解析几何题型小结
解答题题型归纳之解析几何(解析版)
专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b +y 2a =1,由已知条件推导出a 2=b 2+50,6b 2a +9b =12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b +y 2a =1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k −2>3,即有(k 2+1)(k−2)k −2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m (3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =2=2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a +1b =1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k ,x 1x 2=−21+2k ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k =21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|22=√2,即|−1+p2|2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)2,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =2√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a +12b =1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。
解析几何重点题型归纳
解析几何重点题型归纳1、设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =u u u r u u u r,点Q 是点P 关于直线2(4)y x =-的对称点.求 (I)求点A B 、的坐标; (II)求动点Q 的轨迹方程.2、在直角坐标系xOy 中,以O 为圆心的圆与直线43=-y x 相切. (Ⅰ)求圆O 的方程;(Ⅱ)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA |、|PO |、|PB | 成等比数列,求、的取值范围.3、已知,点在轴上,点在轴的正半轴,点在直线上,且满足,. (Ⅰ)当点在轴上移动时,求动点的轨迹方程;(Ⅱ)过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.4、已知抛物线C :22x py=()0p >的焦点为F ,A 、B 是抛物线C 上异于坐标原点O 的不同两点,抛物线C 在点A 、B 处的切线分别为1l 、2l ,且12l l ⊥,1l 与2l 相交于点D . (1) 求点D 的纵坐标; (2) 证明:A 、B 、F 三点共线;(3) 假设点D 的坐标为3,12⎛⎫- ⎪⎝⎭,问是否存在经过A 、B 两点且与1l 、2l 都相切的圆, 若存在,求出该圆的方程;若不存在,请说明理由.5、 已知椭圆2222:1(0)x y C a b a b +=>>,过右焦点F 的直线l 与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l(I )求a ,b 的值;(II )C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP OA OB =+u u u r u u u r u u u r成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由。
6、双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB u u u r u u u r u u u r 、、成等差数列,且BF u u u r 与FA u u u r同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.7、设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =u u u r u u u r,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.8、如图,已知抛物线2:E y x =与圆222:(4)(0)M x y r r -+=>相交于A 、B 、C 、D 四个点。
高考解析几何大题题型归纳
高考解析几何大题题型归纳
高考解析几何大题主要分为以下几类:
1. 平面向量问题:涉及向量加减、点积(数量积)、叉积(向量积)及其性质,例如线段长度、平行四边形面积、点到直线距离等等。
2. 空间几何问题:涉及空间中点、线、面的位置关系、相交情况、垂直或平行关系、大小关系等问题,例如两平面夹角、直线与平面的交点、平面方程等。
3. 三角形问题:涉及三角形内部、外部、垂心、垂足、中线、中心、外心、内心等概念,例如三角形的外接圆、内切圆、垂心定理等。
4. 圆锥曲线问题:涉及圆、椭圆、抛物线、双曲线等曲线的定义、性质、焦点、方程、参数等问题,例如椭圆离心率、抛物线焦点、双曲线渐近线等。
5. 空间向量问题:涉及空间中平行六面体、四面体的体积、重心、外接球、内切球等问题。
以上是高考解析几何大题的主要题型归纳,但具体涉及哪些内容还是要根据题目的情况来确定的。
解析几何题型及解题方法总结
解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。
解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。
2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。
3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。
例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。
线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。
解析几何基础题的归纳
第十二讲 解析几何基础题的归纳一、考点演绎解析几何基础内容包括直线的概念和方程、轨迹方程的求法、圆的标准方程和一般方程、直线与圆的位置关系、圆锥曲线的定义和几何性质、直线和圆锥曲线的位置关系等,圆锥曲线的定义和几何性质是高考的选择题和填空题常考查的重要知识点,而直线与曲线的位置关系则是解答题常考查的内容,复习时学生应重点掌握这部分内容.对于直线,需要重点掌握直线方程的几种形式、直线之间的位置关系、有关距离的公式、直线中的对称问题等内容;对于圆,复习时要以圆的标准方程、直线与圆的位置关系为中心,强化使用几何方法解决代数问题的能力,培养学生数形结合思想;对于圆锥曲线,要强化各种曲线的定义、方程以及几何性质这些基础知识,直线与圆锥曲线的综合问题是高考拔高题的主要出题点,对学生分析问题、解决问题的能力和运算能力都有较高的要求,处理这类问题要注意数形结合的思想、设而不求的思想、整体带入的思想以及方程的思想的灵活运用.熟练解决解析几何的问题,除了需要记住如焦点三角形的面积公式这种常用的结论外,还需要掌握解决解析几何问题的通性通法,如解决直线与圆锥曲线问题时一般需联立方程、研究一元二次方程的根的情况,在0∆>的前提下,运用韦达定理、弦长公式等解决有关弦长和三角形面积的问题.在掌握通性通法的同时,也不应只形成局限的解题套路,而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.二、例题精讲I 直线和圆的方程例1.已知点()1,1-P 和点()Q 2,2,若直线:0x my m ++=与线段PQ 不相交,则实数的取值范围是.例2.已知,AC BD 为圆22:4O x y +=的两条互相垂直的弦,,AC BD 交于点()21,M ,则四边形ABCD 面积的最大值为( )A 、4B 、5C 、6D 、7II 圆锥曲线的定义、方程及几何性质 例3.ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.l m例4.(1)已知1F 是椭圆225945x y +=的左焦点,点P 是此椭圆上的一个动点,()1,1A 为一个定点,那么1PF PA +的最大值为 ;(2)已知点()Q 及抛物线24x y =上一动点()00,P x y ,则0y PQ +的最小值为 .例5.已知12F F 、是椭圆2214x y +=的两个焦点,椭圆上一点P 满足120PF PF ⋅= ,则点P 到y 轴的距离是 .例6.若21,F F 分别为双曲线22:1927x y C -=的左、右焦点,点A 在双曲线C 上,点M 的坐标为(2,0),AM 为21AF F ∠的平分线.则2AF 的值为( )A 、3B 、6C 、9D 、27III 直线与圆锥曲线的综合例7.椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别是1F ,2F ,过1F 的直线l 与椭圆C 相交于A ,B 两点,且2AF ,AB ,2BF 成等差数列.(1)求证:a AB 34=; (2)若直线l 的斜率为1,且点)1,0(-在椭圆C 上,求椭圆C 的方程.(3)在(2)的椭圆中,过1F 的直线'l 与椭圆C 交于A 、B 两点,若0OA OB ⋅= ,求直线'l 的方程.例8.已知点P 是直角坐标平面内的动点,点P 到直线12l x =-:的距离为1d ,到点(10)F -,的距离为2d,且21d d = (1)求动点P 所在曲线C 的方程;(2)直线l 过点F 且与曲线C 交于不同两点、A B (点A 或B 不在x 轴上),分别过、A B 点作直线1:2l x =-的垂线,对应的垂足分别为M N 、,试判断点F 与以线段MN 为直径的圆的位置关系(指在圆内、圆上、圆外等情况);(3)记1FAM S S ∆=,2FMN S S ∆=,3FBN S S ∆=(A 、B 、M N 、是(2)中的点),问是否存在实数λ,使2213S S S =λ成立.若存在,求出λ的值;若不存在,请说明理由. 进一步思考问题:若上述问题中直线21:=-a l x c、点(0)-,F c 、曲线C:22221(0+=>>=,x y a b c a b,则使等式2213λ=S S S 成立的λ的值仍保持不变.请给出你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).三、易错警示若圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.则实数a 的取值范围为 .四、高考预测已知动点P 与双曲线221y x -=的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值为0.(1)求动点P 的轨迹方程; (2)当点P 在第一象限且满足121PF PF ⋅= 时,过P 作倾斜角互补的两条直线PA 、PB 分别交P 的轨迹于A 、B 两点,求证直线AB 的斜率为定值;(3)在(2)的前提下,求PAB ∆面积的最大值.五、方法总结在2004年高考上海理科卷中有这样一个试题:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是__________.当时给出的参考答案是:用代数的方法研究图形的几何性质.由此可见解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段.学生在学习这部分内容时应该感受解析几何的本质,并通过实践有所领悟,对于形成正确的、良好的数学思维是有很大的帮助的.六、实战演练一、填空题1.与直线4350x y -+=垂直,且与两坐标轴围成的三角形的面积为24的直线方程为________ ______.2.若两条直线()014=--+y m mx 和022=-+my x 互相垂直,则实数m 的值为_______________.3.已知直线l 的方程为230x y --=,点()1,4A 与点B 关于直线l 对称,则点B 为 .4.已知椭圆1121622=+y x 的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中 点在y 轴上,那么12:=PF PF .5.已知AB 是椭圆)0(12222>>=+b a by a x 的长轴,若把该长轴n 等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于点121,,,-n P P P ,设左焦点为1F , 则1111111lim ()________-→∞++++= n n F A F P F P F B n. 6.若双曲线的渐近线方程为3y x =±,它的一个焦点与抛物线2y =的焦点重合,则双曲线的标准方程为 .7.已知双曲线22221x y a b-=的两焦点为F 、F ',若该双曲线与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,5PF =,则FPF '∠的大小为 (结果用反三角函数表示).8.过抛物线x y 42=焦点的直线交抛物线于A ,B 两点,若10=AB ,则AB 的中点P 到y 轴的距离等于 .9.从抛物线上一点引其准线的垂线,垂足为,设抛物线的焦点为,且,则的面积为 .10.点P 是椭圆2212516x y +=上一点,12,F F 是椭圆的两个焦点,且12PF F ∆的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为 .二、选择题11.设直线1l 与2l 的方程分别为与0222=++c y b x a ,则“02121=b b a a ”是“1l 2//l ”的( )A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件 12.设斜率为2的直线l 过抛物线()20y ax a =≠的焦点F ,且和y 轴交于点A ,若OAF∆(O 为坐标原点)的面积为4,则抛物线方程为( )A 、24y x =±B 、24y x =C 、28y x =±D 、28y x = 13.已知两点()5,0M -和()5,0N ,若直线上存在点P ,使6PM PN -=,则称该直线为“B 型直线”.给出下列直线:①1y x =+;②2y =;③43y x =;④21y x =+,其中为“B 型直线”的是( ) A 、①② B 、①③ C 、①④D 、③④ 14.P 为双曲线C 上一点,1F 、2F 是双曲线C 的两个焦点,过双曲线C 的一个焦点1F 作x y 42=P M F 5||=PF MPF ∆0111=++c y b x a12F PF ∠的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( )A 、直线B 、圆C 、椭圆D 、双曲线三、解答题 15.已知椭圆1222=+y x , (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程; (3)过()21,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.16.已知:椭圆12222=+by a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角为6π,原点到该直线的距离为23. (1)求椭圆的方程;(2)斜率大于零的直线过)0,1(-D 与椭圆交于E ,F 两点,若2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点()10-,D ?若存在,求出k 的值;若不存在,请说明理由.17.已知椭圆E :22221x y a b+=(0a b >>)过点(3, 1)P ,其左、右焦点分别为12 F F 、,且126F P F P ⋅=- .(1)求椭圆E 的方程;(2)若,M N 是直线5x =上的两个动点,且12F M F N ⊥,则以MN 为直径的圆C 是否过定点?请说明理由.18.抛物线()240y px p =>的准线与x 轴交于M 点,过点M 作直线l 交抛物线于A 、B 两点.(1)若线段AB 的垂直平分线交x 轴于()0,0N x ,求证:03x p >;(2)若直线l 的斜率依次为p ,2p ,3p ,…,线段AB 的垂直平分线与x 轴的交点依次为1N ,2N ,3N ,…,当01p <<时,求122311N N N N ++…+10111N N 的值.。
