PhysRevLett.105.127401
基于电沉积富集-LIBS的水中Cd元素高灵敏稳定测量研究
基于电沉积富集-LIBS的水中Cd元素高灵敏稳定测量研究疏阳;方丽;马明俊;孟德硕;赵南京
【期刊名称】《大气与环境光学学报》
【年(卷),期】2024(19)3
【摘要】针对水体痕量Cd元素的高灵敏稳定检测,基于Al片电沉积富集(ED)结合激光诱导击穿光谱(LIBS)检测的ED-LIBS水中Cd分析方法,实验研究了富集时间、富集电压、导电溶质KCl浓度以及电极表面砂纸打磨对Cd元素富集结果的影响。
结果表明,经砂纸打磨Al片电沉积富集后,Cd元素富集稳定性得到提升,同时优化确定的富集电压、富集时间和KCl浓度分别为−2.4 V、1200 s和2 g/L。
利用该方法,Cd元素检测限和相对标准偏差分别为0.0021 mg/L和3.30%,满足《生活饮用水卫生标准》指标检测需求,为水体中痕量Cd元素的高灵敏稳定分析提供了有力的检测手段。
【总页数】8页(P314-321)
【作者】疏阳;方丽;马明俊;孟德硕;赵南京
【作者单位】中国科学院合肥物质科学研究院安徽光学精密机械研究所;中国科学技术大学;安徽省环境光学监测技术重点实验室
【正文语种】中文
【中图分类】O433.4
【相关文献】
1.基于电极富集的水体重金属LIBS检测灵敏度研究
2.石墨富集方式下水中 Cr元素的 LIBS检测
3.基于元素Mn、Co、Cd、Mo的海相沉积岩有机质富集因素判别指标在四川盆地北缘的应用
4.利用蒙脱石富集实现水中痕量铬的LIBS测量
5.电化学富集-激光诱导击穿光谱(LIBS)法测定水中铀元素
因版权原因,仅展示原文概要,查看原文内容请购买。
新型金属硫化物二维半导体材料性质探明
新型金属硫化物二维半导体材料性质探明
佚名
【期刊名称】《分析测试学报》
【年(卷),期】2014(33)4
【摘要】中国科学院半导体研究所超晶格国家重点实验室博士后杨圣雪、博士生
李燕,在研究员李京波、中科院院士李树深和夏建白等人的指导下,取得二维GaS超薄半导体基础研究的新进展,探明了新型超薄金属硫化物二维半导体材料
性质。
相关成果发表在英国皇家化学会主办的《纳米尺度》上,并被选为热点论文。
【总页数】1页(P448-448)
【关键词】中国科学院半导体研究所;金属硫化物;材料性质;二维;国家重点实验室;
中科院院士;基础研究;纳米尺度
【正文语种】中文
【中图分类】O614
【相关文献】
1.二维半导体过渡金属硫化物的逻辑集成器件 [J], 李卫胜;周健;王瀚宸;汪树贤;于
志浩;黎松林;施毅;王欣然
2.二维过渡金属硫化物硫化铼材料的表面增强拉曼散射效应 [J],
3.二维过渡金属硫化物二次谐波:材料表征、信号调控及增强 [J], 曾周晓松;王笑;
潘安练
4.中科院探明新型金属硫化物二维半导体材料性质 [J], 无
5.二维过渡金属硫化物热电材料的研究进展 [J], 柏祖志;郭勇;刘聪聪
因版权原因,仅展示原文概要,查看原文内容请购买。
Phys. Rev. Lett. 94, 188702 (2005)
General Dynamics of Topology and Traffic on Weighted Technological Networks Wen-Xu Wang,1Bing-Hong Wang,1,*Bo Hu,1Gang Yan,2and Qing Ou11Nonlinear Science Center and Department of Modern Physics,University of Science and Technology of China,Hefei230026,People’s Republic of China2Department of Electronic Science and Technology,University of Science and Technology of China,Hefei230026,People’s Republic of China(Received11November2004;revised manuscript received31January2005;published12May2005)For most technical networks,the interplay of dynamics,traffic,and topology is assumed crucial to their evolution.In this Letter,we propose a traffic-driven evolution model of weighted technological networks.By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact,the model gives power-law distributions of degree,weight,and strength,as confirmed in many real networks.Particularly,depending on a parameter W that controls the total weight growth of the system,the nontrivial clustering coefficient C,degree assortativity coefficient r,and degree-strength correlation are all consistent with empirical evidence.DOI:10.1103/PhysRevLett.94.188702PACS numbers:89.75.Hc,05.65.+b,87.23.Ge,89.40.BbThe past few years have witnessed a great devotion by physicists to understand and characterize the underlying mechanisms of complex networks including the Internet [1],the World Wide Web[2],the scientific collaboration networks[3,4]and world-wide airport networks(WAN) [5,6].So far,research on networks has mainly focused on unweighted graphs.Baraba´si and Albert have proposed a well-known model(the BA model)that introduces the degree preferential attachment mechanism to mimic un-weighted growing networks[7].Most recently,the avail-ability of more complete empirical data has allowed scientists to consider the variation of the weights of links that reflect the physical characteristics of many real net-works.Obviously,there is a need for a modeling approach to complex networks that goes beyond the purely topologi-cal point of view.Barrat,Barthe´lemy,and Vespignani (BBV)presented a model that integrates the topology and weight dynamical evolution to study the growth of weighted networks[8].Their model yields scale-free prop-erties of the degree,weight,and strength distributions, controlled by an introduced parameter .However,its weight dynamical evolution is triggered only by newly added vertices,resulting in few satisfying interpretations to the collaboration networks or the airport systems.In fact,the dynamics and properties of social and technologi-cal networks are quite different and should be addressed individually.It is well-known that networks are not only specified by their topology but also by the dynamics of weight(e.g.,informationflow)taking place along the links. For instance,the heterogeneity in the intensity of connec-tions may be very important in understanding technologi-cal systems.The amount of traffic characterizing the con-nections of communication systems or large transport in-frastructure is fundamental for a full description of these networks[9].Take the WAN for example:each given edge weight w ij(traffic)is the number of available seats on di-rectflight connections between airports i and j.Weighted networks are often described by an adjacency matrix w ij which represents the weight on the edge connecting verti-ces i and j,with i;j 1;...;N,where N is the size of the network.We will consider only undirected graphs,where the weights are symmetric(w ij w ji).As confirmed by measurements,complex networks often exhibit a scale-free degree distribution P k kÿ with2 3 [5,6].The weight distribution P w that any given edge has weight w is another significant characterization of weighted networks,and it is found to be heavy tailed, spanning several orders of magnitude[10].A natural gen-eralization of connectivity in the case of weighted net-works is the vertex strength described as s i j2ÿ i w ij, where the sum runs over the setÿ i of neighbors of node i. The strength of a vertex integrates the information about its connectivity and the weights of its links.For instance,the strength in WAN provides the actual traffic going through a vertex and is an obvious measure of the size and impor-tance of each airport.Empirical evidence indicates that in most cases the strength distribution has a fat tail[6],similar to the power law of degree distribution.Highly correlated with the degree,the strength usually displays the scale-free property s k [11,12].The previous models of complex networks always in-corporate the(degree or strength)preferential attachment mechanism,which may result in scale-free properties. Essentially,this mechanism just describes interactions be-tween the newly added node and the old ones.Actually, such interactions also exist between old nodes.Perhaps,the most reasonable and simplest way to express such inter-actions is by the product form of related vertex strengths, i.e.,the pairwise interaction between vertices i and j is proportional to s i s j(strength-coupling form).Let us review the BA model:a new vertex n is added with m edges that are randomly attached to an existing vertex i according to the degree preferential probability,which can be written in the product form of degreesBA n!ik iPjk jk n k iPjk n k j:(1)Analogously,in BBV networks one can rewrite the strength preferential probability:n!is iPjs js n s iPjs n s j:(2)We argue that such interactions(actually driven by traffic) exist between old vertices in the same way,and will con-siderably affect theflows between them:First,new edges should be allowed to add between old nodes;second,the preexisting trafficflows along the links will be updated with the growth of networks.Indeed,the physical interac-tion of nodes plays a crucial role in determining the net-work topology during its dynamical evolution.Our above perspectives have been partly inspired by the work of Dorogovtsev and Mendes(DM)[13],who proposed a class of undirected and unweighted models where new edges are added between old sites(internal edges)and existing edges can be removed(edge removal).In the Letter,we present a model for weighted techno-logical networks that considers the topological evolution under the general traffic-driven interactions of vertices.It can mimic the reinforcement of internal connections and the evolution of many infrastructure networks.The diver-sity of scale-free characteristics,the nontrivial clustering coefficient,the assortativity coefficient,and the strength-degree correlation that have been empirically observed can be well explained by our microscopic mechanisms. Moreover,in contrast with previous models where weights are assigned statically[14,15]or rearranged locally(the BBV model),we allow theflows to be widely updated. The model starts from an initial configuration of N0 vertices connected by links with assigned weight w0.The model is defined on two coupled mechanisms:the strengths’dynamics and the topological growth(see Fig.1).Strengths’dynamics.