2018_2019学年九年级数学上册第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质教案1(新版)新人教版
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。
本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。
通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。
二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。
但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。
同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。
三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。
2.能够运用图形旋转的性质解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.图形旋转的性质的理解和运用。
2.旋转的表示方法的掌握。
五. 教学方法采用问题驱动法和案例教学法进行教学。
通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。
六. 教学准备1.多媒体教学设备。
2.图形旋转的实例和练习题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。
3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。
4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。
5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。
23.1旋转第1课时优质课件
• 2、在四边形ABCD中,∠ADC=90°,AD=CD,DP⊥AB 于点P,若四边形ABCD的面积是16,求DP的长
第二十三章 23.1 旋转
(第1课时)
课件初步设计:
九中
翟妮莎
一、情境导入
如图,钟表的指针在不停地转动,从3时到5时,时针转 动了多少度?
如图,风车风轮的每个叶片在风的吹动下转动到新的位置。 这是生活中随处可见的旋转现象。在数学中,旋转是图形变化的 方法之一,应该怎样描述它呢?它又有什么性质呢?下面我们一起 来研究这些问题。
• 2、 分别画出△ABC绕点O逆时针旋转90°和 180°后的图形
• 3、归纳简单的旋转作图的步骤:确定旋转角的大 小和旋转方向,确定每对对应点,一连、二转、 三截…。 • • (四)体会不一样的旋转 • 1、自学P61,归纳总结:选择不同的旋转中心、 不同的旋转角转同一个图案,会出现 效果。 例如:
(2)将△ABC绕点
角是 ∠B的对应角是
O旋转到△ OEF 的位置,则旋转中心是 , ,线段 AB的对应线段是 。
,旋转
(二)旋转的性质 自学P59,探究归纳旋转的性质: (1)对应点到旋转中心的距离 。 (2)每一对对应点与旋转中心所连线 段的夹角等于 。 (3)旋转前、后的图形 。
(三)利用旋转的性质作图 1、如图23.1-4,E是正方形ABCD 中CD边上任意一点,以点A为中心,把 △ADE顺时针旋转90°,画出旋转后的图形
二、自主探究
(一)旋转的有关概念(自学课本P59,回答下列问题) 1.什么叫图形的旋转? 2.图形旋转的三个要素: 3.什么是旋转中心?旋转角?旋转的对应点? 4.概念的应用: (1)把图中的五角星图案,绕着它的中心O旋转。旋转角至少为多少度时,旋 转后的五角星能与自身重合?对等边三角形进行类似的讨论。
人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.
人教版九年级数学上册第23章《 旋转:23.1.1 图形的旋转及性质》
第二十三章 旋转
【例2】如图所示,△ABC是直角三角形,延长AB到D,使 BD=BC,在BC上取BE=AB,连接DE.△ABC旋转后能与 △EBD重合,那么:旋转中心是_点__B___;旋转的角度是 __9_0_°____;AC的对应边是__E_D____;∠A的对应角是 _∠_B__E_D___;点C的对应点是_点__D__.
再另挖一个小洞O作为旋转中心,硬纸板下面 放一张白纸.先在纸上描出这个挖掉的三角形 图案(△ABC),然后围绕旋转中心转动硬
纸板,再描出这个挖掉的三角形(△ ABC),
移开硬纸板.
△ ABC是由△ABC绕点O旋转得到的.线
段OA与OA′有什么关系?∠AOA′与∠BOB′
有什么关系?△ABC与△ ABC 的形状和大小
应点,点C′与点C是对应点),连接CC′,则∠ CCB
的度数是( D )
A.45° B.30° C.25° D.15°
分析 :由旋转中心为点A,点C与点C′为对应点可知AC=AC′, 又由∠CAC′=90°可知△CAC′为等腰直角三角形,所以
∠CCA= 45°.又由∠ ACB=∠ACB=90°-60°=30°, 可得∠ CCB=15°.
第二十三章 旋转
3.如图,将矩形ABCD绕点A旋转至矩形 ABCD位置,此时AC
的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC 的面积为( D )
A.3 B.1.5 C.2 3 D. 3
分析:按旋转的相关概念判断.
第二十三章 旋转
总结
一个图形由一个位置旋转到另一个位置,固定 不动的点就是旋转中心,互换位置的点是对应点, 互换位置的边是对应边,对应边的夹角是旋转角.
