13年高考真题—文科数学11:概率与统计
2013全国高考理科数学分类汇编11:概率和统计
2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .14 【答案】B3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( ) A .这种抽样方法是一种分层抽样 B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法 【答案】D5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( ) A .588 B .480 C .450 D .120【答案】B8 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
2013年高考文科数学真题及答案全国卷
2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A.B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .B .C .12y x =±D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵5e =5c a =2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
2013年高考真题解析分类汇编(文科数学)11:概率与统计
2013年高考解析分类汇编11:概率与统计一、选择题1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( )A .23B .25 C .35D .910【答案】D总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++== 【考点定位】考查古典概型的概念,以及对一些常见问题的分析,简单题.2 .(2013年高考重庆卷(文6))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( )A .0.2B .0.4C .0.5D .0.6【答案】B本题考查茎叶图以及样本的频率。
数据在[22,30)的有4个,在对应的频率为40.410=,所以选B.3 .(2013年高考湖南(文9))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发生的概率为.21,则ADAB=____ ( )A .12B .14 C D 【答案】D本题考查几何概型,以及推理能力。
要使△APB 的最大边是AB ,则当三角形ABP 为等腰三角形,且AB BP =或AQ AB =,要使△APB 的最大边是AB ”发生的概率为12,则有12PQ CD =,则3344DQ DC AB ==.此时AQ AB =,所以222AQ DQ AD =+,即2223()4AB AB AD =+,所以22716AB AD =,即22716AD AB =,所以AD AB ==选D.4 .(2013年高考江西卷(文4))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是 ( )A .23B .13C .12D .16【答案】C从A,B 中各取任意一个数,共有6种。
满足两数之和等于4的有(2,2),(3,1)两种,所以两数之和等于4的概率是2163=,选C 5 .(2013年高考湖南(文3))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___( ) A .9 B .10 C .12 D .13 【答案】D本题考查分层抽样方法的应用。
2013年高考真题解析分类汇编(理科数学)11:概率与统计
2013高考试题解析分类汇编(理数)11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60B第一、第二小组的频率分别是0.1、0.2,所以低于60分的频率是0.3,设班级人数为m,则150.3m=,50m=。
选B.2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481,720]的人数为()A.11 B.12 C.13 D.14B【KS5U解析】使用系统抽样方法,从840人中抽取42人,即从20人抽取1人。
,所以从编号1~480的人中,恰好抽取24人,接着从编号481~720共240人中抽取12人。
故选B3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数C对A选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A选项错。
对B选项,系统抽样要求先对个体进行编号再抽样,所以B选项错。
对C选项,男生方差为40,女生方差为30。
所以C选项正确。
对D选项,男生平均成绩为90,女生平均成绩为91。
2013年、2012年、2011年高考题分类汇编之概率与统计
1 1 1 3 + × = . 2 2 2 4
解析:∵p1=1-(
99 10 98 5 C2 5 ) ,p2=1-( 299 ) =1-( ), 100 100 C100
∴p1<p2.故选 B. 答案:B 4.(2012 年江苏卷,6)现有 10 个数,它们能构成一个以 1 为首项,-3 为公比的等比数列,若从这 10 个数中随 机抽取一个数,则它小于 8 的概率是 3) ,(-3) ,(-3) ,(-3) ,(-3) , 所以它小于 8 的概率等于 答案:
C +C 3 = . 2 5 C5
2 3 2 2
3 5
(结果用最简分数表示).
7.(2010 年上海卷,理 9)从一副混合后的扑克牌(52 张)中随机抽取 1 张,事件 A 为“抽得红桃 K”,事件 B 为 “抽得为黑桃”,则概率 P(A∪B)= 解析:52 张中抽一张的基本事件为 52 种,事件 A 为 1 种,事件 B 为 13 种,并且 A 与 B 互斥, 所以 P(A∪B)=P(A)+P(B)= 答案:
.
解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可 能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军 的概率为 答案:
3 1 19 + = . 7 4 28
19 28
第二节
古典概型与几何概型
高考试题
考点一
2 . 9
1 . 12
1 12
4.(2012 安庆质检)在圆周上有 10 个等分点,以这些点为顶点,每 3 个点可以构成一个三角形,如果随机选择 3 个点,则刚好构成直角三角形的概率为 解析:∵直角三角形的斜边是圆的直径, 而圆周上的 10 个等分点能组成 5 条直径, ∴直角三角形的个数为 5 C1 8 =40 个.
