不等式证明的常用基本方法(自己整编)
不等式证明的基本方法
不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
证明基本不等式的方法
证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。
在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。
首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。
接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。
最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。
2.递推法:递推法是证明基本不等式的另一种常用方法。
我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。
然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。
最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。
3.反证法:反证法是证明基本不等式的另一种有效方法。
我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。
接着,我们通过一系列的推导和推理,得出矛盾的结论。
这表明我们的假设是错误的,即不等式是成立的。
4.变量替换法:变量替换法是证明基本不等式的一种常用方法。
我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。
然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。
5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。
我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。
然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。
无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。
此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。
在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。
不等式的证明方法
不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。
证明不等式的方法有很多,下面介绍几种常见的方法。
1.数学归纳法数学归纳法是一种常用的证明不等式的方法。
当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。
具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。
2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。
例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。
3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。
例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。
4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。
具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。
5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。
它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。
不等式证明使用技巧
不等式证明使用技巧不等式证明是高中数学中的一个重要内容,掌握不等式证明的技巧对于解题和提升数学水平都有很大的帮助。
下面我将介绍一些常用的不等式证明技巧。
一、代入法代入法是一种常用的证明不等式的方法。
我们可以先假设不等式成立,然后进行推导得出结论。
如果得到的结论与原不等式一致,就证明了不等式的成立。
例如,我们要证明对于任意正实数a、b和c,有$(a^2+b^2+c^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})\ge q 9$。
我们可以假设$a\leq b\leq c$,然后代入得到:$a^2+b^2+c^2=2a^2+(b^2-a^2+c^2)\geq 2a^2=2(a\cdot a)\geq2(ab)$,$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\fra c{1}{b^2}+\frac{1}{c^2}\geq 3(\frac{1}{ab})=\frac{3}{ab}$。
然后,将两个不等式代入原不等式得到:$(2ab)(\frac{3}{ab})=6\geq 9$。
由此可见,原不等式成立。
二、放缩法放缩法是另一种常用的证明不等式的方法。
我们可以通过放缩不等式的各个部分来改变不等式的形式,从而得到更容易证明的形式。
例如,我们要证明对于任意正实数a、b和c,有$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$。
我们可以通过放缩的方法,将不等式的各个部分放缩至一个更容易证明的形式。
我们注意到,$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ca}$。
然后,我们可以通过平方展开和放缩的方法,得到:$\frac{(a+b+c)^2}{ab+bc+ca}\geq 3$。
证明不等式的基本方法
8、已知 f ( x ) x 2 px q ,求证: | f (1) |,| f (2) |,| f (3) | 中至 少有一个不小于
1
.
2 1 分析:设 | f (1) |,| f (2) |,| f (3) | 中没有一个大于或等于 , 2 观察: f (1) 1 p q , f (2) 4 2 p q , f (3) 9 3 p q
cd b cd d d dac cd
把以上四个不等式相加 得 abcd abcd abd bca cbd d ac ab cd . 即 ab cd a b c d 1 2 abd bca cba d ac a b c d
利用综合法证明不等式 时 , 应注意对已证 不等式的使用 , 常用的不等式有 : (1)a 2 0; ( 2 ) a 0; ( 3 )a 2 b 2 2 ab ; 它的变形形式又有 ( a b ) 4 ab ;
2
a b
2
2
2
ab 2
2
(4)
ab
2 a b a b 2( ab 0 ); 2( ab 0 ) b a b a
6、已知 x , y 0,且 x y 2, 1 x 1 y 试证 , 中至少有一个小于 2. y x
1 x 1 y 证明 : 假设 , 都 不 小 于 2, y x
1 x 1 y 即 2, 且 2, y x x , y 0 , 1 x 2 y , 1 y 2 x , 2 x y 2( x y ) x y 2 , 这 与 已 知 条 件 x y 2矛 盾 . 1 x y 与 1 y x 中 至 少 有 一 个 小 于2
不等式证明方法大全
不等式证明方法大全
在数学研究中,证明不等式是一项重要的内容。
目前,关于证明不等式的方法可以分
为几类,下面将详细展开讨论:
一、绝对值的技巧:将不等式中的变量都化为绝对值,这样可以有效地转换原不等式。
