切线DC 垂直于y 轴,垂足为D ,连接OC .(1)求⊙P 的半径;(2)求证:OC 平分∠POD ;(3)求以点B 为切点⊙P 的切线和切线CD 的交点坐标.第8题图9. (12分)如图,在Rt △ABC 中,∠A =30°,AC =8,以C 为圆心,4为半径作⊙C .(1)试判断⊙C 与AB 的位置关系,并说明理由;(2)点F 是⊙C 上一动点,点D 在AC 上且CD =2,试证明△FCD ∽△ACF ;(3)点E 是AB 边上任意一点,在(2)的情况下,试求出EF +12F A 的最小值.第9题图10. (12分)如图①,OA 、OB 是⊙O 的半径,且OA ⊥OB ,点C 是OB 延长线上任意一点,过点C 作CD 切⊙O 于点D ,连接AD 交OC 于点E .(1)求证:CD =CE ; (2)如图②,若将图①中的半径OB 所在直线向上平移,交OA 于点F ,交⊙O 于点B ′,其他条件不变,求证:∠C =2∠A ;(3)在(2)的条件下,若CD =13,sin A =513,求DE 的长.第10题图11. (12分)如图,在⊙O 中,直径CD 垂直于不过圆心O 的弦AB ,垂足为点N ,连接AC 、点E 在AB 上,且AE =CE .(1)求证:AC 2=AE ·AB ;(2)过点B 作⊙O 的切线交EC 的延长线于点P ,试判断PB 与PE 是否相等,并说明理由;(3)设⊙O 半径为4,点N 为OC 中点,点Q 在⊙O 上,求线段PQ 的最小值.第11题图江西省2020届中考数学单元专题练之圆的证明与计算综合大题答案全解全析1. (1) 证明:∵BD 平分∠CBA , ∴∠CBD =∠DBA , 又∵∠DAC =∠CBD , ∴∠DAC =∠DBA ; (2) 解:如解图,第1题解图∵∠CBD =∠DBA , ∴CD ︵=AD ︵,∴CD =AD , ∵CD =3, ∴AD =3, ∵∠ADB =90°,BD =4, ∴AB =5,故⊙O 的半径为52,S △ABD =12AD ·BD =12AB ·DE , ∴5DE =3×4,∴DE =125,即线段DE 的长为125.2. (1)证明:如解图,延长AO ,交BC 于点G ,交⊙O 于点E ,连接BE 、CE ,第2题解图∵AB =AC ,∴∠AEB =∠AEC , ∵AE 是⊙O 的直径, ∴∠ABE =∠ACE =90°,又∵AE=AE,∴Rt△ABE≌Rt△ACE,∴∠BAE=∠CAE,∴AO平分∠BAC;(2)解:∵OA=OC,AO平分∠BAC,∴∠BAG=∠CAG=∠ACO,∵∠COG=∠CAG+∠ACO,∴∠COG=∠BAC,∵sin∠BAC=3 5,∴sin∠COG=3 5,∵AB=AC,AG平分∠BAC,BC=6,∴CG=3,∠OGC=90°,∴OA=OC=CGsin∠COG=5,OG=OC2-CG2=4,∴AC=AG2+CG2=310;∵∠ACD=∠OAD,∠ADC=∠ODA,∴△ADO∽△CDA,∴ODAD=ADCD=OAAC=5310,∴OD=5AD310,CD=310AD5,∴ODCD=518,即CD-5CD=518,∴CD=90 13.3. (1)证明:证法一:如解图,连接BE,∵点B沿折痕AD翻折后与点E重合,第3题解图∴点B与点E关于折痕AD对称,∴AD垂直平分线段BE,∵B、E同在⊙O上,∴AD过圆心O(垂径定理的推论),∵AD 交⊙O 于点K , ∴AK 是⊙O 直径;证法二:如解图,连接BE 交AD 于点F , ∵点B 沿折痕AD 翻折后与点E 重合, ∴AB =AE ,∠BAF =∠EAF , 又∵AF =AF ,∴△BAF ≌△EAF (SAS ),∴BF =EF ,∠AFB =∠AFE , ∵∠BFE =180°,∴∠AFB =∠AFE =90°, ∴AD 垂直平分线段BE , ∵B 、E 在⊙O 上, ∴AD 过圆心O (4论), ∵AD 交⊙O 于点K , ∴AK 是⊙O 直径; (2)解:∠CDE =2α; 理由如下:∵CE ︵=CE ︵, ∴∠CBE =∠CAE =α, 由题可知BD =DE , ∴∠DEB =∠CBE =α, ∴∠CDE =2α; (3)解:β=α+γ;证明:∵CE ︵=CE ︵,∴∠CBE =∠CAE =α,同理,∠C =∠AEB ,∵AB =AE ,∴∠ABE =∠AEB =∠C =γ, 又∵∠ABC =β, ∴β=α+γ.4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 又∵AB =BC ,∴AD =CD ,∠C =∠DAB , 又∵∠DAB +∠BED =180°,∠BED +∠DEC =180°, ∴∠DAB =∠DEC , ∴∠C =∠DEC , ∴CD =DE , ∴AD =DE ;(2)解:如解图①,连接AE ,第4题解图①∵AB 是⊙O 的直径, ∴∠AEB =90°,∵AB =BC =10,CE =2, ∴BE =BC -CE =8,∴在Rt △AEB 中,AE =AB 2-BE 2=102-82=6, ∴在Rt △AEC 中,AC =AE 2+CE 2=62+22=210, ∴CD =12AC =12×210=10;【一题多解】∵∠DEC =∠BAC ,∠C =∠C , ∴△DEC ∽△BAC , ∴CE CA =CD CB ,即2CA =CD 10, 又∵AC =2CD ,∴22CD =CD 10,解得CD =10或CD =-10(舍去), 即线段CD 的长为10.(3)解:如解图②,过点E 作EH ⊥BD 于点H ,第4题解图②∴EH ∥CD , ∴EH CD =BE BC ,即EH 10=810,解得EH =4105,∴在Rt △DEH 中,DH =DE 2-EH 2=(10)2-(4105)2=3105.∵∠ABD +∠BPF =90°, ∠ABD +∠BAD =90°, ∴∠BPF =∠BAD , 又∵∠EPH =∠BPF , ∴∠EPH =∠BAD , ∵∠EHP =∠ADB =90°, ∴△EPH ∽△BAD ,∴EH BD =PH AD , 又∵在Rt △BCD 中,BD =BC 2-CD 2=102-(10)2=310, ∴4105310=PH 10,解得PH =41015, ∴S △DPE =12(DH +HP )·EH =12×(3105+41015)×4105=5215. 【一题多解】如解图,过点D 作DM ⊥AB 于点M , 由(2)知,AD =CD =10,∴在Rt △ABD 中,BD =AB 2-AD 2= 102-(10)2=310, 又∵S △ADB =12AD ·BD =12AB ·DM , ∴DM =AD ·BD AB =10×31010=3,∴在Rt △BDM 中,BM =BD 2-DM 2=(310)2-32=9, ∵S △AEB =12AE ·BE =12AB ·EF , ∴EF =AE ·BE AB =6×810=245,∴在Rt △BEF 中,BF =BE 2-EF 2=82-(245)2=325,∴MF =BM -BF =9-325=135.∵∠ABD =∠PBF ,∠ADB =∠PFB =90°, ∴△ADB ∽△PFB , ∴BD BF =AD PF ,即310325=10PF ,解得PF =3215,∴PE =EF -PF =245-3215=83,∴S △DPE =12PE ·MF =12×83×135=5215.5. (1)解:∵AB 是⊙O 直径, ∴∠AFB =90°,∴BF =AB 2-AF 2=82-(42)2=42,即BF 的长为42; (2)证明:如解图,连接OC ,作OG ⊥AE 于点G ,第5题解图∵OG 垂直平分AF , OA =OB ,∴OG =12BF , ∴BF =2OG ,∴BF =AF =2CD =42, ∴OG =CD ,∵OG ⊥AE ,CD ⊥AE , ∴OG ∥CD ,∴四边形OGDC 是矩形, ∴OC ⊥DC ,∵OC 为⊙O 的半径, ∴CD 是⊙O 的切线.6. (1)证明:如解图,连接AD , ∵AB 是⊙O 的直径, ∴AD ⊥BC , ∵AB =AC , ∴BD =CD , ∵OB =OA , ∴OD ∥AC ,∵DE 是⊙O 的切线, ∴OD ⊥DE , ∴DE ⊥AC .第6题解图(2)解:如解图,连接BF . ∵AB 是⊙O 的直径, ∴BF ⊥AF , ∵DE ⊥CF , ∴DE ∥BF ,∵点D 是BC 的中点, ∴EF =EC ,BF =2DE . ∵AC =AB =20, ∴EC =20-AE ,∴AF =EF -AE =EC -AE =20-2AE , ∵AE +DE =8, ∴DE =8-AE , ∴BF =16-2AE ,在Rt △ABF 中,BF 2+AF 2=AB 2, 即(16-2AE )2+(20-2AE )2=202, 解得AE =2或AE =16(舍), ∴AF =20-2AE =20-4=16. 7. 解:(1)如解图①,连接PK ,第7题解图①∵BP 是⊙O 的直径, ∴∠BKP =90°, 在正方形ABCD 中, ∵∠A =∠ABC =90°, ∴四边形ABKP 是矩形, ∴BK =AP =x , 又AB =4,∴BP =BK 2+PK 2=16+x 2,∵OF ∥BC ,OE =OB ,∴当OE =BK 时,四边形OBKE 为菱形,此时1216+x 2=x ,∵x >0,∴x =433;∴当x =433时,四边形OBKE 为菱形;(2)如解图②,当半圆O 与CD 相切时,延长EO 与AB 相交于点M ,第7题解图②∵OF ∥AD , ∴OF ⊥CD ,∴此时点E 与点F 重合,∵OF ∥AD ,且O 为BP 的中点,∴BM =2,OM =x2,∴OE =OF =4-x2, 在Rt △OBM 中,4+(x 2)2=(4-x 2)2, 解得x =3,即x 为3时,半圆O 与CD 相切. 8. (1)解:如解图,连接AB , ∵∠AOB =90°, ∴AB 是⊙P 的直径, ∴A (8,0),B (0,-6), ∴AB =OA 2+OB 2=10, ∴⊙P 的半径r =12AB =5;第8题解图(2)证明:如解图,连接PC , ∵PO =CP ,∴∠POC =∠PCO , ∵DC 切⊙P 于点C , ∴∠DCO +∠PCO =90°, 又∵CD ⊥y 轴,∴∠DOC +∠DCO =90°, ∴∠DOC =∠POC , 即OC 平分∠POD ;(3)解:如解图,过点B 作OP 的切线,与CD 的延长线交于点M ,由题意可设交点M 的坐标为(x ,2),∵C (4,2),B (0,-6), ∴OD =2,BD =8, ∵MC =MB , ∴MC 2=MB 2, ∴(x -4)2=x 2+82, 解得:x =-6, ∴M (-6,2).9. (1)解:⊙C 与AB 相切.第9题解图①理由:如解图①,作CM ⊥AB 于点M . 在Rt △ACM 中,∵∠AMC =90°,∠CAM =30°,AC =8,∴CM =12AC =4, ∵⊙C 的半径为4, ∴CM =r ,∴AB 是⊙C 的切线;(2)证明:∵CF =4,CD =2,CA =8, ∴CF 2=CD ·CA , ∴CF CD =CA CF ,∵∠FCD =∠ACF , ∴△FCD ∽△ACF .(3)解:如解图②,作DE ′⊥AB 于E ′,交⊙C 于F ′.第9题解图②∵△FCD ∽△ACF , ∴DF AF =CF CA =12,∴DF =12AF ,∴EF +12AF =EF +DF ,∴欲求EF +12AF 的最小值,就是要求EF +DF 的最小值,当E 与E ′,F 与F ′重合时,EF +DF 的值最小,最小值=DE ′=12AD =3. 10. (1)证明:连接OD ,如解图①所示:第10题解图①∵OA ⊥OB ,∴∠AOE =90°, ∴∠A +∠AEO =90°, ∵CD 是⊙O 的切线, ∴∠ODC =90°,即∠CDE +∠ODE =90°, 又∵OA =OD , ∴∠A =∠ODE , ∴∠AEO =∠CDE , ∵∠CED =∠AEO , ∴∠CDE =∠CED , ∴CD =CE ;(2)证明:连接OD ,作CM ⊥AD 于点M ,如解图②所示: 同(1)可证:CD =CE ,则∠ECM =∠DCM =12∠DCE ,DE =2DM ,∠CME =90°, ∴∠ECM +∠CEM =90°, ∵∠A +∠AEF =90°, ∠AEF =∠CEM , ∴∠A =∠ECM ,∴∠A =12∠DCE ,即∠C =2∠A ;第11题解图②(3)解:连接OD ,作CM ⊥AD 于M ,如解图②所示: 由(1)(2)可知:CD =CE ,∠DCE =2∠A ,∴DM =CD ·sinA =13×513=5, ∴DE =2DM =10.4. (1)证明:如解图①,连接BC .第11题解图①∵CD ⊥AB , ∴AC ︵=BC ︵ . ∴∠ CAB =∠ABC , 在△ACE 和△ABC 中⎩⎨⎧∠CAE =∠BAC ∠ACE =∠ABC, ∴△ACE ∽△ABC ,则AE AC =ACAB , ∴AC 2=AE ·AB ;(2)解:相等,理由如下: 如解图②连接BC ,OB .第11题解图②∵CD ⊥AB , ∴AC =BC .∴∠CAB =∠ABC ,∠ACN =∠BCN . ∵∠ANC =90°,∴∠BAC +∠ACN =90°, ∵PB 是⊙O 的切线, ∴∠OBC +∠PBC =90°. ∵OC =OB ,∴∠OCB =∠OBC ,∴∠PBC =∠CAB =∠ABC ,∴∠PBE =∠PBC +∠ABC =2∠ABC .由(1)知∵∠ACE =∠CAE ,∠CEB =∠CAE +∠ACE , ∴∠PEB =2∠CAE , ∴∠PEB =∠PBE , ∴PB =PE ;(3)解:如解图③,连接PO 交⊙O 于点Q ,此时的点Q 即是所求的点.第4题解图③∵由⊙O 的半径为4,点N 为OC 中点,在Rt △OBN 中,BN =OB 2-ON 2=42-22=23, ∴AB =43,又∵CN =2,在Rt △ACN 中,由勾股定理可得AC =4,由(1)AC 2=AE ·AB ,知AE =433,∴CE =433,又∵BE =AB -AE =43-433=833,BC =AC =4,在△BCE 中,BC 2+CE 2=42+(433)2=643 ,BE 2=(833)2=643, ∴BC 2+CE 2=BE 2, ∴∠ECB =90°,∵sin ∠BEC =BC BE =32, ∴∠BEC =60°, 由(2)知PB =PE ,∴△PBE 为等边三角形,∴PB =BE =833,在Rt △PBO 中,BO =4,PB =833,∴PO =PB 2+BO 2=4213,∴PQ min =PO -OQ =4213-4.。
2020年中考复习 圆的证明 及计算
1. 如图,在等腰三角形△ABC 中,AB=BC ,以BC 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥AB 交CB 延长线于点E ,垂足为点F 。
(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径R=5,tanC=21,求EF 的长。
解析:(1)有交点连半径,证垂直。
连接OD ,由BC 是直径可得∠CDB 是直角,又AB=AC 可得D 是AC 中点,就能得出OD ∥AB,又知DE ⊥AB,可得出OD ⊥DE ,即DE 与⊙O 相切.(3)连接DB ,作DH ⊥BC 。
由BC=10,tanC=21,可求得CD 、DB 的长,再利用面积可求DH 长,知道OD 、DH 应用勾股定理可得OH ,利用相似可求得OE 及BE 、DE 。
再利用相似可求EF 长。
2. 如图,AB 、CD 是⊙O 的直径,点E 在AB 延长线上,FE ⊥AB ,BE=EF=2,FE 的延长线交CD 延长线于点G ,DG=GE=3,连接FD 。
(1)求⊙O 的半径(2)求证:DF 是⊙O 的切线解析:(1)设⊙O 的半径为r ,则OE=r+2,OG=r+3,EG=3.利用勾股定理可求r 。
(2)由∠HOD=∠GOE,∠OHD=∠OGE,可得△ODH ∽△OEH,可得∠ODH=∠OEG=900,即DF 是⊙O 的切线。
3. 如图,△ABC 内接于⊙O ,AD 与BC 是⊙O 的直径,延长线段AC 至点G ,使AG=AD ,连接DG 交⊙O 于点E ,EF ∥AB 交AG 于点F 。