人教版九年级上册数学 第二十三章 旋转 图形的旋转 (第一课时)
素养目标
2.能够根据旋转的基本性质解决实际 问题.
1.掌握旋转的有关概念及基本性质.
探究新知 知识点 1 旋转的概念
【观察】观察下列图形的运动,它有什么特点?
O
45°
B
A
探究新知
【思考】怎样 来定义这种图 形变换?
把时针当成一个图形,那么它可以绕着中心 固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时 针转动了__1_2_0_°_度.
两个点叫做这个旋转的 对应点.
线段OP与OP’叫 做对应线段.
B
P 旋转角 P’
O 旋转中心
探究新知
O
0
45
B
A
点A绕_O_点,往_顺_时_针方向,转动了_45度到点B.
旋转的三要素: 旋转中心、旋转方向、旋转角度.
探究新知
素养考点 1 旋转的相关概念识别
例1 如图,△ABC为等边三角形,点P在△ABC中,将 △ABP旋转后能与△CBQ重合. (1)旋转中心是哪一点? (2)旋转角是多少度? (3)△BPQ是什么三角形?
课堂检测
能力提升题
1. 如图(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和 ∠D都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能 够与△ADE重合,再将图(1)作为“基本图形”绕着A点经过
逆时针旋转得到图(2).两次旋转的角度分别为( )A
A.45°,90° B.90°,45° C.60°,30° D.30°,60°
转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋
千运动.
A.2
B.3
C.4
D.5
课堂检测
B 2. 下列说法正确的是( ) A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
九年级数学: 《图形的旋转》教学设计
23.1《图形的旋转》(第1课时)教学设计无为县十里墩中心学校谢春生教材: 人教版九年级数学第二十三章《旋转》第一节教学目标:知识与技能:①观察对生活中旋转现象,引导学生用数学的眼光看待生活中的有关问题。
②通过具体实例的认识旋转,归纳图形旋转的性质。
过程与方法:探索图形的旋转性质,让学生动手操作和自主探索,学会有条理地思考、分析、解决问题,培养学生推理意识和能力,发展学生的空间观念。
情感、态度与价值观:①培养学生敢于实践,勇于发现,大胆探索,合作创新的精神;②体会“数学源于生活,高于生活”,增强学生学习数学的兴趣,树立学好数学的信心。
教学重难点:⑴教学重点:旋转的概念及其性质。
⑵教学难点:概念的形成过程与性质的探究过程。
课前准备教具:课件《图形的旋转》、三角板、量角器。
学具:三角板、量角器。
教学过程设计:一、初识旋转【活动一】教师演示课件,显示视频与动画:风车、钟摆、风扇和秋千等。
让学生观察它们的运动,说出上述运动的共同特征。
设计意图:利用信息技术与数学的课程整合,展示视频与动画,学生观察生活中经常看到的这些旋转现象,感受图形旋转的形象,体会数学与生活的联系,体会数学的美学价值,激发学生的学习兴趣。
B AB´A´CC´O二、形成概念【活动二】观察:问题一:钟表的指针在不停地转动,如图,从3时到5时,时针转动了多少度?问题二:如图,风车风轮的每个叶片在风的吹动下转动到新的位置,以上这些现象有什么共同特点呢?设计意图:让学生以自身已有的知识和经验为基础,学习图形的旋转相关知识,加深学生对图形旋转的理解,为探索出旋转的特征做准备。
【活动三】教师演示课件,同时让学生自己去尝试给出旋转的定义。
学生通过前面的观察的实例结合生活体验,归纳总结旋转的概念。
最后教师总结,并给出图形的旋转等概念。
【活动四】教师应用课件演示:1、动画演示△ABC绕点O旋转2、练习:请仔细观察此图,点A,线段AB,∠ABC分别转到了什么位置?3、练习:△ABO绕点O旋转得到△CDO,则:点B的对应点是;线段OB的对应线段是;……设计意图:利用信息技术与数学课程整合,动画演示△ABC绕点O旋转以及由此衍生出的练习,将风车等实物抽象成平面几何图形,将实际问题数学化。
最新人教版初中九年级上册数学《旋转的概念及性质》教案