二、代数变换法:通过恰当的代数变换,将不等式中变量交换,从而转化为更简单的
不等式。
三、数量不等式法:将相同的不等式进行变形,将其变换为数量不等式,然后继续解决,从而获得结论。
四、角度不等式法:如果不等式涉及到测量角度的变量,我们可以将其转换为角度不
等式,然后判断两个角度的大小关系,从而获得结论。
五、条件不等式法:将不等式的左右两侧都加上某个条件,将其变换为条件不等式,
然后根据条件判断两个式子大小关系。
六、单值不等式变形法:将不等式变为单值不等式,然后将单值不等式中的变量通过
某种方式改变,从而继续解决不等式本身,用这种方法可以得出不等式的正确性。
七、多元不等式的考虑:由于某些不等式涉及多个变量,因此需要考虑这些变量的关系,包括不等式的变换形式,和多个变量的联系在内的其他因素,这样才能正确地证明不
等式的正确性。
以上就是证明不等式的各种方法,正确运用上述方法,可以帮助我们轻松地证明定理,有助于提高科学研究的水平。
不等式证明基本方法
不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
不等式证明方法
不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。
不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。
一、数学归纳法。
数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。
在不等式证明中,我们可以利用数学归纳法证明不等式的成立。
具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。
通过数学归纳法,我们可以比较简单地证明一些不等式的成立。
二、换元法。
换元法是不等式证明中常用的一种方法。
当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。
换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。
三、分析法。
分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。
在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。
四、综合利用不等式性质。
不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。
具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。
五、几何法。
在不等式证明中,几何法也是一种常用的证明方法。
通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。
在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。
六、数学推理法。
数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。
在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。
证明不等式的基本方法
x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
证明不等式的常用技巧
证明不等式的常用技巧证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。
作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。
换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。
1不等式证明方法比较法①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a<b。
综合法由因导果。
证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。
分析法执果索因。
证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。
放缩法将不等式一侧适当的放大或缩小以达到证题目的。
数学归纳法证明与自然数n有关的不等式时,可用数学归纳法证之。
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
换元法换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
构造法通过构造函数、图形、方程、数列、向量等来证明不等式。
2基本不等式基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。
第2节证明不等式的基本方法
第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。
1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。
例如,证明一个凸函数在区间上的函数值不小于端点的函数值。
2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。
例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。
3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。
例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。
二、利用数学归纳法进行证明。
如果不等式中的变量是正整数,可以利用数学归纳法进行证明。
首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。
例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。
三、利用代数方法。
1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。
通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。
例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。
2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。
例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。
不等式证明的常用基本方法(自己整理)
证明不等式的基本方法导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式.[自主梳理]1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立.2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n≥na 1·a 2·…·a n ,当且仅当__________________时等号成立.3.证明不等式的常用五种方法(1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小.(2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法.(3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法①反证法的定义先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.②思路:分析观察证明式的特点,适当放大或缩小是证题关键.