开孔补强1

合集下载

详解压力容器中开孔补强的一般规定及限制要求

详解压力容器中开孔补强的一般规定及限制要求

详解压力容器中开孔补强的一般规定及限制要求引言压力容器上的开孔不仅影响结构强度,还会因为接管有着各种载荷所产生的应力、温度应力,以及容器材质和制造缺陷等因素的综合作用,往往是造成容器破坏的根源,所要解决这些问题,就必须了解开孔补强中的规定以及要求。

1.压力容器补强结构解析与一般规定压力容器的补强结构可分为:补强圈搭焊结构和整体补强结构。

1.1补强圈搭焊结构补强当容器采用补强圈搭焊结构时,其应当符合的基本的条件为,容器壳体名义厚度不得大于38mm补强圈的材料厚度不得大于1.5 倍容器壳体的厚度尺寸;使用低合金钢的标准抗拉强度应当小于540MPa若条件许可,优先举荐使用厚壁管代替补强圈进行补强。

当容器为低温压力容器的时候,补强接管应当尽可能采用后壁管进行补强,焊接焊缝应当使用全焊透结构,且焊缝圆滑过渡;带补强板的接管与容器器壁的连接接头应当符合相当于HG/T20583中的G28 G29 G30 G33的要求。

补强板采用与器壁相同的材料,带补强板的结构不得用于容器器壁厚度大于30mm 的场合,也不适用于设计温度低于-40°的场合。

带补强圈的接管与壳体的连接,以及补强圈与壳体搭接的角焊接头壳采用GB15 0中所示结构进行,且接管端部应与容器表面齐平,端部内角应当打磨成R不小于3mm勺圆角。

?a 强圈虽然结构简单,易于加工,但是补强效果较差,补强圈与壳体之间勺间隙不可避免,同时虽然补强圈上设有排气孔,但是补强圈结构在最终勺热处理后应力缺很复杂。

1.2整体补强结构补强当具有下列条件时,应当采用整体补强或者局部整体补强。

①高强度钢(标准抗拉强度大于540MPa和铬钼钢(如15CrMoR 14Cr1MoR 12Cr2Mo1R 制造的压力容器;②补强圈勺厚度大于1.5 倍容器壁厚度;③设计压力大于或者等于4MPa的第三类容器;④容器的壳体壁厚大于或者等于38mm;⑤疲劳压力容器或者容器盛装介质为毒性的高位介质容器。

开孔补强的设计原则

开孔补强的设计原则

开孔补强的设计原则
开孔补强的设计原则主要包括以下几点:
1.确定开孔位置和大小:开孔应尽量位于结构受力较小的
区域,并且开孔的大小应越小越好,以减少对整体结构的强度影响。

2.保证补强圈的刚度:补强圈的刚度应大于开孔周围材料
的刚度,以降低应力集中程度。

3.增加加强筋:对于大孔径的开孔,应在孔边增加加强筋,
以提高开孔附近材料的承载能力。

4.优化焊接工艺:焊接工艺的选择应保证焊接质量和补强
效果,同时避免产生焊接变形和残余应力。

5.考虑整体结构:开孔补强设计应综合考虑整体结构的强
度、刚度和稳定性要求,以确保结构的安全性和可靠性。

第十二章压力容器的开孔补强

第十二章压力容器的开孔补强
Rm 3 7 Rm 30 150 T
m
23
(三)应力集中系数的计算
3.椭圆形封头开孔的应力集中系数 椭圆形封头开孔的应力集中系数可以近似的采 用上述球壳开孔接管的曲线,只要将椭圆中心处的 曲率半径折算为球的半径即可
Ri KDi
式中K为修正系数 Di为椭圆封头的内直径 Ri为折算为球壳的当量半径
13
(一)开孔的应力集中
1.平板开小孔的应力集中
σ
σθ
σθ
r
θ σθ σ
max=3σ
σγ
σ
a
r 0
图12-1 平板开小孔时应力集中
平板开孔的最大应力在孔边 孔边沿r=a处: 0,