(1)求证:EF 与⊙O 相切。
(2)若EF=32,AC=4.求扇形OAC 的面积。
解析:(1)由BC 是直径可知∠BAC=900,又EF ∥AB,得∠AFE=900。
连接OE ,得∠OED=∠ODE=∠AGD,所以OE ∥AG ,得∠OEF=∠AFE=900,即EF 与⊙O 相切。
(2)过点O 作OH ⊥AC ,垂足为H ,则OH=EF=32。
2020年九年级中考数学专题训练7.圆的证明与计算
圆的证明与计算1.如图,已知△ABC 内接于⊙O , P 是圆外一点,P A 为⊙O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为⊙O 的切线;(2)若P A =45PO ,⊙O 的半径为10,求线段 PD 的长.第1题图(1)证明:如解图,连接OA 、OB ,第1题解图∵P A =PB ,OA =OB ,OP =OP , ∴△OAP ≌△OBP (SSS), ∴∠OAP =∠OBP , ∵P A 为⊙O 的切线, ∴∠OAP =90°, ∴∠OBP =90°, ∵OB 为⊙O 的半径, ∴PB 为⊙O 的切线;(2)解:∵P A =45PO ,⊙O 的半径为10, ∴在Rt △AOP 中,OA =PO 2-(45PO )2=10,解得PO=50 3,∴cos∠AOP=AOOP=ODAO,∴OD=6,∴PD=PO-OD=32 3.2.如图,在△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连接DE.(1)求证:AC是⊙O的切线;(2)若cos C=35,AC=24,求直径AE的长.第2题图(1)证明:∵AB=AC,AD=DC,∴∠C=∠B,∠DAC=∠C,∴∠DAC=∠B,又∵∠E=∠B,∴∠DAC=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠DAC+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∵OA是⊙O的半径,∴AC是⊙O的切线;(2)解:如解图,过点D作DF⊥AC于点F,第2题解图∵DA =DC , ∴CF =12AC =12,在Rt △CDF 中,∵cos C =CF CD =35, ∴DC =20, ∴AD =20,在Rt △CDF 中,由勾股定理得1622==CF CD DF -, ∵∠ADE =∠DFC =90°,∠E =∠C , ∴△ADE ∽△DFC , ∴AE DC =AD DF ,即AE 20=1620,解得AE =25,即⊙O 的直径AE 为25.3.如图,在△ABC 中,AB =BC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E ,过点E 作⊙O 的切线EF ,交BC 于点F . (1)求证:EF ⊥BC ;(2)若CD =2,tan C =2,求⊙O 的半径.第3题图(1)证明:如解图,连接BE ,OE .第3题解图∵AB 为⊙O 的直径, ∴∠AEB =90°. ∵AB =BC ,∴点E 是AC 的中点, ∵点O 是AB 的中点, ∴OE ∥BC , ∵EF 是⊙O 的切线, ∴EF ⊥OE . ∴EF ⊥BC ;(2)解:如解图,连接AD , ∵AB 为⊙O 的直径, ∴∠ADB =90°, ∵CD =2,tan C = CDAD2, ∴AD =4. 设AB =x , 则BD =x -2. 在Rt △ABD 中,由勾股定理得AB 2=AD 2+BD 2, 即x 2=42+(x -2)2, 解得x =5,即AB =5,∴⊙O 的半径为25.4.如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E . (1)求证:∠DAC =∠DCE ; (2)若AB =2,sin D =13,求AE 的长.第4题图(1)证明:∵AD 是⊙O 的切线, ∴∠DAB =90°. ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠DAC +∠CAB =90°,∠CAB +∠ABC =90°, ∴∠DAC =∠ABC . ∵OC =OB , ∴∠ABC =∠OCB , 又∵∠DCE =∠OCB , ∴∠DAC =∠DCE ; (2)解:∵AB =2, ∴AO =1. ∵sin D =AO OD =13,∴OD=3,DC=2,在Rt△DAO中,由勾股定理得AD=OD2-OA2=22,∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴DCDA=DEDC,即222=DE2,解得DE=2,∴AE=AD-DE= 2.5.如图,AB是⊙O的弦,D为半径OA的中点,过点D作CD⊥OA交弦AB于点E,交⊙O 于点F,且BC是⊙O的切线.(1)求证:CE=CB;(2)连接AF,BF,求∠ABF的度数;(3)若CD=15,BE=10,DEAE=513,求⊙O的半径.第5题图(1)证明:如解图,连接OB,第5题解图∵BC是⊙O的切线,∴OB⊥BC,即∠OBC=90°,∴∠OBA+∠CBE=90°,∵OA=OB,∴∠OAB =∠OBA , ∴∠OAB+∠CBE =90°, 又∵CD ⊥OA ,∴∠OAB +∠DEA =90°, 又∵∠CEB =∠DEA , ∴∠CBE =∠CEB , ∴CE =CB ;(2)解:如解图,连接OF ,∵DA =DO ,CD ⊥OA ,∴AF =OF , 又∵OA =OF ,∴△AOF 是等边三角形,∴∠AOF =60°, ∴∠ABF =12∠AOF =30°;(3)解:如解图,过点C 作CG ⊥AB 于点G , ∵CD ⊥OA ,∴∠ADE =∠CGE =90°, 又∵∠AED =∠CEG , ∴△ADE ∽△CGE , ∴DE AE =EG CE =513, ∵CE =BC ,∴BG =EG =12BE =5, ∴CE =13,∴DE =CD -CE =2,∴AE =265, ∴在Rt △ADE 中,由勾股定理得AD 22DE AE -==245, ∴OA =2AD =485, ∴⊙O 的半径为485.6.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AD =DC ,分别延长BA ,CD 交于点E ,作BF ⊥EC ,交EC 的延长线交于点F ,连接BD . (1)求证:△BFC ∽△BDA ; (2)若AE =AO ,求cos ∠ADE ;(3)在(2)的条件下,若BC=6,求BF的长.第6题图(1)证明:∵AB是⊙O的直径,∴∠BDA=90°.∵BF⊥EC,∴∠BFC=90°,∵四边形ABCD是⊙O的内接四边形,∴∠BCF=∠BAD,∴△BFC∽△BDA;(2)解:如解图,连接OD,AC,第6题解图∵△BFC∽△BDA,∴BFBD=BCAB,∵OD是⊙O的半径,AD=CD,∴OD垂直平分AC,∵AB是⊙O的直径,∴∠ACB=90°,∴OD∥BC,∴△EOD∽△EBC,∴OEBE=ODBC,∵AE=AO,即OE=2OB,BE=3OB,∴ODBC=BEOE23,∴BC =32OD , ∴BF BD =BC AB =32OD2OD =34, ∵∠ADB =90°, ∴∠ADE +∠BDF =90°, ∵∠BDF +∠DBF =90°, ∴∠ADE =∠DBF ,在Rt △BDF 中,cos ∠DBF =BF BD =34, ∴cos ∠ADE =34;(3)解:∵BC =32OD ,BC =6, ∴OD =4, ∴AE =4,BE =12, ∵△EOD ∽△EBC , ∴DE CE =OD BC , ∴CE =32DE ,又∵∠EDA =∠EBC ,∠E =∠E , ∴△AED ∽△CEB , ∴AE CE =DE BE , ∴DE ·CE =AE ·BE , ∴DE ·32DE =4×12,∴DE =42(负值舍去), ∴CD =22,∴AD =22, ∵△BFC ∽△BDA , ∴CF BC =AD AB ,∴CF 6=228, ∴CF =322,在Rt △BCF 中,根据勾股定理得,BF =BC 2-CF 2=3142.7.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连接AC ,过»BD上一点E 作EG ∥AC 交CD 的延长线于点G ,连 接AE 交CD 于点F ,且EG =FG ,连接CE . (1)求证:△ECF ∽△GCE ; (2)求证:EG 是⊙O 的切线;(3)延长AB 交GE 的延长线于点M ,若tan ∠G =43,AH =3,求EM 的值.第7题图(1)证明:∵AC ∥EG , ∴∠G =∠ACG ,∵AB 是⊙O 的直径,AB ⊥CD ,∴»AD =»AC , ∴∠CEF =∠ACD , ∴∠G =∠CEF , ∵∠ECF =∠ECG , ∴△ECF ∽△GCE ;(2)证明:如解图,连接OE ,第7题解图∵GF =GE ,∴∠GFE =∠GEF =∠AFH ,∵OA =OE ,∴∠OAE =∠OEA ,∵∠AFH +∠F AH =90°,∴∠GEF +∠AEO =90°,∴∠GEO =90°,∴GE ⊥OE ,∵OE 是⊙O 的半径,∴EG 是⊙O 的切线;(3)解:如解图,连接OC ,设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH =tan ∠G =HC AH =43, ∵AH =3,∴HC =4.在Rt △HOC 中,∵OC =r ,OH =r -3,HC =4,∴(r -3)2+42=r 2,解得r =625, ∵GM ∥AC ,∴∠CAH =∠M ,∵∠OEM =∠AHC=90°,∴△AHC ∽△MEO , ∴OEHC EM AH =, 即62543=EM, ∴825=EM . 8.如图,AB 为⊙O 的直径,C 、G 是⊙O 上两点,过点C 的直线CD ⊥BG 交BG 的延长线于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F ,且BC 平分∠ABD .(1)求证:CD 是⊙O 的切线;(2)若32=FD OF ,求∠E 的度数; (3)连接AD ,在(2)的条件下,若CD =23,求AD 的长.第8题图(1)证明:如解图,连接OC ,。
2020最新中考数学专项练习:与圆有关的证明与计算题
中考数学专项练习:与圆有关的证明与计算题本文档中含有大量公式,转换为网页过程中可能会出现公式位置错误的可能,但下载后均可正常显示,欢迎下载!一、单选题1.如图,AB 是O e 的弦,OC AB ⊥交O e 于点C ,点D 是O e 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D 【分析】由垂径定理、等腰三角形的性质和平行线的性质证出∠OAC =∠OCA =∠AOC ,得出△OAC 是等腰三角形,得出∠BOC =∠AOC =60°即可.【详解】解:如图,∵30ADC ∠=︒,∴260AOC ADC ∠=∠=︒.∵AB 是O e 的弦,OC AB ⊥交O e 于点C ,∴»»AC BC=. ∴60AOC BOC ∠=∠=︒.故选:D .2.如图,AB 为O e 的切线,切点为A ,连接AO BO 、,BO 与O e 交于点C ,延长BO 与O e 交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( )A .54oB .36oC .32oD .27o【答案】D 【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=o903654AOB ∴∠=-=o o oOD OA =QOAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠Q27ADC ADO ∴∠=∠=o故选D3.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°【答案】A 【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC .因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A .【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.4.如图,一条公路的转弯处是一段圆弧,点O 是这段弧所在圆的圆心,40AB m =,点C 是¶AB 的中点,且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【分析】根据题意,可以推出AD =BD =20,若设半径为r ,则OD =r ﹣10,OB =r ,结合勾股定理可推出半径r 的值.【详解】解:OC AB ⊥Q ,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+,设半径为r 得:()2221020r r =-+,解得:25r m =, ∴这段弯路的半径为25m故选:A .5.如图,点C 为扇形OAB 的半径OB 上一点,将OAC ∆沿AC 折叠,点O 恰好落在»AB上的点D 处,且¼¼:1:3BD AD ''=(¼BD'表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【答案】D 【分析】连接OD ,求出∠AOB ,利用弧长公式和圆的周长公式求解即可.【详解】解:连接OD 交AC 于M .由折叠的知识可得:12OM OA =,90OMA ∠=︒, 30OAM ∴∠=︒,60AOM ∴∠=︒,Q 且¼¼:1:3BD AD ''=,80AOB ∴∠=︒设圆锥的底面半径为r ,母线长为l ,802180l r ππ=, :2:9r l ∴=.故选:D .6.如图,边长为ABC ∆的内切圆的半径为( )A .1B C .2 D .【答案】A 【分析】连接AO 、CO ,CO 的延长线交AB 于H ,如图,利用内心的性质得CH 平分∠BCA ,AO 平分∠BAC ,再根据等边三角形的性质得∠CAB =60°,CH ⊥AB ,则∠OAH =30°,AH =BH =1 2 AB =3,然后利用正切的定义计算出OH 即可.【详解】设ABC ∆的内心为O ,连接AO 、BO ,CO 的延长线交AB 于H ,如图,∵ABC ∆为等边三角形,∴CH 平分BCA ∠,AO 平分BAC ∠,∵ABC ∆为等边三角形,∴60CAB ︒∠=,CH AB ⊥,∴30OAH ︒∠=,12AH BH AB ===在Rt AOH ∆中,∵OH tan tan30AHOAH ︒∠==,∴1OH ==, 即ABC ∆内切圆的半径为1.故选A .7.如图,在Rt △ABC 中,∠ABC =90°,AB=BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.42π- B.42π+ C.π D.2π【答案】A【分析】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,利用∠A 的正切值求出∠A =30°,继而可求得OH 、AH 长,根据圆周角定理可求得∠BOC =60°,然后根据S 阴影=S △ABC -S △AOD -S 扇形BOD 进行计算即可.【详解】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,∠ABC =90°,AB=BC =2,tan ∠A=BC AB ==, ∴∠A =30°,∴OH =12OAAH =AO •cos ∠A32=,∠BOC =2∠A =60°, ∴AD =2AH =3,∴S 阴影=S △ABC -S △AOD -S 扇形BOD=2601123222360π⨯⨯-⨯⨯-2π-,故选A.8.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是( )A.4 B.6.25 C.7.5 D.9【答案】A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF 为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴11()22AB AC BC r AB AC++=⋅,∴r=2,∴S 四边形AEOF =r ²=4,故选A .9.