解析几何题型及解题方法总结
解析几何题型及解题方法总结
几何是小学、中学数学的基础内容,对理解和掌握数学有着重要的作用,而解析几何就是从图形出发,把它们构成的性质表示出来。
随着数学应用范围的不断扩大,解析几何也变得越来越重要。
一般来说,解析几何题型包括:直线、线段、圆、三角形、椭圆、正方形等。
在解析这些几何题型时,有一些总体的解题思路与解题方法。
首先,把问题翻译成几何模型,也是解题的第一步。
其次,通过绘图的方法,让图形的性质更加清晰,即确定结构。
最后,运用相关的几何知识、定理,进行计算、判断和证明。
举例来说,解决一道给定两线段判断是否相交的问题,可以这样做:首先,用两个不同的色彩表示这两条线段,绘出它们的图形;其次,利用类似两线段角平分线定理的几何原理,计算出两线段的角平分线,判断它们是否相交。
此外,解决解析几何问题还需要熟练掌握和推导各种常见的几何定理,如勾股定理、等腰三角形定理、角平分线定理等,并且应该能够根据情况,判断出此类定理的使用范围。
另外,还要深入理解几何中角度、边长之间的各种关系:一条线段所围成的角的几何关系,一个三角形的边长与其垂直边、对边角的几何关系,一个椭圆的边长与其顶点角的几何关系等。
最后,解析几何中突出的一般性知识,:平行线、垂直线、对称中心、交点、垂足等,也要熟练掌握,这样方便在解决具体问题时正
确使用正确的几何知识。
解析几何例题和知识点总结
解析几何例题和知识点总结解析几何是数学中的一个重要分支,它通过坐标和方程来研究几何图形的性质和关系。
在学习解析几何的过程中,掌握典型的例题和重要的知识点是非常关键的。
接下来,让我们一起深入探讨一些常见的解析几何例题,并对相关知识点进行总结。
一、直线的方程直线是解析几何中最基本的图形之一。
直线的方程有多种形式,如点斜式、斜截式、两点式、一般式等。
例如:已知直线经过点$(1,2)$,斜率为$3$,求直线方程。
我们可以使用点斜式:$y y_1 = k(x x_1)$,其中$(x_1, y_1)$是已知点的坐标,$k$是斜率。
代入可得:$y 2 = 3(x 1)$,化简得到:$y = 3x 1$直线方程的一般式为$Ax + By + C = 0$,其中$A$、$B$不同时为$0$。
知识点总结:1、掌握直线斜率的计算方法,若两点坐标为$(x_1, y_1)$,$(x_2, y_2)$,则斜率$k =\frac{y_2 y_1}{x_2 x_1}$。
2、熟练运用各种直线方程的形式,根据已知条件选择合适的形式来求解直线方程。
二、圆的方程圆的标准方程为$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$是圆心坐标,$r$是半径。
例题:求以点$(2, -1)$为圆心,半径为$3$的圆的方程。
答案为:$(x 2)^2 +(y + 1)^2 = 9$圆的一般方程为$x^2 + y^2 + Dx + Ey + F = 0$,通过配方可以转化为标准方程。
知识点总结:1、理解圆的标准方程和一般方程的形式及特点。
2、能根据已知条件求出圆的方程,包括圆心和半径的确定。
三、椭圆椭圆的标准方程有两种形式:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$(焦点在$x$轴上)和$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$(焦点在$y$轴上),其中$a$和$b$分别表示长半轴和短半轴的长度。
高考解析几何大题题型归纳
高考解析几何大题题型归纳高考解析几何大题题型归纳一、三角形的性质与判定在高中数学中,三角形是一个重要的图形。
学生在高考中常常会遇到与三角形性质与判定相关的大题。
在这一题型中,常见的题目包括用三角形的边长、角度或者特殊性质来判断三角形的形状、大小或者其他性质。
二、直线与线段的相交问题直线和线段是解析几何题目中常见的图形。
学生在高考中常常会遇到关于直线和线段相交问题的大题。
在这一题型中,学生需要根据已知条件求解未知的角度、线段长度或者其他相关问题。
三、圆的性质与判定圆是解析几何题目中一个重要的图形。
学生在高考中经常会遇到与圆的性质与判定相关的大题。
在这一题型中,学生需要利用已知条件来判断圆的位置,或者通过已知条件求解未知物品与圆的关系。
四、平行线与垂直线的判定平行线与垂线也是高考解析几何题目中常见的考点。
在这一题型中,学生需要利用已知条件来判定两条线是否平行或者垂直,或者根据已知条件求解未知的线段长度或者角度。
五、多边形的性质与判定在解析几何题中,多边形也是一个重要的图形。
学生在高考中常常会遇到与多边形的性质与判定相关的大题。
在这一题型中,学生需要利用已知条件来判断多边形的形状、大小或者其他性质,或者求解未知的角度或者线段长度。
六、空间几何问题空间几何问题在高考中也是一个重要的考点。
在这一题型中,学生需要利用已知条件来求解空间中的角度、线段长度或者其他相关问题。
这类题目常常需要学生运用立体几何知识和空间想像力来进行推理和求解。
七、向量的应用在解析几何题目中,向量是一个重要的工具。
学生在高考中常常会遇到与向量的应用相关的大题。
在这一题型中,学生需要利用向量的性质来求解角度、线段长度或者其他相关问题。
总结:解析几何题目涉及到的题型很多,常见的包括三角形的性质与判定、直线与线段相交问题、圆的性质与判定、平行线与垂直线的判定、多边形的性质与判定、空间几何问题以及向量的应用等。
针对这些题型,学生在备考中应该重点复习相关知识,并且多进行一些练习题,以加深对题型的理解和应用能力。
高中数学解析几何总结非常全
高中数学解析几何第一部分:直线一、直线的倾斜角及斜率1.倾斜角a(1)定义:直线』向上的方向及X轴正向所成的角叫做直线的倾斜角。
⑦范围:0°<a<180°2斜率:直线倾斜角a的正切值叫做这条直线的斜率.k = tanad丿.倾斜角为90。
的直线没有斜率。
“丿.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于X轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在及不存在这两种情况,否则会产生漏解。
(3)设经过A(“,儿)和B(X2,y2)两点的直线的斜率为k ,则当為工心时,;当x, = x2时,―妙;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (物必)及直线的斜率k(倾斜角a )求直线的方程用点斜式:y-y°二k(x-xo)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x = s2.斜截式:若已知直线在y轴上的截距(直线及y轴焦点的纵坐标)为b, 斜率为k,则直线方程:y = kx+b;待别地,斜率存在且经过坐标原点的直线方程为:y = kx注意:正确理解“截距”这一概念,它具有方向性,有正负之分,及"距离”有区别。
3.两点式:若已知直线经过和(兀2,『2)两点,且(册工兀2,力工卩2则直线的方程:;注意:①不能表示及兀轴和y轴垂直的直线;②当两点式方程写成如下形式(七-02-比)(兀-切=0时,方程可以适应在于任何一条直线「4截距式:若已知直线在X轴,y轴上的截距分别是d, b ("HO,bHO )则直线方程:;注意:]).截葩式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
2).横截距及纵截距相等的直线方程可设为x+yp横截距及纵截葩互为相反数的直线方程可设为x-y二a5 一般式:任何一条直线方程均可写成一般式:Ax+By + C = 0 ;(不同时为零);反之,任何一个二元一次方程都表示一条直线。
2024高考数学解析几何知识点总结与题型分析
2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。
数学作为高考的一门重要科目,解析几何是其中的一个重点内容。
为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。