—From the beginning of the evo-lution,all the possible(existing or not)connections at each time step are supposed to update their weights according to the strength-coupling mechanism:w ij! wij1;with probability Wp ij;w ij;with probability1ÿWp ij;(3)wherep ijs i s jPa<bs a s b;(4)integrates the strength coupling of vertices i and j,and determines the increment probability of weight w ij(if i and j are unconnected,w ij 0).The total weight of the edges in a statistical sense is modified by the amount h i<j w ij i W,which is assumed constant for simplic-ity.This parameter reflects the growing speed of the net-work’s total traffic load,for instance,the increasing rate of total informationflow in a communication system.The always growing traffic plays the driving role in network evolution.One may notice that Wp ij is very likely to exceed one if the initial number of nodes N0is small. When Wp ij exceeds one,it is automatically assumed to be one.This treatment of Wp ij will probably affect the initial network evolution,while it is not significant for discussing the statistical measures,as they are almost independent of initial states.Topological growth.—At the same time step,a new vertex n is then added with m edges that are randomly attached to an existing vertex i according to the strength preferential probability n!i[Eq.(2)].The weight of each new edge is alsofixed to w0.In fact,the strength prefer-ential attachment is essentially the same with the mecha-nism traffic-driven interactions we have argued.The network provides the substrate on which numerous dynamical processes occur.In previous models,traffic was often assumed just as an appendix to the network structure. Actually,traffic and the underlying topology are mutually correlated,and it is very important to define appropriate quantities and measures capable of capturing how all these ingredients participate in the formation of complex net-works[9].Technology networks provide a large empirical database that simultaneously captures the topology and the dynamics taking place on it.For the Internet,the informa-tion traffic between routers(nodes)can be represented by the corresponding edge weight.The total traffic that each router deals with can be denoted by the node strength, which also represents the importance of given router.The increasing informationflow as an internal demand always spurs the expansion of technological networks.Specifi-cally,the largest contribution to the growth is given by the emergence of links between already existing nodes. This clearly points out that the Internet growth is strongly driven by the need of a redundancy wiring and an increas-ing need of available bandwidth for data transmission[12]. On one end,newly built links(between existing routers) are supposed to preferentially connect high strength routers,because otherwise it would lead to the unnecessary traffic congestion along indirect paths that connect those high strength nodes.Naturally,traffic along existing links between high strength routers,in general,increases faster than that between low strength routers.All the points are reflected in our strength-coupling mechanism.On the other end,new routers preferentially connect to routers with larger bandwidth and traffic handling capabilities(the strength driven attachment).Those phenomena also exist in an airport system,a power grid,and a railroad network, and they could be explained by the traffic-driven mecha-nism of our model.For a power grid and a railroad net-work,the cost by distance has a distinct effect to theirtopological properties.Their degree distributions,for ex-ample,are not scale-free.In a word,topology and traffic interact with each other in networks under general inter-actions of vertices driven by the internal increasing traffic demand.The model time is measured with respect to the number of nodes added to the graph,i.e.,t N ÿN 0,and the natural time scale of the model dynamics is the network size N .In response to the demand of increasing traffic,the system must expand.With a certain size,one technological network assumably has a certain ability to handle a certain traffic load.Therefore,it could be reasonable to suppose that the total weight on the networks increases synchro-nously by the natural time scale.This is why we assume W as a constant.This assumption also bring us the conve-nience of analytical ing the continuous ap-proximation,we can treat k ,w ,s ,and the time t as continuous variables [1,7].Then Eq.(3)indicatesdw ijdt2Ws i s j P a;b a Þbs a s b 2Ws i s j P as a P b Þas b:(5)The strength s i of vertex i can increase if either a newly added node connects to i by the topological growth dy-namics or any possible (existing or not)connections to i are updated by the strengths’dynamics:ds idtPj Þi 2Ws i s jP as a P b Þas b ms i P ls l2W m 2W 2m s i t ;(6)where the last expressions are recovered by noticing thati s i t 2 m W t .From Eq.(6),one can analytically obtain the power-law distribution of strength P s s ÿ with the exponent [7,8]: 2 m= m 2W .Obvi-ously,when W 0,the model is topologically equivalent to the BA network and the value 3is recovered.Forlarger values of W ,the distribution is gradually broader with !2when W !1.We performed numerical simulations of networks gen-erated by choosing different values of W and fixing N 0 3,m 3,and w 0 1.We have checked that the scale-free properties of our model networks are almost independent of the initial conditions.Numerical simulations are con-sistent with our theoretical predictions,verifying again the reliability of our present results.Figure 2(a)gives the probability distribution P s s ,which is in good agree-ment with the theoretical predictions.We also report the average strength s i of vertices with degree k i ,which dis-plays a nontrivial power-law behavior s k as confirmed by empirical measurement.Unlike BBV networks (where 1),the exponent here varies with the parameter W in a nontrivial way,as shown in Fig.2(b).Moreover,the major difference between our model and the DM network is reflected in the strength-degree correlation graph.Although the DM model allows the emergence of internal edges,it could not mimic the reinforcement of preexisting connections in that it is unweighted.The nontrivial s k correlation demonstrates the significant part of weight increment along existing edges,and thus implies that our model is reasonable in the light of traffic flow.More importantly,one could check the scale-free property of degree distribution P k k ÿ by combining s k with P s s ÿ .Considering P k dk P s ds ,the expo-nent is easily calculated: ÿ1 1.The scale-free properties of weight and degree obtained from simu-lations are presented in Figs.3(a)and 3(b).Finally,it is worth remarking that,for the BA networks,the clustering coefficient is nearly zero,far from the practical nets that exhibit a variety of small-world properties.In the present model,however,the clustering coefficient C is found to be a function of W [Fig.4(a)],also supported by empirical data of a broad range.FIG.2(color online).(a)Probability distribution P s .Dataare consistent with a power-law behavior s ÿ .In the inset,we give the value of obtained by data fitting (solid circles),together with the analytical expression 2 m= m 2W (line).The data are averaged over 20networks of size N 5000.(b)Strength s i versus k i for different W (log-log scale).Linear data fitting gives slopes 1.04,1.17,1.25,and 1.30(from bottom to top),demonstrating the correlation of s k.FIG.1.Illustration of the evolution dynamics.A new node n connects to a node i with probability proportional to s i = j s j .The thickness of nodes and links,respectively,represents the magnitude of the strength and weight.New connections (dashed lines)can be built between preexisting nodes,and the bilateral links represent the traffic growing process along links under the general mechanism of strength couplings.In the social networks,connections between people may be assortative by language or by race.Mixing can also be disassortative,i.e.,vertices in the network preferentially form connections to others unlike them.Newman proposed some simple measures for these types of mixing,which we call assortativity coefficients [16].In the case of mixing by vertex degree,a remarkable pattern emerges.Almost all the social networks studied show positive assortativity coefficients,while all others,including technological and biological networks,show negative coefficients.It is not clear if this is a universal property;the origin of this difference is not understood either.In our views,it repre-sents a feature that should be addressed in each network individually.We argue that the adaptive evolution of to-pology in response to the increasing traffic is the major cause of disassortative mixing of technological ing the formula defined by Eq.