如图,AB 是O e 的直径,C ,D 是O e 上的两点,且BC 平分ABD ∠,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )A .OC BD PB .AD OC ⊥ C .CEF BED ∆≅∆ D .AF FD =【答案】C 【分析】由圆周角定理和角平分线得出90ADB ∠=︒,OBC DBC ∠=∠,由等腰三角形的性质得出OCB OBC ∠=∠,得出DBC OCB ∠=∠,证出OC BD P ,选项A 成立;由平行线的性质得出AD OC ⊥,选项B 成立;由垂径定理得出AF FD =,选项D 成立;CEF ∆和BED ∆中,没有相等的边,CEF ∆与BED ∆不全等,选项C 不成立,即可得出答案.【详解】∵AB 是O e 的直径,BC 平分ABD ∠,∴90ADB ∠=︒,OBC DBC ∠=∠,∴AD BD ⊥,∵OB OC =,∴OCB OBC ∠=∠,∴DBC OCB ∠=∠,∴OC BD P ,选项A 成立;∴AD OC ⊥,选项B 成立;∴AF FD =,选项D 成立;∵CEF ∆和BED ∆中,没有相等的边,∴CEF ∆与BED ∆不全等,选项C 不成立,故选C .10.如图,在Rt ABC ∆中,90304ACB A BC ∠=︒∠=︒=,,,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A .43πB .232π-C .132π-D .13π【答案】A 【分析】根据三角形的内角和得到60B ∠︒=,根据圆周角定理得到12090COD CDB ∠︒∠︒=,=,根据扇形和三角形的面积公式即可得到结论.【详解】解:∵在Rt ABC ∆中,9030ACB A ∠︒∠︒=,=,60B ∴∠︒=,120COD ∴∠︒=,4BC Q =,BC 为半圆O 的直径,90CDB ∴∠︒=,2OC OD ∴==,CD ∴==图中阴影部分的面积2120214136023COD COD S S ππ∆⋅⨯-⨯=扇形=﹣= 故选:A .二、填空题11.如图,O e 的两条相交弦AC 、BD ,60ACB CDB ︒∠=∠=,AC =O e 的面积是_______.【答案】4π.【分析】由A BDC ∠=∠,而60ACB CDB ︒∠=∠=,所以60A ACB ︒∠=∠=,得到ACB ∆为等边三角形,又AC =O e 的面积.【详解】解:∵A BDC ∠=∠,而60ACB CDB ︒∠=∠=,∴60A ACB ︒∠=∠=,∴ACB ∆为等边三角形,∵AC =∴圆的半径为2,∴O e 的面积是4π,故答案为4π.12.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)【答案】π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N , 则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为:π−1.13.如图,CD 为O e 的直径,弦AB CD ⊥,垂足为E ,»»AB BF=,1CE =,6AB =,则弦AF 的长度为______.【答案】485【分析】连接OA 、OB ,OB 交AF 于G ,如图,利用垂径定理得到3AE BE ==,设O e 的半径为r ,则1OE r =-,OA r =,根据勾股定理得到22231()r r +-=,解得=5r ,再利用垂径定理得到OB AF ⊥,AG FG =,则2225AG OG +=,222()56AG OG +-=,然后解方程组求出AG ,从而得到AF 的长.【详解】连接OA 、OB ,OB 交AF 于G ,如图,∵AB CD ⊥,132AE BE AB ∴===, 设⊙O 的半径为r ,则1OE r =-,OA r =, 在Rt OAE ∆中,22231()r r +-=,解得=5r ,∵»»AB BF=, OB AF ∴⊥,AG FG =,在Rt OAG ∆中,2225AG OG +=,①在Rt ABG ∆中,222()56AG OG +-=,② 解由①②组成的方程组得到245AG =, 4825AF AG ∴==. 故答案为485. 14.如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为__________.【答案】a π【分析】勒洛三角形的周长为3段相等的弧,计算弧长即可.【详解】勒洛三角形的周长为3段相等的弧,每段弧的长度为:60πa 1πa.1803⋅= 则勒洛三角形的周长为:1πa 3πa.3⨯=故答案为:πa.15.如图,在平面直角坐标系中,已知D e 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,点B 坐标为(0,,OC 与D e 交于点C ,30OCA ∠=︒,则圆中阴影部分的面积为_____.【答案】2π-【分析】由圆周角定理可得30OBA C ∠=∠=︒,在Rt △AOB 中,利用解直角三角形求出OA 、AB 的长,然后根据S 阴=S 半-S △ABO 求解即可.【详解】连接AB ,∵90AOB ∠=︒,∴AB 是直径,根据同弧对的圆周角相等得30OBA C ∠=∠=︒,∵OB =∴tan tan 302OA OB ABO OB ︒=∠===,sin 304AB AO ︒=÷=,即圆的半径为2,∴2212222ABO S S S ππ⨯=-=-⨯⨯=-△阴影半圆故答案为:2π-.16.如图,AB 是圆O 的弦,OC AB ⊥,垂足为点C ,将劣弧¶AB 沿弦AB 折叠交于OC的中点D ,若AB =,则圆O 的半径为_____.【答案】【分析】连接OA ,设半径为x ,用x 表示OC ,根据勾股定理建立x 的方程,便可求得结果.【详解】解:连接OA ,设半径为x ,Q 将劣弧»AB 沿弦AB 折叠交于OC 的中点D , 23OC x ∴=,OC AB ⊥, 1102AC AB ∴==, 222OA OC AC -=Q ,222()103x x ∴-=, 解得,32x =.故答案为32.17.如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为___________【答案】5【分析】连接OP ,设半径为r ,在直角三角形OCP 中利用勾股定理将CO 用r 表示,得到AC ,又有△ACD ∽△AOB ,利用AC DC AO BO=,解出r 即可 【详解】连接OP ,设半径为r ,则OP =OA =OB =r ,PC =PD +CD =3,在直角三角形OCP 中,222OC PC OP +=,即得OC 2=r 2-9,得到OC得到AC =r ACD ∽△AOB ,所以AC DC AO BO =1r =,得到r 1=,解出r =5;故填518.如图,在圆心角为90°的扇形OAB 中,2OB =,P 为»AB 上任意一点,过点P 作PE OB ⊥于点E ,设M 为OPE ∆的内心,当点P 从点A 运动到点B 时,则内心M 所经过的路径长为_____.【答案】2【分析】以OB 为斜边在OB 的右边作等腰/Rt P OB ∆,以/P 为圆心PB 为半径作⊙/P ,在优弧OB 上取一点H ,连接HB ,HO ,BM ,MP .求出135OMP ︒∠=,证()OMB OMP SAS ∆≅∆,得135OMB OMP ︒∠=∠=,由180H OMB ︒∠+∠=,证,,,O M B H 四点共圆,故点M 的运动轨迹是»OB,由弧长公式可得. 【详解】如图,以OB 为斜边在OB 的左边作等腰/Rt P OB ∆,以/P 为圆心/P B 为半径作⊙/P ,在优弧OB 上取一点H ,连接HB ,HO ,BM ,MP .∵PE OB ⊥,∴90PEO ∠=o ,∵点M 是内心,∴135OMP ︒∠=,∵OB OP =,MOB MOP ∠=∠,OM OM =,∴()OMB OMP SAS ∆≅∆,∴135OMB OMP ︒∠=∠=, ∵1452H BPO ︒∠=∠=, ∴180H OMB ︒∠+∠=,∴,,,O M B H 四点共圆,∴点M 的运动轨迹是»OB,∴内心M 所经过的路径长==,. 19.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A ,点C ,交OB 于点D ,若3OA =,则阴影部分的面积为_____.【答案】34π【分析】根据题意连接OC ,可得阴影部分的面积等于两个阴影部分面积之和,再根据弧AC 所对的阴影部分面积等于弧AC 所对圆心角的面积减去OAC ∆的面积,而不规则图形BCD 的面积等于OBC ∆的面积减去弧DC 所对圆心角的面积.进而可得阴影部分的面积.【详解】解:根据题意连接OC,90903060OA OC OAB B ︒︒︒︒=∠=-∠=-=QACO ∴∆为等边三角形60AOC ︒∴∠=∴阴影部分面积1=26013333cos3036022ππ︒⨯⨯-⨯⨯=-∴阴影部分面积2=21330332236044ππ⨯-⨯⨯=- ∴阴影部分面积=阴影部分面积1+阴影部分面积2=34π 故答案为34π。
2020年中考数学复习 第六单元 圆 滚动小专题(七)与圆有关的计算与证明练习
滚动小专题(七) 与圆有关的计算与证明类型1 与圆的基本性质有关的计算与证明1.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD⊥AC,垂足为E ,连接BD.(1)求证:BD 平分∠ABC;(2)当∠ODB=30°时,求证:BC =OD.证明:(1)∵OD⊥AC,OD 为半径,∴CD ︵=AD ︵.∴∠CBD=∠ABD.∴BD 平分∠ABC.(2)∵OB=OD ,∴∠OBD=∠ODB=30°.∴∠AOD=∠OBD+∠ODB=30°+30°=60°.又∵OD⊥AC 于E ,∴∠OEA=90°.∴∠A=180°-∠OEA-∠AOD=30°.又∵AB 为⊙O 的直径,∴∠ACB=90°.∴在Rt △ACB 中,BC =12AB. 又∵OD=12AB , ∴BC=OD.2.(2018·温州)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上.(1)求证:AE =AB ;(2)若∠CAB=90°,cos ∠ADB=13,BE =2,求BC 的长.解:(1)证明:由题意,得△ADE≌△ADC,∴∠AED=∠ACD,AE =AC.∵∠ABD=∠AED,∴∠ABD=∠ACD.∴AB=AC ,∴AE=AB.(2)过点A 作AH⊥BE 于点H.∵AB=AE ,BE =2.∴BH=EH =1.∵∠ABE=∠AEB=∠ADB,cos ∠ADB=13, ∴cos ∠ABE=cos ∠ADB=13. ∴BH AB =13. ∴AC=AB =3.∵∠BAC=90°,AC =AB ,∴BC=3 2.3.(2018·包头)如图,在Rt △ACB 中,∠ACB=90°,以点A 为圆心,AC 长为半径的圆交AB 于点D ,BA 的延长线交⊙A 于点E ,连接CD ,CE ,F 是⊙A 上一点,点F 与点C 位于BE 两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC =2,BD =1,求CE 的长及sin ∠A BF 的值.解:(1)证明:∵∠ACB=90°,∴∠BCD+∠ACD=90°.∵DE 是⊙A 的直径,∴∠DCE=90°.∴∠BEC+∠CDE=90°.∵AD=AC ,∴∠CDE=∠ACD.∴∠BCD=∠BEC.(2)∵∠BCD=∠BEC,∠CBD=∠EBC,∴△BDC∽△BCE.∴CD EC =BD BC =BC BE. ∵BC=2,BD =1,∴BE=4,EC =2CD.∴DE=BE -BD =3.在Rt △DCE 中,DE 2=CD 2+CE 2=9. ∴CD=355.∴CE=655. 过点F 作FM⊥AB 于点M ,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC.∴FM AC =AF BA. ∵DE=3,∴AD=AF =AC =32,AB =52. ∴FM=910. 过点F 作FN⊥BC 于点N ,∴∠FNC=90°.∵∠FAB=∠ABC,∴FA∥BC.∴∠FAC=∠ACB=90°.∴四边形FNCA 是矩形.∴FN=AC =32,NC =AF =32,∴BN=12. 在Rt △FBN 中,BF =BN 2+FN 2=102, ∴在Rt △F BM 中,sin ∠ABF=FM BF =91050.类型2 与圆的切线有关的计算与证明4.(2018·滨州)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD⊥CD 于点D ,且AC 平分∠DAB.求证:(1)直线DC 是⊙O 的切线;(2)AC 2=2AD·AO.证明:(1)连接OC.∵OA=OC ,∴∠OAC=∠OCA.∵AC 平分∠DAB,∴∠O AC =∠DAC.∴∠DAC=∠OCA.∴OC∥AD.又∵AD⊥CD,∴OC⊥DC.∵OC 为⊙O 的半径,∴DC 是⊙O 的切线.(2)连接BC.∵AB 为⊙O 的直径,∴AB=2AO ,∠ACB=90°.∵AD⊥DC,∴∠ADC=∠ACB=90°.又∵∠DAC=∠CAB,∴△DAC∽△CAB.∴AD AC =AC AB,即AC 2=AB·AD. ∴AC 2=2AD·AO.5.(2017·金华)如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,A D⊥CD 于点D ,E 是AB 延长线上一点,CE 交⊙O 于点F ,连接OC ,AC.(1)求证:AC 平分∠DAO;(2)若∠DAO=105°,∠E=30°.①求∠OCE 的度数;②若⊙O的半径为22,求线段EF的长.解:(1)证明:∵直线CD与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD∥OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OC E=45°.②过点O作OG⊥CE于点G,可得FG=CG.∵OC=22,∠OCE=45°,∴OG=CG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=2 3.∴EF=GE-FG=23-2.6.(2018·苏州)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E,延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△C EO是等腰直角三角形.证明:(1)连接AC.∵CD为⊙O的切线,∴OC⊥CD.又∵AD⊥CD,∴∠DCO=∠D=90°.∴AD∥OC,∴∠DAC=∠ACO.又∵OC=OA,∴∠CAO=∠ACO.∴∠DAC=∠CAO.又∵CE⊥AB,∴∠CEA=90°.在△CDA 和△CEA 中,⎩⎪⎨⎪⎧∠D=∠CEA,∠DAC=∠EAC,AC =AC ,∴△CDA≌△CEA(AAS ).∴CD=CE.(2)证法一:连接BC.∵△CDA≌△CEA,∴∠DCA=∠ECA.∵CE⊥AG,AE =E G ,∴CA=CG. ∴∠ECA=∠ECG.∵AB 是⊙O 的直径,∴∠ACB=90°.又∵CE⊥AB,∴∠ACE=∠B.又∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG.又∵∠D=90°,∴∠DCF+∠F=90°.∴∠F=∠DCA=∠ACE=∠ECG=22.5°.∴∠AOC=2∠F=45°.∴△CEO 是等腰直角三角形.证法二:设∠F=x°,则∠AOC =2∠F=2x°.∵AD∥OC,∴∠OAF=∠AOC=2x°.∴∠CGA=∠OA F +∠F=3x°.∵CE⊥AG,AE =EG ,∴CA=CG.∴∠EAC=∠CGA.∴∠DAC=∠EAC=∠CGA=3x°.又∵∠DAC+∠EAC+∠OAF=180°,∴3x°+3x°+2x°=180°.∴x=22.5.∴∠AOC=2x°=45°.