1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。
1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。
2. 空间几何体2.1 球球是解析几何中的一个重要概念。
其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。
2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。
通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。
掌握其特点和方程形式,对于解析几何的学习非常重要。
3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。
根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。
3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。
根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。
4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。
通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。
4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。
对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。
高考解析几何知识点总结归纳
高考解析几何知识点总结归纳在高考数学考试中,几何是一个重要的知识点,占据了一定的比重。
为了帮助同学们更好地备考和应对高考,本文将对高考解析几何知识点进行总结和归纳。
1.直线与圆的位置关系在几何学中,直线与圆的位置关系有三种情况:相交、相切和相离。
首先是两者相交的情况,如果直线与圆相交于两个不同的交点,则称直线与圆相交于两点;如果直线只与圆相交于一个交点,则称直线与圆相切;如果直线与圆没有交点,则称直线与圆相离。
2.判定平行线在高考中,常常需要判定两条直线是否平行。
一种常用的方法是使用平行线的基本判定定理,即如果两条直线分别与一条第三条直线相交,并且两个交点分别在这条第三条直线的同一侧,则可判定这两条直线平行。
3.三角形的内角和外角三角形是解析几何中的基本图形,对于三角形的内角和外角,有一些重要的性质需要掌握。
首先是内角和定理,也被称为角和定理,即任意三角形的内角和等于180°。
另外一个是外角和定理,即三角形的一个外角等于该三角形的另外两个内角的和。
4.相似三角形相似三角形是指具有相同形状但不一定相等的三角形。
相似三角形之间有很多重要的性质,比如对应角相等、对应边成比例等。
在解析几何中,常常需要利用相似三角形的性质来解决一些问题。
5.三角形的面积与高三角形的面积与高是一个重要的考点,通常使用海伦公式或底边高公式来求解。
海伦公式适用于一般的三角形,公式为:面积 = sqrt(s * (s-a) * (s-b) * (s-c)),其中s是半周长,a、b、c是三角形的三条边。
底边高公式适用于直角三角形,公式为:面积 = 1/2 * 底边 * 高。
6.圆的面积与周长圆是解析几何中的基本图形,其面积与周长的计算需要掌握一些重要的公式。
圆的周长也被称为圆周长,公式为:周长= 2πr,其中r是圆的半径。
圆的面积公式为:面积= πr²。
7.平行四边形的性质平行四边形是指具有两组平行边的四边形。
解析几何题型方法归纳(配例题)
解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。
高考解析几何压轴题型归类总结
高考解析几何压轴题型归类总结解析几何是高中数学的重要内容之一,也是高考数学中的重要考点之一。
在高考数学中,解析几何通常会以压轴题的形式出现,难度较大,对学生的解题能力和思维能力要求较高。
因此,对于即将参加高考的学生来说,对解析几何压轴题型的归类总结是非常必要的。
根据历年高考数学试卷中的解析几何压轴题,可以将其分为以下几个类型:1. 直线与曲线的综合问题直线与曲线的综合问题是解析几何中的常见题型,通常会涉及直线与曲线的位置关系、交点、最值等问题。
这类问题需要学生掌握直线和曲线的方程,能够利用方程组求出交点坐标,再结合图形和已知条件进行求解。
2. 圆锥曲线的综合问题圆锥曲线是解析几何中的重要内容之一,包括椭圆、双曲线和抛物线等。
圆锥曲线的综合问题通常会涉及圆锥曲线的性质、标准方程、几何意义等,同时还会考查直线与圆锥曲线的位置关系、最值等问题。
这类问题需要学生熟练掌握圆锥曲线的性质和方程,能够利用方程组求出交点坐标和直线与圆锥曲线的位置关系,再结合图形和已知条件进行求解。
3. 轨迹问题轨迹问题是解析几何中的经典题型之一,通常会涉及动点的轨迹方程、轨迹形状等问题。
这类问题需要学生掌握轨迹的概念和方程的求法,能够根据已知条件和动点的特征写出轨迹方程,再结合图形和方程进行求解。
4. 最值问题最值问题是解析几何中的常见问题之一,通常会涉及某一点到某一直线或曲线的距离、某一条直线的斜率等问题。
这类问题需要学生结合图形和已知条件进行求解,有时还需要利用函数的思想进行求解。
以上是高考数学中解析几何压轴题的主要类型,每种类型都有其特定的解题方法和技巧。
因此,学生在备考时应该加强对这些类型题的练习和总结,提高自己的解题能力和思维能力。
同时,还应该注重对基础知识的学习和掌握,加强对数学语言的理解和运用能力。
解析几何小题方法总结
解析几何小题方法总结解析几何小题的方法总结如下:1. 将题目中的几何图形转化为代数表达式进行求解。
这种方法适用于熟悉几何图形的性质,并能将其转化为代数表达式求解的情况。
例如,将直角三角形的边长表示为变量,然后利用勾股定理进行联立方程求解。
2. 利用几何图形的对称性质进行推导。
这种方法适用于几何图形具有对称性的情况。
例如,求一个多边形的对角线个数,可以根据图形的对称性质进行推导,而不需要具体计算。
3. 利用相似三角形进行比较和推导。
这种方法适用于几何图形中存在相似三角形的情况。
例如,利用相似三角形的边长比例关系求解未知边长。
4. 利用等腰三角形或等边三角形的性质进行推导。
这种方法适用于利用等腰三角形或等边三角形的性质求解问题的情况。
例如,利用等腰三角形的底角相等的性质进行推导。
5. 利用圆的性质进行推导。
这种方法适用于利用圆的性质进行求解的问题。
例如,利用圆的弧度定义和圆心角的性质进行推导。
6. 利用平行线与等角线的性质进行推导。
这种方法适用于利用平行线和等角线的性质进行推导的情况。
例如,利用平行线的性质推导出两个角相等或对应角相等。
7. 利用向量的性质进行推导。
这种方法适用于利用向量的性质进行推导的情况。
例如,利用向量的加减法和数量积的定义进行推导。
总之,解析几何小题的求解方法主要依靠几何图形的性质和代数表达式的推导,需要熟练掌握各种几何图形的性质和定理,以及代数运算和方程的求解技巧。
同时,灵活运用不同方法结合题目的特点进行求解,可以更有效地解决问题。
高考解析几何压轴题型归类总结
几何题是高考数学中的重要题型,占比较大且常常作为压轴题出现。
解析几何是几何题中的一大重点,需要掌握的知识点较多且难度较高。
下面对高考解析几何常见的压轴题型进行归类总结。
1. 平面几何1.1 直线方程直线方程的求解是解析几何中的基础内容,常常作为考查点。
包括一般式、斜截式、点斜式等形式的直线方程。
总结如下:1.直线一般式方程:Ax + By + C = 0;2.直线斜截式方程:y = kx + b;3.直线点斜式方程:y - y₁ = k(x - x₁)。
1.2 平面方程平面方程是通过点法式方程和一般式方程进行求解。
常见的平面方程有以下几种:1.点法式方程:A(x - x₀) + B(y - y₀) + C(z - z₀) = 0;2.一般式方程:Ax + By + Cz + D = 0。
1.3 直线与直线的位置关系直线与直线的位置关系主要有平行、垂直以及相交三种情况。
常见的题型包括:1.求直线的交点;2.判断两直线是否平行/垂直;3.确定两直线的夹角。