(26)of Ref.[16],we calculate the degree assortativity coefficient (or degree-degree correlation)r of the graphs generated by our model.Simulations given in Fig.4(b)are supported by empirical measurements [16].The restriction of our model to tech-nological networks is because there are few empirical datafor statistical analysis on ‘‘weighted’’biological networks,where many interacting mechanisms are far from present knowledge as well.Hopefully,our model will be very beneficial for future understanding or characterizing bio-logical networks and social ones,as it generates many topological properties observed in those real networks.Because of its apparent simplicity and the variety of con-trollable results,we believe that some of its extensions will probably help address the other two classes of networks.In conclusion,the universal interactions of nodes and the internal traffic demands of the system will determine the topology evolution of technological networks.This gen-eral,traffic-driven mechanism provides a wide variety of scale-free behaviors,clustering coefficients,and nontrivial correlations,depending on the parameter W that governs the total weight growth.All the results are supported by empirical data.Therefore,our present model,for all prac-tical purposes,will demonstrate its applications in future weighted network research.This work is funded by NNSFC under Grants No.10472116and No.70271070.*Fax:+86-551-3603574Electronic address:bhwang@[1]R.Pastor-Satorras and A.Vespignani,Evolution andStructure of the Internet:A Statistical Physics Approach (Cambridge University Press,Cambridge,England,2004).[2]R.Albert,H.Jeong,and A.-L.Baraba´si,Nature (London)401,130(1999).[3]M.E.J.Newman,Phys.Rev.E 64,016132(2001).[4] A.-L.Baraba´si,H.Jeong,Z.Ne ´da, E.Ravasz,A.Schubert,and T.Vicsek,Physica (Amsterdam)311A ,590(2002).[5]R.Guimera,S.Mossa,A.Turtschi,and L.A.N.Amearal,cond-mat/0312535.[6] A.Barrat,M.Barthe´lemy,R.Pastor-Satorras,and A.Vespignani,Proc.Natl.Acad.Sci.U.S.A.101,3747(2004).[7]R.Albert and A.-L.Baraba´si,Rev.Mod.Phys.74,47(2002).[8] A.Barrat,M.Barthe´lemy,and A.Vespignani,Phys.Rev.Lett.92,228701(2004).[9]A virtual round table on ten leading questions for networkresearch can be found in the special issue on Applications of Networks,edited by G.Caldarelli, A.Erzan,and A.Vespignani [Eur.Phys.J.B 38,143(2004)].[10]W.Li and X.Cai,Phys.Rev.E 69,046106(2004).[11]K.-I.Goh,B.Kahng,and D.Kim,cond-mat/0410078.[12]R.Pastor-Satorras,A.Va´zquez,and A.Vespignani,cond-mat/0105161.[13]S.N.Dorogovtsev and J.F.F.Mendes,Europhys.Lett.52,33(2000).[14]S.H.Yook,H.Jeong,A.-L.Baraba´si,and Y .Tu,Phys.Rev.Lett.86,5835(2001).[15] D.Zheng,S.Trimper,B.Zheng,and P.M.Hui,Phys.Rev.E 67,040102(2003).[16]M.E.J.Newman,Phys.Rev.E 67,026126(2003).FIG.4(color online).(a)Clustering coefficient C depending on the parameter W .In the inset,we report the evolution of clustering coefficient (or C versus N )which converges soon.(b)Degree-degree correlation r depending on W .In the inset,we report its evolution which converges soon.FIG.3(color online).(a)Probability distribution of the de-grees P k k ÿ .(b)Probability distribution of the weights P w w ÿ .The data are averaged over 20networks of size N 5000.。
细胞代谢重编程实验方法
细胞代谢重编程实验方法1.引言1.1 概述细胞代谢重编程是指细胞在适应不同环境、应对内外界刺激时,通过调整代谢路线和代谢产物的分配,以实现生存和生长的必要转变。
正常细胞代谢pathways 的调控对维持细胞自身的稳态和功能至关重要。
然而,许多疾病,如癌症、糖尿病、心脏病等,都伴随着细胞代谢重编程的异常表现。
随着对细胞代谢调节的研究深入,科学家们逐渐认识到细胞代谢重编程对疾病治疗的重要性。
因此,对细胞代谢重编程的实验方法的研究也变得至关重要。
这些实验方法可以帮助我们理解细胞代谢调控的机制,揭示异常代谢是如何导致疾病发生的,并为新药物的研发提供理论基础。
在细胞代谢重编程实验方法中,研究人员通常使用多种技术手段,如代谢组学、转录组学、蛋白质组学等,来全面地了解细胞内代谢物的变化及相关代谢途径的调节。
其中,代谢组学作为研究细胞代谢调控的重要手段之一,可以用于检测和分析细胞内代谢产物的变化,并通过定量分析和比较来鉴定异常代谢的特征。
此外,转录组学和蛋白质组学也在细胞代谢重编程实验中发挥重要作用。
转录组学可以帮助研究人员了解基因表达调控与细胞代谢之间的关系,从而揭示细胞代谢调控的分子机制。
蛋白质组学则可以帮助研究人员全面了解细胞内蛋白质组的变化,进一步阐明细胞代谢调节的过程。
总之,细胞代谢重编程实验方法在揭示细胞代谢调控机制以及疾病病理的研究中具有重要的地位。
通过对细胞代谢重编程实验方法的持续优化和创新,我们有望进一步认识代谢调控的复杂性,为治疗疾病和开发新药物提供更加科学的依据。
1.2文章结构文章结构部分的内容可以按照以下方式来撰写:文章结构部分旨在介绍本文的组织结构和各个章节的主旨内容,以帮助读者对全文有个整体的了解。
本文共分为三个部分:引言、正文和结论。
在引言部分,我们首先对细胞代谢重编程进行了概述,包括其定义、研究意义以及应用前景。
接着,我们介绍了本文的结构和各个章节的内容安排,以便读者能够更好地理解和阅读全文。
2013PhysRevLett.107.137401Optically Controllable Photonic Structures with Zero Absorption
Optically Controllable Photonic Structures with Zero AbsorptionChris O’Brien*and Olga KocharovskayaDepartment of Physics and Astronomy and Institute for Quantum Studies,Texas A&M University,College Station,Texas77843-4242,USA(Received27May2011;revised manuscript received11August2011;published21September2011) We show the possibility to periodically modulate the refractive index in a homogeneous resonant atomic medium in space or/and time while simultaneously keeping vanishing absorption or gain.Such modulation is based on periodic resonant enhancement of the refractive index,controlled by an external opticalfield,and opens the way to produce coherently controllable photonic structures.We suggest the possible implementation of the proposed scheme in rare-earth doped crystals with excited state absorption.DOI:10.1103/PhysRevLett.107.137401PACS numbers:78.20.Ci,42.50.Gy,42.65.AnOne,two,or three-dimensional periodic heterostructures made of two dielectric materials with different refractive indices,such as distributed Bragg reflectors(DBRs),holey fibers,or photonic crystalsfind many applications,includ-ing reflective coatings,distributed feedback lasers,and optical cavities.Different technologies such as photoli-thography,etching,drilling,and self-assembling are used for construction of such structures.We suggest a method to produce transparent photonic structures in a homogeneous resonant atomic media,such as dielectrics with homogeneously distributed impurities, atomic,or molecular gases,simply by illuminating these materials with standing waves of a laserfield.Such opti-cally produced photonic structures could easily be con-trolled(including switching on or off,changing amplitude and period of modulation)and would be highly selective in frequency,naturally limited by the width of the optical resonance.Refractive index(RI)is strongly enhanced near atomic resonances.However,that enhancement is accompanied by enhancement of ly,when the maximal contribution from the atomic resonance to the RI is reached,the contribution to the absorption is on the same order which prevents the usage of obtained RI.There have been several proposals on how to resonantly enhance the refractive index while at the same time eliminating reso-nant absorption.One approach is based on interference effects in multilevel atomic systems driven by coherent resonantfields[1–5].Another suggestion is to compensate absorption with resonant gain from an inverted transition [6].Such a situation could be realized either in a mixture of two two-level atomic species,or in a single atomic species possessing simultaneously both noninverted and inverted transitions with slightly shifted frequencies[7].Proof of principle experiments were done in hot Rb vapors in which enhancement of the refractive indexÁn$10À4was achieved under negligible absorption[8,9].An enhance-ment up to the valueÁn$10À2is expected with an increase of density to N¼6Â1016cmÀ3.The further increase of the refractive index in room-temperature gases is not feasible due collisional broadening becoming the dominant contribution to the linewidth.Much higher reso-nant additions to the background index are anticipated in transition element doped crystals due to the essentially higher density of the ions which does not in general result in proportional line broadening[7,10,11].In all of these proposals the RI was uniform in space. Moreover,an enhancement of the RI with vanishing reso-nant absorption was achieved only at a particular detuning of the probefield from atomic resonance and was accom-panied by either absorption or gain at the neighboring detunings.Thus,none of those proposals were suitable for achieving spatial modulation of the refractive index with zero absorption.Our proposal is based on spatial modulation of the energy of a populated intermediate state in a nearly degenerate ladder configuration via the ac-Stark effect in a standing wavefield which results in a spatially dependent detuning leading to a periodic resonant increase and decrease of the refractive index in space while simul-taneously keeping transparency of the medium. Consider the interaction of a probefield with a medium of three level atoms in a ladder configuration such that the probefield interacts with both transitions as illustrated in the inset of Fig.1.The transition frequencies!21and!32 are close to each other so