2

2
max 3
14
一、开孔应力集中及应力集中系数
(一)开孔的应力集中 1.平板开小孔的应力集中
10
第二节 开孔及补强设计
一、开孔应力集中及应力集中系数
二、开孔补强设计的要求
三、等面积补强计算
11
一、开孔应力集中及应力集中系数
容器开孔接管后在应力分布与强度方面会带来下 列影响: 1. 开孔破坏了原有的应力分布并引起应力集中。 2. 接管处容器壳体与接管形成结构不连续应力。 3. 壳体与接管连接的拐角处因不等截面过渡而引 起应力集中。 上述三种因素均使开孔或开孔接管部位的 引力比壳体中的膜应力大,统称为开孔或接管 部位的应力集中。
1
第一节 总体设计问题概述
结果在开孔和接管处的局部地区,应力可能达到很大的数值 。这样高的局部应力,有时再加上接管上还受到其他外部载 荷(例如安装的附加弯短、热应力等)以及开孔结构在制造 过程中难兔产生的残余应力等,于是开孔附近往往就成为容 器的破坏源。因此必须对开孔处进行强度校核,如不能满足 强度要求,则必须进行补强。

压力容器的开孔与补强

压力容器的开孔与补强

第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。

第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。

容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。

◆ 接管处容器壳体与接管形成结构不连续应力。

◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。

上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。

(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。

若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。

2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。

承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。

压力容器设计开孔补强精品文档4页

压力容器设计开孔补强精品文档4页

开孔补强4.5.5.5等面积补强的分析与计算■等面积补强----壳体承受应力所必需的金属截面,因开孔被削去多少,就必须在开孔周围的补强范围内补回同样截面的金属面积。

有效补强的金属面积大于或等于开孔削弱的金属面积A 、判断是否可以不补强和不作进一步补强计算(1)强度裕量(开孔后仍有的)●容器实际壁厚大于计算壁厚(δδφe )●接管厚度大于计算厚度(t et δδφ)●接管根部有填角焊缝 ●所开孔不在焊缝处,但壁厚计算的中径公式仍考虑了焊缝系数,计算壁厚有裕量。

(2)GB150-1998对不另行补强的规定同时满足下列条件时,开孔后可不另行补强:②相邻两孔中心的距离()2d d +≥B、等面积补强计算(1)所需最小补强面积接管有效面积:接管转化为壳体的当量面积:ΔA-----弥补[][]tttσσ≤而需增加的面积;或接管有效承载面积的折减量。

■圆柱壳■外压柱壳或球壳■平盖注:上述平盖和外压容器的公式来由参见丁伯民《压力容器设计----原理及应用》对平盖和外压容器,决定壳体厚度或承载能力的是弯曲应力,开孔削弱的是抗弯截面模量(而不是壁厚截面积)。

为保证开空前后的抗弯截面模量相等(w=w 0),要求k=A/A 0=1/(2+S/S 0),为保守起见,取k=0.5。

s —补强圈厚度,s 0----平盖厚度;A----补强面积,A 0----开孔削弱面积。

(2)补强范围■有效宽度B■接管外侧高度h 1■接管内侧高度h 2{}接管实际内伸高度,min 2nt d h δ=1(3)补强范围内富裕的可作补强的金属面积A e■A 1----壳体有效厚度减去计算厚度之后的多余面积■接管有效厚度减去计算厚度之后的多余面积()()r et r t et f C h f h A 221222-+-=δδδ■A 3----有效补强区内焊缝金属的截面积(4)有效补强区内另外再增加的补强元件的金属截面积A 4若A A e >,则开孔后无需补强。

浅谈压力容器开孔补强的方法.

浅谈压力容器开孔补强的方法.

浅谈压力容器开孔补强的方法浅谈压力容器开孔补强的方法2011-04-17 09:23 来源:未知浏览次数:关键字:方法,补强,开孔,压力容器,浅谈,浅谈压力容器开孔补强的方法李文英摘要:本文主要对压力容器开孔后进行补强的方法进行探讨,主要针对等面积补强;压力容器大开孔补强方法;平盖开孔补强;高压蒸汽过热器联箱开孔补强这几种方法进行了比较。

关键词:压力容器开孔补强方法随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。

这样在压力容器设计中一些较易出现问题的地方,更引起人们的注意了,如压力容器封头上的开孔及补强是一个非常爱出问题的地方,一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。

下面就对压力容器的开孔补强进行分析。

1.等面积补强化工容器常用的开孔补强方法是等面积补强法,其基础理论是在有效补强范围内所加补强材料的截面积必须大于或等于因为开孔而失去的截面积。

其实质在于补强壳体的平均强度,即维持容器整体的屈服强度,理论模型是无限大平板开小孔,不至于因开边缘附加弯曲应力引起大的误差,故对小直径开孔安全可靠,其计算方法如下:满足下列条件不需补强:A1+A2+A3≥A不满足这一条件则需要补强,补强金属的面积为:AO= A一(A1+A2+A3 )式中:A---壳体因开孔而削弱的截面积;AO----补强金属的面积;A1---筒体或封头上超过计算厚度S所多余的金属截面积;A2---接管上超过强度计算厚度所多余的金属截面积;A3---补强区内焊缝的截面积。