2013备考各地试题解析分类汇编(二)文科数学:11统计与概率.
各地解析分类汇编(二)系列:统计与概率1.【云南师大附中2013届高三高考适应性月考卷(四)文】甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图2所示,1x ,2x 分别表示甲乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲乙两名运动员这项测试成绩的标准差,则有A .1212,x x s s ><B .1212,x x s s ==C .1212,x x s s =<D .1212,x x s s =>【答案】C【解析】由样本中数据可知115x =,215x =,由茎叶图得12s s <,所以选C.2.【贵州省六校联盟2013届高三第一次联考 文】某同学学业水平考试的9科成绩如茎叶图4所示,则根据茎叶图可知该同学的平均分为 .【答案】80 【解析】1720(6872737828189292)8099+++⨯++⨯+==. 3.【山东省青岛一中2013届高三1月调研考试数学文】某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1—50号,并分组,第一组1—5号,第二组6—10号,……,第十组46—50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为___ 的学生. 【答案】37【解析】因为12522=⨯+,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学。
所以第8组中抽出的号码为57237⨯+=号。
4.【北京市丰台区2013届高三上学期期末考试数学文】某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是 ______.【答案】20【解析】高三的人数为400人,所以高三抽出的人数为4540020900⨯=人。
5.【云南省昆明一中2013届高三第二次高中新课程双基检测数学文】某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷。
2011年高考数学试题分类汇编13——概率与统计(文科)
概率与统计(文)江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______ 答案:31 安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于 (A )110(B )18(C )16(D )15D安徽文(20)(本小题满分10分)(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程y bx a =+;(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。
温馨提示:答题前请仔细阅读卷首所给的计算公式及说明. (20)(本小题满分10分)本题考查回归分析的基本思想及其初步应用,回归直线的意义和求法,数据处理的基本方法和能力,考查运用统计知识解决简单实际应用问题的能力. 解:(I )由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:.2.3,5.6402604224294192)11()2()21()4(,2.3,02222=-===+++⨯+⨯+-⨯-+-⨯-===x b y a b y x 由上述计算结果,知所求回归直线方程为,2.3)2006(5.6)2006(257+-=+-=-∧x a x b y即.2.260)2006(5.6+-=∧x y ①(II )利用直线方程①,可预测2012年的粮食需求量为2.2992.26065.62.260)20062012(5.6=+⨯=+-(万吨)≈300(万吨).北京文16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差],)()()[(1222212x x x x x x ns n -+-+-=其中x 为n x x x ,,,21 的平均数) (16)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=x方差为.1611])43510()4359()4358[(412222=-+-+-=s(Ⅱ)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 2,B 2),(A 3,B 3),(A 1,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为.41164)(==C P 福建文4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
2013年高考概率与统计部分汇编
2013年高考概率与统计部分汇编一、选择题 1、(2013年广东卷) 已知离散型随机变量的分布列为则的数学期望 ( )A .B .C .D .2、(2013年重庆理卷)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A 、2,5 B 、5,5 C 、5,8 D 、8,83、(2013年新课标1理)为了解某地区的中小学生视力情况, 拟从该地区的中小学生中抽取部分学 生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样4、(2013年四川卷)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮。
那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )(A )14 (B )12 (C )34 (D )785、(2013年安徽卷) 某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 (A )这种抽样方法是一种分层抽样 (B )这种抽样方法是一种系统抽样(C )这五名男生成绩的方差大于这五名女生成绩的方差 (D )该班级男生成绩的平均数小于该班女生成绩的平均数 6、(2013年湖北卷) 如图,将一个各面都涂了油漆的正方体,切割成125 个同样大小的小正方体。
经过搅拌后,从中随机取出一个小正方体,记它 的涂油漆面数为X ,则X 的均值为()E X = A.126125 B. 65 C. 168125 D. 757、(2013年陕西卷)某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人 X X 123P 35310110X EX =3225238、(2013年陕西卷)如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π- (B)12π- (C) 22π- (D) 4π9、(2013年辽宁卷) 某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是 (A )45 (B )50 (C )55 (D )60 二、填空题10、(2013年新课标2理)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________. 11、(2013年山东卷)在区间[-3,3]上随机取一个数x ,使得 |x+1 |- |x-2 |≥1成立的概率为 12、(2013年湖北卷) 从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示。