第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质【知识与技能】通过观察具体实例认识旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.【情感态度】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.一、情境导入,初步认识问题1 以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.问题2 请观察下列图形的变化(教师展示实物或图片或用课件展示):(1)时钟针面上时针的转动(顺时针方向旋转和逆时针方向转动);(2)风车的转动;(3)电扇上扇叶的转动;(4)小朋友荡秋千;(5)汽车雨刷的转动;以上图形的转动有什么共同特点呢?你还能举出这样类似的生活中的情境吗?【教学说明】问题1的回顾,可让学生感受到现实生活中存在着平移,轴对称变换,结合问题2,可进一步感受生活中存在着旋转变换,增强探究欲望,进而导入新课.对于问题2,应鼓励学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.二、思考探究,获取新知探究1 如图,用一根细线一端拴住小球,另一端固定在支架上(教师事先准备好实物),当小球绕点O由A摆动至B,由B摆动至A的过程中,试问:小球绕着哪个点转动?它们转动方向如何?转动的角度是哪个角?探究2 如图,用一根较长细线系住木棒AB的两端,再将细线固定于支架上的点O(教师事先准备好实物),再将木棒提取使之自然摆动至A′B′位置.试问:在转动过程中,木棒AB绕着哪一点在转动?木棒AB的长度发生了变化吗?A和A′到点O 的距离发生了变化吗?B和B′点呢?由此你能发现哪些重要结论?【教学说明】1.在演示探究2中,应将细线缠绕在支架上点O处,使之不能滑动.2.引导学生认真观察,独立思考过程中,教师可适时予以点拨,从而引出旋转的相关定义,并初步感受旋转的性质,最后师生共同总结.旋转:把一个平面图形绕着平面内某一个点(如点O)旋转一个角度,就叫做图形的旋转.点O称为旋转中心,转动的角度称为旋转角.(注意突出旋转的三个要素:旋转中心、旋转角和旋转方向)对应点:如果图形上的点P经过旋转变为P′,则这两个点叫做这个旋转的对应点.对应线段:如果图形上的线段AB经过旋转变为线段A′B′,则这两条线段称为对应线段,同样地,如果图形上的一个角∠A经过旋转后变为∠A′,则∠A和∠A′称为对应角.对应点和旋转中心之间的夹角称为旋转角.【教学说明】给出相关概念过程中,教师可结合图形让学生明确旋转中的对应点、对应角、对应线段、旋转中心等,及时巩固旋转及其相关概念,同时简要说出一些简单的旋转性质,为后面探索旋转的性质作铺垫.探究3 如图,在硬纸片上,挖一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面再放一张白纸,先在纸上描出这个挖掉的三角形(△ABC),然后围绕旋转中心O转动硬纸板,再描出这个挖掉的三角形(△DEF),移开硬纸板.试问:在旋转的过程中,线段OA与线段OD的大小关系如何?∠AOD与∠BOE 及∠COF有什么关系?旋转前后三角形的形状和大小发生了改变吗?【归纳结论】旋转的性质:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后图形的形状、大小完全相同,即它们是全等的.三、运用新知,深化理解1.将图形绕点O旋转,且图形上点P、Q旋转后的对应点分别为P′、Q′,若∠POP′=80°,则∠QOQ′=____,若OQ=2.5cm,则OQ′=____。
图形的旋转的教学设计
23.1.1图形的旋转一、教材分析本节课是九年级上册第二十三章“23.1图形的旋转”的第一课时,主要研究旋转的定义,旋转的性质及其应用。
它是在学生学习了平移和轴对称基础上学习的,对发展学生的空间观念是一个渗透,是后续学习中心对称图形及其图形变化的基础,是空间与图形领域的基础知识,在教材中,起着承上启下的作用,同时,旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题.二、教学目标(一)结合生活中的具体实例认识旋转;(二)探索、理解旋转前后两个图形的对应线段相等、对应点到旋转中心的距离相等以及对应点与旋转中心的连线所成的角都等于旋转角。
(三)能按要求作出简单平面图形旋转后的图形。
(四)经历观察、思考、分析、概括、抽象等过程,得出所要学的知识。
(五)进一步体会知识与现实的紧密联系;(六)认识到通过旋转得到的图形,感受几何的美。