题型一 用比差法与比商法证明不等式1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) A.s≥t B.s>t C.s≤t D.s<t【解析】∵s -t =b 2-2b +1=(b -1)2≥0,∴s≥t.【答案】A2.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( D ) A .a >b B .a <b C .a ≤b D .a ≥b解析:∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n)2≥0,∴a ≥b.答案:D 3.设a,b ∈R,给出下列不等式:①lg(1+a 2)>0;②a 2+b 2≥2(a-b-1);③a 2+3ab>2b 2;④,其中所有恒成立的不等式序号是 ② .②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.题型二 用综合法与分析法证明不等式 4.(1)已知x ,y 均为正数,且x>y ,求证:2x +1x 2-2xy +y2≥2y+3;(2)设a ,b ,c>0且ab +bc +ca =1,求证:a +b +c≥ 3. 证明 (1)因为x>0,y>0,x -y>0,2x +1x 2-2xy +y 2-2y =2(x -y)+1x -y 2=(x -y)+(x -y)+1x -y2≥33x -y21x -y2=3,所以2x +1x 2-2xy +y2≥2y+3.(2)因为a ,b ,c>0,所以要证a +b +c≥3,只需证明(a +b +c)2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca)≥3,而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca)≥3(ab+bc +ca).即证:a 2+b 2+c 2≥ab+bc +ca.而ab +bc +ca≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)成立.所以原不等式成立.5.已知a 、b 都是正实数,且ab =2.求证:(1+2a)(1+b)≥9.证明:法一 因为a 、b 都是正实数,且ab =2,所以2a +b≥22ab =4. 所以(1+2a)(1+b)=1+2a +b +2ab≥9.法二 因为ab =2,所以(1+2a)(1+b)=(1+2a)⎝ ⎛⎭⎪⎫1+2a =5+2⎝ ⎛⎭⎪⎫a +1a . 因为a 为正实数,所以a +1a≥2a ·1a=2.所以(1+2a)(1+b)≥9. 法三 因为a 、b 都是正实数,所以(1+2a)(1+b)=(1+a +a)·⎝ ⎛⎭⎪⎫1+b 2+b 2≥3·3a 2·3·3b 24=9·3a 2b 24.又ab =2,所以(1+2a)(1+b)≥9.思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野. 题型三 放缩法证明不等式6.已知0<a<1b ,且M =11+a +11+b ,N =a 1+a +b1+b,则M 、N 的大小关系是( A )A. M>NB. M<NC. M =ND.不能确定解析:∵0<a<1b,∴1+a>0,1+b>0,1-ab>0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.答案:A7.若a ,b∈R,求证:|a +b|1+|a +b|≤|a|1+|a|+|b|1+|b|.证明 当|a +b|=0时,不等式显然成立.当|a +b|≠0时,由0<|a +b|≤|a|+|b|⇒1|a +b|≥1|a|+|b|,所以|a +b|1+|a +b|=11|a +b|+1≤11+1|a|+|b|=|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|. 思维升华 (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有:①变换分式的分子和分母,如1k 2<1k k -1,1k 2>1k k +1,1k <2k +k -1,1k >2k +k +1.上面不等式中k∈N *,k>1;②利用函数的单调性;③真分数性质“若0<a<b ,m>0,则a b <a +mb +m”.(2)在用放缩法证明不等式时,“放”和“缩”均需把握一个度.8.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明 由2n≥n+k>n(k =1,2,…,n),得 12n ≤1n +k <1n. 当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…,当k =n 时,12n ≤1n +n <1n,∴12=n 2n ≤1n +1+1n +2+…+12n <n n =1.∴原不等式成立. 题型四 用反证法证明不等式 9.设a>0,b>0,且a+b=.证明:(1)a+b≥2; (2)a 2+a<2与b 2+b<2不可能同时成立. 【解析】由a+b=,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2=2,即a +b≥2.(2)假设a 2+a<2与b 2+b<2同时成立,则由a 2+a<2及a>0得0<a<1;同理得0<b<1,从而ab<1, 这与ab=1矛盾.故a 2+a<2与b 2+b<2不可能同时成立.10.若a>0,b>0,且1a +1b=ab.(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.【解】(1)由ab =1a +1b ≥2ab,得ab≥2.当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.1.证明不等式的常用方法有五种,即比较法、分析法、综合法、反证法、放缩法.2.应用反证法证明数学命题,一般有下面几个步骤:(1)分清命题的条件和结论;(2)作出与命题结论相矛盾的假设;(3)由条件和假设出发,应用正确的推理方法,推出矛盾结果;(4)断定产生矛盾结果的原因在于开始所作的假设不真,于是原结论成立,从而间接地证明了命题为真.3.放缩法证明不等式时,常见的放缩法依据或技巧主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(母)异分母(子)的两个分式大小的比较.缩小分母、扩大分子,分式值增大;缩小分子、扩大分母,分式值减小;全量不少于部分;每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩有时需便于求和.4.放缩法的常用措施:(1)舍去或加上一些项,如⎝⎛⎭⎫a +122+34>⎝⎛⎭⎫a +122;(2)将分子或分母放大(缩小),如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1(k ∈N *且k>1)等.1.设a 、b 是正实数,给出以下不等式:①ab>2ab a +b;②a>|a -b|-b ;③a 2+b 2>4ab -3b 2;④ab +2ab>2,其中恒成立的序号为( D )A.①③B.①④C.②③D.②④[答案]D[解析]∵a 、b ∈R +时,a +b≥2ab ,∴2ab a +b ≤1,∴2ab a +b≤ab ,∴①不恒成立,排除A 、B ;∵ab +2ab≥22>2恒成立,故选D .2.设M =1210+1210+1+1210+2+…+1211-1,则( B )A .M =1B .M<1C .M>1D .M 与1大小关系不定【解析】∵210+1>210,210+2>210,…,211-1>210,∴M =1210+1210+1+1210+2+…+1211-1<1210+1210+…+1210210个=1.【答案】B3.若不等式t t 2+9≤a ≤t +2t2在t∈(0,2]上恒成立,则a 的取值范围是( B )A.⎣⎢⎡⎦⎥⎤16,1B.⎣⎢⎡⎦⎥⎤213,1C.⎣⎢⎡⎦⎥⎤16,413D.