2013年普通高等学校招生全国统一考试(江西卷)数学试题 (文科) word解析版
2013年普通高等学校招生全国统一考试(江西卷)文科数学解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘帖的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用0.5毫米黑色墨水签字笔在答题卡上书写作答,若在试题卷上答题,答案无效。
4. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一. 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z=i (-2-i )(i 为虚数单位)在复平面内所对应的点在A.第一象限B.第二象限C.第三象限D.第四象限 [答案]:D[解析]:Z =-2i-i 2 =1-2i 对应点这(1,-2)在第四象限2. 若集合A={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a= A.4 B.2 C.0 D.0或4[答案]:A[解析]: 010a =≠∆当时,=不合,当a 0时,=0,则a=43. 3sincos 2αα==若,则 ( )A. 23-B. 13-C. 13D.23[答案]:C[解析]:211cos 12sin12233αα=-=-⨯=4.集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是 A B.C. D.[答案]:C[解析]:所有情形有六种,满足要求的只有(2,2)和(3,1)故只能选C5.总体编号为01,02,…19,20的20个个体组成。
利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为A.08B.07C.02D.01 [答案]:D[解析]:从第5列和第6列选出的两位数依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,但编号必须不大于20的且不和前面重复的只能是08,02,14,07,01,选D6. 下列选项中,使不等式x <1x<2x 成立的x 的取值范围是( ) A.(,-1) B. (-1,0) C.0,1) D.(1,+) [答案]:A[解析]:令x=-2,不等式成立,只能选A 。
2013年全国高考理科数学试题分类汇编11:概率与统计
2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .14 【答案】B3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( ) A .这种抽样方法是一种分层抽样[来源:学|科|网Z|X|X|K] B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法 【答案】D5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( ) A .588 B .480 C .450 D .120【答案】B8 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
2013年高考数学试题分析概率
2. 2013山东
1 3
(1)(理)在区间上[-3,3]随机取一个数X,使得|x+1|-|x-2≥1 成立的概率为______. 【答案】1/3 (2). (理)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随 即结束,除第五局甲队获胜的概率是1/2之外,其余每局比赛甲队获胜的概率 都是2/3,假设各局比赛结果相互独立. (Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率; (Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2, 则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望. (3)(文)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平 均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认, 在图中以x表示:
陕西、安徽
福建、大纲、辽宁、山东
概率分布
分布列、期望、方差
广东、湖北、江苏、辽宁、上海、北京、 天津、大纲、福建、陕西、湖南、重庆 浙江、江西、山东、四川、安徽
正态分布
湖北
三、知识点分布-文科
考点 知识点 随机抽样 统计与统计 案例 用样本估计总体 独立性检验 回归分析 古典概型 几何概型 概率 互斥事件概率 相互独立事件同时发生的概率(理科) n次独立重复试验(理科) 条件概率(理科) 分布列、期望与方差(理科)
4.2013年新课标:
1.(理)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取 部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的 视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中, 最合理的抽样方法是 ( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 【答案】 C. 2. .(理)从n个正整数1,2,3……n中任意取出两个不同的数,若取出的两数 之和等于5的概率为1/14, 则n=________. 【答案】8 3.(文)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的 概率是 ( ) A.1/2 B.1/3 C.1/4 D.1/6 【答案】B (4)从1,2,3,4,5中任意取出两个不同的数,其和为5的 概率是________. 【答案】1/5
2013年高考试题分类汇编(统计与概率)
3.841
6.635
10.828
A. B. C. D.
4.(2013·山东卷·理科)在区间 上随机取一个数 ,使得 成立的概率为.
5.(2013·重庆卷·理科)从 名骨科、 名脑外科和 名内科医生中选派 人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有 人的选派方法种数是(用数字作答).