that the probefield with fre-quency!p interacts simultaneously with both transitions and for a weak probe Rabi frequency p( 21, 32the susceptibility is defined as the sum of the susceptibilities of two two-level transitions:¼3N38rad21ð 1À 2Þ21Ài 21þrad32ð 2À 3Þ32Ài 32:(1)Here N is the atomic density,the detunings are defined as 21¼!21À!p and 32¼!32À!p, is the probefield wavelength in the medium, rad ij is the radiative decay rate for the i to j transition, ij is the total decoherence rate,and i is the population in the i th energy level.We assume thatthe amplitudes of both transitions are matched but of opposite sign:rad 21ð 1À 2Þ¼À rad32ð 2À 3Þ;(2)which means that one of the two transitions is inverted.Letit be transition 2-1,i.e. 2À 1>0.We also assume the widths of the transitions are equal 21¼ 32and the probe field is tuned to two-photon resonance,i.e.!p ¼!31=2.Thus for arbitrary position of level 2the blue detuning of the probe field from one of two two-level transitions is equal to the red detuning from the other,i.e., 32¼À 21¼ ,leading to the remarkable property that gain at one transition and absorption at another one cancel each other while the real part of susceptibility is doubled.So,the susceptibility is purely real:¼3N 3 rad 21ð 1À 2Þ8 22 2þ 221:(3)It means that the probe field neither experiences absorptionnor gain independently of level 2’s energy,i.e.,for arbitrary values of .At the same time the resonant susceptibility varies from the minimum to the maximum value as is shifted from À to as shown in Fig.1.If the energy of the intermediate level is modulated in space along the direction of propagation of the probe field,the refractive index is also modulated.Such spatial modulation can be produced along the optical axis via the ac-Stark shift.A control laser field E s cos ð!s t Þapplied at the 0-2transition adjacent to the 1-2transition and far detuned from this transition Ás ¼!s À!20) 20would result in a split-ting of the intermediate state 2into two ac-Stark sublevels shifted in frequency by Àj s j 2=Ás and Ás þj s j 2=Ás ,respectively,where s is the associated Rabi frequency.The probe field is far out of resonance with the transitions from the second Stark sublevel from both level 1and level 3and,therefore its interaction with these transitions is neg-ligible while the first Stark sublevel is slightly shifted fromthe original level 2and strongly interacts with the probefield.In other words,the susceptibility at each transition (2-1or 2-3),which in general consists of two terms asso-ciated with the one-photon and two-photon resonances is reduced to the one-photon contribution and has the same form as given by Eq.(3),just with shifted transition frequencies.If the control field represents itself as a standing wave such that the Rabi frequency is a function of position inside the medium, s ðz Þ¼ s cos ðk s z Þ,then the ac-Stark shift of level 2is given by:ÁE ¼À@j s j 2s À@j s j 2scos ð2k s z Þ:(4)Thus it consists of a constant shift,j s j 2=2Ás ,and a sinu-soidal modulation,ðj s j 2=2Ás Þcos ð2k s z Þ.If the difference between the atomic transition frequencies !32À!21is chosen to be equal to Àj s j 2=Ás then the susceptibility is described by Eq.(3)with ¼ðj s j 2=2Ás Þcos ð4 z= s Þ(where s is the wavelength of the control field in the medium).Hence the refractive index will be modulated symmetrically with respect to its background value as shown in Fig.2.The spacial period s =2is defined by the wavelength,while the modulation depth Àj s j 2=Ás is defined by the Rabi frequency of the modulating field s .To provide the maximum amplitude of refractive index modulation the Rabi frequency of the control field should meet the condition 2s ¼2 Ás .With a strong enough index variation a transparent for a particular frequency 1-D photonic crystal can be created with properties that are optically controlled.Similarly a 2D or 3D photonic structure can be produced by application of 2or 3orthogonal modulating control fields.Even for index variations much smaller than the background RI the me-dium will behave as a distributed Bragg reflector if s ’ p specifically,when the wavelength mismatch is within the width of the Bragg band gap, s À p < s Án=ð n bg Þ.Since the medium remains transparent,many periods of spatial RI structures can be used as needed to achieve the required reflection coefficient.When the probe field is detuned from two-photon reso-nance with 1-3transition it will experience either gain or0.51.01.52.0zs1.00.50.51.0ReMaxFIG.2(color online).Real part of the susceptibility plotted as a function of position along the opticalaxis.21Re MaxFIG.1(color online).Real part of the susceptibility as a function of the level shift .Note that the imaginary part is identically zero.Inset:the energy level diagram for the corre-sponding three-level scheme.absorption.The question arises if such gain may result in the building up of a spontaneously amplified field empty-ing the inverted transition and limiting the propagation length of the probe field in the medium with periodic refractive index.Fortunately,this is not the case.Indeed,since the position of the intermediate level is periodically modulated in space,then a detuned probe field experiences periodically interchanging regions of gain and absorption suppressing the development of such an instability as can be seen in Fig.3.In fact averaging the absorption over a wavelength s shows that the medium is effectively trans-parent even when the probe field is detuned from resonance.The simple model of a ladder system previously dis-cussed assumed the existence of two transitions possessing equal linewidths,equal products of transition strength and population difference,and nearly degenerate (on the scale of the linewidth)frequencies.It is difficult if not impos-sible to meet these conditions in a real atomic system.However,it is possible to construct an effective ladder system whose upper transition has controllable parameters which could be optically tuned to satisfy these conditions.It can be accomplished by adding to the original simple ladder system along with the modulating control field E s coupled to an adjacent transition 0-2(as discussed above)a second control field E c coupling the excited state 3to an additional unpopulated level 4as shown in Fig.4.This second far-detuned control field (Ác ) rad 32, c where Ác ¼!43À!c and c is the control field Rabi fre-quency)is chosen to satisfy approximately the two-photon resonance condition:!c À!p ¼!42,forming together with the probe field a far-detuned lambda scheme.A strong far-detuned field results in an ac-Stark splitting of level 3and the response to the probe field consists of two terms representing one-photon (upper Stark sublevel)and two-photon (lower Stark sublevel)contributions in the same way as previously discussed.But now it is the two-photon contribution which plays a dominant role due to the two-photon resonance condition [7,12].As a result,the total five level system under the formu-lated above conditions is reduced to an effective three-level ladder system with the lower transition 1-2’’and the upper transition 2’’-3’.Its susceptibility takes the form:res¼3N 38 2rad 21p=ð2Àp Þ p þ 2s 2Ás þ Ài 21þ rad32=½ð2Àp Þð1þ2 Þ p À!32þ!21À 2s 2ÁsÀ þÁc ð1þ À 2ÞÀi ½ 42ð1À Þþ 32:(5)Where we assume incoherent pumping (not shown in Fig.4)which provides the necessary population inversion,represented by the pumping factor p ¼ð 2À 1Þ= 2.We also assume level 3is empty and introduce a control field parameter ¼j c j 2=Á2c ,as well as the one-photon detun-ing p ¼!21À!p .Now the parameters of the effective upper 2’’-3’and lower 1-2’’transitions defined by the control fields can easily be matched.We choose s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2 21Ás p to provide the maximum range of refractive index modulation.Matching the line-width of 3’-2’’transition to that of 2’’-1defines the control field parameter :¼21À 4232À 42:(6)It implies a larger linewidth of the upper 2’’-3’transition as compared to the lower transition 1-2’’, 32> 21,and relatively slow decay of the coherence at the 4-2’’0.51.01.52.0zs0.50.5ImMaxFIG.3(color online).Imaginary part of the susceptibility for a probe field detuned from resonance by 21=20(solid line)and 21(dashed line)plotted as a function of position along the optical axis.FIG.4(color online).Energy level diagram for the 5-level system coupled with two control fields s and c leading in ac-Stark splitting of levels 2and 3and resulting in an effective ladder system 1-2’’-3’in the dressed state basis.transition: 42< 32, 21.Matching the amplitudes de-fines the pump parameter as:p ¼ rad 32rad 211þ2 :(7)We take the probe field to be resonant with the dressedtransition 2’’-1such that p ¼À 2s =2Ás .Then matching the frequencies of the transitions defines the required de-tuning of the control field Ác :Ác ¼!32À!21þ2 211þ À :(8)This implies that Ác will be on the same order as !32À!21.Since j c j ¼ffiffiffi p Ác and Ác %!32À!21,it is important to have 1-2and 2-3transitions with close frequencies in order to reduce the required control field intensity.Under the above conditions the susceptibility given by Eq.