∴△CEO 是等腰直角三角形.7.(2017·孝感)如图,⊙O 的直径AB =10,弦AC =6,∠ACB 的平分线交⊙O 于D ,过点D 作DE∥AB 交CA 的延长线于点E ,连接AD ,BD.(1)由AB ,BD ,AD ︵围成的曲边三角形的面积是252+25π4; (2)求证:DE 是⊙O 的切线;(3)求线段DE 的长.解:(2)证明:连接OD.∵CD 平分∠ACB,∴∠ACD=∠BCD.∴AD=DB.又∵AB 为直径,∴AD⊥DB,∴∠ADB=90°.∴OD⊥AB.∵DE∥AB,∴OD⊥DE.又∵OD 为⊙O 的半径,∴DE 是⊙O 的切线.(3)∵AB=10,AC =6, ∴BC =AB 2-AC 2=8.过点A 作AF⊥DE 于点F ,则四边形AODF 是正方形,∴AF =OD =FD =5,∠BAF=90°.∵∠EAF+∠CAB=90°,∠ABC+∠CAB=90°,∴∠EAF=∠ABC.∴tan ∠EAF=tan ∠ABC.∴EF AF =AC BC ,即EF 5=68. ∴EF=154. ∴DE=DF +EF =5+154=354. 8.(2018·株洲)如图,已知AB 为⊙O 的直径,AB =8,点C 和点D 是⊙O 上关于直线AB 对称的两个点,连接OC ,AC ,且∠BOC<90°,直线BC 和直线AD 相交于点E ,过点C 作直线CG 与线段AB 的延长线相交于点F ,与直线AD 相交于点G ,且∠GAF=∠GCE.(1)求证:直线CG 为⊙O 的切线;(2)若点H 为线段OB 上一点,连接CH ,满足CB =CH.①求证:△CBH∽△OBC;②求OH +HC 的最大值.解:(1)证明:∵C,D 关于AB 对称,∴∠GAF=∠CAF.∵∠GAF=∠GCE,∴∠GCE=∠CAF.∵OA=OC ,∴∠CAF=∠ACO.∴∠GCE=∠ACO.∵AB 为直径,∴∠ACO+∠OCB=90°.∴∠GCE+∠OCB=90°,即∠OCG=90°.又∵OC 为⊙O 的半径,∴CG 为⊙O 的切线.(2)①证明:∵OC=OB ,CH =BC ,∴∠OCB=∠OBC,∠CHB=∠CBH,∠CBH=∠OBC=∠OCB=∠CHB.∴△CBH∽△OBC.②∵△CBH∽△OBC,∴BH BC =BC BO .∴BH=BC24.设BC =x ,则CH =x ,BH =x24.∴OH+HC =-14x 2+x +4=-14(x -2)2+5.∴当x =2时,OH +HC 的最大值为5.9.(2018·娄底)如图,C ,D 是以AB 为直径的⊙O 上的点,AC ︵=BC ︵,弦CD 交AB 于点E.(1)当PB 是⊙O 的切线时,求证:∠PBD=∠DAB;(2)求证:BC 2-CE 2=CE·DE;(3)已知OA =4,E 是半径OA 的中点,求线段DE 的长.解:(1)证明:∵AB 是⊙O 的直径,∴∠ADB=90°,即∠DAB+∠ABD=90°.∵PB 是⊙O 的切线,∴∠ABP=90°,即∠PBD+∠ABD=90°.∴∠DAB=∠PBD.(2)证明:∵∠A=∠C,∠AED=∠CEB,∴△ADE∽△CBE.∴DE BE =AE CE ,即DE·CE=AE·BE.连接OC.设圆的半径为r ,则OA =OB =OC =r ,则DE·CE=AE·BE=(OA -OE)(OB +OE)=r 2-OE 2.∵AC ︵=BC ︵,∴∠AOC=∠BOC=90°.∴CE 2=OE 2+OC 2=OE 2+r 2,BC 2=BO 2+CO 2=2r 2,则BC 2-CE 2=2r 2-(OE 2+r 2)=r 2-OE 2. ∴BC 2-CE 2=DE·CE.(3)∵OA=4,∴OB=OC =OA =4. ∴BC=OB 2+OC 2=4 2.又∵E 是半径OA 的中点,∴AE=OE =2.则CE =OC 2+OE 2=42+22=2 5.∵BC 2-CE 2=DE·CE, ∴(42)2-(25)2=DE ·2 5.∴DE=655.。
人教版2020年中考数学一轮复习《与圆有关的证明和计算》大题专项练习含答案解析
中考专题——与圆有关的证明和计算纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择题的形式考查并占有一定的分值;圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形式考查;一般在10分-15分左右,以后发展中利用圆的知识与其他知识点如函数,方程等相结合作为中考压轴题将会占有非常重要的地位。
考查的类型:(1)线段、角以及切线的证明;(2)利用勾股定理、相似以及锐角三角函数进行线段,比值和阴影面积的求解.例题精讲:1、如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).2、如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.3、如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.4、如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.5、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.补充练习:1、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若∠C=60°,⊙O的半径为2,求由弧DE,线段DF,EF围成的阴影部分的面积(结果保留根号和π)2、如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).3、如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.4、如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)5、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)判断CE与⊙O的位置关系,并说明理由;(2)若∠DBA=30°,CG=8,求BE的长.6、如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE于点D.(1)求证:DC是⊙O的切线;3,求DE的长;(2)若AO=6,DC=33,求图中阴影部分面积.(3)过点C作CF⊥AB于F,如图2,若AD-OA=1.5,AC=3答案解析例题精讲:1、(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴∠AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=A0=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.2、(1)证明:∵∵ABC=∵APC,∵BAC=∵BPC,∵APC=∵CPB=60°,∵∵ABC=∵BAC=60°,∵∵ABC是等边三角形.(2)解:∵∵ABC是等边三角形,AB=2,∵AC=BC=AB=2,∵ACB=60°.在Rt∵PAC中,∵PAC=90°,∵APC=60°,AC=2,∵AP=AC•cot∵APC=2.在Rt∵DAC中,∵DAC=90°,AC=2,∵ACD=60°,∵AD=AC•tan∵ACD=6.∵PD=AD﹣AP=6﹣2=4.3、(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.4、(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,∵OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.5、(1)证明:∵AB 是⊙O 的直径,∴∠ACB =∠ACD =90°,∵点F 是ED 的中点,∴CF =EF =DF ,∴∠AEO =∠FEC =∠FCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OD ⊥AB ,∴∠OAC+∠AEO =90°, ∴∠OCA+∠FCE =90°,即OC ⊥FC ,∴CF 与⊙O 相切;(2)解:∵OD ⊥AB ,AC ⊥BD ,∴∠AOE =∠ACD =90°,∵∠AEO =∠DEC ,∴∠OAE =∠CDE =22.5°, ∵AO =BO ,∴AD =BD ,∴∠ADO =∠BDO =22.5°,∴∠ADB =45°,∴∠CAD =∠ADC =45°,∴AC =CD .补充练习:1、(1)如图,连接OD ∵AB 为⊙O 的直径∴AD ⊥BC ∵AB=AC ∴BD=CD ,D 为BC 中点∵O 为AB 中点∴OD ∥AC ∵DF ⊥AC ∴DF ⊥OD ∴DF 为⊙O 的切线(2)如图,连接OE 、OD ∵AB=AC ,∠C=60°∴△ABC 为等边三角形∴∠B=∠A=60°,AB=AC=BC=2⨯2=4∵OA=OB=OD=OE ∴△OAE ,△OBD 都是等边三角形∴∠ODB=∠BOD=∠AOE -∠OEA=∠C=60° ∴∠DOE=180°-2⨯60°=60°,OD ∥AC ,OE ∥BC ∴四边形ODCE 是平行四边形∴OD=CE=BD=CD=2∴DF=CDsin60°=3232=⨯,CF=CDcos60°=1212=⨯ ∴ππ32-323360260-3121-32--2=⨯⨯⨯⨯==∆ODE CDF S S S S 扇形平行四边形阴影2、(1)证明:连接DE 、OD ∵BC 相切⊙O 于点D ∴∠CDA=∠AED ∵AE 为直径∴∠ADE=90°∵AC ⊥BC ∴∠ACD=90°∴∠DAO=∠CAD ∴AD 平分∠BAC(3)在Rt △ABC 中,∠C=90°,AC=BC ∴∠B=∠BAC=45°∵BC 相切⊙O 于点D ∴∠ODB=90°∴OD=BD ,∠BOD=45°设BD=x ,则OD=OA=x ,0B=3x ∴BC=AC=x+1∵AC 2+BC 2=AB 2∴22)2()12x x x +=+( 所以x=2∴BD=OD=2 ∴()4-1360245-22212ππ=⨯⨯=-∆=DOE S BOD S S 扇形阴影3、(1)证明:连接OD ,∵AB=AC ,∴∠B=∠C 。
2020年中考数学复习 圆的有关计算与证明问题(解析版)
【考点1】圆中有关角的计算问题【例1】(2019•台州)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC 上,连接AE.若∠ABC=64°,则∠BAE的度数为.【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案.【解析】∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.点评:此题主要考查了圆内接四边形的性质以及三角形的外角,正确得出∠AEC的度数是解题关键.̂)上,若∠【例2】(2019•温州)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧(EDFBAC=66°,则∠EPF等于度.【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【解析】连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57点评:本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.【考点2】切线的有关线段计算问题【例3】(2019•舟山)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC延长线于点P ,则P A 的长为( )A .2B .√3C .√2D .12【分析】连接OA ,根据圆周角定理求出∠AOP ,根据切线的性质求出∠OAP =90°,解直角三角形求出AP 即可.【解析】连接OA ,∵∠ABC =30°,∴∠AOC =2∠ABC =60°,∵过点A 作⊙O 的切线交OC 的延长线于点P , ∴∠OAP =90°, ∵OA =OC =1,∴AP =OA tan60°=1×√3=√3, 故选:B .点评:本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.【例4】(2019•台州)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则⊙O 的半径为( )A .2√3B .3C .4D .4−√3【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C=∠BAC=60°,由切线的性质得到∠BAO=∠CAO=12∠BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.【解析】设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=12∠BAC=30°,∴∠AOC=90°,∴OC=12AC=4,∵OE⊥AC,∴OE=√32OC=2√3,∴⊙O的半径为2√3,故选:A.点评:本题考查了切线的性质,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【考点3】扇形与弧长的有关计算问题【例5】(2019•宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A .3.5cmB .4cmC .4.5cmD .5cm【分析】设AB =xcm ,则DE =(6﹣x )cm ,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【解析】设AB =xcm ,则DE =(6﹣x )cm , 根据题意,得90πx 180=π(6﹣x ),解得x =4. 故选:B .点评:本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.【例6】(2019•绍兴)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°.若BC =2√2,则BC ̂的长为( )A .πB .√2πC .2πD .2√2π【分析】连接OB ,OC .首先证明△OBC 是等腰直角三角形,求出OB 即可解决问题. 【解析】连接OB ,OC .∵∠A =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣70°=45°, ∴∠BOC =90°, ∵BC =2√2,∴BC ̂的长为90⋅π⋅2180=π,故选:A .点评:本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 【考点4】圆锥的有关计算问题【例7】(2019•湖州)已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是( ) A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算. 【解析】这个圆锥的侧面积=12×2π×5×13=65π(cm 2). 故选:B .点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【例8】(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .√3C .32D .√2【分析】先证明△ABD 为等腰直角三角形得到∠ABD =45°,BD =√2AB ,再证明△CBD 为等边三角形得到BC =BD =√2AB ,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,从而得到下面圆锥的侧面积. 【解析】∵∠A =90°,AB =AD , ∴△ABD 为等腰直角三角形, ∴∠ABD =45°,BD =√2AB ,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=√2AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=√2×1=√2.