考点2统计
1.(2013·福建卷·理科)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成 组: , , , , , ,加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生 名,据此估计,该模块测试成绩不少于 分的学生人数为
A. B. C. D.
2.(2013·辽宁卷·文理科)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为 , , , ,若低于 分的人数是 人,则该班的学生人数是
A. B. C. D.
3.(2013·陕西卷·文科)对一批产品的长度(单位: )进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间 上的为一等品,在区间 和区间 上的为二等品,在区间 和 上的为三等品,用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为
(Ⅰ)求家庭的月储蓄 对月收入 的线性回归方程 ;
(Ⅱ)判断变量 与 之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程 中, , ,其中 , 为样本平均值,线性回归方程也可写为 .
考点5独立性检验
1.(2013·福建卷·文科)某工厂有 周岁以上(含 周岁)工人 名, 周岁以下工人 名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了 名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“ 周岁以上(含 周岁)”和“ 周岁以下”分为两组,再将两组工人的日平均生产件数分为 组: , , , , ,分别加以统计,得到如图所示的频率分布直方图.
2013年高考数学试题(13)概率
1.(安徽文科第9题)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于 (A )110(B) 18 (C) 16 (D) 15(9)D 【命题意图】本题考查古典概型的概率问题.属中等偏难题.【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为31155=.故选D. 2.(福建理科第4题,文科第7题)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A.14 B.13 C.12 D.23答案:C3.(福建理科第13题)袋中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。
若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。
答案:53 4.(广东理科6)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34(D ).乙获得冠军的概率为111224⨯=,则甲队获得冠军的概率为13144-=5.(湖北理科7)如图,用21A A K 、、三类不同的元件连接成一个系统,K 正常工作且21A A 、至少有一个正常工作时,系统正常工作.已知21A A K 、、正常工作的概率依次为9.0、8.0、8.0,则系统正常工作的概率为A. 960.0 B . 864.0 C. 720.0 D. 576.0 【答案】B解析:21A A 、至少有一个正常工作的概率为()()211A P A P -()()96.004.018.018.011=-=-⨯--=,系统正常工作概率为()()()()864.096.09.0121=⨯=-A P A P K P ,所以选B .6.(湖北理科12、文科13)在30瓶饮料中,有3瓶已过了保质期.从这30KA 1A 2瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为 .(结果用最简分数表示) 【答案】14528 解析:从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A ,从这30瓶饮料中任取2瓶,没有取到1瓶已过了保质期饮料为事件B ,则A 与B 是对立事件,因为()29151327230227⨯⨯==C C B P ,所以()()145282915132711=⨯⨯-=-=B P A P ,所以填14528. 7、(湖南理科15)如图4, EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)=______P A ();(2)=______P A (B|) 答案:(1)2π;(2)1=4PA (B|) 解析:(1)由几何概型概率计算公式可得2==S P A S π正圆(); (2)由条件概率的计算公式可得2114===24P AB P A P A ππ⨯()(B|)()。
2013年高考试题汇编.概率与统计
某人在如图4所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。
根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。
已知这100位顾客中的一次购物量超过8件的顾客占55%。
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率。
(注:将频率视为概率)(2011湖南)18.某商店试销某种商品20天,获得如下数据:日销售量(件)0 1 2 3频数 1 5 9 5试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充..至3件,否则不进货...,将频率视为概率。
(Ⅰ)求当天商品不进货...的概率;(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。
(2010湖南)17.(本小题满分12分)图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(I)求直方图中x的值;(II)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.(2013山东)(19)本小题满分12分甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果互相独立.(1)分别求甲队以3:0,3:1,3:2胜利的概率(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望. (2013陕西)19. (本小题满分12分)在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.(2013重庆)18、某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级。
2013年高考文科数学真题及答案解析
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1} (2)错误!未找到引用源。
=( )(A)-1 - 错误!未找到引用源。
i(B)-1 + 错误!未找到引用源。
i (C)1 + 错误!未找到引用源。
i(D)1 - 错误!未找到引用源。
i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
(4)已知双曲线C:错误!未找到引用源。
= 1(a>0,b>0)的离心率为错误!未找到引用源。