三、教学重点:掌握图形的旋转变换及其性质。
解决方法:通过观察图形,具体的实例进行思考。
四、教学难点:作出简单的平面图形旋转后的图形。
解决方法:在教师的引导下,勤思考,可以通过具体的操作来实现。
五、教学方法:探究式、引导法。
六、教学安排:1课时。
七、教学方法(一)多媒体辅助教学:突破学生学习旋转空间想象困难这一难点。
(二)情境教学法:用“数学之美”的挂历作为开篇吸引学生的注意力,调动学习兴趣。
(三)自主学习、合作探究法:课前以小组为单位预习新知并准备相应的旋转的实物与图片,课堂上采用教师主导,小组合作的学习方式,让学生遵循“观察——思考——分析——概括——归纳——总结”的主线进行学习八、教学准备学生:复习旧知、预习新知并准备旋转的实物或图片等教师:制作教学课件、三角板及圆规等。
九、教学环节(一)复习旧知铺垫新知观察两组图形变换。
提问学生是什么变换?问:我们曾经学过哪两种图形变换?还记得它们的概念和性质吗?设计意图比照前两种变换的概念和性质,一方面保证知识的连贯性,另一方面帮助学生探究分析旋转。
九年级数学上册 第二十三章 旋转 23.1 图形的旋转(第1
由旋转的性质,可得
△BCD≌△BAE,∴∠ห้องสมุดไป่ตู้AE=∠BCD=∠ABC=60°,∴AE∥BC,故选项A正确;
不能说明∠ADE=∠BDC,故选项B不正确;又知∠DBE=60°,BD=BE,可得 关闭 △B BDE是等边三角形,故选项C正确;DE=BD=4,因此△ADE的周长
=AD+AE+DE=BD+AC=9,故选项D正确.
关闭
C
答案
1
2
3
4
5
6
7
3.下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的 是( )
关闭
B
答案
1
2
3
4
5
6
7
4.在等边三角形ABC中,D是AC上一点,连接BD,将△BCD绕点B逆时 针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则下列结论错误的 是( ) A.AE∥BC B.∠ADE=∠BDC C.△BDE是等边三角形 D.△ADE的周长是9
解析 答案
1
2
3
4
5
6
7
5.如图,将左边的矩形绕点B旋转一定角度后,位置如右边的矩形,则
∠ABC=
.
90°
关闭
答案
7.0°
旋转的性质 【例】 如图,△ABC是等边三角形,D是BC边上一点,△ABD经过 旋转后到达△ACE的位置. (1)旋转中心是哪一点? (2)旋转了多少度? (3)如果M是AB边的中点,那么经过上述旋转后,点M转到了什么 位置? 分析确定这个图形的旋转中心是解决问题的关键. 解:(1)旋转中心是点A. (2)旋转角∠BAC=60°. (3)点M转到了AC的中点处. 点拨在旋转过程中,不动的点与其本身是对应点,且该点即为旋 转中心.一对对应点与旋转中心连线的夹角是旋转角,对应线段的 夹角也是旋转角.
九年级数学人教版上册课件第二十三章旋转23.1图形的旋转
∠ABE′=∠ADE=90°, BE′=DE .
将观察——发现——操作——交流——抽象— 说一说:旋转的基本性质
过程与方法:经历图形旋转概念的形成过程和性质的探索过程,发展直观想象能力,逐步提高分析、归纳、抽象概括的思维能力。 新人教版九年级上《旋转》
根据新课标的理念,本节课我坚持以“学 1、问题情境,导入新课
△ ABC ≌△A′B′C′
生为主体,教师为主导,数学活动为载体”的 在正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.
OA与OA ′相等吗?OB与OB ′相等吗? 设计意图:既内化定义,加深对应点和旋转角的理解,又为后面的探究埋下伏笔。
教学重点: 归纳图形旋转的有关概念及性质。
教学难点: 概念的形成过程和性质的探索过程。
四、教法学法分析
我相信这样既能突出重点、突破难点教学,也会极大的激发学生的学习兴趣。
并且“图形的旋转”本身就是一种重要的数学变换思想,它不仅为本章后续学习“中心对称”打下基础,更为后面章节“圆”的相关 学习做了铺垫。
练习2.如图,用左面的三角形经过怎样
旋转,可以得到右面的图形.
练习3.找出图中扳手拧螺母
时的旋转中心和旋转角.
O
A
B
四、小结作业、深化提高
课堂小结:
今天这节课我们学习了那些内容,你学会了那些思想 方法,在学习的过程中有什么感受?请同学们畅所欲 言!