其适用范围是局部补强的材料基本上应与壳体相同,其强度不应小于壳壁材料强度的75%。

适用于筒体的最大开孔直径dI≤1000毫米,而封头的开孔最大直径是dI≤1/2DJ。

d i—开孔最大直径;DJ—封头内径。

这类计算方法只能在一般情况下应用,在特殊情况下则不适用,例如容器大开孔时补强,平盖的开孔补强以及高压蒸汽过热器的开孔补强,下面将分别讨论。

压力容器基础知识 - 开孔和补强

压力容器基础知识 - 开孔和补强

二、对容器开孔的限制 ◆ 当圆筒内径Di≤1500mm时,开孔最大直径d ≤Di/2, 且d ≤520mm;当圆筒内径Di>1500mm时,开孔最大直径 d ≤Di/3,且d ≤1000mm。 ◆ 凸形封头或球壳上开孔时,开孔最大直径d ≤Di/2。 ◆ 锥壳上开孔时,开孔最大直径d≤Di/3,Di为开孔中心 处锥壳内径。 ◆ 在椭圆形或碟形封头的过渡区开孔时,孔的中心线宜 垂直封头表面。
标准补强圈结构
◆ 补强圈结构的适用范围 A型适用于无疲劳、无低温及大的温度梯度的一类压力 容器,且要求设备内有较好的施焊条件。 B型适用于中压、低压及内部有腐蚀的工况,不适用于 高温、低温、大的温度梯度及承受疲劳载荷的设备。S 取管子名义壁厚的0.7倍,一般δn t=δn/2 (δn t为 接管名义厚度;δn为壳体名义厚度)。 C型适用于低温、介质有毒或有腐蚀性的操作工况,采 用全焊透结构,要求当δn≤16 mm时,δn t≥δn/2; 当δn>16 mm时,δn t≥8mm。 D型适用于壳体内不具备施焊条件或进入设备施焊不便 的场合,采用全焊透结构,要求当δn≤16 mm时,δn t≥δn/2;当δn>16 mm时,δn t≥8mm。 E型适用于储存有毒介质或腐蚀介质的容器,采用全焊 透结构,要求当δn≤16 mm时,δn t≥δn/2;当δn >16 mm时,δn t≥8mm。 F型适用于中温、低温、中压容器及盛装腐蚀介质的容 器,要求当δn≤16 mm时,δn t≥δn/2,当δn>16 mm时,δn t≥8mm,且接管公称直径DN≤150 mm.
◆ 标准补强圈的选用
若需采用补强圈补强 ,可采用以下程序来选择标准补 强圈:
● 确定补强圈的尺寸; ● 由设备的工艺参数决定补强圈的结构; ● 补强圈材料取与被补强壳体材料相同。

管道开孔补强计算程序

管道开孔补强计算程序

1、主管计算厚度T sT s :计算厚度;mm 0.414244186Do :外径;mm76[σ]t :在设计温度下材料的许用应力;MPa 137E j :焊接接头系数;1P:设计压力;MPa1.5Y:系数;按表6.2.1选取。

0.4T n :主管名义厚度;mm 42、支管计算厚度t st s :计算厚度;mm0.207122093d o :外径;mm38[σ]t :在设计温度下材料的许用应力;MPa 137E j :焊接接头系数;1P:设计压力;MPa1.5Y:系数;按表6.2.1选取。

0.43、开孔补强计算(1)主管开孔所需补强面积 AA:主管开孔所需补强面积;m㎡14.45712209d 1:扣除厚度附加量后主管上斜开孔的长径;mm 34.9管道开孔补强计算[])(2PY E PD T j t os +=σ)sin 2(1a d T A s -=ad d sin /1=[])(2PY E Pd t j t os +=σd:扣除厚度附加量后支管的内径;mm 34.9a:主管轴线与斜管轴线的夹角;90(2)开孔补强有效补强范围有效补强宽度B=2d 169.8B=d 1+2(2t n )-2(2C 1+2C 2)41.1取较大值B mm 69.8有限补强高度h=2.5(t n1-C 1-C 2) 3.875t n :管子名义厚度;mm3C 1:厚度负偏差;mm0.45C 2:腐蚀余量;mm1(3)补强范围内主管多余金属补强面积A 1A 1=(B-d 1)(T n -T s -C 1-C 2)74.53787791(4)补强范围内支管多余金属补强面积A 2A 2=2h(t n -t s -C 1-C 2)/sina10.40730378(5)角焊缝金属补强面积A 3A 3=H 236H:角焊缝高度;mm64、结论120.9451817A=14.45712209结论:合格注:按GB50316-2000《工业金属管道设计规范》(2008版)计算A 1+A 2+A 3=ad d sin /1`。