故选:D.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.【考点5】圆与多边形的有关计算问题【例9】(2019•湖州)如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°【分析】根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【解析】∵五边形ABCDE为正五边形,∴∠ABC=∠C=(5−2)×180°5=108°,∵CD=CB,∴∠CBD=180°−108°2=36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.点评:本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n﹣2)×180°是解题的关键.【例10】(2018•温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB =5cm ,小正六边形的面积为49√32cm 2,则该圆的半径为 8 cm .【分析】设两个正六边形的中心为O ,连接OP ,OB ,过O 作OG ⊥PM ,OH ⊥AB ,由正六边形的性质及邻补角性质得到三角形PMN 为等边三角形,由小正六边形的面积求出边长,确定出PM 的长,进而求出三角形PMN 的面积,利用垂径定理求出PG 的长,在直角三角形OPG 中,利用勾股定理求出OP 的长,设OB =xcm ,根据勾股定理列出关于x 的方程,求出方程的解即可得到结果. 【解析】设两个正六边形的中心为O ,连接OP ,OB ,过O 作OG ⊥PM ,OH ⊥AB , 由题意得:∠MNP =∠NMP =∠MPN =60°, ∵小正六边形的面积为49√32cm 2,∴小正六边形的边长为7√33cm ,即PM =7√3cm , ∴S △MPN =147√34cm 2, ∵OG ⊥PM ,且O 为正六边形的中心, ∴PG =12PM =7√32cm ,OG =√36PM =72, 在Rt △OPG 中,根据勾股定理得:OP =(72)2+(7√32)2=7cm , 设OB =xcm ,∵OH ⊥AB ,且O 为正六边形的中心, ∴BH =12x ,OH =√32x ,∴PH =(5−12x )cm ,在Rt △PHO 中,根据勾股定理得:OP 2=(√32x )2+(5−12x )2=49, 解得:x =8(负值舍去),则该圆的半径为8cm.故答案为:8点评:此题考查了正多边形与圆,熟练掌握正多边形的性质是解本题的关键.【考点6】圆中有关线段的最值问题【例11】(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为12.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出即可.【解析】连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD=√OD2−OC2=√r2−OC2,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD =CB =12AB =12×1=12, 即CD 的最大值为12, 故答案为:12.点评:本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C 的位置是解此题的关键. 【考点7】圆中有关计算与证明综合问题【例12】(2019•金华)如图,在▱OABC 中,以O 为圆心,OA 为半径的圆与BC 相切于点B ,与OC 相交于点D .(1)求BD̂的度数. (2)如图,点E 在⊙O 上,连结CE 与⊙O 交于点F ,若EF =AB ,求∠OCE 的度数.【分析】(1)连接OB ,证明△AOB 是等腰直角三角形,即可求解;(2)△AOB 是等腰直角三角形,则OA =√2t ,HO =√OE 2−EH 2=√2t 2−t 2=t ,即可求解. 【解析】(1)连接OB ,∵BC 是圆的切线,∴OB ⊥BC , ∵四边形OABC 是平行四边形, ∴OA ∥BC ,∴OB ⊥OA , ∴△AOB 是等腰直角三角形, ∴∠ABO =45°, ∴BD̂的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=√2t,则HO=√OE2−EH2=√2t2−t2=t,∵OC=2OH,∴∠OCE=30°.点评:本题主要利用了切线和平行四边形的性质,其中(2),要利用(1)中△AOB是等腰直角三角形结论.【例13】(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.̂的长.(2)若DE=√3,∠C=30°,求AD【分析】(1)连接OD,只要证明OD⊥DE即可;(2)连接AD,根据AC是直径,得到∠ADC=90°,利用AB=AC得到BD=CD,解直角三角形求得BD,在Rt△ABD中,解直角三角形求得AD,根据题意证得△AOD是等边三角形,即可OD=AD,然后利用弧长公式求得即可.【解答】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∠C=30°,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE=√3,∠B=30°,∠BED=90°,∴CD=BD=2DE=2√3,∴OD=AD=tan30°•CD=√33×2√3=2,∴AD̂的长为:60π⋅2180=2π3.点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.一.选择题(共5小题)1.(2020•温岭市一模)如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC =105°,则上下两圆锥的侧面积之比为( )A .1:2B .1:√3C .2:3D .1:√2【分析】设BD =2r ,先利用∠A =90°得到AB =√2r ,再计算∠CBD =60°,则BC =BD =2r ,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算上下两圆锥的侧面积的比值. 【解析】设BD =2r , ∵AB =AD ,∠A =90°, ∴AB =√2r , ∵∠ABC =105°, ∴∠CBD =60°, ∴BC =BD =2r ,∴上下两圆锥的侧面积之比=(12×2πr ×√2r ):(12×2πr ×2r )=1:√2.故选:D .2.(2020•金华模拟)如图,一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A 相对的上底面的B 点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为( )A.√36+4π2B.√4+36π2C.4πD.6π【分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理来求.【解析】把圆柱侧面展开,展开图如图所示,点A,B的最短距离为线段AB的长,BC=6,AC为底面半圆弧长,AC=2π,所以AB=√62+(2π)2=√36+4π2.故选:A.3.(2020•杭州模拟)如图,在△ABC中,以BC为直径的⊙O,交AB的延长线于点D,交AC于点E,连接OD,OE.若∠A=α,则∠DOE的度数为()A.180°﹣2αB.180°﹣αC.90°﹣αD.2α【分析】连接CD,如图,根据圆周角定理得到∠BDC=90°,利用互余得到∠ACD=90°﹣α,然后根据圆周角定理得到∠DOE=2(90°﹣α).【解析】连接CD,如图,∵BC为直径,∴∠BDC=90°,∴∠ACD=90°﹣∠A=90°﹣α,∴∠DOE=2∠ACD=2(90°﹣α)=180°﹣2α.故选:A.4.(2020•温州模拟)如图,△ABC,AC=3,BC=4√3,∠ACB=60°,过点A作BC的平行线1,P为直线l上一动点,⊙O为△APC的外接圆,直线BP交⊙O于E点,则AE的最小值为()A.√3−1B.7﹣4√3C.√3D.1̂上运【分析】如图,连接CE.首先证明∠BEC=120°,由此推出点E在以O'为圆心,O'B为半径的BĈ于E′,此时AE′的值最小.动,连接O'A交BC【解析】如图,连接CE.∵AP∥BC,∴∠P AC=∠ACB=60°,∴∠CEP=∠CAP=60°,∴∠BEC=120°,̂上运动,∴点E在以O'为圆心,O'B为半径的BĈ于E′,此时AE′的值最小.此时⊙O与⊙O'交点为E'.连接OA交BC∵∠BE'C=120°̂所对圆周角为60°,∴BC∴BOC=2×60°=120°,∵△BOC是等腰三角形,BC=4√3,OB=OC=4,∵∠ACB=60°,∠BCO'=30°,∴∠ACO;=90°∴O'A=√O′C2+AC2=√42+32=5,∴AE′=O'A﹣O'E′=5﹣4=1.故选:D.5.(2020•绍兴一模)如图,AB是⊙O的直径,DB,DE分别切⊙O于点B、C,若∠ACE=20°,则∠D 的度数是()A.40°B.50°C.60°D.70°【分析】连OC,根据切线的性质得到∠OBD=∠OCD=90°,根据∠ACE=20°和OA=OC求出∠OAC =∠OCA=70°,可得∠BOC=2×70°=140°,再根据四边形的内角和为360°即可计算出∠D的度数.【解析】连OC,如图,∵DB、DE分别切⊙O于点B、C,∴∠OBD=∠OCD=∠OCE=90°,∵∠ACE=20°,∴∠OCA=90°﹣20°=70°,∵OC=OA,∴∠OAC=∠OCA=70°,∴∠BOC=2×70°=140°,∴∠D=360°﹣90°﹣90°﹣140°=40°.故选:A.二.填空题(共5小题)6.(2020•金华模拟)如图,BC是⊙O的弦,以BC为边作等边三角形ABC,圆心O在△ABC的内部,若BC=6,OA=√3,则⊙O的半径为√21.【分析】过O作OD⊥BC于D,由垂径定理可知BD=CD=12BC,根据△ABC是等边三角形可知∠ABC=60°,故△ABD也是直角三角形,BD=DD,在Rt△OBD中利用勾股定理求出OB的长即可.【解析】过O作OD⊥BC于D,连接OB,∵BC是⊙O的一条弦,且BC=6,∴BD=CD=12BC=12×6=3,∴OD垂直平分BC,又AB=AC,∴点A在BC的垂直平分线上,即A,O及D三点共线,∵△ABC是等边三角形,∴∠ABC=60°,∴AD=√3BD=3√3,∵OA=√3,∴OD=AD﹣OA=2√3在Rt △OBD 中,OB =√BD 2+OD 2=√32+(2√3)2=√21; 故答案为:√21.7.(2020•天台县模拟)如图,已知等边△ABC 的边长为8,以AB 为直径的⊙O 与边AC 、BC 分别交于D 、E 两点,则劣弧DÊ的长为 43π .【分析】连接OD 、OE ,先证明△AOD 、△BOE 是等边三角形,得出∠AOD =∠BOE =60°,求出∠DOE =60°,再由弧长公式即可得出答案. 【解析】连接OD 、OE ,如图所示:∵△ABC 是等边三角形, ∴∠A =∠B =∠C =60°, ∵OA =OD ,OB =OE ,∴△AOD 、△BOE 是等边三角形, ∴∠AOD =∠BOE =60°, ∴∠DOE =60°, ∵OA =12AB =4, ∴DÊ长=60π×4180=43π; 故答案为:43π.8.(2020•绍兴一模)如图所示,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,若以点C 为圆心,r 为半径的圆与边AB 所在直线有公共点,则r 的取值范围为 r ≥245 .【分析】如图,作CH⊥AB于H.利用勾股定理求出AB,再利用面积法求出CH即可判断.【解析】如图,作CH⊥AB于H.在Rt△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB=√AC2+BC2=√62+82=10,∵S△ABC=12•AC•BC=12•AB•CH,∴CH=24 5,∵以点C为圆心,r为半径的圆与边AB所在直线有公共点,∴r≥24 5,故答案为r≥24 5.9.(2020•拱墅区校级模拟)如图,P A,PB是⊙O的两条切线,A,B为切点,点D,E,F分别在线段AB,BP,AP上,且AD=BE,BD=AF,∠P=54°,则∠EDF=63度.【分析】根据切线长定理得到P A=PB,根据三角形内角和定理得到∠P AB=∠PBA=63°,证明△AFD ≌△BDE,根据全等三角形的性质得到∠AFD=∠BDE,结合图形计算,得到答案.【解析】∵P A,PB是⊙O的两条切线,∴P A =PB , ∴∠P AB =∠PBA =180°−54°2=63°, 在△AFD 和△BDE 中, {AD =BE∠FAD =∠DBE AD =BD, ∴△AFD ≌△BDE (SAS ) ∴∠AFD =∠BDE ,∴∠EDF =180°﹣∠BDE ﹣∠ADF =180°﹣∠AFD ﹣∠ADF =∠F AD =63°, 故答案为:63.10.(2020•衢州模拟)如图,小圆O 的半径为1,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n ∁n 依次为同心圆O 的内接正三角形和外切正三角形,由弦A 1C 1和弧A 1C 1围成的弓形面积记为S 1,由弦A 2C 2和弧A 2C 2围成的弓形面积记为S 2,…,以此下去,由弦A n ∁n 和弧A n ∁n 围成的弓形面积记为S n ,其中S 2020的面积为 24036(4π3−√3) .【分析】根据正三角形和圆的关系可依次求出弓形面积,再根据弓形面积寻找规律即可得结论. 【解析】∵小圆O 的半径为1,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n ∁n 依次为同心圆O 的内接正三角形和外切正三角形, ∴S 1=S扇形A 1OC 1−S△A 1OC 1=120π×12360−12×√3×12,S 2=120π×22360−12×2√3×1 S 3=120π×42360−12×4√3×2… 发现规律:S n =120π×(2n−1)2360−12×(2n ﹣1) √3×2n ﹣2 =π3×22n ﹣2﹣22n ﹣4×√3=22n ﹣4 (4π3−√3)∴S 2020的面积为:24036(4π3−√3).故答案为:24036(4π3−√3).三.解答题(共10小题)11.(2020•金华模拟)如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,以O 为圆心,OA 为半径作⊙O ,与BC 相切于点D ,且交AB 于点E . (1)连结AD ,求证:AD 平分∠CAB ; (2)若BE =√2−1,求阴影部分的面积.【分析】(1)连接OD ,证OD ∥AC ,求出∠OAD =∠ODA =∠CAD 即可; (2)证明△BOD 是等腰直角三角形,分别求出△BOD 和扇形EOD 的面积即可. 【解答】(1)证明:如图,连结OD ,∵⊙O 与BC 相切于点D , ∴OD ⊥BC , 即∠ODB =90°. 又∵∠C =90°, ∴OD ∥AC , ∴∠ODA =∠CAD .在⊙O中,OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,∴AD平分∠CAB.(2)解:在Rt△ABC中,∠C=90°,AC=BC,∴∠B=45°,∴∠BOD=45°,∴△BOD是等腰直角三角形,∴OB=√2OD,BD=OD,设⊙O的半径为r,则OD=BD=r,OB=√2r,∴BE=(√2−1)r=√2−1,∴r=1,∴S阴影=12r2−45360πr2=12−π8.12.(2020•鹿城区校级模拟)如图,在Rt△ABC中,∠BAC=90°,D是BC边上的一点,过A,B,D三点的⊙O交AC于点E,作直径AF,连结FD并延长交AC于点G,且FG∥BE,连结BE,BF﹒(1)求证:AB=BD;(2)若BD=2CD,AC=5,求⊙O的直径长﹒【分析】(1)连接EF、DE,然后证明四边形ABFE和四边形BFDE分别为矩形和等腰梯形即可.