⎣⎢⎡⎦⎥⎤16,22 【解析】由已知⎩⎪⎨⎪⎧a ≥1t +9t,a ≤1t +2⎝ ⎛⎭⎪⎫1t 2,对任意t∈(0,2]恒成立,于是只要当t∈(0,2]时,⎩⎨⎧a ≥⎝ ⎛⎭⎪⎪⎫1t +9t max ,a ≤⎣⎢⎡⎦⎥⎤1t +2⎝ ⎛⎭⎪⎫1t 2min,记f(t)=t +9t ,g(t)=1t +2⎝ ⎛⎭⎪⎫1t 2,可知两者都在(0,2]上单调递减,f(t)min =f(2)=132,g(t)min =g(2)=1,所以a∈⎣⎢⎡⎦⎥⎤213,1. 【答案】B 4.已知a ,b 为实数,且a>0,b>0.则⎝⎛⎭⎪⎫a +b +1a ⎝ ⎛⎭⎪⎫a 2+1b +1a 2的最小值为( C ) A .7 B .8 C .9 D .10【解析】因为a>0,b>0,所以a +b +1a ≥33a ×b ×1a=33b>0,①同理可证:a 2+1b +1a 2≥33a 2×1b ×1a 2=331b>0.②由①②及不等式的性质得⎝ ⎛⎭⎪⎫a +b +1a ⎝ ⎛⎭⎪⎫a 2+1b +1a 2≥33b ×331b =9.【答案】C5.下列结论正确的是( B )A .当x >0且x≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x≥2时,x +1x 的最小值为2D .当0<x≤2时,x -1x无最大值解析:当0<x <1时,lg x +1lg x <0,∴A 错误;当x >0时,x +1x≥2x ·1x=2,∴B 正确; 当x≥2时,x +1x 的最小值为52,∴C 错误.当0<x≤2时,x -1x是增函数,最大值在x =2时取得,∴D 错误.答案:B6.若P =x 1+x +y 1+y +z1+z(x>0,y>0,z>0),则P 与3的大小关系为____ P<3____.【解析】∵1+x>0,1+y>0,1+z>0,∴x 1+x +y 1+y +z 1+z <1+x 1+x +1+y 1+y +1+z1+z=3.即P<3.【答案】P<37.某品牌彩电厂家为了打开市场,促进销售,准备对其生产的某种型号的彩电降价销售,现有四种降价方案:(1)先降价a%,再降价b%;(2)先降价b%,再降价a%;(3)先降价a +b 2%,再降价a +b2%;(4)一次性降价(a +b)%.其中a>0,b>0,a≠b,上述四个方案中,降价幅度最小的是__ x 3>x 1=x 2>x 4___.解析:设降价前彩电的价格为1,降价后彩电价格依次为x 1、x 2、x 3、x 4. 则x 1=(1-a%)(1-b%)=1-(a +b)%+a%·b% x 2=(1-b%)(1-a%)=x 1,x 3=⎝ ⎛⎭⎪⎫1-a +b 2%⎝ ⎛⎭⎪⎫1-a +b 2%=1-(a +b)%+14[(a +b)%]2, x 4=1-(a +b)%<1-(a +b)%+a%·b%=x 1=x 2,x 3-x 1=⎝ ⎛⎭⎪⎫a%+b%22-a%·b%>0,∴x 3>x 1=x 2>x 4.8.已知两正数x ,y 满足x +y =1,则z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y 的最小值为____254____. 【解析】z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y =xy +1xy +y x +x y =xy +1xy +(x +y )2-2xy xy =2xy +xy -2,令t =xy ,则0<t =xy≤⎝ ⎛⎭⎪⎫x +y 22=14. 由f(t)=t +2t 在⎝ ⎛⎦⎥⎤0,14上单调递减,故当t =14时f(t)=t +2t 有最小值334,所以当x =y =12时,z 有最小值254.【答案】2549.求证:112+122+…+1n 2<2(n∈R *).证明 ∵1k 2<1k (k -1)=1k -1-1k ,∴112+122+…+1 n 2<1+(1-12)+(12-13)+…+(1n -1-1n )=1+(1-1n )=2-1n<2. 10.设a 、b 、c 均为正实数,求证:1a +1b +1c ≥1ab +1bc +1ac ≥2b +c +2c +a +2a +b .【证明】 ∵a ,b ,c 均为正实数,∴1a +1b ≥2ab ≥4a +b 当a =b 时等号成立 1b +1c ≥2bc ≥4b +c 当b =c 时等号成立 1a +1c ≥2ac ≥4a +c当a =c 时等号成立 三个不等式相加即得 2a +2b +2c ≥2ab +2bc +2ac ≥4a +b +4b +c +4a +c 当且仅当a =b =c 时等号成立 即1a +1b +1c ≥1ab +1bc +1ac ≥2a +b +2b +c +2a +c . 11.已知函数f(x)=m -|x -2|,m ∈R ,且f(x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c 大于0,且1a +12b +13c=m ,求证:a +2b +3c≥9.【解】(1)∵f(x +2)=m -|x|,∴f(x +2)≥0等价于|x|≤m. 由|x|≤m 有解,得m≥0且其解集为{x|-m≤x≤m}. 又f(x +2)≥0的解集为[-1,1],故m =1.(2)证明:由(1)知1a +12b +13c=1,且a ,b ,c 大于0,a +2b +3c =(a +2b +3c)⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥3+22b a ·a2b+23c a ·a 3c+23c 2b ·2b3c=9. 当且仅当a =2b =3c =13时,等号成立.因此a +2b +3c≥9.12.设a ,b ,c ∈R +且a +b +c =1,试求:12a +1+12b +1+12c +1的最小值.解:∵a +b +c =1,a ,b ,c 为正数,∴⎝ ⎛⎭⎪⎫12a +1+12b +1+12c +1(2a +1+2b +1+2c +1)≥(1+1+1)2,∴12a +1+12b +1+12c +1≥95.当且仅当2a +1=2b +1=2c +1,即a =b =c 时等号成立,∴当a =b =c =13时,12a +1+12b +1+12c +1取最小值95.答案:方案(3)13.设a >0,b >0,a +b =1,(1)求证:ab +1ab ≥414 ;(2)探索猜想,并将结果填在以下括号内:a 2b 2+1a 2b 2 ≥( );a 3b 3+1a 3b3 ≥( );(3)由(1)(2)归纳出更一般的结论,并加以证明.解析:(1)证法一:ab +1ab ≥414⇔4a 2b 2-17ab +4≥0⇔(4ab -1)(ab -4)≥0.∵ab =(ab)2≤⎝⎛⎭⎫a +b 2 2=14,∴4ab ≤1,而又知ab ≤14<4,因此(4ab -1)(ab -4)≥0成立,故ab +1ab ≥414.证法二:ab +1ab =ab +142·ab +1542·ab ,∵ab ≤⎝⎛⎭⎫a +b 22=14,∴1ab ≥4,∴1542·ab ≥154 .当且仅当a =b =12时取等号.又ab +142·ab ≥2 ab·142·ab =12,当且仅当ab =142·ab ,即1ab =4,a =b =12 时取等号.故ab +1ab ≥24 +154=414 (当且仅当a =b =12时,等号成立).证法三:∵a>0,b>0, ∴1=a +b ≥2ab ,∴ab ≤14,令ab =t ⎝⎛⎭⎫t ≤14. 令y =ab +1ab =t +1t ⎝⎛⎭⎫0<t ≤14, y ′=1-1t 2,t ≤14,1t2≥16.∴y ′<0,∴y =t +1t 在(0,14]单调减.∴y ≥14+4=414,即ab +1ab ≥414.(2)猜想:当a =b =12 时,不等式a 2b 2+1a 2b 2 ≥( )与a 3b 3+1a 3b 3 ≥( )取等号,故在括号内分别填16116与64164.(3)由此得到更一般性的结论:a nb n +1a n b n ≥4n +14n .∵ab ≤⎝⎛⎭⎫a +b 2 2=14,∴1ab ≥4.证法一:∴a n b n +1a n b n =a n b n +142n ·a n b n +42n -142n ·a n b n ≥2 a n b n·142n ·a n b n +42n -142n ×4n=24n +42n -14n =4n +14n ,当且仅当ab =14 ,即a =b =12时取等号. 证法二:令ab =t ,由(1)知0<t ≤14,令y =1a n b n +a n b n =t n +1t n ,y ′=nt n -1-n tn +1=n ⎝⎛⎭⎫t n -1-1t n +1∵0<t ≤14,∴t n -1≤14n -1,1tn +1≥4n +1.∴y ′<0,∴y=t n+1t n在(0,14]单调减,∴y≥4n+14n,即an b n+1a nb n≥4n+14n.。