开孔补强

开孔补强


相当于在球壳上开椭圆孔
A
1 2 2
相当于在圆柱壳上开椭圆孔
max A (0.5
2a ) b
2a ) b b B ( 0.5) a
max A
2a b
A ( 0.5
Kt
max
15
容器开检查孔的有关规定
为检查压力容器在使用过程中是否产生裂纹、变形、 腐蚀等缺陷,压力容器应开设检查孔。检查孔包括人 孔和手孔.手孔应开设在封头上或封头附近的筒体上
(mm) 检查孔最少数 量 手孔2个 人孔1个或手孔 2个(当容器无法 开人孔时) Ф 400或长 圆孔 400×250, 380×280
9
平板开椭圆孔的应力集中
2、双向拉伸应力作用(2)
2a ) 2 b 2b B 1 2 (1 ) a
椭圆孔的长轴与拉伸应力的 1 方向垂直
A 1 (1
1 2
2a b 2b B a
24
开孔补强结构
1、局部补强结构
指另外在壳体开孔处的一定范围内增加补强元 件或增大壳体壁厚、接管壁厚。 如果将连接处的 接管或壳体壁厚适当加厚,上述局部地区的应力 集中在很大程度上得到缓和,应力集中系数可以 控制在所允许的范围内。
2、整体补强 •用增加整个壳体壁厚的办法来降低开孔附近的应 力;由于开孔应力集中的明显局部性,在不大的范 围以外便恢复到正常的应力值,故除了制造或结构 上的需要以外,一般并不需要把整个容器壁加厚。
27
补强圈结构的补强计算
补强圈补强的相关规定 补强圈厚度≤1.5δn 标准抗拉强度σb ≤540MPa 壳体厚度≤38mm

开孔补强 课件

开孔补强 课件
(1)补强圈补强(中、低压容器)
补强圈补强-在壳体开孔周围贴焊一圈钢板,即补强圈。补强圈的材料一般与器壁相同,补强圈的内、外径可参照标准确定,厚度则需按——等面积补强原则进行计算。
补强圈补强又称贴板补强,在接管处容器的内外壁上围绕着接管焊上一个圆环板,使容器局部壁厚增大,降低应力集中,起到补强的作用。
重要压力容器,如核容器、材料屈服点在500MPa以上的容器开孔及受低温、高温、疲劳载荷容器的大直径开孔容器等。 。
整体锻件
三、容器上开孔及补强的有关规定
1. 当采用局部补强时,GB150-1998规定,筒体和封头上开孔的最大直径不得超过表中的数值。
三、容器上开孔及补强的有关规定
2. 尽量不要在焊缝上开孔,如果在焊缝上开孔,则在以开孔中心为圆心,以1.5倍开孔直径为半径的圆中所包容的焊缝,必须进行100%的探伤。
① 钢材的标准抗拉强度下限值 σb≤540MPa,以防止出现焊接裂纹; ② 补强圈厚度小于或等于1.5δn; ③ 壳体名义厚度δn≤38mm。
GB150指出对采用补强圈结构补强时,应遵循下列规定:
七种情况不采用补强圈补强
高强钢 CrMo钢 设计压力≥4MPa 设计温度大于350℃ 壳体厚度≥38mm 补强圈厚度大于1.5δn 极度高度危害介质的压力容器 承受疲劳载荷的压力容器
*
在补强区范围内, 设 Ae =A1+A2+A3 如果Ae ≥A ,则无需补强;
如果Ae <A ,则需要补强。 补强面积为 A4=A- Ae
开孔补强设计步骤:
(1)确定壳体及接管的计算壁厚δ和δt ,C、C2以及d ; (2)确定有效宽度B和高度h1 、h2 ; (3)计算A1、 A2、A3和A ; (4)比较Ae (=A1+A2+A3)与A ,若Ae ≥A,则无需补强,否则,须补强。 (5)计算有效补强范围内另加补强面积A4≥A-Ae 。