(2)设CD为x,在Rt△ABC中,利用勾股定理可求得CD长度,然后设BF=DE=AE=y,在Rt△CDE 中利用勾股定理求得BF的长,最后在Rt△ABF中,利用勾股定理算出直径.【解析】(1)如图,连接EF、ED.∵AF为直径,∴∠ABF=∠AEF=90°,∵∠BAC=90°,∴四边形ABFE是矩形,∴AB=EF,AE=BF,∵DF∥BE,̂=DÊ,∴BF∴BF=DE,∴四边形BFDE是等腰梯形,∴BD=EF,∴AB=BD.(2)设CD=x,则AB=BD=2CD=2x,BC=3x.在Rt△ABC中:AB2+AC2=BC2,∴(2x)2+52=(3x)2,解得x1=√5,x2=−√5(舍),∴CD=√5,AB=BD=2√5,设BF=AE=DE=y,则CE=5﹣y,在Rt△CED中:DE2+CD2=CE2,∴y2+5=(5﹣y)2,解得y=2,∴BF=DE=AE=2,∴AF=√AB2+BF2=√20+4=2√6,即⊙O的直径长为2√6.13.(2020•绍兴一模)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过格点A(0,4)、B(﹣4,4)、C(﹣6,2),若该圆弧所在圆的圆心为D点,请你利用网格图回答下列问题:(1)圆心D的坐标为(﹣2,0);(2)若扇形ADC是一个圆锥的侧面展开图,求该圆锥底面圆的半径长(结果保留根号).【分析】(1)分别作AB、BC的垂直平分线,两直线交于点D,则点D即为该圆弧所在圆的圆心,可知点D的坐标为(﹣2,0).(2)连接AC、AD和CD,根据勾股定理的逆定理求出∠CDA=90°,根据弧长公式和圆的周长求出答案即可.【解析】(1)分别作线段AB和线段BC的垂直平分线,两垂直平分线的交点,就是圆心D,如图,D点正好在x轴上,D点的坐标是(﹣2,0),故答案为:(﹣2,0);(2)连接AC、AD、CD,⊙D的半径长=√22+42=2√5,AC=√22+62=2√10,∵AD 2+CD 2=20+20=40,AC 2=40, ∴AD 2+CD 2=AC 2, ∴∠ADC =90°.设圆锥的底面圆的半径长为r , 则2πr =90π×2√5180, 解得:r =√52,所以该圆锥底面圆的半径长为√52. 14.(2020•上虞区校级一模)如图1 (1)已知△ABC 中AB =AC ,∠BAC =36°,BD 是角平分线,求证:点D 是线段AC 的黄金分割点;(2)如图2,正五边形的边长为2,连结对角线AD 、BE 、CE ,线段AD 分别与BE 和CE 相交于点M 、N ,求MN 的长;(3)设⊙O 的半径为r ,直接写出它的内接正十边形的边长=√5−12r (用r 的代数式表示).【分析】(1)如图1,先证AD =BD =BC ,再证△BCD ∽△ACB ,即可得出点D 是线段AC 的黄金分割点;(2)利用正五边形的性质,证BM =BA =AE ,再证△AEM ∽△BEA ,推出EM EB=3−√52,再证△EMN ∽△EBC ,即可求出MN 的长; (3)正十边形的中心角为:360°10=36°,利用图1,可设∠BAC 是正十边形的一个中心角,则AB ,AC为正十边形外接圆的半径r ,BD 是∠ABC 的平分线,由(1)知CDAD=AD AC,可用含r 的代数式表示出AD的长,即正十边形的边长. 【解答】(1)证明:如图1,∵在△ABC 中AB =AC ,∠BAC =36°,∴∠ABC =∠C =12(180°﹣36°)=72°, ∵BD 是角平分线,∴∠CBD =∠ABD =12∠ABC =36°, ∴AD =BD =BC ,∴在△BCD 中,∠BDC =180°﹣∠C ﹣∠CBD =72°, ∴BD =BC ,∵∠A =∠CBD =36°,∠C =∠C , ∴△BCD ∽△ACB , ∴CD BC=BC AC,∵AD =BD =BC , ∴CD AD=AD AC,∴点D 是线段AC 的黄金分割点; (2)在正五边形ABCDE 中, ∠AED =180°×(5−2)5=108°,AE =DE ,∴∠EAD =∠EDA =12(180°﹣108°)=36°, 同理可求,∠AEB =∠ABE =36°, ∵∠EAM =∠∠EBA ,∠AEM =∠BEA , ∴△AEM ∽△BEA , ∴EM AE=AE BE,∵∠AMB =∠MAE +∠AEM =72°,∠MAB =∠BAE ﹣∠MAE =72°, ∴∠BAM =∠BMA , ∴BM =BA =AE =2, ∴EM BM =BM BE, ∴EM 2=2EM+2,∴EM =√5−1(取正值), ∴EM EB=√5−15−1+2=3−√52,∵∠BAM +∠ABC =72°+108°=180°, ∴AD ∥BC , ∴△EMN ∽△EBC , ∴EM EB=MN BC=3−√52, ∵BC =2, ∴MN =3−√5;(3)正十边形的中心角为:360°10=36°,如图1,可设∠BAC 是正十边形的一个中心角,则AB ,AC 为正十边形外接圆的半径r ,BD 是∠ABC 的平分线, 由(1)知CD AD =AD AC,∴r−AD AD=ADr,∴AD =√5−12r ,∴BC =BD =√5−12r ,故答案为:√5−12r .15.(2020•长安区模拟)如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.【分析】(1)由于AC=AB,如果连接CD,那么只要证明出CD⊥AB,根据等腰三角形三线合一的特点,我们就可以得出AD=BD,由于BC是圆的直径,那么CD⊥AB,由此可证得.(2)连接OD,再证明OD⊥DE即可.【解答】证明:(1)如图1,连接CD,∵BC为⊙O的直径,∴CD⊥AB.∵AC=BC,∴AD=BD.(2)如图2,连接OD;∵AD=BD,OB=OC,∴OD是△BCA的中位线,∴OD∥AC.∵DE⊥AC,∴DF⊥OD.∵OD为半径,∴DE是⊙O的切线.16.(2020•衢州模拟)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线;(2)若BF=4,DF=√10,求⊙O的半径.【分析】(1)由等腰三角形的性质和垂径定理可求∠OAC=90°,可得结论;(2)由勾股定理可求解.【解答】证明:(1)连接AO,∵OA=OD,∴∠OAD=∠ODA,∵AC=FC,∴∠CAF=∠CF A=∠OFD,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODA+∠OFD=90°,∴∠CF A+∠DAO=90°,∴∠OAC=90°,且OA是半径,∴AC是⊙O的切线;(2)在Rt△ODF中,DF2=OD2+OF2,∴10=OD2+(4﹣OD)2,∴OD=1(不合题意舍去),OD=3,∴⊙O的半径为3.17.(2020•温州模拟)如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.【分析】(1)连接ACAC,由圆周角定理得出∠ACB=90°,证出∠BAC=∠BCE;由C是弧BD的中点,得到∠DBC=∠BAC,延长∠BCE=∠DBC,即可得到结论;CF=BF.(2)连接OC交BD于G,由圆周角定理得出∠ADB=90°,由勾股定理得出BD=√AB2−AD2=8,由垂径定理得出OC⊥BD,DG=BG=12BD=4,证出OG是△ABD的中位线,得出OG=12AD=3,求出CG=OC﹣OG=2,在Rt△BCG中,由勾股定理即可得出答案.【解答】(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD=√AB2−AD2=√102−62=8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=12BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=12AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC=√CG2+BG2=√22+42=2√5.18.(2020•拱墅区校级模拟)如图,△ABC是的内接三角形,点C是优弧AB上一点,设∠OAB=α,∠C =β.(1)猜想:β关于α的函数表达式,并给出证明;(2)若α=30°,AB=6,S△ABC=6√3,求AC的长.【分析】(1)连接OB,理由等腰三角形的性质圆周角定理即可解决问题.(2)如图,延长AO交⊙O于E,连接EB,作EF∥AB交⊙O于F,连接AF.证明点C与点E重合即可解决问题.【解析】(1)如图,结论:β=90°﹣α.理由:连接OB.∵OA=OB,∴∠OAB=∠OBA=α,∴∠AOB=180°﹣2α,∴∠C=12∠AOB=90°﹣α,即β=90°﹣α.(2)如图,延长AO交⊙O于E,连接EB,作EF∥AB交⊙O于F,连接AF.∵AE是直径,∴∠ABE=90°,∵∠EAB=30°,AB=6,∴BE=AB•tan30°=2√3,∴S△EAB=12•AB•EB=6√3,∵S△ABC=6√3,∴点C与E重合,或与F重合,∴AC=2BE=4√3或AC′=AF=BE=2√3.综上所述,AC的长度为4√3或2√3.19.(2019•泸县模拟)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=√AO2−AF2=√52−32=4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.20.(2019•泰顺县模拟)已知矩形ABCD,AB=10,AD=8,G为边DC上任意一点,连结AG,BG以AG 为直径作⊙P分别交BG,AB于点E,H,连结AE,DE.(1)若点E为GĤ的中点,证明:AG=AB.(2)若△ADE为等腰三角形时,求DG的长.(3)作点C关于直线BG的对称点C′.①当点C落在线段AG上时,设线段AG,DE交于点F,求△ADF与△AEF的面积之比;②在点G的运动过程中,当点C′落在四边形ADGE内时(不包括边界),则DG的范围是185<DG<10(直接写出答案)【分析】(1)由AG 为⊙P 直径可得:∠AEG =∠AEB =90°,由点E 为DĤ的中点,可得:∠BAE =∠GAE ,由此易证:△AEB ≌△AEG ;(2)△ADE 为等腰三角形,要分类讨论:①AE =AD ,②AE =DE ,③AD =DE ;(3)①△ADF 与△AEF 的高相等,面积之比等于底之比;连接PE ,证明PE ∥CD ,再利用相似三角形性质易求得结论,②点C ′落在AE 上时可求得DG 的最小值,最大值很容易看出为10.【解析】(1)∵AG 为⊙P 直径∴∠AEG =∠AEB =90°∵点E 为GĤ的中点, ∴∠BAE =∠GAE在△AEB 和△AEG 中{∠BAE =∠GAEAE =AE ∠AEB =∠AEG∴△AEB ≌△AEG (ASA )∴AG =AB ;(2)如图1,△ADE 为等腰三角形,分三种情况:①AE =AD =8∵AG 为⊙P 直径∴∠AEG =∠AEB =90°∴BE =√AB 2−AE 2=√102−82=6∵ABCD 是矩形∴∠ABC =∠BCD =∠BAD =∠ADC =90°,BC =AD =8,CD =AB =10∴∠ABE +∠CBG =90°,∠BAE +∠ABE =90°∴∠CBG =∠BAE在△BCG 和△AEB 中,{∠CBG =∠BAEBC =AE ∠BCG =∠AEB∴△BCG ≌△AEB (ASA )∴CG =BE =6∴DG =CD ﹣CG =10﹣6=4②AE =DE ,过点E 作EM ⊥AD 于M ,∵AE =DE ,EM ⊥AD∴∠AEM =∠DEM ,∠AME =∠DME =90°∴AB ∥CD ∥EM∴∠BAE =∠AEM =∠DEM =∠EDG∴EH ̂=EG ̂由(1)得AG =AB =10∴DG =2−AD 2=√102−82=6;③AD =DE ,过D 作DN ⊥AE 于N ,∴∠AND =∠AEB =90°,AN =NE∵∠DAE +∠BAE =∠ADN +∠DAE =90°∴∠BAE =∠ADN∴△ADN ∽△BAE∴AN BE =AD AB =810,即:AN BE =45∴AE BE =85∵∠ABE +∠CBG =∠CGB +∠CBG =90°∴∠ABE =∠CGB∵∠AEB =∠BCG =90°∴△BCG ∽AEB∴BC CG =AE BE =85,即:8CG =85∴CG =5∴DG =CD ﹣CG =10﹣5=5综上所述,DG =4或6或5.(3)①如图2,点C ′,C 关于直线BG 对称,连接BC ′,连接PE ,由轴对称性质得:BC ′=BC ,∠C ′BG =∠CBG ,GC =GC ′,∠BGC ′=∠BGC ∴∠BC ′G =∠BCG =90°∴△ABC ′≌△GAD (AAS )∴AG =AB =10,DG =√AG 2−AD 2=√102−82=6∵AB ∥CD∴∠BGC =∠ABG =∠AGB∵AE ⊥BG∴BE =EG∵AP =PG∴PE ∥AB ∥CD ,PE =12AB =5∴△DFG ∽△EFP∴DF EF =DG PE =65∴S △ADF S △AEF =DF EF =65②如图3,当点C ′落在矩形ABCD 对角线AC 上时,∵∠AEB =∠BEC =∠ABC =∠BCG =90°∴∠BAC +∠ACB =∠CBG +∠ACB =90°∴∠BAC =∠CBG∴△ABC ∽△BCG ,∴CG BC =BC AB ,即CG =BC 2AB =8210=325∴DG =CD ﹣CG =10−325=185,当点G 向右运动且不与点C 时,C ′始终落在四边形ADGE 内部, ∴DG <10故答案为:185<DG <10.。
2020年中考数学培优专题 圆的计算和相关证明(含答案)
2020年中考数学培优专题 圆的计算及相关证明(含答案)一、单选题(共有10道小题)1.如图,的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP:AP=1:5,则CD的长为( ).A. 24B.28C. 52D. 542.下列命题中,正确的是( )A .函数3-=x y 的自变量x 的取值范围是x>3B .菱形是中心对称图形,但不是轴对称图形C .一组对边平行,另一组对边相等的四边形是平行四边形D .三角形的外心到三角形的三个顶点的距离相等3.如图,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是点O 的是()A.△ABEB.△ACFC.△ABDD.△ADE4.如图,△ ABC 内接于⊙O ,D 为线段AB 的中点,延长OD 交⊙O 于点E ,连接AE ,BE ,则下列五个结论: ①AB ⊥DE, ②AE=BE,③OD=DE, ④∠AEO=∠C ,正确结论的个数是( )A .1个B .2个C .3个个5.下列说法正确的有( )①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦;③在同圆中,相等的弦所对的圆心角相等; ④经过圆心的每一条直线都是圆的对称轴AA.1个 B.2个 C.3个 D.4个6.⊙O的半径为10cm,两平行弦AC,BD的长分别为12cm,16cm,则两弦间的距离是()A. 2cmB. 14cmC. 6cm或8cmD. 2cm或14cm7.下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
A.1个B.2个C.3个D.4个8.下列说法正确的个数为()①垂直于弦的直径平分这条弦;②垂直平分弦的直线必过圆心;③平分一条弧的直径必平分这条弧所对的弦;④弦的垂直平分线必平分弦所对的两条弧。
A.1B.2C.3D.49.如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD的长所有可能的整数值有(A.1个 B.2个 C.3个 D.4个10.圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A. 3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<5二、填空题(共有6道小题)11.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.12.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.13.在两个同心圆中,小圆的切线倍大圆截得的弦长为6,改弦分大圆的周长为3:1的两部分,则大圆的半径是 ,小圆的半径是 。