1.4 直线与平面的位置关系直线与平面的位置关系常常涉及到直线在平面上的投影、直线与平面的交点等问题。
常见的题型如下:1.直线在平面上的投影;2.直线与平面的交点;3.判断直线与平面的位置关系。
1.5 圆的方程圆的方程是解析几何中的重要内容。
常见的圆的方程有以下几种形式:1.圆心半径式方程:(x−a)2+(y−b)2=r2;2.一般式方程:x2+y2+Dx+Ey+F=0。
1.6 圆与直线的位置关系圆与直线的位置关系涉及到切线的斜率、交点的确定等问题。
常见的题型包括:1.确定直线与圆的位置关系(相离、相切、相交);2.求直线与圆的交点;3.求直线在圆上的切点。
2. 空间几何2.1 直线与直线的位置关系直线与直线的位置关系同平面几何中的情况类似,常见的题型包括:1.直线是否平行/垂直;2.直线的交点;3.两直线的夹角。
2.2 空间曲线空间曲线主要涉及到直线、平面和曲线的方程及其位置关系。
高考数学解析几何题型归纳
高考数学解析几何题型归纳圆锥曲线的问题神奇的存在着,既需要学生的耐心也需要学生的细心,综合考察学生的数学计算能力,数学思考能力,综合分析解决问题能力,数形结合能力。
还真的是一个比较难的问题,而圆锥曲线的计算量,经常让学生们闻风丧胆,而且经常会出现计算半天,一个符号错误满盘皆输。
所以今天咱们梳理下圆锥曲线的问题。
问题归类后可以根据常用的方法来进行计算总结。
一、直线与圆锥曲线位置关系代数法求解几何法求解在同一直角坐标系中画出圆锥曲线和直线,利用图象和性质可判断直线与圆锥曲线的位置关系。
二、中点弦问题可以用点差法中点弦问题求解思路:(1)设点:设出弦的两端点坐标;(2)代入:代入圆锥曲线方程;(3)作差:两式相减,再用平方差公式展开;(4)整理:转化为斜率与中点坐标的关系式,然后求解。
三、向量问题一般方法总结(1)焦点弦(过圆锥曲线焦点的弦)的长的有关问题,注意应用圆锥曲线的定义和焦半径公式。
(2)已知直线与圆锥曲线的某些关系求圆锥曲线的方程时,通常利用待定系数法。
(3)圆锥曲线上的点关于某一直线的对称问题,解此类题的方法是利用圆锥曲线上的两点所在的直线与对称直线垂直,则圆锥曲线上两点的中点一定在对称直线上,再利用根的判别式或中点与曲线的位置关系求解。
四、弦长问题:五、面积问题三角形面积平行四边形面积:六、对称与中垂线问题七、定点定值问题定点问题(1)从特殊入手,求出定值,再证明这个值与变量无关。
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值。
定值问题(1)可以从一般的情形进行论证,即用类似方程ax+b=0恒有解的思路来解决问题;(2)也可以运用从特殊到一般的思想来解决问题,即先求出特殊情形下的值,如直线的斜率不存在的情况,再论证该特殊值对一般情形也成立。
九、存在性问题:(1)存在性问题通常采用“肯定顺推法”,将不确定性问题确定化。
其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在。
解析几何题型小结
椭圆Ⅰ.与几何结合一、椭圆的对称性1.已知椭圆C:=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接了AF,BF,若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为()A.B.C.D.二.设角,利用三角函数2.设F1、F2分别为椭圆+=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值围是()A.(0,] B.(0,] C.[,1)D.[,1)3.(2014•二模)已知两点F1(﹣1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.(1)求椭圆C的方程;(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.三、长度、面积关系转化(一)绕来绕去4.已知P为椭圆上一点,F1、F2为椭圆的左、右焦点,B为椭圆右顶点,若∠PF 1F2平分线与∠PF2B的平分线交于点Q(6,6),则= _________ .(二)拆、补线段关系5.(2014•三模)已知圆M:(x﹣)2+y2=r2(r>0).若椭圆C:+=1(a>b>0)的右顶点为圆M的圆心,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若存在直线l:y=kx,使得直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点,点G在线段AB上,且|AG|=|BH|,求圆M半径r的取值围.6(2008•石景山区一模)如图,设F是椭圆的左焦点,直线l为左准线,直线l与x轴交于P点,MN为椭圆的长轴,已知,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点P作直线与椭圆交于A、B两点,求△ABF面积的最大值.(三)用坐标表示面积7.(2014•一模)已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且抛物线的焦点F满足,若BC边上的中线所在直线l的方程为mx+ny﹣m=0(m,n为常数且m≠0).(Ⅰ)求p的值;(Ⅱ)O为抛物线的顶点,△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,求证:为定值.8.(2014•)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3 C.D.9.已知曲线C1:,曲线C2:.曲线C2的左顶点恰为曲线C1的左焦点.(Ⅰ)求λ的值;(Ⅱ)设P(x0,y0)为曲线C2上一点,过点P作直线交曲线C1于A,C两点.直线OP交曲线C1于B,D两点.若P为AC中点.①求证:直线AC的方程为x0x+2y0y=2;②求四边形ABCD的面积.10. (2014•模拟)已知抛物线Q:y2=2px(p>0)的焦点与椭圆+=1的右焦点相同.(Ⅰ)求抛物线Q的方程;(Ⅱ)如图所示,设A、B、C是抛物线Q上任意不同的三点,且点A位于x轴上方,B、C位于x轴下方.直线AB、AC与x轴分别交于点E、F,BF与直线OC、EC分别交于点M、N.记△OBM、△ENF、△MNC的面积依次为S1、S2、S3,求证:S1+S2=S3.11.(2013•)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.四、线段比例关系得出坐标关系12.已知椭圆C:+y2=1的短轴的端点分别为A,B(如图),直线AM,BM分别与椭圆C交于E,F两点,其中点M(m,)满足m≠0,且m≠±.(1)用m表示点E,F的坐标;(2)证明直线EF与y轴交点的位置与m无关.(3)若△BME面积是△AMF面积的5倍,求m的值.【第3问中,面积关系转化为线段长度关系,进而用点坐标表示长度,与韦达定理联系。
高考数学 专题22 解析几何高考常考题型方法总结(解析版)
专题22 解析几何高考常考题型方法总结一.【学习目标】1.掌握圆锥曲线的定义;2.掌握焦点三角形的应用和几何意义; 3.掌握圆锥曲线方程的求法;4.掌握直线与圆锥曲线的位置关系;5.熟练掌握定点、定值、最值和范围问题。