高中不等式的证明方法
高中不等式的证明方法在高中数学学习中,不等式是一个非常重要的内容。
在解决不等式问题的过程中,常常需要使用一些证明方法。
下面我将介绍一些高中不等式的证明方法。
一、计算法对于一般的不等式,我们可以通过计算来证明。
该方法常常适用于直接证明不等式的正确性。
示例:对于不等式a + b ≥ 2√(ab),我们可以对其两边进行平方运算,化简得到(a + b)² ≥ 4ab,继续化简得到a² + 2ab + b² ≥ 4ab,最后得到a² + b² ≥ 2ab。
由于a²,b²为非负数,所以a² + b² ≥ 2ab成立,从而不等式得到证明。
二、数轴法数轴法是一种简便的证明不等式的方法。
示例:对于不等式x+1>2,我们可以画出数轴,将不等式变形为x>1,即x的取值范围在1的右侧。
通过观察数轴即可发现x的取值大于1,所以不等式成立。
三、加减法对于含有多个项,且项之间存在加减关系的不等式,我们可以通过加减法将不等式转化为一个已知不等式来证明。
示例:对于不等式a+b+c>3,我们可以将不等式两边都减去c,得到a+b>3-c。
由于c是一定的,所以不等式a+b>3-c成立,即不等式得到证明。
四、乘法当不等式中存在连续的乘法关系时,我们可以通过乘法来证明不等式。
示例:对于不等式(x+1)(x+2)>0,我们可以使用因式分解法将不等式化简为(x+1)(x+2)≠0。
由于(x+1)(x+2)的乘积肯定不为0,所以不等式成立。
五、数学归纳法对于有一定规律的不等式,我们可以使用数学归纳法来证明。
示例:对于不等式2ⁿ>n²,我们首先验证n=1时不等式成立,然后假设对于一些自然数k,不等式成立。
即2ᵏ>k²。
然后再证明当n=k+1时,也成立。
即2^(k+1)>(k+1)²。
(完整版)不等式的证明方法大全,推荐文档
不等式的证明一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种:1.作差比较法(1)应用范围:当欲证的不等式两端是多项式、分式或对数式时,常用此法。
(2)方法:欲证A>B,只需要证A-B>0(3)步骤:“作差----变形----判断符号”。
(4)使用此法作差后主要变形形式的处理:○将差变形为常数或一常数与几个平方和的形式常用配方法或实数特征a2≥0判断差符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
2.作商比较法(1)应用范围:当要证的式子两端是乘积的形式或幂、指数时常用此法。
(2)方法:要证A>B,常分以下三种情况:若B>0,只需证明1A B >;若B=0,只需证明A>0;若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小”例1 已知a ,b ∈R ,且a+b=1. 求证:()()2252222≥+++b a . 解析:用作差比较法a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++-2222911(1)4222(0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号)例2:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b a > 0∴0)()(>+-m b b a b m即:bam b m a >++例3:已知a>b>0,求证:()2a b a ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba aabb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>练习:已知a ,b∈R +,求证a a b b ≥a b b a .例4:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
基本不等式的证明方法
基本不等式的证明方法简介基本不等式是解决数学问题中经常用到的重要工具。
本文将介绍一些基本不等式的证明方法,帮助读者更好地理解和运用这些不等式。
方法一:数学归纳法证明数学归纳法是证明数学命题的一种常用方法。
在证明基本不等式时,我们可以运用数学归纳法来逐步推导不等式的成立。
首先,我们将基本不等式的初始条件表示为一个式子,通常为n = 1 或 n = 2。
然后,我们假设当 n = k 时不等式成立,即假设我们已经证明了 n = k 的情况。
接下来,我们需要证明当 n = k + 1 时,不等式仍然成立。
我们可以通过运用数学运算、代入等方法来完成这一步骤。
最后,通过证明初始条件成立,我们可以得出结论,即基本不等式对于所有的正整数 n 都成立。
方法二:几何证明法几何证明法是基于几何形状和图形的性质来证明数学命题的一种方法。
在证明基本不等式时,我们可以通过构建合适的几何形状和图形来解释不等式的成立原理。
举个例子,我们来证明三角形的三边关系,即 a + b > c,其中a、b、c 分别为三角形的三条边长。
我们可以通过构建一个合适的三角形,并进一步分析其边长关系来证明这个不等式的成立。
方法三:代数证明法代数证明法是通过代数运算和方程的性质来证明数学命题的一种方法。
在证明基本不等式时,我们可以使用代数法来进行求解和证明。
例如,要证明 (a + b)^2 >= 4ab,我们可以展开左边的平方项,并进行运算和化简,最终得到不等式成立的形式。
通过适当的代数变换和运算,我们可以证明这个基本不等式的成立。
方法四:数学逻辑证明法数学逻辑证明法是运用数学逻辑原理和推理规则来证明数学命题的一种方法。
在证明基本不等式时,我们可以运用逻辑原理和推理规则来推导不等式的成立。
通过运用严谨的数学推理,我们可以将基本不等式分解为一系列等价的数学命题,然后逐步推导得出不等式的成立。
这种证明方法需要严谨的逻辑思维和推理能力,但能够确保证明的准确性和合理性。
不等式证明技巧
不等式证明技巧
1. 比较法,这就像我们走路,要知道哪条路更近!比如证明 2x+3>
x+5,我们就把左边减去右边,看看是不是大于 0 就知道啦!
2. 分析法,哎呀呀,就像侦探破案一样,一步步找到证据来证明不等式!比如证明根号(x+1)>x,咱们就从结论往回推,找到能说明它成立的条件。
3. 综合法,这不就是把各种线索都放到一起嘛!比如说已知 a>b,b>c,
那咱就能直接得出 a>c 啦。
4. 放缩法,哈哈,就像把东西变胖或变瘦一样!比如要证明一个式子小于
1/2,咱可以把一些项放大一点,让它更容易看出来。
就好比证明 1/(n+1)!<1/2^n。
5. 反证法,哇哦,和别人争论的时候常用到呀,假设不对然后推出矛盾!例如证明不存在整数 x 让 x^2-2x-3=0 成立。
6. 数学归纳法,就像爬楼梯一样,先证明第一步能行,再假设第 n 步行然
后证明第n+1 步也没问题!像证明1+2+3+…+n=n(n+1)/2 就很适用呢。
7. 构造函数法,嘿,这就像给自己打造一个专属工具来解决问题!比如构造个函数来证明不等式 x^2+2x+2>0。
8. 换元法,相当于给问题换个包装呀!像证明(1+2^x)(1+3^x)≥4 ,咱可
以换个元来让它更简单明了。
9. 利用基本不等式,这可是个宝贝啊!举例来说,已知 x>0,y>0,要证
明x+y≥2 根号(xy) 是不是很常用!