分层作业
1.将例题中的“顺时针”改为“逆时针”, 请完 成作图。 2习题23.1第4题 3把一个三角形进行旋转:选择不同的旋转中 心、不同的旋转角,看看旋转的效果有什么 不同。
23.1图形的旋转教案,说课,课后反思
23.1 图形的旋转教案23.1 图形的旋转说课各位领导、各位老师:大家好!我说课的内容是新人教版教科书九年级上学期第二十三章《旋转》的第一课时。
下面我从以下七个方面来汇报我是如何分析教材和设计教学过程的。
一、教材分析教材的地位和作用本节课要研究旋转的定义,旋转的性质及其应用。
它是在学生学习了平移的基础上学习的,对发展学生的空间观念是一个渗透,是后续学习中心对称图形及其图形变化的基础,是空间与图形领域的基础知识,在教材中,起着承上启下的作用,同时,旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题. 因此它既是数学上的一个重要基础知识又是重要的数学思想方法,是培养学生思维能力,树立变化观点的良好素材。
教学重点1、旋转现象认识过程的体验.2、旋转内涵的理解掌握.3、旋转性质的掌握与运用.教学难点1、旋转定义和性质的深刻认识.2、旋转性质的灵活运用.突破难点的关键(1)设置恰当情景,激发学生的探索欲望。
(2)通过演示操作,归纳出旋转变换的性质,加深旋转变换的三要素的理解。
教学目标分析知识目标1、经历对生活中与旋转现象有关的图形进行观察、思考、分析、概括、抽象等过程,进一步发展学生的空间观念。
2、结合生活中的具体实例认识旋转。
3、探索、理解旋转前后两个图形对应点到旋转中心的距离相等、对应点与旋转中心的连线所成的角彼此相等的性质.技能目标让学生经历观察、思考、分析、交流、归纳、抽象等活动,进一步培养学生的概括和抽象思维能力.使学生体会观察、分析、归纳、抽象的研究问题方法,进一步体会和感受实际事物数学化的过程。
并发展初步的审美能力,增强对图形欣赏的意识.情感目标让学生体验从身边得到数学规律的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。
通过研究解决问题的方法,培养学生合作交流意识与探究精神。
通过学生欣赏、观察、归纳、比较、抽象图形等数学活动,让学生感受数学的严谨性,图形中蕴含的规律性,提高学生学习数学的热情及大胆探究新知识的创新能力。
2018-2019学年九年级数学上册 第二十三章 旋转 23.1 图形的旋转
第2课时 图形的旋转——作图与设计※教学目标※【知识与技能】理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活中的旋转美,培养学生的美感,增强学生的艺术创作能力和艺术欣赏能力.【教学重点】用旋转的有关知识画图.【教学难点】根据需要设计美丽图案.※教学过程※一、情境导入提问 (1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?请同学独立完成下面的作图题.如图,△AOB 绕O 点旋转后,G 点是B 点的对应点,作出△AOB 旋转后的三角形.分析:要作出△AOB 旋转后的三角形,应找出三方面:第一,旋转中心O ;第二,旋转角∠BOG ;第三,A 点旋转后的对应点A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.出示课件,展示月牙图案,教师手动鼠标,慢慢出现两片、三片……,形成图案,让学生通过观察,感受图案的形成过程,然后教师出示问题,让学生进行思考探究. 问题:(1)你能说出上述图案是怎样得到的吗?(2)如果仅给你一片月牙形图案,你能设法得到图中的图案吗?(3)谈谈你对这些图案形成过程的认识?利用课件进一步展示“月牙”的旋转,让学生感受不同的旋转效果:(1)改变旋转角;(2)改变旋转中心.三、掌握新知例 下面的图形是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O 顺时针依次旋转90°,180°,270°,依次画出旋转后的图形,你会得到一个美丽的图案,涂色部分不要涂错,否则不能出现理想的效果,你来试一试吧!分析:运用“对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等”等旋转的特征,很容易得到旋转后的图案.答案:四、活动操作把一个三角形进行旋转:(1)选择不同的旋转中心、不同的旋转角,看看旋转效果;(2)改变三角形的形状,看看旋转效果.五、巩固练习请以下列图形为基本图形,利用旋转进行图案设计.(1)(2)(3)六、归纳小结通过这节课的学习,你有哪些收获?你觉得利用旋转进行图案设计需要注意哪些问题?※布置作业※从教材习题23.1中选取.※教学反思※在现实世界中,广泛存在着物体的旋转,数学生研究图形的旋转,就是从抽象中而来的.当我们画一个经过旋转后的图形,在纸上毕竟是不可能再现其真实的移动过程,这个过程只能存在于想象中,所以我们注重的是旋转后的结果,即经过旋转后的图形.要准确画出一个经过旋转后的图形,尤其是旋转结构复杂的图形,就需要一定的方法.我们知道:点动成线,线动成面,面动成体.因此旋转图形的基本思路为:面的旋转通过线段(特殊线段)的旋转实现;线段的旋转通过点(特殊点)的旋转实现.。
精品学习2018-2019学年九年级数学上册 第二十三章 旋转 23.1 图形的旋转 第1课时 旋转