(5)takes the same form as in Eq.(3).Thus,it becomes possible to realize resonant modulation of the refractive index with zero absorption or gain in the realistic system.As an example we consider Er 3þ:YAG (n bg ¼1:82)where the 4I 9=2to 4I 15=2( rad 21¼45Hz )transition at 813.2nm (transition 2-1in Fig.4)has a closely matched excited state absorption transition (transition 2-3in Fig.4)from 4I 9=2to 4G 9=2( rad 32¼15Hz )with !32À!21¼20GH z [13,14].Coherent driving of the transition be-tween the next Stark level of the ground state and 4I 9=2level (transition 2-0in Fig.4)can be used for modulation of level 2position,while coherent driving of 4I 15=2and 4G 9=2can be used for matching of the parameters of the upper and lower transitions in the effective ladder system.Taking N ¼1:4Â1021cm À3and low enough temperature to limit phonon broadening we assume 32¼0:8GHz , 21¼0:3GHz ,and 42¼0:2GHz .Choosing pump pa-rameter p ¼0:035and the following parameters of the driving fields: s ¼2:45GHz ,Ás ¼10GHz , c ¼7:449GHz ,and Ác ¼17:893GHz ,we obtain 3.3%re-fractive index modulation with respect to background value (Á 0¼0:22)with a periodically modulated practi-cally vanishing absorption (max j 00j <0:0033)as shown in Fig.5.This result follows from the numerical analysis of the 5level system driven with two coherent fields,and is well approximated by the analytical formula in Eq.(5).We note that the chosen wavelength mismatch, s À p ¼1:45nm ,is much smaller than the width of the Bragg band gap, Án=ð n bg Þ,which in our case is equal to 8nm.Already a relatively thin medium with L ¼100 m (which corresponds to 245periods of modulation)provides a quite high reflection coefficient,R ¼0:99998.As the probe field is detuned from atomic resonance there will be absorption or gain which alternates on the scale of thewavelength as shown in Fig.3,resulting in zero net ab-sorption or gain.The produced DBR has a very narrow bandwidth of 0.6GHz (defined by the linewidth of atomic resonance)and may be used as a frequency selective reflector.In conclusion,we proposed a method to produce peri-odic modulation of the refractive index while keeping zero net absorption or gain.The method is based on spatial modulation of the energy of the populated intermediate state in an effective three-level system with matched tran-sition properties by an external strong control field via the ac-Stark effect.Possible implementation of this technique in Er 3þ:YAG is suggested,where a 3%modulation of the refractive index with vanishing absorption is possible.The proposed method may find useful applications for the creation of optically controllable photonic structures such as distributed Bragg reflectors,holey fibers,photonic crystals,etc.A major advantage of these structures as compared to traditional photonic structures is that they can be easily manipulated (including switching on or off,changing the amplitude and period of modulation)by varying the parameters of the optical control fields.This research was supported by NSF Grant No.0855688.*cobrien.physics@[1]M.O.Scully,Phys.Rev.Lett.67,1855(1991).[2]U.Rathe,M.Fleischhauer,S.Y .Zhu,T.W.Hansch,andM.O.Scully,Phys.Rev.A 47,4994(1993).[3]M.D.Lukin,S.F.Yelin,A.S.Zibrov,and M.O.Scully,Laser Phys.9,759(1999).[4]J.P.Dowling and C.M.Bowden,Phys.Rev.Lett.70,1421(1993).[5]M.Fleischhauer,C.H.Keitel,M.O.Scully,C.Su,B.T.Ulrich,and S.Y .Zhu,Phys.Rev.A 46,1468(1992).[6] D.D.Yavuz,Phys.Rev.Lett.95,223601(2005).z nm0.100.050.050.102004006008001000FIG.5(color online).Real (dashed line)and imaginary (solid line)part of the susceptibility as a function of distance along the optical axis for implementation of a optically controlled distrib-uted Bragg grating in Er 3þ:YAG with the parameters listed in the Letter.[7] C.O’Brien and O.Kocharovskaya,J.Mod.Opt.56,1933(2009).[8] A.S.Zibrov,M.D.Lukin,L.Hollberg,D.E.Nikonov,M.O.Scully,H.G.Robinson,and V.L.Velichansky,Phys.Rev.Lett.76,3935(1996).[9]N.A.Proite,B.E.Unks,J.T.Green,and D.D.Yavuz,Phys.Rev.Lett.101,147401(2008).[10]M.E.Crenshaw,C.M.Bowden,and M.O.Scully,J.Mod.Opt.50,2551(2003).[11] A.K.Rebane,C.W.Thiel,R.K.Mohan,and R.L.Cone,Bull.Russ.Acad.Sci.Phys.74,891(2010).[12]P.Anisimov and O.Kocharovskaya,J.Mod.Opt.55,3159(2008).[13] D.K.Sardar,C.C.Russell,J.B.Gruber,and T.H.Allik,J.Appl.Phys.97,123501(2005).[14]J.B.Gruber,J.R.Quagliano,M.F.Reid,F.S.Richardson,M.E.Hills,M.D.Seltzer,S.B.Stevens,C.A.Morrison, and T.H.Allik,Phys.Rev.B48,15561(1993).。
胰腺癌代谢重编程与肿瘤微环境相互作用的探讨
在探讨胰腺癌代谢重编程与肿瘤微环境相互作用这一主题时,我们首先需要了解胰腺癌的基本情况。
胰腺癌是一种非常严重的癌症,通常在晚期才被发现,且治疗效果不佳。
与许多其他类型的癌症一样,胰腺癌也存在异常的代谢重编程,以及与周围肿瘤微环境的复杂相互作用。
1. 胰腺癌代谢重编程我们将着重讨论胰腺癌的代谢重编程。
代谢重编程是指癌细胞改变其代谢方式,以适应增长和扩散的需要。
在胰腺癌中,这种代谢重编程通常表现为对葡萄糖和谷氨酸的异常利用,以及对脂质和蛋白质合成途径的增强。
这些变化使得癌细胞能够更有效地获取生长所需的能量和物质,并且在一定程度上逃避免疼痛和治疗的影响。
2. 肿瘤微环境相互作用接下来,我们将探讨肿瘤微环境对胰腺癌代谢重编程的影响。
肿瘤微环境是指癌细胞周围的细胞、血管、免疫细胞等组成的环境。
它们与癌细胞之间存在着复杂的相互作用,相互影响。
在胰腺癌中,肿瘤微环境会影响代谢重编程,通过改变供应营养物质和释放信号分子等方式影响癌细胞的代谢状态。
3. 主题文字反复出现在以上内容中,我们可以看到胰腺癌代谢重编程和肿瘤微环境相互作用这一主题文字多次出现。
这是为了强调这一主题的重要性和深度,以及我们对它的高度关注。
总结回顾胰腺癌代谢重编程与肿瘤微环境相互作用是一个非常复杂且值得深入研究的主题。
了解和探索这一主题对于更好地理解胰腺癌的发生、发展和治疗至关重要。
未来的研究应该继续深入探讨代谢重编程和肿瘤微环境之间的关系,以寻找更有效的治疗策略。
个人观点和理解在个人观点和理解方面,我认为对于胰腺癌代谢重编程和肿瘤微环境相互作用的研究是十分重要的。
只有通过深入了解这些复杂的生物学过程,我们才能找到更有效的治疗方法,并最终提高胰腺癌患者的生存率和生活质量。
在文章中,我们简要讨论了胰腺癌的代谢重编程和肿瘤微环境相互作用,重点突出了这一主题。
我们希望这篇文章能够帮助您更好地理解胰腺癌的疾病特点以及相关研究的重要性,从而促进更深入的探讨和研究。
非甾体类抗炎药对结肠癌细胞NAG-1基因表达的诱导
非甾体类抗炎药对结肠癌细胞NAG-1基因表达的诱导王春晖;欧阳钦;唐承薇;刘瑞;黄明慧【期刊名称】《生物医学工程学杂志》【年(卷),期】2007(24)4【摘要】研究非甾体类抗炎药(Non-steroidal anti-inflammatory drug,NSAID)对结肠癌细胞生长的影响及NSAID活化基因-1(NAG-1)的诱导作用。
体外培养HT-29、SW480及LS174-T三种结肠癌细胞,分别加入不同浓度的aspirin、celecoxib及meloxicam作用于HT-29及SW480细胞,采用MTT法检测结肠癌细胞增殖;蛋白质印迹技术检测三种结肠癌细胞COX-2的表达;采用半定量RT-PCR 技术分析NSAID对三种结肠癌细胞NAG-1基因表达的影响。
aspirin、celecoxib及meloxicam均能有效抑制体外培养的HT-29、SW480结肠癌细胞生长,并具有良好的量-效关系。
Western blot表明,HT-29细胞表达COX-2,而SW480细胞不表达COX-2。
三种结肠癌细胞均表达NAG-1基因mRNA,其中LS174-T细胞NAG-1基础水平较低;NSAID能不同程度上调结肠癌细胞NAG-1基因表达。
NSAID能有效抑制结肠癌细胞生长,这种作用可能部分通过诱导结肠癌细胞NAG-1基因表达实现,NAG-1基因表达不受肿瘤细胞是否表达COX-2的影响。
【总页数】4页(P880-883)【关键词】NSAID活化基因-1;结肠癌;环氧合酶-2【作者】王春晖;欧阳钦;唐承薇;刘瑞;黄明慧【作者单位】四川大学华西医院消化内科;四川大学华西医院人类疾病相关多肽研究室【正文语种】中文【中图分类】R971.1【相关文献】1.非甾体类抗炎药NAG-1在胃癌中表达及意义 [J], 聂胜峰;兰斌;张军;曾志峰;丁洁2.非甾体类抗炎药经转录活化蛋白-1及核因子-κB信号传导通路抑制结肠癌细胞生长 [J], 王春晖;欧阳钦;唐承薇3.非甾体抗炎药对胃癌细胞凋亡的诱导及相关基因表达的调控 [J], 吴叔明;张燕捷;朱红音;沈冠凤;李恩灵;罗鸿予;萧树东4.非甾体类抗炎药诱导肝癌细胞凋亡及对COX—2和iNOS蛋白表达的影响 [J], 谢勇;周小江;等5.非甾体类抗炎药NS398对前列腺癌细胞株DU145中RECK基因表达的调控 [J], 徐振宇;高建平;孙颖浩;张征宇;葛京平;许传亮;王林辉因版权原因,仅展示原文概要,查看原文内容请购买。
基于GC-MS研究OPFRs对PC12细胞代谢的影响
基于GC-MS研究OPFRs对PC12细胞代谢的影响孙梦瑶;赵亚菲;王少敏;刘宏民【期刊名称】《河南师范大学学报(自然科学版)》【年(卷),期】2024(52)2【摘要】基于气相色谱质谱(gas chromatography-mass spectrometry,GC-MS)研究了4种有机磷阻燃剂(organophosphate flame retardants,OPFRs)对神经细胞PC12代谢的影响.首先将PC12细胞分别暴露于4种不同浓度的阻燃剂中,利用噻唑蓝(methyl thiazolyl tetrazolium,MTT)比色法选出对细胞存活率影响较小的浓度.然后在该浓度下培养细胞并提取代谢物,利用GC-MS对细胞内的代谢物进行非靶向代谢组学分析.接着采用SIMCA软件对定量后的代谢数据进行OPLS-DA分析,找出细胞中受到OPFRs影响的关键代谢物,并利用生物信息学方法分析这些关键代谢物所涉及的重要代谢通路.该研究共鉴定出PC12细胞中的38种小分子代谢物.经过多元统计分析发现4种OPFRs均影响PC12细胞的代谢表型.OPFRs在100μmol/L和1000μmol/L浓度下,对PC12细胞表现出显著的细胞毒性.其中糖代谢和氨基酸代谢是受影响的主要代谢通路.【总页数】9页(P96-103)【作者】孙梦瑶;赵亚菲;王少敏;刘宏民【作者单位】郑州大学生态与环境学院;郑州大学化学学院;郑州大学新药创制与药物安全性评价河南省协同创新中心【正文语种】中文【中图分类】R114【相关文献】1.3,5,2'''',4''''-四羟基查尔酮对大鼠尿酸及PC12细胞嘌呤代谢酶的影响2.基于GC-MS代谢组学技术对叶酸调控鸡原代肝细胞代谢的研究3.NMR代谢组学技术研究OPFRs对HepG2细胞糖代谢的影响4.基于细胞代谢组学的柴胡皂苷b2对皮质酮诱导PC12细胞损伤的保护作用研究因版权原因,仅展示原文概要,查看原文内容请购买。
近端肾小管上皮细胞代谢重编程在急性肾损伤中的研究进展
近端肾小管上皮细胞代谢重编程在急性肾损伤中的研究进展郑星月;周芳芳(综述);罗群(审校)
【期刊名称】《肾脏病与透析肾移植杂志》
【年(卷),期】2024(33)1
【摘要】肾脏是一个高代谢器官,尤其是近端肾小管上皮细胞,在生理情况下主要依赖脂肪酸氧化供能,但是在急性肾损伤(AKI)期间,线粒体和过氧化物酶体功能障碍,近端肾小管上皮细胞发生代谢重编程,能量供应转向糖酵解,生成乳酸,并伴脂肪酸氧化紊乱及糖异生受损,短期内代谢重编程可能是对肾脏有益的能量代偿,但是该过程中也会加重肾损伤。
本文就近端肾小管上皮细胞代谢重编程在AKI中的作用进行综述。
【总页数】5页(P59-63)
【作者】郑星月;周芳芳(综述);罗群(审校)
【作者单位】宁波大学医学部;宁波市第二医院肾内科
【正文语种】中文
【中图分类】R69
【相关文献】
1.ATP缺失时大鼠近端肾小管上皮细胞骨架重组与ERM蛋白的重分布相关
2.氨基酸代谢重编程在肿瘤细胞及肿瘤相关巨噬细胞极化中的作用研究进展
3.糖代谢重编程在子宫内膜异位症中的研究进展
4.代谢重编程在恶性肿瘤中作用的研究进展
5.巨噬细胞极化中糖代谢重编程的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
实现慢中子-γ光子有效转换的核素的选择
实现慢中子-γ光子有效转换的核素的选择
林旭升
【期刊名称】《原子能科学技术》
【年(卷),期】2000(034)002
【摘要】为选出能有效地实现慢中子-γ光子转换的核素,根据有关截面数据分析了主要的决定因素,并结合具体模型用离散纵标法作了计算.辐射俘获是最佳的转换途径,核Eu能实现有效的转换.