我觉得呀,这些不等式证明技巧都超级实用,就像我们手里的武器,能帮我们攻克一个又一个难题!大家可得好好掌握它们呀!。
证明不等式常用方法高二数学知识点知识点总结
证明不等式常用方法高二数学知识点知识点总结
证明不等式常用方法(1)比较法:作差比较:
作差比较的步骤:
⑴作差:对要比较大小的两个数(或式)作差。
⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。
(2)综合法:由因导果。
(3)分析法:执果索因。
基本步骤:要证只需证,只需证
(4)反证法:正难则反。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。
放缩法的方法有:
⑴添加或舍去一些项,
⑵将分子或分母放大(或缩小)
⑶利用基本不等式,
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;。
不等式的证明方法
不等式的证明方法不等式的性质和基本不等式是证明不等式的理论依据,但是由于不等式的形式多样,因此不等式的证明方法也很多。
我总结了一些不等式的证明方法 ,下面举例说明。
一. 比较法例1 求证:223x +>x .证明:因为()222155232320222x x x x x ⎛⎫+-=-+=-+≥> ⎪⎝⎭所以 223x +>x .证明例1的方法称为作差比较法。
用差与“0”比较大小。
例2 已知a >b>c>0,求证:()3a b c ab cab c abc ++>。
证明:因为()2223333a b c b a c c a b a b ca b c a b c abcabc ------++=333333a b a cb a b cc a c babc------+++=333a b a c b c a a b b c c ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且a >b>0, 所以a -b>0,1a b >,故31a b a b -⎛⎫> ⎪⎝⎭。
同理可证31a c a c -⎛⎫> ⎪⎝⎭,31b cb c -⎛⎫> ⎪⎝⎭。
所以3331a b a c b c a a b b c c ---⎛⎫⎛⎫⎛⎫> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而()3a b ca b ca b c a bc ++>。
证明例2的方法称为求商比较法。
用商与“1”比较大小。
二.反证法 例3是无理数。
=q p,p ≠0,且p,q 互素,则所以, 222p q = ①故2q 是偶数,q 也必是偶数。
不妨设q=2k,代入①式,则有2224pk =,即222p k =,所以,p 也是偶数.P 和q 都是偶数,它们有公约数2,这与p,q 互素相矛盾。
不是有理数,而是无理数。
证明例3的方法称为反证法。
当命题过于简单,或正面情况非常复杂时,一般用反证法。
不等式证明的常见方法
2.3 不等式证明的常见方法
(1)比较法:
1°、作差法(两数同号为负)
①一般步骤:作差→变形→判号(与0比较大小)→定论。
②理论依据:.0;0;0b a b a b a b a b a b a =⇒=-<⇒<->⇒>-2°、作商法(两数同号为正)
①一般步骤:作商→变形→与1比较大小→定论。
②理论依据:.1;01;010b a b
a b a b b a b a b b
a b =⇒=<⇒<>>⇒>>≠若且若且若时,
当(2)综合法:由因及果-----即由已知条件或某些证明过的基本不等式→结论。
(3)分析法:执果锁因-----即由结论→已知条件。
(4)数学归纳法:主要适用于与自然数有关的不等式的证明。
(5)反证法:否定结论→推出矛盾→肯定结论。
(6)其他方法:有换元法、放缩法、函数法、判别式法等。
用放缩法证明不等式的放缩技巧:
1°、往往采用以下技巧:
1)添项或减项的添舍放缩;
2)拆项对比的分项放缩;
3)函数的单调性放缩;
4)均值不等式放缩等。
2°、放缩时要注意适度,否则不能通向传递。
采用的是均值定理。
而法,
采用的是缩小因子的方如2
122)1()1()1(2+=++<+=>+n n n n n n n n n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明不等式的基本方法导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式.[自主梳理]1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立.2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥na 1·a 2·…·a n ,当且仅当__________________时等号成立.3.证明不等式的常用五种方法(1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小.(2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法.(3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.②思路:分析观察证明式的特点,适当放大或缩小是证题关键.题型一 用比差法与比商法证明不等式1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A )A.s ≥tB.s>tC.s ≤tD.s<t 【解析】∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t.【答案】A 2.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( D ) A .a >b B .a <b C .a ≤b D .a ≥b解析:∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n)2≥0,∴a ≥b.答案:D3.设a,b ∈R,给出下列不等式:①lg(1+a 2)>0;②a 2+b 2≥2(a-b-1);③a 2+3ab>2b 2;④,其中所有恒成立的不等式序号是 ② .②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②. 题型二 用综合法与分析法证明不等式4.(1)已知x ,y 均为正数,且x>y ,求证:2x +1x 2-2xy +y 2≥2y +3;(2)设a ,b ,c>0且ab +bc +ca =1,求证:a +b +c ≥ 3.证明 (1)因为x>0,y>0,x -y>0, 2x +1x 2-2xy +y 2-2y =2(x -y)+1x -y2=(x -y)+(x -y)+1x -y2≥33x -y21x -y2=3,所以2x +1x 2-2xy +y 2≥2y +3.(2)因为a ,b ,c>0,所以要证a +b +c ≥3,只需证明(a +b +c)2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca)≥3,而ab +bc +ca =1, 故需证明:a 2+b 2+c 2+2(ab +bc +ca)≥3(ab +bc +ca). 即证:a 2+b 2+c 2≥ab +bc +ca.而ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)成立.