河南省2020年中考数学压轴题全揭秘专题07圆中证明及存在性问题含解析
专题07 圆中证明及存在性问题【例1】(2019·河南南阳一模)如图,已知⊙A 的半径为4,EC 是圆的直径,点B 是⊙A 的切线CB 上一个动点,连接AB 交⊙A 于点D ,弦EF ∥AB ,连接DF ,AF .(1)求证:△ABC ≌△ABF ; (2)当∠CAB = 时,四边形ADFE 为菱形;(3)当AB =时,四边形ACBF 为正方形.【分析】(1)由EF ∥AB ,得∠EFA =∠FAB ,∠CAB =∠AEF ,又∠AEF =∠AFE ,得:∠BAC =∠BAF ,又AB =AB ,AC =AF ,证得△ABC ≌△ABF ;(2)连接FC ,根据ADFE 为菱形,确定出∠CAB 的度数;(3)由四边形ACBF 是正方形,得ABAC.【解析】解:(1)∵EF ∥AB , ∴∠EFA =∠FAB ,∠CAB =∠AEF , ∵AE =AF ,B E∴∠AEF=∠AFE,∴∠BAC=∠BAF,又AB=AB,AC=AF,∴△ABC≌△ABF(SAS);(2)如图,连接FC,∵四边形ADFE是菱形,∴AE=EF=FD=AD,∵CE=2AE,∠CFE=90°,∴∠ECF=30°,∠CEF=60°,∵EF∥AB,∴∠AEF=∠CAB=60°,故答案为:60°;(3)由四边形ACBF是正方形,得ABAC.【变式1-1】(2019·开封二模)如图,在△ABD中,AB=AD,AB是⊙O的直径,DA、DB分别交⊙O于点E、C,连接EC,OE,OC.(1)当∠BAD是锐角时,求证:△OBC≌△OEC;(2)填空:①若AB=2,则△AOE的最大面积为;②当DA与⊙O相切时,若AB,则AC的长为.B E【答案】(1)见解析;(2)12;1.【解析】解:(1)连接AC,∵AB是⊙O的直径,∴AC⊥BD,∵AD=AB,∴∠BAC=∠DAC,∴BC=EC,又∵OB=OE,OC=OC,∴△OBC≌△OEC(SSS),(2)①∵AB=2,∴OA=1,设△AOE的边OA上的高为x,∴S△AOE=12OA×h=12 h,要使S△AOE最大,需h最大,点E在⊙O上,h最大是半径,即:h最大=1∴S△AOE最大为:12;②如图所示,当DA与⊙O相切时,则∠DAB=90°,∵AD=AB,∴∠ABD=45°,∵AB是直径,∴∠ADB=90°,∴AC=BC=1.【例2】(2019·济源一模)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA 的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)①当∠C= °时,四边形AODF为矩形;②当tanC= 时,AC=3AE.【答案】见解析.【解析】解:(1)证明:连接OD,∵OB =OD , ∴∠B =∠ODB , ∵AB =AC , ∴∠B =∠C , ∴∠ODB =∠C , ∴OD ∥AC , ∵DF ⊥AC ,∴OD ⊥DF ,点D 在⊙O 上, ∴DF 是⊙O 的切线; (2)45°,理由如下:由四边形AODF 为矩形,得∠BOD =90°, ∴∠B =45°, ∴∠C =∠B =45°, 故答案为:45°;(3,理由如下, 连接BE , ∵AB 是直径, ∴∠AEB =90°, ∵AB =AC ,AC =3AE , ∴AB =3AE ,CE =4AE , ∴BE 2=AB 2-AE 2=8AE 2,即BE =,在Rt △BEC 中,tanC =BE CE ==【变式2-1】(2019·安阳一模)如图,在△ABC 中,AB =AC =4,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,点P 是AB 的延长线上一点,且∠PDB =12∠A ,连接DE ,OE . (1)求证:PD 是⊙O 的切线.(2)填空:①当∠P 的度数为______时,四边形OBDE 是菱形; ②当∠BAC =45°时,△CDE 的面积为_________.【答案】(1)见解析;(2)30;2. 【解析】解:(1)连接OD ,∵OB =OD , ∠PDB =12∠A , ∴∠ODB =∠ABD =90°-12∠A =90°-∠PDB ,∴∠ODB +∠PDB =90°, ∴∠ODP =90°, ∵OD 是⊙O 的半径, ∴PD 是⊙O 的切线. (2)①30°,理由如下: ∠P =30°,则∠BOD =60°, ∴△BOD 是等边三角形, ∴∠ADP =30°,∠A =60°,∴△AOE是等边三角形,即∠AOE=60°,∴∠EOD=60°,∴△ODE是等边三角形,∴OB=BD=DE=OE,即四边形OBDE是菱形;②连接BE,AD,如上图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∠AEB=90°,∵AB=AC,∴D为BC中点,∴S△DCE=12S△BCE,∵∠BAC=45°,∴AE=BE,△ABE是等腰直角三角形,∵AB=AC=4,∴AE=BE=CE=4-∴S△DCE=12S△BCE,=12×12BE·CE=12×12×4-=2.【例3】(2019·洛阳三模)如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于点P.(1)求证:AC2=AD·AB.(2)点E是∠ACB所对的弧上的一个动点(不包括A,B两点),连接EC交直径AB于点F,∠DAP=64°.①当∠ECB= °时,△PCF为等腰三角形;②当∠ECB= °时,四边形ACBE为矩形.【答案】见解析.【解析】解:(1)连接OC,∵CD是切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠ACO=∠CAD,∵OA=OC,∴∠ACO =∠CAO,∴∠CAD=∠CAO,∵AB为直径,∴∠ACB=∠D=90°,∴△ACD∽△ABC,∴AD AC AC AB,即:AC2=AD·AB.(2)①45;②58,理由如下:①∵∠DAP=64°,∴∠P=26°,∠CAB=∠DAC=32°,∵∠CFP是△ACF的外角,∴∠CFP>32°,即∠CFP≠∠P,由∠PCB=∠CAB=32°,知∠FCP>∠PCB≠∠P,由△PCD为等腰三角形,得PC=PF,∴∠CFP=77°,∴∠ACF=45°,∠ECB=90°-∠ACF=45°,故答案为:45;②由ACBE是矩形,得F与O重合,∴∠ECB=90°-∠ACO=90°-32°=58°,故答案为:58.【变式3-1】(2019·洛阳二模)如图,△ABC内接于⊙O,过点B的切线BE∥AC,点P是优弧AC上一动点(不与A,C重合),连接PA,PB,PC,PB交AC于D.(1)求证:PB平分∠APC;(2)当PD=3,PB=4 时,求AB的长.【答案】见解析.【解析】解:(1)证明:连接OB,则OB⊥BE,∵BE∥AC,∴OB⊥AC,∴弧AB=弧BC,∴∠APB=∠BPC,∴PB平分∠APC;(2)由(1)知,∠APB=∠BPC,∵∠BAC=∠BPC,∴∠BAC=∠APB,∵∠ABD=∠PBA,∴△ABD∽△PBA,∴AB BD PB AB=,即1 4ABAB=∴AB=2,即AB的长为2.1.(2018·河师大附中模拟)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB交于点D,过D作⊙O的切线交CB于E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.【答案】见解析.【解析】解:(1)证明:连接OD,∵AC为直径,∠ACB=90°,∴BC为⊙O的切线,∵DE是⊙O的切线,∴DE=CE,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠B=90°,∴∠B=∠EDB,∴DE=BE,∴EB=EC;(2)△ABC是等腰直角三角形,理由如下:∵四边形ODEC是正方形,∴∠DEB=90°,由(1)知CE=BE,∴△BED是等腰直角三角形,∠B=45°,∴∠A=45°,即AC=BC,又∵∠ACB=90°,∴△ABC是等腰直角三角形.2.(2019·焦作二模)如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为.【答案】(1)见解析;(2)45;正方形.【解析】(1)连接OD,BD,∵AB为直径,∴∠BDC=∠ADB=90°,∵E为BC的中点,∴DE=BE=CE,∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE=90°,∴OD⊥DE,即DE是⊙O的切线.(2)①若四边形AOED是平行四边形,则DE∥AB,∴∠A=∠CDE,∵∠CDE=∠C,∴∠A=∠C,∵∠ABC=90°,∴∠A=45°;②由∠A=45°,得∠ADO=45°,即∠DOB=90°,∵∠EBO=∠ODE=90°,∴四边形OBED是矩形,∵四边形AOED是平行四边形,∴∠EOB=∠A=45°,∴∠EOB=∠OEB=45°,∴OB=BE,∴四边形OBED是正方形.3.(2019·周口二模)如图,在Rt△ABC中,∠B=90°,AB=6,CD平分∠ACB交AB于点D,点O在AC 上,以CO为半径的圆经过点D,AE切⊙O于E.(1)求证:AD=AE.(2)填空:①当∠ACB=_______时,四边形ADOE是正方形;②当BC=__________时,四边形ADCE是菱形.【答案】见解析.【解析】解:(1)证明:连接OE,∵CD平分∠ACB,∴∠OCD=∠BCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ODC=∠BCD,∴OD∥BC,∵∠B=90°,∴∠ADO=90°,∴AD是圆O的切线,∵AE是圆O的切线,∴AD=AE.(2①∵ADOE是正方形,∴OD=AD,∴∠OAD=45°,∴∠ACB=45°;②四边形ADCE为菱形,∴AD=CD,∠CAD=∠ACD,∵∠BCD=∠ACD,∴∠CDB=60°,∠BCD=30°,∴CD=2BD,∵AB=6,∴BD=2,BC故答案为:45;4.(2018·信阳一模)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数.【答案】见解析.【解析】解:(1)证明:连结OB,∵CE=CB,∴∠CBE=∠CEB,∵CD⊥OA,∴∠DAE+∠AED=90°,∵∠CEB=∠AED,∴∠DAE+∠CBE=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠CBE=90°,即∠OBC=90°,∴BC是⊙O的切线;(2)解:连结OF,OF交AB于H,(见上图)∵DF⊥OA,AD=OD,∴FA=FO,∵OF=OA,∴△OAF为等边三角形,∴∠AOF=60°,∴∠ABF=12∠AOF=30°.5.(2019·南阳毕业测试)如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且弧BC=弧DF,连接AB,BC,CD.求证:△CDE≌△ABC.【答案】见解析.【解析】证明:连接DF,∵AC=CE,∴∠CAE=∠E,∵四边形ACFD内接于⊙O,∴∠CAE+∠CFD=180°,∵∠CFD+∠DFE=180°,∴∠CAE=∠DFE,∴∠DFE=∠E,∴DF=DE,∵弧BC=弧DF,∴BC=DF,∴BC=DE,∵四边形ABCD内接于⊙O,同理可得:∠B=∠CDE,在△CDE和△ABC中,∵AC=CE,∠ABC=∠CDE,BC=DE,∴△CDE≌△ABC.6.(2019·濮阳二模)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.【答案】(1)见解析;(2)120;45.【解析】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,∴△CPM≌△AOM,∴PC=OA.∵OA=OB,∴PC=OB.∵PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴∠ABP=∠OPB=45°.7.(2019·南阳模拟)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为.【答案】(1)见解析;(2)30;【解析】(1)证明:∵F为弦AC的中点,∴AF=CF,OF过圆心O∴FO⊥AC,即∠OFA=90°,∵DE是⊙O切线,∴OD⊥DE即∠EDO=90°,∴DE∥AC.(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形∵AF⊥DO∴DF=FO,AF=CF,∴四边形AOCD是平行四边形∵AO=CO∴四边形AOCD是菱形.②连接CD,∵AC∥DE, OA=AE=2,∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4在Rt△ODE中,由勾股定理得:DE=∴S四边形ACDE=DE×DF==答案为:8.(2019·商丘二模)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB E是半圆AGF上一动点,连接AE,AD,DE.填空:①当弧AE的长度是时,四边形ABDE是菱形;②当弧AE的长度是时,△ADE是直角三角形.【答案】(1)见解析;(2)23π;3π或π.【解析】(1)证明:连接OD,在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=12 BC,∵D是斜边BC的中点,∴BD=12 BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①若四边形ABDE是菱形,连接OE,则AB ∥DE ,∵∠BAC =90°,∴DE ⊥AC ,得:AD =BD =AB =CD =12BC , ∴△ABD 是等边三角形,OD =1,∴∠ADB =60°,∵∠CDE =60°,∴∠ADE =180°﹣∠ADB ﹣∠CDE =60°,∴∠AOE =2∠ADE =120°,∴弧AE 的长度为:1201180π⨯=23π; 故答案为:23π; ②∵AD 为弦(不是直径),∴∠AED ≠90°,(i )若∠ADE =90°,则点E 与点F 重合,弧AE 的长度为:1801180π⨯=π; (ii )若∠DAE =90°,则DE 是直径,则∠AOE =2∠ADO =60°,弧AE 的长度为:601180π⨯=13π; 故答案为:13π或π. 9.(2019·开封二模)如图,在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 为半径,作⊙A ,交AB 于点D ,交CA 的延长线于点E ,过点E 作AB 的平行线交⊙A 于点F ,连接AF ,BF ,DF .(1)求证:△ABC ≌△ABF ;(2)填空:①当∠CAB = °时,四边形ADFE 为菱形;②在①的条件下,BC = cm 时,四边形ADFE 的面积是2.【答案】(1)见解析;(2)①60;②6.【解析】(1)证明:∵EF∥AB,∴∠E=∠CAB,∠EFA=∠FAB,∵AE=AF,∴∠E=∠EFA,∴∠FAB=∠CAB,又∵AF=CA,AB=AB,∴△ABC≌△ABF;(2)①当∠CAB=60°时,四边形ADFE为菱形.由∠CAB=60°,得∠FAD=∠EAF=60°,∴EF=AD=AE=DF,∴四边形ADFE是菱形.②∵四边形AEFD是菱形,∠AEF=∠CAB=60°,AE=∴22∴AE=∴AC=∴BC=6.10.(2019·名校模考)如图,在Rt△ABC中,∠ACB=90°,以直角边BC为直径作⊙O,交AB于点D,E为AC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)已知BC=4.