【总页数】4页(P128-131)
【作者】林旭升
【作者单位】汕头大学,物理学系,广东,汕头,515063
【正文语种】中文
【中图分类】TL816.2
【相关文献】
1.单光子波长转换首次实现 [J],
2.中国女性参考人曲面模型的光子有效剂量转换系数计算 [J], 梁潇;刘春雨;董良;杨志达;周杰;王俊玲;栾秀春
3.四通道并行解复用光子模数转换系统设计和实现 [J], 袁野;邹卫文;杨光;陈建平
4.单光子波长转换首次实现 [J], 无
5.基于矢量叠加实现差分编码的光子模数转换方案 [J], 杨淑娜;刘志伟;杨波;曾然因版权原因,仅展示原文概要,查看原文内容请购买。
光子计数的微比光自动测量系统
光子计数的微比光自动测量系统
滕树云;何源
【期刊名称】《山东师范大学学报:自然科学版》
【年(卷),期】1997(012)001
【摘要】设计了一套用于实现极弱光实验过程中光强的自动检测系统,该系统地光子计数器和计算机接品同步触发,使每个计数循环后,光子计数器的模输出被计算机接口并进行模数转换以及数据贮存,然后自动开始新的循环。
该系统了现利用光子计数器中的人工记录的缺点。
【总页数】3页(P37-39)
【作者】滕树云;何源
【作者单位】山东师范大学物理学系;山东师范大学物理学系
【正文语种】中文
【中图分类】O431
【相关文献】
1.动态光散射中基于光子计数率的噪声剔除方法 [J], 向君;韩鹏
2.大气无线光信道下基于光子计数的迭代译码性能 [J], 谢伟良;汤俊雄
3.不同光波长下大光金鱼花叶片超微弱发光的光子计数统计 [J], 赵占娟;李光;杨卫星;闫冰
4.大光金鱼花不同叶位叶片超微弱发光的光子计数统计 [J], 赵占娟;李光;闫冰
5.用LabVIEW实现基于光子计数的动态光散射系统 [J], 杨晖;郑刚;张荣福;郁飞龙;边岱泉
因版权原因,仅展示原文概要,查看原文内容请购买。
基于自旋-光子相互作用实现量子纠错码(英文)
基于自旋-光子相互作用实现量子纠错码(英文)
刘俊;董萍;宋伟;曹卓良
【期刊名称】《量子电子学报》
【年(卷),期】2014(31)4
【摘要】基于光子与量子点自旋的相互作用设计了一个实现三量子比特重复量子纠错码的方案。
在该方案中,偏振光束分光器,光子探测器和微柱腔是必须的,且能实现单电子自旋的非破坏性测量,对量子信息处理具有重要意义。
对实验方案的可行性讨论表明:该方案在当前实验技术范围内是切实可行的。
【总页数】7页(P459-465)
【关键词】量子纠错码;光子-自旋相互作用;非破坏性测量
【作者】刘俊;董萍;宋伟;曹卓良
【作者单位】合肥师范学院电子信息工程学院;安徽大学计算智能与信号处理教育部重点实验室
【正文语种】中文
【中图分类】O413
【相关文献】
1.电子自旋辅助实现光子偏振态的量子纠缠浓缩 [J], 赵瑞通;梁瑞生;王发强
2.Dzyaloshinskii-Moriya相互作用和内禀消相干对基于两量子比特Heisenb erg 自旋系统的量子密集编码的影响∗ [J], 邹琴;胡小勉;刘金明
3.自旋为1的量子系统的可控性以及三进制SWAP门在具有Ising相互作用的双
自旋系统上的实现 [J], 王艳;狄尧民;魏海瑞
4.基于非对称光子自旋—轨道相互作用的超构表面 [J], 张飞;郭迎辉;蒲明博;李雄;马晓亮;罗先刚
5.单光子偏振态实现量子密钥分配的方案(英文) [J], 廖劲飞;叶柳
因版权原因,仅展示原文概要,查看原文内容请购买。
微管剪切蛋白调控果蝇节律神经元的形态发育
微管剪切蛋白调控果蝇节律神经元的形态发育
王顺;刘志华
【期刊名称】《湖北大学学报(自然科学版)》
【年(卷),期】2024(46)3
【摘要】Spastin、Katanin60和Fidgetin是3种重要的微管剪切蛋白,它们的突变会导致神经退行性疾病。
然而,这些微管剪切蛋白如何调节神经元的形态和功能
尚不明确。
果蝇的昼夜节律行为主要受位于大脑腹外侧的4对神经元LNv的控制。
LNv神经元具有简单的形态,并且其轴突末梢会随着昼夜节律而伸缩。
本研究利用LNv神经元作为模型,探讨不同微管剪切蛋白在神经元形态发育中的功能差异。
我
们发现,在LNv神经元中组成性表达Spastin会导致轴突和树突的发育异常,并且抑制神经肽PDF的转运;在成虫时期特异性表达Spastin会引起神经纤维的退化。
而在LNv神经元中过量表达Katanin60或Fidgetin则不会影响LNv神经元的形态
和神经肽PDF的转运。
我们的结果揭示了不同微管剪切蛋白在不同神经元中具有
不同的功能特性。
【总页数】9页(P297-305)
【作者】王顺;刘志华
【作者单位】湖北大学生命科学学院
【正文语种】中文
【中图分类】Q421
【相关文献】
1.MEF2C调控大鼠脊髓背根节感觉神经元P物质和低分子量神经丝微管蛋白的表达
2.大脑皮层神经元微管相关蛋白-2在人胚发育过程中的表达变化
3.微管相关蛋白2:调节神经元发育、结构稳定及突起形成和突触可塑性
4.微管剪切蛋白Fidgetin在黑腹果蝇
神经发育过程中的功能初探
因版权原因,仅展示原文概要,查看原文内容请购买。
氮掺杂碳量子点与牛血清白蛋白相互作用的研究
氮掺杂碳量子点与牛血清白蛋白相互作用的研究
李春兴;王芸;胡晓熙;余霭雯;沈俊尧;邱华
【期刊名称】《化工技术与开发》
【年(卷),期】2024(53)5
【摘要】采用光谱法研究了掺氮碳量子点(N-CQDs)与牛血清白蛋白(BSA)的相互
作用机理。
光谱分析表明,N-CQDs能有效猝灭BSA的内源性荧光,属于静态猝灭
机制。
N-CQDs的加入导致色氨酸残基微环境的疏水性降低,继而引起BSA的构象产生变化。
N-CQDs与BSA可能是以1∶1的比例相互结合形成了稳定的复合物。
结合热力学参数进行分析,N-CQDs与BSA相互结合的作用力主要为静电吸引力,
反应为自发进行。
同步荧光光谱也表明,N-CQDs与BSA的结合改变了BSA的构象。
此研究数据可为进一步了解N-CQDs纳米颗粒在生物体内的应用提供参考。
【总页数】5页(P26-30)
【作者】李春兴;王芸;胡晓熙;余霭雯;沈俊尧;邱华
【作者单位】广东松山职业技术学院
【正文语种】中文
【中图分类】TB383
【相关文献】
1.水溶性L-Cys-CdS量子点与牛血清白蛋白相互作用研究
2.氮掺杂枸杞碳量子点
的光谱性质及磁性量子点制备初探3.水溶性ZnO量子点与牛血清白蛋白相互作用
的光谱学研究4.光谱法研究碳量子点与人血清白蛋白的相互作用5.牛血清白蛋白水热法一步合成氮掺杂碳点荧光检测2,4,6-三硝基甲苯
因版权原因,仅展示原文概要,查看原文内容请购买。
细胞提取物介导的体细胞重编程
细胞提取物介导的体细胞重编程
刘辉;黎江;刘新垣;钱其军
【期刊名称】《细胞生物学杂志》
【年(卷),期】2008(30)5
【摘要】将完全分化的细胞重编程,不经胚胎阶段而直接逆转至多能干细胞状态,这从法律、道德、伦理等方面均被人们所接受,重新点燃了人们对体细胞重编程的热情,点燃了再生医学研究的新希望。
现重点阐述细胞提取物介导的体细胞重编程的原理及其应用前景,并详细介绍体细胞重编程的最新方法:细胞核移植入卵母细胞;体细胞与胚胎干细胞或胚胎癌细胞融合;在体细胞中强制性过表达特定的转录因子;用卵细胞、胚胎干细胞或多能癌细胞的细胞提取物处理体细胞等。
【总页数】5页(P553-557)
【关键词】重编程;细胞提取物;转分化
【作者】刘辉;黎江;刘新垣;钱其军
【作者单位】浙江理工大学生命科学学院新元医学与生物技术研究所
【正文语种】中文
【中图分类】Q785;Q132.7
【相关文献】
1.microRNA对体细胞重编程为神经细胞的研究进展 [J], 许婷婷;王跃嗣
2.外环境因素对体细胞重编程诱导多能干细胞的影响 [J], 陈忠尧;曹泽宇;黄艳;汲婧;陈晓芳
3.利用诱导因子Oct4、Sox2和SV40 T的mRNA介导体细胞重编程研究 [J], 潘传英;陈宏;BISHOP E.Colin
4.核移植介导的哺乳动物体细胞核重编程研究进展 [J], 吴霄; 庄站伟; 马晓莉; 黄思秀; 李紫聪; 徐铮
5.体细胞重编程为运动神经元细胞的方法研究进展 [J], 张亚男; 翁晓滨; 王跃嗣因版权原因,仅展示原文概要,查看原文内容请购买。
拉曼光谱编码的荧光液相生物芯片检测系统研究
拉曼光谱编码的荧光液相生物芯片检测系统研究谢鲁源; 关添; 何永红; 侯建勋; 徐涛; 陈雪静; 王蓓; 申志远; 许杨【期刊名称】《《光谱学与光谱分析》》【年(卷),期】2019(039)010【总页数】7页(P3021-3027)【关键词】液相生物芯片; 光学系统; 拉曼光谱编码; 荧光强度; 定性与定量分析【作者】谢鲁源; 关添; 何永红; 侯建勋; 徐涛; 陈雪静; 王蓓; 申志远; 许杨【作者单位】清华大学深圳研究生院生物医学工程研究所广东深圳 518055; 清华大学深圳研究生院光学检测与成像实验室广东深圳 518055; 深圳市药品检验研究院(深圳市医疗器械检验中心) 广东深圳 518057; 深圳市计量质量检测研究院广东深圳 518055【正文语种】中文【中图分类】O433.1引言液相生物芯片技术是目前新兴的生物分子检测方法。
它集荧光编码微球、流式细胞术、激光检测和高速数字信号处理等多项技术为一体的高通量分子技术,它主要是以不同种类的荧光编码微球作为载体进行杂交反应和信号检测,通常多以多色流式细胞仪作为解码和检测平台,通过把芯片技术和流式细胞检测技术结合到一起,在液相反应体系中可以实现核酸、蛋白质等多种生物分子的检测[1]。
液相芯片相比于固态微阵列芯片有反应速率快、重复性及灵活性好等多种优势,和其他传统的免疫检测方法相比,液相生物芯片技术具有高通量、多指标联合检测、高敏感性、高特异性、线性范围宽、反应快速、重复性好以及操作简便等优点[2]。
液相生物芯片主要应用光解码技术,光学编码利用合成在液相生物芯片中的光学特性的物质或者结构来对液相生物芯片进行编码,杂交反应后用光源激发微球,根据发出的特异性光谱进行解码,从而获得目标分子的种类信息。
荧光编码是目前液相生物芯片技术中最为成熟的编码技术,已经成目前走向产业化的主流编码方式[3]。
该编码方式主要是将微球与荧光物质相结合,通过改变荧光物质的颜色与用量,来获取不同种类的编码微球[4]。
抗肿瘤药物长春新碱控制释放剂型的研究
抗肿瘤药物长春新碱控制释放剂型的研究孙勇;周海英;刘玲蓉;张其清【期刊名称】《生物医学工程学杂志》【年(卷),期】1999(0)S1【摘要】VCR microcapsules was prepared by drying from oil method, then mixed microcapsules into 0.7% collagen swelling solution to prepare the emulsion, spread the emulsion on the plate to form membrane and cross linded it, the membrane would be planted into body and was expected to release in vitro. We determinated its antineoplastic effects in vivo and in vitro.【总页数】2页(P67-68)【关键词】VCR;Controlled;release;drug;Collagen;HPLC【作者】孙勇;周海英;刘玲蓉;张其清【作者单位】中国协和医科大学中国医学科学院生物医学工程研究所【正文语种】中文【中图分类】R730.5【相关文献】1.长春新碱控制释放药膜 [J], 无2.长春新碱抗肿瘤新剂型的研究进展 [J], 郭曼曼;汪怡3.肽类药物口服剂型材料及控制释放性能研究Ⅰ.壳聚糖─海藻酸盐微囊对胰岛素的控释作用 [J], 冯鹏;王亦农;马建标;何炳林4.昆虫信息素的控制释放剂型的理论研究 [J], 吴兆学;赵德仁5.肽类药物口服剂型材料及控制释放性能研究──Ⅱ.含有添加剂的壳聚糖-海藻酸盐微囊对胰岛素的控释作用 [J], 曹海辉;王亦农;马建标;何炳林因版权原因,仅展示原文概要,查看原文内容请购买。
Qubit-qutrit海森堡混合自旋链系统QMA熵不确定度的量子调控
Qubit-qutrit海森堡混合自旋链系统QMA熵不确定度的量
子调控
刘科洋;周清平;闻佳欣;刘洁;张婷
【期刊名称】《原子与分子物理学报》
【年(卷),期】2024(41)5
【摘要】在qubit-qutrit海森堡混合自旋链模型中研究了量子存储支撑(Quantum memory assisted,QMA)熵不确定度的量子调控.详细分析了混合自旋链模型中的Dzyaloshinskii-Moriya(DM)相互作用、耦合强度和非均匀磁场对QMA熵不确定度的影响,对比分析了混合自旋链模型中系统参数对QMA熵不确定度和被测系统与存储系统的量子纠缠的调控作用.结果表明,通过调控非均匀磁场强度和混合自旋链系统的参数,可以提高被测系统与存储系统的量子纠缠,降低系统QMA熵不确定度及其下限.