二.【知识点总结】1.椭圆定义:平面内与两个定点12,F F 的距离的和等于常数(大于12,F F 之间的距离)的点的轨迹叫做椭圆,这两个定点12,F F 叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) 22221,(0)x y a b a b +=>>,焦点12(,0),(,0)F c F c -,其中c =.(2) 22221,(0)x y a b b a+=>>,焦点12(0,),(0,)F c F c -,其中c =3.椭圆的几何性质以22221,(0)x y a b a b+=>>为例(1)范围:,a x a b y b -≤≤-≤≤.(2)对称性:对称轴:x 轴,y 轴;对称中心:(0,0)O(3)顶点:长轴端点:12(,0),(,0)A a A a -,短轴端点:12(0,),(0,)B b B b -;长轴长12||2A A a =,短轴长12||2B B b =,焦距12||2F F c =.(4)离心率,01,ce e e a=<<越大,椭圆越扁,e 越小,椭圆越圆.(5) ,,a b c 的关系:222c a b =-.4.双曲线的定义:平面内与两个定点12,F F 的距离的差的绝对值等于常数(小于12,F F 之间的距离)的点的轨迹叫做双曲线,这两个定点12,F F 叫做焦点,两焦点间的距离叫做焦距. 5.双曲线的标准方程(1) 22221,(0,0)x y a b a b -=>>,焦点12(,0),(,0)F c F c -,其中c =(2) 22221,(0,0)x y a b b a-=>>,焦点12(0,),(0,)F c F c -,其中c =6.双曲线的几何性质以22221,(0,0)x y a b a b-=>>为例(1)范围:,x a x a ≥≤-.(2)对称性:对称轴:x 轴,y 轴;对称中心:(0,0)O(3)顶点:实轴端点:12(,0),(,0)A a A a -,虚轴端点:12(0,),(0,)B b B b -;实轴长12||2A A a =,虚轴长12||2B B b =,焦距12||2F F c =.(4)离心率,1ce e a=>(5) 渐近线方程by x a=±.7.抛物线的定义:平面内与一个定点和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,直线l 叫抛物线的准线.8.抛物线的标准方程(1) 22222,2,2,2,(0)y px y px x py x py p ==-==->.对应的焦点分别为:(,0),(,0),(0,),(0,)2222p p p p F F F F --. (2)离心率1e =.三.【题型归纳】 (一)斜率问题 (二)面积问题(三)参数的范围问题 (四)轨迹问题 (五)最值(六)圆锥曲线的性质 (七)与向量的综合 (八)轨迹方程与面积 (九)定值问题(十)圆与圆锥曲线 (十一)最值 四.【题型方法】 (一)斜率问题例1.设M ,N 是抛物线2y x =上的两个不同的点,O 是坐标原点,若直线OM 与ON 的斜率之积为12-,则( )A.||||42OM ON +≥B.O 到直线MN 的距离不大于2C.直线MN 过抛物线2y x =的焦点D.MN 为直径的圆的面积大于4π【答案】B【解析】当直线MN 的斜率不存在时,设,由斜率之积为12-,可得20112y -=-,即202y =,∴MN 的直线方程为2x =;当直线的斜率存在时,设直线方程为y kx m =+,联立2y kx m y x=+⎧⎨=⎩,可得20ky y m -+=.设()1122(),,M x y N x y ,,则,∴121212OM ON y y k k k x x m ==-⋅=, 即2m k =-.∴直线方程为()22y kx k k x =-=-. 则直线MN 过定点()2,0.则O 到直线MN 的距离不大于2.故选B .练习1.已知点(),P x y 在圆()()22:111C x y -+-=上,则2y x+的最小值是( ) A .23B .34C .43 D .32【答案】C【解析】由题意,设2y k x+=,整理得20kx y --=, 又由圆()()22:111C x y -+-=的圆心坐标为(1,1),半径为1, 当直线20kx y --=与()()22:111C x y -+-=有交点时,2231(1)k k -≤+-,解得43k ≥,即2y x +的最小值为43,故选C.(二)面积问题例2.已知有相同焦点1F 、2F 的椭圆()2211x y m m +=>和双曲线()2210x y n n-=>,点P 是它们的一个交点,则12F PF ∆面积的大小是( ) A.122 C.1 D.2【答案】C【解析】如图所示,不妨设两曲线的交点P 位于双曲线的右支上,设1PF s =,2PF t =.由双曲线和椭圆的定义可得 2s t m s t n⎧+=⎪⎨-=⎪⎩解得2222 s t m n st m n⎧+=+⎨=-⎩,在12PF F △中,()2221222414cos 222m n m s t c F PF st m n +--+-∠==-, ∵11m n -=+,∴2m n -=,∴12cos 0F PF ∠=,∴1290F PF ∠=︒.∴12F PF △面积为1 12st =, 故选:C .练习1.设12,F F 是椭圆的两个焦点,点P 在椭圆上,且128F F =,1210PF PF +=,则12PF F ∆面积的最大值为 ( )A .6B .12C .15D .20【答案】B【解析】根据128F F =,1210PF PF +=可知28,210c a ==,故2229b a c =-=,所以3b =.由于12PF F ∆底边12F F 长度一定,故高最高的时候取得最大值,高最高为3b =,所以三角形面积的最大值为121122F F b ⋅⋅=.故选B. 练习2.设经过点M(2,1)的等轴双曲线的左、右焦点分别为F 1,F 2,若此双曲线上的一点N 满足12NF NF ⊥u u u v u u u u v ,则△NF 1F 2的面积为_______. 【答案】3【解析】设该等轴双曲线的方程为()220x y λλ-=≠,Q 该双曲线经过点()2,1,41M λ∴-=,即3λ=,该双曲线的方程为223x y -=,易得())126,0,6,0F F -,Q 该双曲线上的一点N 满足12NF NF ⊥u u u v u u u u v ,设()00,N x y ,可得2200220036x y x y ⎧-=⎨+=⎩,062y ∴=,则12NF F ∆的面积1322S =⨯=,故答案为3. 练习3.椭圆22221x y a b+=(a>b>0)中,F 1,F 2分别为其左、右焦点,M 为椭圆上一点且MF 2⊥x 轴,设P 是椭圆上任意一点,若△PF 1F 2面积的最大值是△OMF 2面积的3倍(O 为坐标原点),则该椭圆的离心率e=____.【解析】由题意,可得2b Mc a(,), ∵△PF 1F 2面积的最大值是△OMF 2面积的3倍,211223223b c b c b a a ⨯⨯=⨯⨯⨯∴=,,,∴c ==, ∴e c e a ==.(三)参数的范围问题例3.若函数||1y x =-的图像与曲线22:1C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( ) A.[1,1)-B.(1,0)-C.(,1][0,1)-∞-UD.[1,0](1,)-+∞U【答案】A【解析】由y =|x |﹣1可得,x ≥0时,y =x ﹣1;x <0时,y =﹣x ﹣1, ∴函数y =|x |﹣1的图象与方程x 2+λy 2=1的曲线必相交于(±1,0)所以为了使函数y =|x |﹣1的图象与方程x 2+λy 2=1的曲线恰好有两个不同的公共点,则 y =x ﹣1代入方程x 2+λy 2=1,整理可得(1+λ)x 2﹣2λx +λ﹣1=0 当λ=﹣1时,x =1满足题意, 由于△>0,1是方程的根,∴11λλ-+<0,即﹣1<λ<1时,方程两根异号,满足题意; y =﹣x ﹣1代入方程x 2+λy 2=1,整理可得(1+λ)x 2+2λx +λ﹣1=0 当λ=﹣1时,x =﹣1满足题意, 由于△>0,﹣1是方程的根,∴11λλ-+<0,即﹣1<λ<1时,方程两根异号,满足题意; 综上知,实数λ的取值范围是[﹣1,1) 故选:A .练习1.已知椭圆222:1x M y a+=,圆222:6C x y a +=-在第一象限有公共点P ,设圆C 在点P 处的切线斜率为1k ,椭圆M 在点P 处的切线斜率为2k ,则12k k 的取值范围为( ) A.(1,6) B.(1,5)C.(3,6)D.(3,5)【答案】D【解析】因为椭圆222:1x M y a +=和圆222:6C x y a +=-在第一象限有公共点P ,所以222661a a a ⎧>-⎨->⎩,解得235a <<.设椭圆222:1x M y a+=和圆222:6C x y a +=-在第一象限的公共点()00,P x y ,则椭圆M在点P 处的切线方程为0021x x y y a +=,圆C 在点P 处的切线方程为2006x x y y a +=-,所以010x k y =-,0220x k a y =-,所以()2123,5k a k =∈,故选D.(四)轨迹问题例4.已知动点M的坐标满足方程12512x y =+-,则动点M 的轨迹为( ) A.抛物线 B.双曲线C.椭圆D.以上都不对【答案】A【解析】由题意,动点M的坐标满足方程12512x y +-,1251213x y +-=,可得上式表示动点(,)M x y 到定点(0,0)的距离与到定直线125120x y +-=的距离相等,且定点不在定直线上,结合抛物线的定义可知:动点M 轨迹是以定点为焦点,定直线为准线的抛物线. 故选A.练习1.已知两点()12,0F -、()22,0F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程为( ) A .22143x y +=B .22184x y +=C .221164x y +=D .2211612x y +=【答案】D 【解析】由题设可得121228PF PF F F +==,即2216,16412a b ==-=,应选答案D 。