开孔补强计算

开孔补强计算
mm
接管计算厚度s
1.3231
mm
补强圈强度削弱系数f
0
t
接管材料强度削弱系数f
1
开孔补强计算直径d
633
mm
补强区有效宽度B
1006
mm
接管有效外伸长度h1
83.9
mm
接管有效内伸长度h2
0
mm
开孔削弱所需的补强面积A
7504.76
mm2
壳体多余金属面积A
794.74
mm2
接管多余金属面积A
994.55
mm2
补强区内的焊缝面积A
64
mm2
A1+A2+A3= 1853.34 mm2 ,)
、于A,需另加补强。A4=A-Ae=7504.74-1863.34=5651.42
补强圈面积A.
mm2
A-(A+A+A)
mm2
4123
结论:合格
开孔补强计算计算单位
接管:N1,6 503x14
计算方法:GB150.3-2011等面积补强法,单孔
设计条件
简图
计算压力P
3.75
MPa
c
设计温度
150
°C
壳体型式
圆形筒体
B
壳体材料Q235-B
名称及类型板材
1HR
JБайду номын сангаас
X
壳体开孔处焊接接头系数6
1
壳体内直径D
1900
mm
1'
1.
壳体开孔处名义厚度s
25
1
接管腐蚀裕量
1.5
mm
补强圈材料名称
凸形封头开孔中心至 封头轴线的距离

压力管道壁厚及开孔补强计算

压力管道壁厚及开孔补强计算

压力管道壁厚及开孔补强计算压力管道是用于输送液体、气体或其他物质的管道,在运行过程中会受到一定的内外压力载荷。

为了确保管道在压力载荷下的安全运行,需要对压力管道的壁厚及开孔补强进行合理的计算。

1.管道内压力壁厚计算:根据管道的内压力、材料的允许应力和安全因子来计算管道的壁厚。

一般采用ASME标准或API标准中的公式来进行计算。

2.管道外压力壁厚计算:对于管道受到的外压力载荷,例如土压力或深水压力等,需要计算管道的外壁厚度。

常用的方法有ASME标准中的公式和材料力学性能参数。

3.管道轻质液体和气体压力壁厚计算:对于轻质液体和气体在管道中的压力载荷,由于其密度较小,管道壁厚常较薄。

可以采用API520或API521等标准中的公式,结合流体特性和工况条件来进行计算。

在进行压力管道壁厚计算时,需要考虑以下几个因素:1.管道内外压力:管道的内外压力是计算管道壁厚的基本参数,需要准确测量或估算。

2.材料的强度:管道材料的强度特性是壁厚计算的重要参数,需要从材料规格中获取。

3.安全因子:安全因子是考虑管道在运行过程中不确定因素的影响,一般取1.1~1.54.温度和环境条件:管道在不同温度和环境条件下的工作性能可能会有所变化,需要考虑这些因素对壁厚计算的影响。