【总页数】7页(P111-117)
【作者】刘科洋;周清平;闻佳欣;刘洁;张婷
【作者单位】吉首大学物理与机电工程学院;吉首大学计算机科学与工程学院【正文语种】中文
【中图分类】O64
【相关文献】
1.非马尔科夫环境中各向异性海森堡自旋链的几何量子失协
2.一维海森堡-伊辛自旋链模型中的量子失协研究
3.海森堡XYZ自旋链系统的热纠缠与局域量子不确定
性研究4.两比特海森堡自旋链体系中几何量子失协在非马尔可夫环境下的演化5.Three-qubit海森堡XYZ各向异性自旋链系统QMA熵不确定度的量子调控
因版权原因,仅展示原文概要,查看原文内容请购买。
采用曲线拟合方法进行EPR波谱基线校正
采用曲线拟合方法进行EPR波谱基线校正
邹曦露;汤畅;万谦
【期刊名称】《波谱学杂志》
【年(卷),期】1996(000)006
【摘要】提出了一种以曲线拟合方式进行的EPR波谱基线校正的简单方法,程序置于486微机上,采用C^++语言编写,在Windows环境下运行,使用菜单,模块化方式。
操作简单,快捷。
在联机进行数据采集时尤为方便。
【总页数】1页(P601)
【作者】邹曦露;汤畅;万谦
【作者单位】中国科学院生物物理研究所;中国科学院生物物理研究所
【正文语种】中文
【中图分类】O482.4
【相关文献】
1.采用中心化最小二乘法进行测井曲线拟合 [J], 齐宝权
2.EPR波谱拟合-傅里叶去卷积距离计算方法 [J], 郭林超;王长振;丛建波;先宏;吴可
3.采用多曲线拟合的柔性体建模仿真方法 [J], 张洁卉;潘超;章勇
4.应用CDAG方法进行EPR机组的严重事故堆芯损伤研究 [J], 李嘉明; 殷煜皓
5.采用三回波梯度回波成像进行肝脏脂肪成像的可行性:与3.0T磁共振质子波谱对照 [J], B.Guiu;R.Loffroy;J.M.Petit;S.Aho;D.Ben Salem;D.Masson;郭雪梅
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Overcoming Losses with Gain in a Negative Refractive Index Metamaterial Sebastian Wuestner,Andreas Pusch,Kosmas L.Tsakmakidis,Joachim M.Hamm,and Ortwin Hess* Advanced Technology Institute and Department of Physics,University of Surrey,Guildford,GU27XH,Surrey,United Kingdom (Received2July2010;revised manuscript received5August2010;published14September2010)On the basis of a full-vectorial three-dimensional Maxwell-Bloch approach we investigate thepossibility of using gain to overcome losses in a negative refractive indexfishnet metamaterial.Weshow that appropriate placing of optically pumped laser dyes(gain)into the metamaterial structure resultsin a frequency band where the nonbianisotropic metamaterial becomes amplifying.In that region both thereal and the imaginary part of the effective refractive index become simultaneously negative and thefigureof merit diverges at two distinct frequency points.DOI:10.1103/PhysRevLett.105.127401PACS numbers:78.67.Pt,42.25.Bs,78.20.Ci,78.45.+hNegative refractive index metamaterials offer the possi-bility of revolutionary applications,such as subwavelength focusing[1],invisibility cloaking[2],and‘‘trapped rain-bow’’stopping of light[3].The realization of these mate-rials has recently advanced from the microwave to the optical regime[4,5].However,at optical wavelengths metamaterials suffer from high dissipative losses due to the metallic nature of their constituent metamolecules.It is therefore not surprising that overcoming loss restrictions is currently one of the most important topics in metamaterials research[6].It has been suggested that,owing to causality,simulta-neous loss-compensation and negative refractive index might only be attainable in a very narrow bandwidth with high losses nearby[7].In an ongoing discussion several authors have reasoned that causality-based criteria have to be applied carefully and do not in general lead to such a strict result[8,9].This said,the theoretical possibility to compensate losses in optical metamaterials does not nec-essarily imply that the gain available from optically active media suffices to achieve this goal.Indeed,bulk gain coefficients are usually an order of magnitude smaller than the absorption coefficients of metals at optical frequencies.A vital clue as to how the aforementioned limitation could be overcome came from[10].There it was shown that the incorporation of gain in regions of highfield intensity gives rise to an effective gain coefficient that can exceed its bulk counterpart by potentially orders of magnitude.Exploiting this gain-enhancement effect loss reduction and giantfield enhancement have been reported for a double-fishnet metamaterial using frequency-domain models[11,12].The particular model used in[11]accounts for spatial nonuniformity and saturation of the gain. However,the dynamic evolution of the gain system,non-linearly pumped by a short intense pulse,cannot be de-scribed self-consistently with such a frequency-domain approach and relies on assumptions of cw excitation.A time-domain calculation of gain in two-dimensional elec-tric or magnetic metamaterials has recently been reported in[13],but therein the effect of the pumpfield has again not been considered self-consistently.In this Letter,we study the optical response of a negative refractive index(NRI)metamaterial with a gain medium embedded in the structure and wefind that complete loss-compensation and even amplification is possible using realistic gain parameters.To this end we use a full-vectorial time-domain approach that manages to self-consistently couple the evolution of the occupation den-sities in the gain medium directly to Maxwell’s equations in three dimensions[14–16].Nonlinearity,saturation of the gain medium,and spatiotemporal variations of both ab-sorption and emission are inherent to our model,avoiding the need for external,precalculated inputs.The considered structure is an optical double-fishnet metamaterial[11,17,18]with a square periodicity of p¼280nm,perforated with rectangular holes of sides a x¼120nm and a y¼80nm(see Fig.1).The additional geo-metrical parameters are h m¼40nm,h d¼60nm,and h c¼60nm.This type of NRI metamaterial,which has been the topic of intense research(see,e.g.,[11,17–19]),FIG.1(color online).Illustration of the double-fishnet struc-ture with a square unit cell of side-length p highlighted.The two perforated silverfilms are embedded in a dielectric host material which holds the dye molecules(translucent).Dimensions are given in the text.Pump(red dashed line)and probe(blue solid line)pulses illustrate the pump-probe configuration with the electricfield polarized along the x direction.exhibits low absorption compared to other metamaterialsin the optical wavelength range.Its relatively low absorp-tion makes it the most promising structure for complete loss-compensation[20].We consider two configurations,passive and active.Inthe passive configuration two silverfishnetfilms are em-bedded inside a dielectric host that has a real refractiveindex of n h¼1:62(see Fig.1).The permittivity of silver follows a Drude model corrected by two Lorentzian reso-nances to match experimental data at visible wavelengths[21].In the active configuration we insert Rhodamine800 dye molecules into the dielectric host and excite them optically in numerical pump-probe experiments.The chosen geometric parameters ensure a good overlap of the metamaterial’s resonant response with the emission spectrum of the dye for an electricfield polarization along the long side a x of the rectangular holes(see Fig.1).In order to self-consistently calculate the gain dynamicsin this system the dye molecules are described using a semiclassical four-level model with two optical dipole transitions[14–16].This model is implemented by intro-ducing auxiliary differential equations for the position-and time-dependent polarization densities P i and occupation densities N j into the three-dimensionalfinite-difference time-domain(FDTD)algorithm.The time evolution of the polarization densities for the absorption(i¼a)and emission(i¼e)lines is then given by@2P i @t2þ2Ài@P i@tþ!20;i P i¼À2!i e2d2i@ÁN iÁE loc;(1)where!0;i¼ð!2iþÀ2iÞ1=2are the oscillator frequencies, @!i the electronic transition energies,Ài the half-widths of the resonances,and ed i the dipole strengths.The dye molecules embedded in the dielectric host experience,in the Lorentz approximation,the local electricfield E loc¼½ðn2hþ2Þ=3 E and not the average electricfield E[22]. Saturation is accounted for by the electricfield dependence of the occupation inversionsÁN a¼N3ÀN0andÁN e¼N2ÀN1for absorption and emission,respectively,which couple to Eq.(1).Their dynamics are governed by@N3 @t ¼1@!a@P a@tþÀa P aÁE locÀN332;(2a)@N2 @t ¼N332þ1e@P e@tþÀe P eÁE locÀN221;(2b)@N1 @t ¼N221À1@!e@P e@tþÀe P eÁE locÀN110;(2c)@N0 @t ¼N110À1@!a@P a@tþÀa P aÁE loc:(2d)Nonradiative decay of the occupation densities is quanti-fied by the lifetimes jk.TheÀi P i terms stem from the transformation from complex-to real-valued polarizations ([14],p.174)Absorption and emission cross-sections,taken from ex-perimental data,are used to calculate the dipole length d ivia i¼ð!0;i e2d2i=@Þ=ð 0cn hÀiÞ,with 0being the vac-uum permittivity and c the vacuum speed of light.Theparameters for the four-level system are chosen as follows(cf.[23]): e¼2 c=!e¼710nm, a¼680nm,Àe¼Àa¼1=ð20fsÞ,d e¼0:09nm,and d a¼0:1nm; 32¼ 10¼100fs and 21¼500ps.These values correspond to cross sections e¼2:43Â10À16cm2and a¼3:14Â10À16cm2.We set the density of the dye molecules as N¼P3j¼0N j¼6Â1018cmÀ3%10mM leading to a bulk gain coefficient of approximately g%NÁ e% 1460cmÀ1at full inversion.In order to study the active configuration wefirst pumpthe dye molecules with a short,intense pulse of duration2ps.After a short delay of7ps we probe the structure witha weak broadband pulse of duration12fs.Figures2(a)and2(c)show a snapshot of the spatial distribution of theoccupation inversion generated by the pump pulse at twoperpendicular planes inside the unit cell of the activemetamaterial.The effective gain coefficient in the structurecan be maximized with a good matching between thespatial distribution of the inversion and that of theplasmon-enhanced electricfield amplitude at the emissionwavelength e[Figs.2(b)and2(d)].Indeed,we seefromFIG.2(color online).