23.1 第1课时旋转的概念及性质01 教学目标1.了解旋转及旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实际问题.3.通过观察具体实例认识旋转,探索它的基本性质.4.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.02 预习反馈阅读教材P59内容,思考和完成教材上的练习.观察:让学生看转动的钟表和风车等.(1)上面情境中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:(1)从3时到5时,时针转动了多少度?(60°)(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(60°)(3)以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?知识探究1.把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.2.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.自学反馈1.下列物体的运动不是旋转的是(C)A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是点O,旋转角是∠AOD(∠BOE),经过旋转,点A转到点D,点C转到点F,点B转到点E,线段OA,OB,BC,AC分别转到OD,OE,EF,DF,∠A,∠B,∠C分别与∠D,∠E,∠F是对应角.【点拨】旋转角指对应点与旋转中心的连线的夹角.03 新课讲授例1如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看作是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角;(3)经过旋转,点A,B,C,D分别移到什么位置?【解答】(1)可以看作是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A,点B,点C,点D移到的位置分别是点E,点F,点G,点H.【点拨】这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.【跟踪训练1】如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.(1)此图能否旋转某一部分得到一个正方形?若能,指出由哪一部分旋转而得到的?并说明理由;(2)它的旋转角多大?并指出它们的对应点.解:(1)能,由△BCQ绕B点旋转得到.理由:连接AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△CBQ可绕B点旋转与△ABP重合,从而得到正方形ABCD.(2)90°,点C对应点A,点Q对应点P.例2已知,在Rt△ABC中,∠C=90°,∠BAC=45°,AC=2,将△ABC绕点A顺时针旋转60°得到△ADE,连接BE,交AD于点F,求BE的长.【思路点拨】关键在于连接BD,然后利用旋转的性质得出△ADB是等边三角形,从而得到BE垂直平分AD,将BE的长转化为EF+FB的长.【解答】连接BD,∵∠C=90°,∠BAC=45°,AC=2,∴AB=2 2.∵将△ABC绕点A顺时针旋转60°得到△ADE,∴AD=AB,∠DAB=60°.∴△ADB是等边三角形.∴AB=BD.∵AE=DE,∴BE垂直平分AD.∴由勾股定理得AF=EF=2,BF= 6.∴BE=EF+BF=2+ 6.【跟踪训练2】(23.1第1课时习题)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C 是对应点),连接CC′,则∠CC′B′的度数是15°.例3(教材P60例题)如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.【解答】图略.【点拨】关键是确定△ADE三个顶点的对应点的位置.04 巩固训练1.下列属于旋转现象的是(C)A.空中落下的物体B.雪橇在雪地里滑动C.拧紧水龙头的过程D.火车在急刹车时向前滑动2.将左图按逆时针方向旋转90°后得到的是(D)3.如图所示,将四边形ABOC绕O点按顺时针方向旋转得到四边形DFOE,则下列角中,不是旋转角的是(D)A.∠BOFB.∠AODC.∠COED.∠AOF4.如图,将左边的“心形”绕点O顺时针旋转95°得到右边的“心形”,如果∠BOC =75°,则A,B,C三点的对应点分别是E,D,F,∠DOF=75°,∠COD=20°.5.如图,把△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.05 课堂小结1.旋转及旋转中心、旋转角的概念.2.旋转的对应点及其应用.3.旋转的基本性质.4.旋转变换与平移、轴对称两种变换有哪些共性与区别.。
2019九年级数学上册 第二十三章 旋转 23.1 图形的旋转(1)教案
第二十三章旋转23.1 图形的旋转第1课时旋转的概念及性质※教学目标※【知识与技能】了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.【过程与方法】让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.【情感态度】让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.【教学重点】旋转及对应点的有关概念及其应用.【教学难点】从活生生的数学中抽出概念.※教学过程※一、复习导入问题我们以前学过图形的平移、对称等变换,它们有哪些特征?生活中是否还有其他运动变化呢?回答是肯定的,下面我们就来研究.二、探索新知探索1 请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?以上两种现象有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳总结像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.试一试请你举出一些现实生活中旋转的实例,并指出旋转中心和旋转角.探索2 如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′),移开硬纸板.根据图回答下面的问题:(1)线段OA与OA′,OB与OB′,OC与OC′有什么关系?