开孔补强是在管道上开孔时,为了保证管道的强度和稳定性,需要进行相关的补强计算。

开孔补强通常包括以下几个方面:1.开孔位置:开孔位置的选择要考虑管道壁厚和管道材料的强度,避免对管道的强度造成过大的影响。

2.补强类型:开孔补强可以通过焊接补强板、法兰补强等方式进行。

补强方式要根据具体情况选择,确保管道的强度和稳定性。

3.补强计算:开孔补强需要对补强部分进行计算,包括补强板的厚度、尺寸和连接方式等。

一般可以参考相关的标准和规范进行计算。

总之,压力管道壁厚及开孔补强计算是保证管道安全运行的重要环节,需要根据具体情况和相关标准进行合理计算。

通过科学合理的计算,可以确保管道在各种工况下的强度和稳定性,从而保证了工程的安全和可靠性。

压力容器的开孔与补强

压力容器的开孔与补强

压力容器的开孔与补强压力容器是一种用于贮存和运输高压气体、液体或者混合物的设备。

它们通常需要承受巨大的压力,在日常使用中,压力容器容易出现开孔和损伤的情况。

这种情况下,我们需要对压力容器进行修复和加固。

下面,我们将重点探讨压力容器的开孔与补强的相关知识。

1. 压力容器开孔的原因压力容器开孔的主要原因是意外撞击和磨损。

在使用过程中,如果受到了外力的冲击或者过度的磨损,压力容器的表面很容易出现开孔或者裂缝。

另外,压力容器还可能在制造和储存过程中出现缺陷,导致它们容易出现开孔和损伤。

2. 压力容器补强的方法常见的压力容器补强方法包括金属厚板贴补、涂覆材料和拉毛加固等。

(1) 金属厚板贴补:该方法是在压力容器的开孔处贴补一块同样厚度的金属板,然后使用焊接技术将其固定。

这种方法的优点是容易操作,效果比较显著,但是需要小心操作,否则可能会导致更严重的气体泄漏。

(2) 涂覆材料:这种方法是把一个薄的涂覆材料铺在压力容器的表面,在开孔处多涂几层。

涂覆材料通常是耐高温、抗腐蚀的特殊塑料或者橡胶材料。

该方法的优点是简单易行,不会对整个压力容器造成太大的影响。

(3) 拉毛加固:这种方法是在压力容器的开孔处用拉毛工具让金属拉伸,使其保持平整。

然后在开孔处焊接一块金属板,以加强其整体性能。

拉毛加固的优点是成本较低,对环境污染较小,适合于一些小型压力容器的修补。

3. 压力容器补强的预防措施在压力容器的设计与制造中,预防措施是非常重要的。

以下几点应该注意:(1) 在制造过程中确保压力容器表面光滑、整齐,不要有裂缝或者瑕疵。

(2) 在储存和运输时要轻拿轻放,防止碰撞和磨损。

(3) 在使用过程中,要对压力容器的外部结构进行定期检查,发现缺陷及时修复。

总之,压力容器是现代工业中必不可少的储存和运输设备。

在使用过程中,如果出现了开孔和损伤的情况,我们应该及时进行修复和加固,以确保其安全稳定运行。

同时,在设计、制造和储存过程中,也要注意预防措施,减少压力容器出现开孔和损伤的可能性。

浅谈常规压力容器的开孔补强设计

浅谈常规压力容器的开孔补强设计

浅谈常规压力容器的开孔补强设计摘要:在压力容器上开孔,将会使压力容器的承压能力降低,在其设计工艺条件下会产生危险,因此压力容器开孔后需进行补强,本文介绍了压力容易开孔补强的两种方法和应注意的问题,并针对实例进行了计算演示。

关键词:压力容器补强开孔随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。

开孔补强设计是压力容器设计中必不可少的一部分,标准和规范中虽然对设计和计算都作了较为详细的规定,但安全、经济、合理的设计仍是摆在我们面前的一个课题。

一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。

按照GB150-1998《钢制压力容器》规定,在压力容器的设计过程中,应采用适当的开孔补强设计。

下面就对压力容器的开孔补强进行分析。

一、开孔补强方法的选择1.压力面积法压力面积是西德AD规范中采用的开孔补强方法,其开孔率可达0.8,较等面积法为大。

当开孔率超出等面积法适用范围时,常采用该法进行补强:压力面积法的意义如下。

式中,AP-为补强有效范围内的压力作用面积;Aσ-为补强有效范围内的壳体、接管、补强金属的截面积;P-设计压力;[σ]-材料许用应力公式(1)是以在壳体有效补强区域中的压力载荷与壳体的承载能力相平衡为基础的,即压力在壳体受压面积上形成的载荷与有效补强范围中的壳体、接管、补强材料的面积所具有的承载能力相平衡。