填空:①当DE=时,四边形DOCE为正方形;②当DE=时,△BOD为等边三角形.【答案】(1)见解析;(2)2;【解析】(1)证明:连接CD,OE,∵BC为⊙O的直径,∴∠BDC=90°,∵DE为Rt△ADC的斜边AC上的中线,∴DE=CE=AE,∵OD=CC,OE=OE,∴△COE≌△DOE,∴∠OCE=∠ODE=90°,即DE为⊙O的切线;(2)解:①若四边形DOCE为正方形,则OC=OD=DE=CE,∵BC=4,∴DE=2.②若△BOD为等边三角形,则∠BOD=60°,∴∠COD=180°﹣∠BOD=120°,∠DOE=60°,∴DE故答案为:2,11.(2019·枫杨外国语三模)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC,分别交AC,AB的延长线于点E,F.(1)求证:EF是⊙O的切线.(2)①当∠BAC的度数为时,四边形ACDO为菱形;②若⊙O的半径为 5,AC=3CE,则BC的长为.【答案】(1)见解析;(2)60;8.【解析】(1)连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)连接CD,①当∠BAC=60°时,四边形ACDO为菱形;∵∠BAC=60°,∴∠AOD=120°,∵OA=OD,∴∠OAD=∠ODA=30°,∠CAD=30°,∵OD∥AE,∴∠OAD=∠ADC=30°,∠CAO=∠ADC=30°,∴AC=CD,∵AD=AD,∴△ACD≌△AOD,∴AC=AO,∴AC=AO=CD=OD,∴四边形ACDO为菱形;②设OD与BC交于G,∵AB为直径,∴∠ACB=90°,∵DE⊥AC,可得四边形CEDG是矩形,∴DG=CE,∵AC=3CE,∴OG=12AC=1.5CE,OD=2.5CE=5,∴CE=2,AC=6,∵AB=10,由勾股定理得:BC=8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的证明与计算1.如图,已知△ABC 内接于⊙O , P 是圆外一点,PA 为⊙O 的切线,且PA =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D .(1)求证:PB 为⊙O 的切线;(2)若PA =PO ,⊙O 的半径为10,求线段 PD 的长.45第1题图(1)证明:如解图,连接OA 、OB ,第1题解图∵PA =PB ,OA =OB ,OP =OP ,∴△OAP ≌△OBP (SSS),∴∠OAP =∠OBP ,∵PA 为⊙O 的切线,∴∠OAP =90°,∴∠OBP =90°,∵OB 为⊙O 的半径,∴PB 为⊙O 的切线;(2)解:∵PA =PO ,⊙O 的半径为10,45∴在Rt △AOP 中,OA ==10,PO 2-(45PO )2解得PO =,503∴cos ∠AOP ==,AO OP OD AO∴OD =6,∴PD =PO -OD =.3232. 如图,在△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连接DE .(1)求证:AC 是⊙O 的切线;(2)若cos C =,AC =24,求直径AE 的长.35第2题图(1)证明:∵AB =AC ,AD =DC ,∴∠C =∠B ,∠DAC =∠C ,∴∠DAC =∠B ,又∵∠E =∠B ,∴∠DAC =∠E ,∵AE 是⊙O 的直径,∴∠ADE =90°,∴∠E +∠EAD =90°,∴∠DAC +∠EAD =90°,即∠EAC =90°,∴AE ⊥AC ,∵OA 是⊙O 的半径,∴AC 是⊙O 的切线;(2)解:如解图,过点D 作DF ⊥AC 于点F,第2题解图∵DA =DC ,∴CF =AC =12,12在Rt △CDF 中,∵cos C ==,CF CD 35∴DC =20,∴AD =20,在Rt △CDF 中,由勾股定理得,1622==CF CD DF -∵∠ADE =∠DFC =90°,∠E =∠C ,∴△ADE ∽△DFC ,∴=,AE DC AD DF即=,解得AE =25,AE 201620即⊙O 的直径AE 为25.3.如图,在△ABC 中,AB =BC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E ,过点E 作⊙O 的切线EF ,交BC 于点F .(1)求证:EF ⊥BC ;(2)若CD =2,tan C =2,求⊙O的半径.第3题图(1)证明:如解图,连接BE,OE.第3题解图∵AB为⊙O的直径,∴∠AEB=90°.∵AB=BC,∴点E是AC的中点,∵点O是AB的中点,∴OE∥BC,∵EF是⊙O的切线,∴EF⊥OE.∴EF⊥BC;(2)解:如解图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°,AD∵CD=2,tan C=2,CD∴AD=4.设AB =x ,则BD =x -2.在Rt △ABD 中,由勾股定理得AB 2=AD 2+BD 2,即x 2=42+(x -2)2,解得x =5,即AB =5,∴⊙O 的半径为.254.如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC =∠DCE ;(2)若AB =2, sin D =,求AE 的长.13第4题图(1)证明:∵AD 是⊙O 的切线,∴∠DAB =90°.∵AB 是⊙O 的直径,∴∠ACB =90°.∵∠DAC +∠CAB =90°,∠CAB +∠ABC =90°,∴∠DAC =∠ABC .∵OC =OB ,∴∠ABC =∠OCB ,又∵∠DCE =∠OCB ,∴∠DAC =∠DCE ;(2)解:∵AB =2,∴AO =1.∵sin D ==,AO OD 13∴OD =3,DC =2,在Rt △DAO 中,由勾股定理得AD ==2,OD 2-OA 22∵∠DAC =∠DCE ,∠D =∠D ,∴△DEC ∽△DCA ,∴=,DC DA DE DC即=,222DE 2解得DE =,2∴AE =AD -DE =.25.如图,AB 是⊙O 的弦,D 为半径OA 的中点,过点D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于点F ,且BC 是⊙O 的切线.(1)求证:CE =CB ;(2)连接AF ,BF ,求∠ABF 的度数;(3)若CD =15, BE =10,=,求⊙O 的半径.DE AE 513第5题图(1)证明:如解图,连接OB ,第5题解图∵BC 是⊙O 的切线,∴OB ⊥BC ,即∠OBC =90°,∴∠OBA +∠CBE =90°,∵OA =OB ,∴∠OAB =∠OBA ,∴∠OAB+∠CBE =90°,又∵CD ⊥OA ,∴∠OAB +∠DEA =90°,又∵∠CEB =∠DEA ,∴∠CBE =∠CEB ,∴CE =CB ;(2)解:如解图,连接OF ,∵DA =DO ,CD ⊥OA ,∴AF =OF ,又∵OA =OF ,∴△AOF 是等边三角形,∴∠AOF =60°,∴∠ABF =∠AOF =30°;12(3)解:如解图,过点C 作CG ⊥AB 于点G ,∵CD ⊥OA ,∴∠ADE =∠CGE =90°,又∵∠AED =∠CEG ,∴△ADE ∽△CGE ,∴==,DE AE EG CE 513∵CE =BC ,∴BG =EG =BE =5,12∴CE =13,∴DE =CD -CE =2,∴AE =,265∴在Rt △ADE 中,由勾股定理得AD =,22DE AE -=245∴OA =2AD =,485∴⊙O 的半径为.4856.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AD =DC ,分别延长BA ,CD 交于点E ,作BF ⊥EC ,交EC 的延长线交于点F ,连接BD .(1)求证:△BFC ∽△BDA ;(2)若AE =AO ,求cos ∠ADE ;(3)在(2)的条件下,若BC =6,求BF 的长.第6题图(1)证明:∵AB 是⊙O 的直径,∴∠BDA =90°.∵BF ⊥EC ,∴∠BFC =90°,∵四边形ABCD 是⊙O 的内接四边形,∴∠BCF =∠BAD ,∴△BFC ∽△BDA ;(2)解:如解图,连接OD ,AC ,第6题解图∵△BFC ∽△BDA ,∴=,BF BD BC AB∵OD 是⊙O 的半径,AD =CD ,∴OD 垂直平分AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴OD ∥BC ,∴△EOD ∽△EBC ,∴=,OE BE OD BC∵AE =AO ,即OE =2OB ,BE =3OB ,∴=,OD BC BE OE 23∴BC =OD ,32∴===,BF BD BC AB 32OD 2OD 34∵∠ADB =90°,∴∠ADE +∠BDF =90°,∵∠BDF +∠DBF =90°,∴∠ADE =∠DBF ,在Rt △BDF 中,cos ∠DBF ==,BF BD 34∴cos ∠ADE =;34(3)解:∵BC =OD ,BC =6,32∴OD =4,∴AE =4,BE =12,∵△EOD ∽△EBC ,∴=,DE CE OD BC ∴CE =DE ,32又∵∠EDA =∠EBC ,∠E =∠E ,∴△AED ∽△CEB ,∴=,AE CE DE BE ∴DE ·CE =AE ·BE ,∴DE ·DE =4×12,32∴DE =4(负值舍去),2∴CD =2,∴AD =2,22∵△BFC ∽△BDA ,∴=,∴=,CF BC ADAB CF 6228∴CF =,322在Rt △BCF 中,根据勾股定理得,BF ==.BC 2-CF 231427.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连接AC ,过上一点E 作EG ∥AC 交CD 的延长线于点G ,连A BD 接AE 交CD 于点F ,且EG =FG ,连接CE .(1)求证:△ECF ∽△GCE ;(2)求证:EG是⊙O的切线;3(3)延长AB交GE的延长线于点M,若tan∠G=,AH=3,4求EM的值.第7题图(1)证明:∵AC∥EG,∴∠G=∠ACG,∵AB是⊙O的直径,AB⊥CD,A AD A AC∴=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE;(2)证明:如解图,连接OE,第7题解图∵GF=GE,∵OA =OE ,∴∠OAE =∠OEA ,∵∠AFH +∠FAH =90°,∴∠GEF +∠AEO =90°,∴∠GEO =90°,∴GE ⊥OE ,∵OE 是⊙O 的半径,∴EG 是⊙O 的切线;(3)解:如解图,连接OC ,设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH =tan ∠G ==,HC AH 43∵AH =3,∴HC =4.在Rt △HOC 中,∵OC =r ,OH =r -3,HC =4,∴(r -3)2+42=r 2,解得r =,625∵GM ∥AC ,∴∠CAH =∠M ,∴△AHC ∽△MEO ,∴,OEHC EM AH =即,62543=EM ∴.825=EM 8.如图,AB 为⊙O 的直径,C 、G 是⊙O 上两点,过点C 的直线CD ⊥BG 交BG 的延长线于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F ,且BC 平分∠ABD .(1)求证:CD 是⊙O 的切线;(2)若,求∠E 的度数;32=FD OF (3)连接AD ,在(2)的条件下,若CD =2,求AD 的长.3第8题图(1)证明:如解图,连接OC ,第8题解图∵OC =OB ,BC 平分∠ABD ,∴∠OCB =∠OBC ,∠OBC =∠DBC ,∴∠DBC =∠OCB ,∴OC ∥BD ,∴∠BDC =∠ECO ,∵CD ⊥BD ,∴∠BDC =90°,∴∠ECO =90°,∵OC 是⊙O 的半径,∴CD 是⊙O 的切线;(2)解:由(1)知,OC ∥BD ,∴∠OCF =∠DBF ,∠COF =∠BDF ,∴△OCF ∽△DBF ,∴,DB OC FD OF =∵,32=FD OF ∴,32=DB OC ∵OC ∥BD ,∴△EOC ∽△EBD ,∴,EB EO BD OC =∴,32=EB EO 设OE =2a ,则EB =3a ,∴OB =a ,∴OC =a ,∵∠OCE =90°,OC =OE ,21∴∠E =30°;(3)解:∵∠E =30°,∠BDE =90°,∴∠EBD =60°,∵BC 平分∠DBE ,∴∠OBC =∠DBC ==30°,EBD ∠21∵CD =2,3∴BC =4,BD =6,3∵,32=DB OC ∴OC =4,如解图,过点D 作DM ⊥AB 于点M ,∴∠DMB =90°,∵BD =6,∠DBM =60°,∴BM =3,DM =3,3∵OC =4,∴AB =8,∴AM =AB -BM =5,∵∠DMA =90°,DM =3,3∴AD =.13222=+AM DM 9.如图,在△ABC 中,∠ACB =90°,O 是AB 上一点,以OA 为半径的⊙O 与BC 相交于点D ,与AB 交于点E ,AD 平分∠FAB ,连接ED 并延长交AC 的延长线于点F .(1)求证:BC 为⊙O 的切线;(2)求证:AE =AF ;(3)若DE =3,sin ∠BDE =,求AC 的长.31第9题图(1)证明:如解图,连接OD .第9题解图∵AD 平分∠FAB ,∴∠CAD =∠DAB ,∵OA =OD ,∴∠DAB =∠ODA ,∴∠CAD =∠ODA ,∴AC∥OD,∴∠ODB=∠ACB=90°,∴OD⊥BC,∵OD为⊙O的半径,∴BC为⊙O的切线;(2)证明:由(1)知OD∥AC,∴∠ODE=∠F.∵OD=OE,∴∠OED=∠ODE,∴∠OED=∠F.∴AE=AF;(3)解:∵AE是⊙O的直径,∴∠ADE=90°.∴∠DAF+∠F=90°,∵AE=AF,∴DF=DE=3.∵∠ACB=90°,∴∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE.在Rt△ADF中,,31sin sin =∠=∠=BDE DAF AF DF ∴AF =3DF =9.在Rt △CDF 中,,31sin sin =∠=∠=BDE CDF DF CF ∴.131==DF CF ∴AC =AF -CF =8.10.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是⊙O 的切线;(2)若AE=AH ,求的值;EF FD (3)若EA =EF =1,求⊙O 的半径.第10题图(1)证明:如解图,连接OD ,第10题解图∵OB =OD ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ODB =∠ACB ,∴OD ∥AC ,∵DH ⊥AC ,∴DH ⊥OD ,∵OD 是⊙O 的半径,∴DH 是⊙O 的切线;(2)解:∵∠E =∠B ,AB =AC ,∴∠E =∠B =∠C ,∴ED =DC ,∵DH ⊥EC ,∴EH =CH ,∵AE =AH ,∴AE =AC ,31∵AO =BO ,OD ∥AC ,∴OD 是△ABC 的中位线,∴OD =AC ,21∴,23 AE OD ∵AE ∥OD ,∴△AEF ∽△ODF ,∴;23==AE OD EF FD (3)解:设⊙O 的半径为r ,即OD =OB =r ,∵EF =EA ,∴∠EFA =∠EAF ,∵OD ∥EC ,∴∠FOD =∠EAF ,则∠FOD =∠EAF =∠EFA =∠OFD ,∴DF =OD =r ,∴DE =DF +EF =r +1,∴BD =CD =DE =r +1,在⊙O 中,∵∠BDE =∠EAB ,∴∠BFD =∠EFA =∠EAB =∠BDE ,∴BF =BD =r +1,∴AF =AB -BF =2OB -BF =2r -(1+r )=r -1,∵∠BFD =∠EFA ,∠B =∠E ,∴△BFD ∽△EFA ,∴,FD BF FA EF =∴,rr r 111+=-解得r =(负值已舍),251+51∴⊙O的半径为.2。