解析几何题型小结
椭圆Ⅰ.与几何结合一、椭圆的对称性1.已知椭圆C:=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接了AF,BF,若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为()A.B.C.D.二.设角,利用三角函数2.设F1、F2分别为椭圆+=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是()A.(0,]B.(0,]C.[,1)D.[,1)3.(2014•江西二模)已知两点F1(﹣1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.(1)求椭圆C的方程;(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.三、长度、面积关系转化(一)绕来绕去4.已知P为椭圆上一点,F1、F2为椭圆的左、右焦点,B为椭圆右顶点,若∠PF1F2平分线与∠PF2B的平分线交于点Q(6,6),则=_________.(二)拆、补线段关系5.(2014•重庆三模)已知圆M:(x﹣)2+y2=r2(r>0).若椭圆C:+=1(a>b>0)的右顶点为圆M的圆心,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若存在直线l:y=kx,使得直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点,点G 在线段AB上,且|AG|=|BH|,求圆M半径r的取值范围.6(2008•石景山区一模)如图,设F是椭圆的左焦点,直线l为左准线,直线l与x轴交于P点,MN为椭圆的长轴,已知,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点P作直线与椭圆交于A、B两点,求△ABF面积的最大值.(三)用坐标表示面积7.(2014•合肥一模)已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且抛物线的焦点F满足,若BC边上的中线所在直线l的方程为mx+ny﹣m=0(m,n为常数且m≠0).(Ⅰ)求p的值;(Ⅱ)O为抛物线的顶点,△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,求证:为定值.8.(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.9.已知曲线C1:,曲线C2:.曲线C2的左顶点恰为曲线C1的左焦点.(Ⅰ)求λ的值;(Ⅱ)设P(x0,y0)为曲线C2上一点,过点P作直线交曲线C1于A,C两点.直线OP交曲线C1于B,D两点.若P为AC中点.①求证:直线AC的方程为x0x+2y0y=2;②求四边形ABCD的面积.10. (2014•金华模拟)已知抛物线Q:y2=2px(p>0)的焦点与椭圆+=1的右焦点相同.(Ⅰ)求抛物线Q的方程;(Ⅱ)如图所示,设A、B、C是抛物线Q上任意不同的三点,且点A位于x轴上方,B、C位于x轴下方.直线AB、AC与x轴分别交于点E、F,BF与直线OC、EC分别交于点M、N.记△OBM、△ENF、△MNC的面积依次为S1、S2、S3,求证:S1+S2=S3.11.(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.四、线段比例关系得出坐标关系12.已知椭圆C:+y2=1的短轴的端点分别为A,B(如图),直线AM,BM分别与椭圆C交于E,F两点,其中点M(m,)满足m≠0,且m≠±.(1)用m表示点E,F的坐标;(2)证明直线EF与y轴交点的位置与m无关.(3)若△BME面积是△AMF面积的5倍,求m的值.【第3问中,面积关系转化为线段长度关系,进而用点坐标表示长度,与韦达定理联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C 的切线 l1 交 x 轴于点 D,交 y 轴于点 Q,交直线 l:y= 于点 M,当|FD|=2 时,∠AFD=60°.
(Ⅰ)求证:△AFQ 为等腰三角形,并求抛物线 C 的方程; (Ⅱ)若 B 位于 y 轴左侧的抛物线 C 上,过点 B 作抛物线 C 的切线 l2 交直线 l1 于点 P,交直线 l 于点 N, 求△PMN 面积的最小值,并求取到最小值时的 x1 值.
Ⅰ.与几何结合
一、椭圆的对称性
椭圆
1.已知椭圆 C:
=1(a>b>0)的左焦点为 F,C 与过原点的直线相交于 A,B 两点,连接了 AF,
BF,若|AB|=10,|BF|=8,cos∠ABF= ,则 C 的离心率为( )
A.
B.
C.
D.
二.设角,利用三角函数
2.设 F1、F2 分别为椭圆 + =1 的左、右焦点,c=
,求直线 AB 的方程.
(二)不设点,设直线
20.已知椭圆 + =1(a>b>0)的右焦点为 F2(1,0),点 H(2,
)在椭圆上.
(1)求椭圆的方程; (2)点 M 在圆 x2+y2=b2 上,且 M 在第一象限,过 M 作圆 x2+y2=b2 的切线交椭 圆于 P,Q 两点,问:△PF2Q 的周长是否为定值?如果是,求出定值;如果不是 ,说明理由.
Ⅱ.计算技巧
一、利用多个曲线方程联立
15.(2014•江西模拟)若两曲线在交点 P 处的切线互相垂直,则称呼两曲线在点 P 处正交.设椭圆 +
=1(0<b<2)与双曲线 ﹣y2=1 在交点处正交,则椭圆 + =1 的离心率为( )
A.
B.
C.
D. ﹣1
二、怎么设?
(一)直接求点 16.已知曲线 C 上任意一点 P 到两定点 F1(﹣1,0)与 F2(1,0)的距离之和为 4. (Ⅰ)求曲线 C 的方程; (Ⅱ)设曲线 C 与 x 轴负半轴交点为 A,过点 M(﹣4,0)作斜率为 k 的直线 l 交曲线 C 于 B、C 两点(B 在 M、C 之间),N 为 BC 中点.
19.(2014•潍坊模拟)如图,椭圆 C1:
的离心
率为 ,x 轴被曲线 C2:y=x2﹣b 截得的线段长等于椭圆 C1 的短轴长.C2 与 y 轴的交点为 M,过点 M 的两
条互相垂直的直线 l1,l2 分别交抛物线于 A、B 两点,交椭圆于 D、E 两点, (Ⅰ)求 C1、C2 的方程;
(Ⅱ)记△MAB,△MDE 的面积分别为 S1、S2,若
三、长度、面积关系转化 (一)绕来绕去
4.已知 P 为椭圆
上一点,F1、F2 为椭圆的左、右焦点,B 为椭圆右顶点,若
∠PF1F2 平分线与∠PF2B 的平分线交于点 Q(6,6),则 (二)拆、补线段关系
= _________ .
5.(2014•重庆三模)已知圆 M:(x﹣ )2+y2=r2(r>0).若椭圆 C: + =1(a>b>0)的右顶
23.(2014•吉林二模)已知椭圆 + =1(a>b>0)的右焦点为 F(1,0),离心率 e= ,A,B 是椭
圆上的动点. (Ⅰ)求椭圆标准方程; (Ⅱ)若直线 OA 与 OB 的斜率乘积 kOA•kOB=﹣ ,动点 P 满足 = +λ ,(其中实数 λ 为常数).问 是否存在两个定点 F1,F2,使得|PF1|+|PF2|为定值?若存在,求 F1,F2 的坐标,若不存在,说明理由; (Ⅲ)若点 A 在第一象限,且点 A,B 关于原点对称,点 A 在 x 轴上的射影为 C,连接 BC 并延长交椭圆 于点 D.证明:AB⊥AD.