所以原不等式成立.5.已知a 、b 都是正实数,且ab =2.求证:(1+2a)(1+b)≥9. 证明:法一 因为a 、b 都是正实数,且ab =2,所以2a +b ≥22ab =4.所以(1+2a)(1+b)=1+2a +b +2ab ≥9.法二 因为ab =2,所以(1+2a)(1+b)=(1+2a)⎝ ⎛⎭⎪⎫1+2a =5+2⎝ ⎛⎭⎪⎫a +1a .因为a 为正实数,所以a +1a≥2a ·1a=2.所以(1+2a)(1+b)≥9.法三 因为a 、b 都是正实数,所以(1+2a)(1+b)=(1+a +a)·⎝ ⎛⎭⎪⎫1+b 2+b 2≥3·3a 2·3·3b 24=9·3a 2b 24.又ab =2,所以(1+2a)(1+b)≥9.思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野. 题型三 放缩法证明不等式6.已知0<a<1b ,且M =11+a +11+b ,N =a1+a +b1+b ,则M 、N 的大小关系是( A )A. M>NB. M<NC. M =ND.不能确定 解析:∵0<a<1b ,∴1+a>0,1+b>0,1-ab>0, ∴M -N =1-a 1+a +1-b 1+b =2-2ab1+a 1+b >0.答案:A7.若a ,b ∈R ,求证:|a +b|1+|a +b|≤|a|1+|a|+|b|1+|b|.证明 当|a +b|=0时,不等式显然成立.当|a +b|≠0时, 由0<|a +b|≤|a|+|b|⇒1|a +b|≥1|a|+|b|, 所以|a +b|1+|a +b|=11|a +b|+1≤11+1|a|+|b|=|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|.思维升华 (1)在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: ①变换分式的分子和分母,如1k 2<1k k -1,1k 2>1k k +1,1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k>1;②利用函数的单调性;③真分数性质“若0<a<b ,m>0,则a b <a +mb +m”.(2)在用放缩法证明不等式时,“放”和“缩”均需把握一个度.8.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明 由2n ≥n +k>n(k =1,2,…,n),得 12n ≤1n +k <1n.当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…,当k =n 时,12n ≤1n +n <1n ,∴12=n 2n ≤1n +1+1n +2+…+12n <nn =1.∴原不等式成立. 题型四 用反证法证明不等式 9.设a>0,b>0,且a+b=.证明:(1)a+b ≥2; (2)a 2+a<2与b 2+b<2不可能同时成立. 【解析】由a+b=,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b ≥2=2,即a+b ≥2.(2)假设a 2+a<2与b 2+b<2同时成立,则由a 2+a<2及a>0得0<a<1;同理得0<b<1,从而ab<1,这与ab=1矛盾.故a 2+a<2与b 2+b<2不可能同时成立. 10.若a>0,b>0,且1a +1b=ab.(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 【解】(1)由ab =1a +1b ≥2ab ,得ab ≥2.当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为42.(2)由(1)知,2a +3b ≥26ab ≥43.由于43>6,从而不存在a ,b ,使得2a +3b =6.1.证明不等式的常用方法有五种,即比较法、分析法、综合法、反证法、放缩法.2.应用反证法证明数学命题,一般有下面几个步骤:(1)分清命题的条件和结论;(2)作出与命题结论相矛盾的假设;(3)由条件和假设出发,应用正确的推理方法,推出矛盾结果;(4)断定产生矛盾结果的原因在于开始所作的假设不真,于是原结论成立,从而间接地证明了命题为真.3.放缩法证明不等式时,常见的放缩法依据或技巧主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(母)异分母(子)的两个分式大小的比较.缩小分母、扩大分子,分式值增大;缩小分子、扩大分母,分式值减小;全量不少于部分;每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩有时需便于求和.4.放缩法的常用措施:(1)舍去或加上一些项,如⎝⎛⎭⎪⎫a+122+34>⎝⎛⎭⎪⎫a+122;(2)将分子或分母放大(缩小),如1k2<1k k-1,1k2>1k k+1,1k<2k+k-1,1k>2k+k+1(k∈N*且k>1)等.1.设a、b是正实数,给出以下不等式:①ab>2aba+b;②a>|a-b|-b;③a2+b2>4ab-3b2;④ab+2ab>2,其中恒成立的序号为( D )A.①③B.①④C.②③D.②④[答案]D[解析]∵a、b∈R+时,a+b≥2ab,∴2aba+b≤1,∴2aba+b≤ab,∴①不恒成立,排除A、B;∵ab+2ab≥22>2恒成立,故选D.2.设M=1210+1210+1+1210+2+…+1211-1,则( B )A.M=1 B.M<1 C.M>1 D.M与1大小关系不定【解析】∵210+1>210,210+2>210,…,211-1>210,∴M=1210+1210+1+1210+2+…+1211-1<1210+1210+…+1210210个=1.【答案】B3.若不等式tt2+9≤a≤t+2t2在t∈(0,2]上恒成立,则a的取值范围是( B )A.⎣⎢⎡⎦⎥⎤16,1 B.⎣⎢⎡⎦⎥⎤213,1 C.⎣⎢⎡⎦⎥⎤16,413D.⎣⎢⎡⎦⎥⎤16,22【解析】由已知⎩⎪⎨⎪⎧a≥1t+9t,a≤1t+2⎝⎛⎭⎪⎫1t2,对任意t∈(0,2]恒成立,于是只要当t∈(0,2]时,⎩⎪⎨⎪⎧a ≥⎝ ⎛⎭⎪⎫1t +9t max ,a ≤⎣⎢⎡⎦⎥⎤1t +2⎝ ⎛⎭⎪⎫1t 2min ,记f(t)=t +9t ,g(t)=1t +2⎝ ⎛⎭⎪⎫1t 2,可知两者都在(0,2]上单调递减,f(t)min =f(2)=132,g(t)min =g(2)=1,所以a ∈⎣⎢⎡⎦⎥⎤213,1. 【答案】B4.已知a ,b 为实数,且a>0,b>0.则⎝⎛⎭⎪⎫a +b +1a ⎝ ⎛⎭⎪⎫a 2+1b +1a 2的最小值为( C ) A .7 B .8 C .9 D .10【解析】因为a>0,b>0,所以a +b +1a ≥33a ×b ×1a =33b>0,①同理可证:a 2+1b +1a2≥33a 2×1b ×1a 2=331b>0.②由①②及不等式的性质得⎝ ⎛⎭⎪⎫a +b +1a ⎝ ⎛⎭⎪⎫a 2+1b +1a 2≥33b ×331b =9.【答案】C5.下列结论正确的是( B )A .当x >0且x ≠1时,lg x +1lg x≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值解析:当0<x <1时,lg x +1lg x <0,∴A 错误;当x >0时,x +1x≥2x ·1x=2,∴B 正确; 当x ≥2时,x +1x 的最小值为52,∴C 错误.