(2)∠AOA′,∠BOB′,∠COC′有什么关系?(3)△ABC与△A′B′C′的形状和大小有什么关系?答案:(1)OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC 和△A′B′C′形状相同和大小相等,即全等.归纳总结 旋转的性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.三、掌握新知例 如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.分析:关键是确定△ADE 三个顶点的对应点,即它们旋转后的位置.解:四、巩固练习1.如图,它可以看作是由一个菱形绕某一点旋转一个角度后,顺次按这个角度同向旋转而得到的: ①请你在图中用字母O 标注出这一点;②每次旋转了_______度;③一共旋转了_______次.2.将图形绕点O 旋转,且图形上点P ,Q 旋转后的对应点分别为P′,Q′,若∠PO P′=80°,则∠QO Q′= ,若OQ=2.5cm ,则O Q′= .旋转中心AOD 与∠BOE 五、归纳小结通过这节课的学习,你有哪些收获和体会?※布置作业※从教材习题23.1 中选取.※教学反思※积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,在让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.完成本课时教学时,教师需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.。
2019秋九年级数学上册第二十三章旋转23.1图形的旋转第1课时图形的旋转及性质教案(新版)新人教版
23.1 图形的旋转第1课时图形的旋转及性质教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章旋转
23.1 图形的旋转
第1课时旋转的概念及性质
※教学目标※
【知识与技能】
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
【过程与方法】
让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.
通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.
【情感态度】
让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.【教学重点】
旋转及对应点的有关概念及其应用.
【教学难点】
从活生生的数学中抽出概念.
※教学过程※
一、复习导入
问题我们以前学过图形的平移、对称等变换,它们有哪些特征?
生活中是否还有其他运动变化呢?回答是肯定的,下面我们就来研究.
二、探索新知
探索 1 请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.
再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?
以上两种现象有什么共同特点呢?
共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
归纳总结
像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
试一试请你举出一些现实生活中旋转的实例,并指出旋转中心和旋转角.
探索2 如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O
作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角
形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的
三角形(△A′B′C′),移开硬纸板.
根据图回答下面的问题:
(1)线段OA 与OA′,OB 与OB′,OC 与OC′有什么关系?
(2)∠AOA′,∠BOB′,∠COC′有什么关系?
(3)△ABC 与△A′B′C′的形状和大小有什么关系?
答案:(1)OA =OA′,OB =OB′,OC =OC′,也就是对应点到旋转中心相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC 和△A′B′C′形状相同和大小相等,即全等.
归纳总结 旋转的性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.
三、掌握新知
例 如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把
△ADE 顺时针旋转90°,画出旋转后的图形.
分析:关键是确定△ADE 三个顶点的对应点,即它们旋转后的位置.
解:
四、巩固练习
1.如图,它可以看作是由一个菱形绕某一点旋转一个角度后,顺次按
这个角度同向旋转而得到的: ①请你在图中用字母O 标注出这一点;②每
次旋转了_______度;③一共旋转了_______次.
2.将图形绕点O 旋转,且图形上点P ,Q 旋转后的对应点分别为P′,Q′,
若∠PO P′=80°,则∠QO Q′= ,若OQ=2.5cm ,则O Q′= .
五、归纳小结
通过这节课的学习,你有哪些收获和体会?
※布置作业※
从教材习题23.1 中选取.
※教学反思※
积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,在让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.
完成本课时教学时,教师需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯
.。