10. (2014•金华模拟)已知抛物线 Q:y2=2px(p>0)的焦点与椭圆 +
=1 的右焦点相同. (Ⅰ)求抛物线 Q 的方程;
(Ⅱ)如图所示,设 A、B、C 是抛物线 Q 上任意不同的三点,且点 A 位于 x 轴上方,B、C 位于 x 轴下方. 直线 AB、AC 与 x 轴分别交于点 E、F,BF 与直线 OC、EC 分别交于点 M、N.记△OBM、△ENF、△MNC 的面积依次为 S1、S2、S3,求证:S1+S2=S3. 11.(2013•湖北)如图,已知椭圆 C1 与 C2 的中心在坐标原点 O,长轴均为 MN 且
(2)设不过原点 O 的直线 l 与该椭圆交于 P,Q 两点,满足直线 OP,PQ,OQ 的斜率依次成等比数列, 求△OPQ 面积的取值范围. 【本题中 P、Q 点由直线 PQ 而生,故设 PQ 斜率,表达 OP OQ 斜率】
26.(2014•杭州二模)设抛物线 C:y2=2px(p>0),A 为抛物线上一点(A 不同于原点 O),过焦点 F 作直 线平行于 OA,交抛物线 C 于点 P,Q 两点.若过焦点 F 且垂直于 x 轴的直线交直线 OA 于 B,则 |FP|•|FQ|﹣|OA||OB|= _________ .
B. 3
C.
D.
9.已知曲线 C1:
C1 的左焦点. (Ⅰ)求 λ 的值;
,曲线 C2:
.曲线 C2 的左顶点恰为曲线
(Ⅱ)设 P(x0,y0)为曲线 C2 上一点,过点 P 作直线交曲线 C1 于 A,C 两点.直线 OP 交曲线 C1 于 B,D 两 点.若 P 为 AC 中点. ①求证:直线 AC 的方程为 x0x+2y0y=2; ②求四边形 ABCD 的面积.
相切,求直线 l 被曲线 C1 截得的线段长的最小值.
28.若点 A(1,2)是抛物线 C:y2=2px(p>0)上一点,经过点 B(5,﹣2)的直线 l 与抛物线 C 交于 P, Q 两点.
13.如图,已知椭圆的中心在坐标原点,焦点在 x 轴上,它的一 个顶点为 A(0, ),且离心率等于 ,过点 M(0,2)的 直线 l 与椭圆相交于 P,Q 不同两点,点 N 在线段 PQ 上. (Ⅰ)求椭圆的标准方程;
(Ⅱ)设
,试求 λ 的取值范围.
五、线性规划思想
14.已知椭圆 C 的中心在原点,焦点在 x 轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为 8 的正方形(记为 Q). (Ⅰ)求椭圆 C 的方程; (Ⅱ)设点 P 是椭圆 C 的左准线与 x 轴的交点,过点 P 的直线 l 与椭圆 C 相交于 M,N 两点,当线段 MN 的中点落在正方形 Q 内(包括边界)时,求直线 l 的斜率的取值范围.
(三)不设直线,设点
21.(2014•南昌模拟)已知椭圆 C:
的左、右焦点分
别为 F1,F2,O 为原点. (Ⅰ)如图①,点 M 为椭圆 C 上的一点,N 是 MF1 的中点,且 NF2 丄 MF1,求点 M 到 y 轴的距离; (Ⅱ)如图②,直线 l:y=kx+m 与椭圆 C 上相交于 P,Q 两点 ,若在椭圆 C 上存在点 R,使 OPRQ 为平行四边形,求 m 的取 值范围.
在 x 轴上,短轴长分别为 2m,2n(m>n),过原点且不与 x 轴重合的直线 l 与 C1,C2 的四个交点按纵坐标
从大到小依次为 A,B,C,D,记
,△BDM 和△ABN 的面积分别为 S1 和 S2.
(Ⅰ)当直线 l 与 y 轴重合时,若 S1=λS2,求 λ 的值; (Ⅱ)当 λ 变化时,是否存在与坐标轴不重合的直线 l,使得 S1=λS2?并说明理由.
(Ⅱ)O 为抛物线的顶点,△OFA、△OFB、△OFC 的面积分别记为 S1、S2、S3,求证:
为定值.
8.(20抛物线上且位于 x 轴的两侧, • =2(其 中 O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )
A.2
24.(2013•北京)已知 A,B,C 是椭圆 W:
上的三个点,O 是坐标原点.
(Ⅰ)当点 B 是 W 的右顶点,且四边形 OABC 为菱形时,求此菱形的面积; (Ⅱ)当点 B 不是 W 的顶点时,判断四边形 OABC 是否可能为菱形,并说明理由.
(四)以一条直线代替其它直线 25.(2014•马鞍山一模)已知中心在原点 O,焦点在 x 轴上,离心率为 的椭圆过点( , ). (1)求椭圆的方程;
(ⅰ)证明:k•kON 为定值; (ⅱ)是否存在实数 k,使得 F1N⊥AC?如果存在,求直线 l 的方程,如果不存在,请说明理由. 【本题由于(ⅰ)问中已经得出了 N 点坐标,F1、N、A、C 点中仅 A 点坐标未知,若再设直线会更加麻烦, 那么求出 N 点坐标,将 A 代入,利用椭圆的范围可以进行求解】 17.已知 A,B 是抛物线 W:y=x2 上的两个点,点 A 的坐标为(1,1),直线 AB 的斜率为 k,O 为坐标原 点. (Ⅰ)若抛物线 W 的焦点在直线 AB 的下方,求 k 的取值范围; (Ⅱ)设 C 为 W 上一点,且 AB⊥AC,过 B,C 两点分别作 W 的切线,记两切线的交点为 D,求|OD|的最 小值. 【第二小问中设出切线方程直接求出交点坐标,不失为一种直接的方法】
点为圆 M 的圆心,离心率为 .
(Ⅰ)求椭圆 C 的方程; (Ⅱ)若存在直线 l:y=kx,使得直线 l 与椭圆 C 分别交于 A,B 两点,与圆 M 分别交于 G,H 两点,点 G 在线段 AB 上,且|AG|=|BH|,求圆 M 半径 r 的取值范围.
6(2008•石景山区一模)如图,设 F 是椭圆 的左焦点,直线 l 为左准线,直线
四、线段比例关系得出坐标关系
12.已知椭圆 C: +y2=1 的短轴的端点分别为 A,B(如图),直线 AM,BM 分别与椭圆 C 交于 E,F 两
点,其中点 M(m, )满足 m≠0,且 m≠± .
(1)用 m 表示点 E,F 的坐标; (2)证明直线 EF 与 y 轴交点的位置与 m 无关. (3)若△BME 面积是△AMF 面积的 5 倍,求 m 的值. 【第 3 问中,面积关系转化为线段长度关系,进而用点坐标表示长度,与韦达定理联系。】