当0<x ≤2时,x -1x是增函数,最大值在x =2时取得,∴D 错误.答案:B6.若P =x 1+x +y 1+y +z1+z (x>0,y>0,z>0),则P 与3的大小关系为____ P<3____.【解析】∵1+x>0,1+y>0,1+z>0,∴x 1+x +y 1+y +z 1+z <1+x 1+x +1+y 1+y +1+z1+z =3.即P<3. 【答案】P<37.某品牌彩电厂家为了打开市场,促进销售,准备对其生产的某种型号的彩电降价销售,现有四种降价方案:(1)先降价a%,再降价b%;(2)先降价b%,再降价a%;(3)先降价a +b 2%,再降价a +b2%;(4)一次性降价(a +b)%.其中a>0,b>0,a ≠b ,上述四个方案中,降价幅度最小的是__ x 3>x 1=x 2>x 4___.解析:设降价前彩电的价格为1,降价后彩电价格依次为x 1、x 2、x 3、x 4. 则x 1=(1-a%)(1-b%)=1-(a +b)%+a%·b% x 2=(1-b%)(1-a%)=x 1,x 3=⎝ ⎛⎭⎪⎫1-a +b 2%⎝ ⎛⎭⎪⎫1-a +b 2%=1-(a +b)%+14[(a +b)%]2, x 4=1-(a +b)%<1-(a +b)%+a%·b%=x 1=x 2,x 3-x 1=⎝⎛⎭⎪⎫a%+b%22-a%·b%>0, ∴x 3>x 1=x 2>x 4.8.已知两正数x ,y 满足x +y =1,则z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y 的最小值为____254____.【解析】z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y =xy +1xy +y x +x y =xy +1xy +(x +y )2-2xy xy =2xy +xy -2,令t =xy ,则0<t =xy ≤⎝ ⎛⎭⎪⎫x +y 22=14. 由f(t)=t +2t 在⎝ ⎛⎦⎥⎤0,14上单调递减,故当t =14时f(t)=t +2t 有最小值334,所以当x =y =12时,z 有最小值254.【答案】2549.求证:112+122+…+1n 2<2(n ∈R *). 证明 ∵1k 2<1k (k -1)=1k -1-1k,∴112+122+…+1 n 2<1+(1-12)+(12-13)+…+(1n -1-1n )=1+(1-1n )=2-1n <2. 10.设a 、b 、c 均为正实数,求证:1a +1b +1c ≥1ab +1bc +1ac ≥2b +c +2c +a +2a +b .【证明】 ∵a ,b ,c 均为正实数, ∴1a +1b ≥2ab ≥4a +b当a =b 时等号成立1b +1c ≥2bc ≥4b +c 当b =c 时等号成立 1a +1c ≥2ac ≥4a +c 当a =c 时等号成立 三个不等式相加即得2a +2b +2c ≥2ab +2bc +2ac ≥4a +b +4b +c +4a +c 当且仅当a =b =c 时等号成立 即1a +1b +1c ≥1ab +1bc +1ac≥2a +b +2b +c +2a +c . 11.已知函数f(x)=m -|x -2|,m ∈R ,且f(x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c 大于0,且1a +12b +13c =m ,求证:a +2b +3c ≥9.【解】(1)∵f(x +2)=m -|x|,∴f(x +2)≥0等价于|x|≤m. 由|x|≤m 有解,得m ≥0且其解集为{x|-m ≤x ≤m}. 又f(x +2)≥0的解集为[-1,1],故m =1.(2)证明:由(1)知1a +12b +13c=1,且a ,b ,c 大于0,a +2b +3c =(a +2b +3c)⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c≥3+22b a ·a2b+23c a ·a 3c+23c 2b ·2b3c=9. 当且仅当a =2b =3c =13时,等号成立.因此a +2b +3c ≥9.12.设a ,b ,c ∈R +且a +b +c =1,试求:12a +1+12b +1+12c +1的最小值.解:∵a +b +c =1,a ,b ,c 为正数,∴⎝ ⎛⎭⎪⎫12a +1+12b +1+12c +1(2a +1+2b +1+2c +1) ≥(1+1+1)2,∴12a +1+12b +1+12c +1≥95.当且仅当2a +1=2b +1=2c +1, 即a =b =c 时等号成立,∴当a =b =c =13时,12a +1+12b +1+12c +1取最小值95.答案:方案(3)13.设a >0,b >0,a +b =1,(1)求证:ab +1ab ≥414 ;(2)探索猜想,并将结果填在以下括号内:a 2b 2+1a 2b 2≥();a 3b 3+1a 3b 3≥( );(3)由(1)(2)归纳出更一般的结论,并加以证明.解析:(1)证法一:ab +1ab ≥414 ⇔4a 2b 2-17ab +4≥0⇔(4ab -1)(ab -4)≥0.∵ab =(ab)2≤⎝⎛⎭⎪⎫a +b 2 2=14, ∴4ab ≤1,而又知ab ≤14<4,因此(4ab -1)(ab -4)≥0成立,故ab +1ab ≥414 .证法二:ab +1ab =ab +142·ab +1542·ab,∵ab ≤⎝ ⎛⎭⎪⎫a +b 22=14,∴1ab≥4,∴1542·ab ≥154 . 当且仅当a =b =12 时取等号.又ab +142·ab≥2ab ·142·ab =12, 当且仅当ab =142·ab ,即1ab =4,a =b =12 时取等号.故ab +1ab ≥24 +154=414 (当且仅当a =b =12 时,等号成立).证法三:∵a>0,b>0, ∴1=a +b ≥2ab ,∴ab ≤14,令ab =t ⎝ ⎛⎭⎪⎫t ≤14.令y =ab +1ab =t +1t ⎝⎛⎭⎪⎫0<t ≤14,y ′=1-1t 2,t ≤14,1t2≥16.∴y ′<0,∴y =t +1t 在(0,14]单调减.∴y ≥14+4=414,即ab +1ab ≥414.(2)猜想:当a =b =12时,不等式a 2b 2+1a 2b 2 ≥( )与a 3b 3+1a 3b 3 ≥( )取等号,故在括号内分别填16116与64164.(3)由此得到更一般性的结论: a n b n +1a nb n ≥4n +14n . ∵ab ≤⎝ ⎛⎭⎪⎫a +b 2 2=14,∴1ab≥4. 证法一:∴a n b n +1a nb n=a n b n +142n ·a n b n +42n -142n ·a n b n≥2a nb n ·142n ·a n b n +42n -142n ×4n =24n +42n -14n =4n +14n ,当且仅当ab =14 ,即a =b =12 时取等号. 证法二:令ab =t ,由(1)知0<t ≤14,令y =1a n b n +a n b n =t n +1t n ,y ′=nt n -1-nt n +1=n ⎝⎛⎭⎪⎫t n -1-1t n +1∵0<t ≤14,∴t n -1≤14n -1,1t n +1≥4n +1.∴y ′<0, ∴y =t n +1t n 在(0,14]单调减, ∴y ≥4n +14n,即a nb n +1a nb n ≥4n +14n .。