由式(1)的变形得出式(1a):式中左端项即压力在壳体受压面积上形成的载荷。

式中右端项为材料所具有的承载能力材料的承载能力,应大于压力引起的载荷,所以使用不等号相联接。

右端项中是由于采用“中径”公式的缘故。

2.等面积补强法等面积法是以拉伸的开孔大平板为计算模型的。

但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,而且还产生很高的弯曲应力,故该方法不能相适应。

补强计算时,在有效补强范围内的所有多余面积(即有效厚度提供的面积扣除壳体或接管本身强度所需的面积)均可作为补强面积。

钢管开孔补强方法

钢管开孔补强方法

钢管开孔补强方法说实话钢管开孔补强这事,我一开始也是瞎摸索。

我最早想到的方法就是直接拿一块钢板盖在开孔的地方然后焊接起来。

我觉得这应该很简单,就这么做了,结果发现大错特错。

焊接的地方老是有裂缝,而且整个钢管看起来就很不牢固。

后来我才明白,这么做没有考虑到应力的问题,开孔之后应力分布改变了,简单地盖块钢板焊接根本不行。

后来我又试过在开孔周围先打磨出一个斜面,就像给蛋糕做个斜边那样,想着这样能让焊接更牢固。

然后再把补强的钢板做成和这个斜面能完美贴合的形状进行焊接。

这次比上次好了一些,但还是有问题,就是焊点周围的钢材有变形的情况,强度还是达不到要求。

再后来呢,我去查了好多资料。

得到了一个新的方法。

这个方法是先计算一下开孔的尺寸和钢管的受力情况,我当时就想,这就像是看病要先诊断一样。

根据计算来确定补强板的尺寸、厚度和材质。

这一步可不能马虎,我之前失败就是因为没有科学地考虑这些。

确定好这些以后呢,把补强板切割成合适的形状后,在补强板和钢管接触的面上要开一些小槽,就犹如给它们之间做一些小的连接轨道一样。

这样做的目的是让焊接的时候能更好地融合。

在焊接的时候,不能一下子就沿着整个开孔周围焊接,而要先在几个关键的点固定一下,这就像盖房子先搭架子一样,把它们的相对位置先定好。

然后采取分段交错焊接的方式,这样可以减少焊接过程中的热量集中和变形。

这种方法我试过几次之后,发现钢管开孔补强后的牢固程度确实提升了不少。

不过我也不是完全确定这个方法就是全能通用的,如果开孔特别大或者钢管的使用环境特别恶劣的话,可能还需要更多的考虑因素。

比如说,如果是在腐蚀性环境下,那补强板的材质就得好好挑选,说不定还得有一些额外的防腐蚀措施。

我觉得最关键的就是要结合实际情况,多尝试,每试一次都得总结哪里做得好哪里做得不好,这样才能找到最好的钢管开孔补强方法。

还有就是在操作过程中工具一定要准备齐全并且好用。

比如说焊接要用的电焊机,要是电焊机电流不稳的话,焊接的效果就会大打折扣。

压力管道三通和开孔补强的结构与计算方法

压力管道三通和开孔补强的结构与计算方法

压力管道三通和开孔补强的结构与计算方法1 三通或直接在管道上开孔与支管连接时,其开孔削弱部分可按等面积补强原理进行补强,其补强应按下列公式计算:式中:A1——在有效补强区内,主管承受内压所需设计壁厚外的多余厚度形成的面积(mm2);A2——在有效补强区内,支管承受内压所需最小壁厚外的多余厚度形成的截面积(mm2);A3——在有效补强区内,另加的补强元件的面积,包括这个区内的焊缝截面积(mm2);A4——主管开孔削弱所需要补强的面积(mm2)。

2 拔制三通补强(图2)补强结构的补强计算应满足本规范式(1-1)的要求,其中的A3应按下式计算:3 整体加厚三通(图3)补强结构可采用主管或支管的壁厚或主、支管壁厚同时加厚补强,补强计算应满足本规范式(1-1)的要求,其中的A3应是补强区内的焊缝面积。

图2 拔制三通补强do-支管外径(mm);di-支管内径(mm);Do-主管外径(mm);Di-主管内径(mm);H-补强区的高度(mm);δ0-翻边处的直管管壁厚度(mm);δb-与支管连接的直管管壁厚度(mm);δ′b-支管实际厚度(mm);δn-与主管连接的直管管壁厚度(mm);δ′n-主管的实际厚度(mm);F-补强区宽度的1/2,等于di(mm);H0-拔制三通支管接口扳边的高度(mm);r0-拔制三通扳边接口外形轮廓线部分的曲率半径(mm) 注:图中双点划线范围内为有效补强区。

图3 整体加厚三通注:图3中,除A3外其余符号的含义与图2相同。

4 在管道上直接开孔与支管连接的开孔局部补强(图4)结构,开孔削弱部分的补强计算应满足本规范式(1-1)的要求,其中的A3应是补强元件提供的补强面积与补强区内的焊缝面积之和,补强的材质和结构还应符合下列规定:图4 开孔局部补强注:图4中,除A3外其余符号的含义与图2相同。

(1)补强元件的材质应和主管道材质一致,当补强元件钢材的许用应力低于主管道材料的许用应力时,补强元件面积应按二者许用应力的比值成比例增加;(2)主管上邻近开孔连接支管时,其两相邻支管中心线的距离不得小于两支管直径之和的1.5倍,当相邻两支管中心线的距离小于2倍大于1.5倍两支管直径之和时,应采用联合补强件,且两支管外壁到外壁间的补强面积不得小于主管上开孔所需总补强面积的1/2;(3)开孔应避开主管道的制管焊缝和环焊缝。