(a)Snapshot of the occupation inversion ÁN e in a plane5nm below the upper silverfishnetfilm just before probing and(b)the electricfield enhancement at710nm in the same plane;both for a pump-field amplitude of 2:0kV=cm.The silverfilm perforation is indicated by a white rectangle.(c)and(d)show the same physical quantities in a plane given by the propagation direction and the long side of the perforation.The dashed black lines in(a)and(c)highlight the positions of the intersection with the other plane,respectively.Fig.2that such a matching is achieved when the pump and the probe have the same electricfield polarization.We remark that the considered planar structure has a low cavity Q-factor(Q<50).In addition,the modal volume, which is directly associated with the feedback from metal-lic interfaces,is orders of magnitude larger than in the case of nanospheres used for‘‘spasing’’[24].Therefore lasing is not expected in this structure.This is also supported by the fact that in our simulations we do not observe any appreciable depletion of the occupation inversion by the probe pulse.Further,on the short ps time scale under investigation,which is3orders of magnitude shorter than the free-space spontaneous emission lifetime of the dye, amplified spontaneous emission is not expected to play a significant role[25].We use the standard retrieval method[26]to extract the effective refractive index n¼n0þin00,first,of the passive configuration.Note that the metamaterial structure consid-ered in this work is surrounded by air above and below the dielectric host;i.e.,it is deliberately not placed on a thin substrate,in order to be symmetric and nonbianisotropic [27].The spectral variation of n0(n00)in the passive struc-ture is similar to that shown by the cyan solid(dashed)line in Fig.3(a)(corresponding to the metamaterial that has dye molecules included but is not pumped).Wefind that in this passive case thefigure of merit FOM¼Àn0ð Þ=n00ð Þhas a maximum value of2.7at713nm.Next,we study the active metamaterial configuration and,in particular,the effect that an increase of the pump intensity has on the obtained FOM.In the calculations we ensure that the gain system is probed within the linear regime where the standard retrieval method can be applied. Figure3(a)shows the real and imaginary parts of the retrieved effective refractive indices for progressively in-creased peak pump-field amplitudes.We see that increas-ing the pump intensity,and therefore the gain available for the probe,leads to a decrease in the imaginary part of the refractive index in the region around the maximum emis-sion cross section of the dye(710nm)indicating reduced optical losses.The stronger resonance that arises from the gradually intensified pump also reduces the real part of the refractive index towards more negative values.Increasing the pump-pulse amplitude from0:5kV=cm to1:5kV=cm improves and blueshifts the maximum of the FOM from a value of3at716nm to a value of12at712nm(for the higher amplitude).An even higher amplitude of the pump pulse of2kV=cm results in a wavelength region(approx. 706–714nm)where the losses in the metamaterial are completely compensated.In this region,the active meta-material exhibits a negative absorption[cf.Fig.4(b)]and both the real and imaginary part of the refractive index become simultaneously negative.Note from Fig.3(b)that in this case the FOM diverges at the two wavelength points bounding the negative-absorption(amplification)region owing to n00becoming exactly zero at these two wavelengths.To further verify the causal nature of the obtained effec-tive parameters we use the method of[28]to calculate,based on the Kramers-Kronig relations,the real(imagi-nary)part of the effective permeability from the imaginary(real)part of the numerically retrieved[26]effective per-meability.An example of such a calculation for a pumpamplitude of2kV=cm(corresponding to the negative-absorption regime)is shown in the inset of Fig.3(a).Theexcellent agreement between the results obtained from thestandard retrieval method and the complementaryKramers-Kronig approach further confirms that the ex-tracted parameters do obey causality.Finally,Fig.4presents a more detailed look at n00,theabsorption coefficient,and the FOM for pump intensitiesclose to and above complete loss compensation.We notethat there is a critical amplitude of approximately 1:85kV=cm for the pump pulse beyond which the presentFIG.3(color online).(a)Real and imaginary part of theretrieved effective refractive indices of the double-fishnet struc-ture for different pump amplitudes.The peak electricfieldamplitude of the pump increases in steps of0:5kV=cm fromno pumping(cyan line,lightest)to a maximum of2:0kV=cm(black line,darkest).The inset shows the real and imaginary partof the effective permeability(black and red line,respectively)and the result of the Kramers-Kronig relation(black and reddotted lines)for the highest peak electricfield amplitude of 2:0kV=cm.(b)Thefigures-of-merit(FOM)for the same pump-ing amplitudes.metamaterial configuration becomes amplifying.A further increase of the pumpfield up to levels of2:1kV=cm leads to a spectral broadening of the region of negative absorp-tion.At very large pump-field amplitudes above 2:2kV=cm we observe discontinuities in the effectiverefractive index(data not shown here)and the Kramers-Kronig relation for the permeability is not obeyed any more.This occurs despite a smooth change in amplitude and phase of both the transmission and the reflection co-efficients with no sign of gain depletion or discontinuities in other physical quantities.Investigation of this regime will be the subject of future work.In conclusion,we have shown how the incorporation of a gain medium(Rhodamine800dye)into the structure of a double-fishnet nonbianisotropic metamaterial can fully compensate losses in the regime where the real part of the metamaterial’s effective refractive index is negative.In this spectral range the imaginary part of the refractive index of the metamaterial becomes negative,too.We be-lieve that this work could guide experimental efforts to-wards lossless and amplifying metamaterials,which offer access to exciting photonic applications.We gratefully acknowledgefinancial support provided by the EPSRC and the Royal Academy of Engineering.*Corresponding author.o.hess@[1]J.B.Pendry,Phys.Rev.Lett.85,3966(2000).[2]J.B.Pendry,Nature(London)460,579(2009).[3]K.L.Tsakmakidis,A.D.Boardman,and O.Hess,Nature(London)450,397(2007).[4]V.M.Shalaev,Nat.Photon.1,41(2007).[5]J.Valentine et al.,Nature(London)455,376(2008).[6]N.I.Zheludev,Science328,582(2010).[7]M.I.Stockman,Phys.Rev.Lett.98,177404(2007).[8]J.Skaar,Phys.Rev.E73,026605(2006).[9]P.Kinsler and M.W.McCall,Phys.Rev.Lett.101,167401(2008).[10]N.I.Zheludev et al.,Nat.Photon.2,351(2008).[11]Y.Sivan et al.,Opt.Express17,24060(2009).[12]Z.-G.Dong et al.,Phys.Rev.B80,235116(2009);Appl.Phys.Lett.96,044104(2010).[13] A.Fang et al.,Phys.Rev.B79,241104(2009);A.Fang,T.Koschny,and C.M.Soukoulis,J.Opt.12,024013 (2010).[14]K.Bo¨hringer and O.Hess,Prog.Quantum Electron.32,159(2008);32,247(2008).[15] A.Klaedtke,J.Hamm,and O.Hess,Lect.Notes Phys.642,75(2004).[16] A.Klaedtke and O.Hess,Opt.Express14,2744(2006).[17]S.Zhang et al.,Opt.Express13,4922(2005).[18]S.Zhang et al.,Phys.Rev.Lett.94,037402(2005).[19] A.Mary et al.,Phys.Rev.Lett.101,103902(2008).[20]Shortly before submission of this Letter an importantexperimental work(V.M.Shalaev,CIMTEC2010, Montecatini Terme,Italy;June17,2010)was presented where negative absorption in(bianisotropic)metamateri-als with n0<0but n00>0(owing to the bianisotropy)has been observed.After submission of this Letter these results were reported in S.Xiao et al.,Nature(London) 466,735(2010).[21]J.A.McMahon et al.,J.Phys.Chem.C113,2731(2009).[22]P.de Vries and gendijk,Phys.Rev.Lett.81,1381(1998).[23]P.Sperber et al.,Opt.Quantum Electron.20,395(1988).[24]M.A.Noginov et al.,Nature(London)460,1110(2009).[25] E.Gehrig and O.Hess,Spatio-Temporal Dynamics andQuantum Fluctuations in Semiconductor Lasers(Springer, Heidelberg,2003),Chap.7.4.[26] D.R.Smith et al.,Phys.Rev.B65,195104(2002).[27] C.E.Kriegler et al.,IEEE J.Sel.Top.Quantum Electron.16,367(2010).[28]J.J.H.Cook,K.L.Tsakmakidis,and O.Hess,J.Opt.A11,114026(2009).FIG.4(color online).Detailed view of(a)the imaginary part of the retrieved effective refractive indices n00,(b)the absorption, and(c)thefigures of merit(FOM)for peak pump-field ampli-tudes close to and above compensation between 1.5and 2:1kV=cm in steps of0:1kV=cm.。