演示版ASME规范-开孔补强

演示版ASME规范-开孔补强

.课程概况一般要求补强面积的来源(壳体和成形封头上的单个开孔)腐蚀余量补强区域补强强度其它补强规定壳体和封头上多个开孔平端盖上的单个或多个开孔特殊要求举例开孔的目的处理容器内的介质检验安装内件容器的清理和排放一般要求开孔的一般要求允许的开孔形状、尺寸免除开孔补强计算开孔的形状圆形筒体或锥壳、封头上的开孔最好采用圆形、椭圆或长圆形状,但标准并不限制使用其它形状的封头。

当长圆或椭圆的开孔长、短径之比大于2:1,横跨短径的补强面积应增加,以防止由于扭矩产生的变形。

UG-36(b)开孔的尺寸1. 对于壳体内径 60”(1250 mm),开孔尺寸不得大于直径的1/2,最大不超过20”(508 mm)。

..2. 对于壳体内径>60”(1250 mm),开孔尺寸不得大于直径的1/3,最大不超过40”(1000 mm)。

3. 如果开孔超过上述限制,除要满足UG-36至UG-43的要求外,还须满足附录1-7的补充要求。

成形封头和球形壳上经过正确补强的开孔无尺寸限制。

当开孔的尺寸大于与封头相连的壳体直径的1/2时,可以使用锥壳过渡段来代替补强。

见UG-36(b)(2)(a-d)。

UG-36(c)(3)壳体和成形封头上开孔免除开孔补强计算容器上的开孔如果不承受压力的快速波动,在满足以下要求的情况下,开孔除自身构造的补强外,不须另外补强。

a) 对于焊接或钎接接头,最终开孔的直径不大于:●3-1/2 in. (89 mm) –壳体或封头的厚度≤ 3/8 in. (10 mm);●2-3/8 in. (60 mm) –壳体或封头的厚度> 3/8 in. (10 mm)。

b) 对于螺纹连接或胀接接头,壳体和封头上的开孔直径不超过2-3/8 in.(60 mm).c) 任何两个未加补强的开孔,其中心距不得小于两孔直径之和。

. .d) 三个或三个以上开孔群中任意两个未加补强的开孔孔心距不得小于:))(cos 5.11(21d d ++θ - 对于圆形筒体和锥壳;)(5.221d d + - 对于具有双曲率的壳体和封头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开孔补强计算
计算单位
压力容器专用计算软件
接管:N2,φ500×10
计算方法: GB150.3-2011等面积补强法,单孔
设计条件
简图
计算压力pc
1.9275
MPa
设计温度
50

壳体型式
圆形筒体
壳体材料
名称及类型
Q345R
板材
壳体开孔处焊接接头系数φ
0.9
壳体内直径Di
1500
mm
壳体开孔处名义厚度δn
691
mm2
补强区内的焊缝面积A3
64
mm2
A1+A2+A3=1314
mm2,小于A,需另加补强。
补强圈面积A4
3978
mm2
A-(A1+A2+A3)
2828
mm2
结论:合格
2
mm
补强圈材料名称
Q345R
凸形封头开孔中心至
封头轴线的距离
mm
补强圈外径
840
mm
补强圈厚度
12
mm
接管厚度负偏差C1t
0.3
mm
补强圈厚度负偏差C1r
0.3
mm
接管材料许用应力[σ]t
189
MPa
补强圈许用应力[σ]t
189
MPa
开孔补强计算
非圆形开孔长直径
484.6
mm
开孔长径与短径之比
1
壳体计算厚度δ
8.5471
mm
接管计算厚度δt
2.7351
mm
补强圈强度削弱系数frr
1
接管材料强度削弱系数fr
1
开孔补强计算直径d
484.6
mm
补强区有效宽度B
969.2
mm
接管有效外伸长度h1
69.613
mm
接管有效内伸长度h2
0
mm
开孔削弱所需的补强面积A
4142
mm2
壳体多余金属面积A1
559
mm2
接管多余金属面积A2
12
mm
壳体厚度负偏差C1
0.3
mm
壳体腐蚀裕量C2
2
mm
壳体材料许用应ห้องสมุดไป่ตู้[σ]t
189
MPa
接管轴线与筒体表面法线的夹角(°)
0
凸形封头上接管轴线与封头轴线的夹角(°)
接管实际外伸长度
300
mm
接管连接型式
插入式接管
接管实际内伸长度
0
mm
接管材料
Q345R
接管焊接接头系数
0.9
名称及类型
板材
接管腐蚀裕量
相关文档
最新文档