,则C的渐近线方程为()(A)y=±错误!未找到引用源。
x (B)y=±错误!未找到引用源。
x (C)y=±错误!未找到引用源。
x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q (6)设首项为1,公比为错误!未找到引用源。
的等比数列{an}的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)
2013年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(5分)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i3.(5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q 6.(5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n 7.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 8.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.49.(5分)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为()A.B.C.D.10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10B.9C.8D.511.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π12.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]二.填空题:本大题共四小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.16.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题作答。
2013届全国各地高考押题数学(文科)精选试题分类汇编11概率与统计
2013届全国各地高考押题数学(文科)精选试题分类汇编11:概率与统计一、选择题1 .(2013届安徽省高考压轴卷数学文试题)已知一组观测值具有线性相关关系,若对于y bx a =+,求得0.6 2.5 3.6b x y ===,,,则线性回归方程是( )A .0.6 2.1y x =-B . 2.10.6y x =+C .0.6 2.1y x =+D . 2.10.6y x =-+【答案】C 【解析】考查线性回归方程过样本中心点()x y ,,带入数据得3.60.6 2.5a =⨯+,解得2.1a =,所以线性回归方程是0.6 2.1y x =+.2 .(2013届湖北省高考压轴卷 数学(文)试题)如图,矩形ABCD 中,点E 为边CD 的中点,点F 为边AD的中点,AE 和BF 相交于点O ,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABO ∆内部的概率等于1.10A 1.8B 1.5C 1.4D 【答案】C 【解析】:设矩形ABCD 的长AB x =,宽BC y =,涉及相关图形的面积问题,那么矩形ABCD 的面积为ABCD S xy =矩形.如图所示,过O 点作OG //AB 交AD 于点G ,则有OG AG DE AD =,即12OG AGy x =,亦即2OG AG x y =.又OG FG AB FA =,即1212y AG OG x y -=,可得12122y AGAG y y -=,解得25AG y =.那么ABO ∆的面积为121255ABO S x y xy ∆⎛⎫=⨯= ⎪⎝⎭.由几何概型的概率公式,得所求的概率为1155ABO ABCDxyS P S xy ∆===矩形.故选C .3 .(2013届新课标高考压轴卷(二)文科数学)已知x ,y 的取值如下表:从散点图可以看出y 与x 线性相关,且回归方程为0.95y x a =+,则a =A, 3.2,B .2.6 C, 2.8 D .2.0.【答案】B4 .(2013届新课标高考压轴卷(二)文科数学)春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:2K =参照附表,得到的正确结论是A .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”【答案】A5 .(2013届湖北省高考压轴卷 数学(文)试题)甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示.他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为.9A .6B .3C .0D【答案】D 【解析】:本题考查茎叶图、平均数.甲的平均分为991001011021031015++++=,设看不清楚的数字为x ,则乙的平均分为939497110110+1015x++++<,解得1x <,因为0x ≥,x N ∈,所以0x =,看不清楚的数字为0.故选D .6 .(2013届海南省高考压轴卷文科数学)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .112π-C .2π D .1π【答案】答案:A考点分析:本题考察几何概型及平面图形面积求法.解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点.2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫ ⎝⎛=ππS .在扇形OAD 中21S 为扇形面积减去三角形OAC 面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S ,7 .(2013届福建省高考压轴卷数学文试题)为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图(如图),那么在这100株树木中,底部周( )A .70B .60C .30D .80【答案】C90 110 100 120第2题图8 .(2013届浙江省高考压轴卷数学文试题)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心相近”.现任意找两人玩这个游戏,则他们“心相近”的概率为 ( ) A .19B .29C .718D .49【答案】D【解析】:试验包含的所有事件共有6×6=36种猜数的结果. 其中满足题设条件的有如下情形:若a=1,则b=1,2;他们“心相近”的概率为 若a=2,则b=1,2,3; 若a=3,则b=2,3,4; 若a=4,则b=3,4,5; 若a=5,则b=4,5,6; 若a=6,则b=5,6 共16种.故他们“心相近”的概率为P=16/36=4/9,选 D .9 .(2013届江西省高考压轴卷数学文试题)样本中共有5个个体,其值分别为,0,1,2,3a .若该样本的平均值为1,则样本方差为 ( )A B .65C D .2【答案】D 【解析】由题意知1(0123)15a ++++=,解得1a =-,故样本方差为 2222221[(11)(01)(11)(21)(31)]25S =--+-+-+-+-=,故选D .10.(2013届安徽省高考压轴卷数学文试题)右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A .25B .710 C .45D .910【答案】C 【解析】本题考查茎叶图和古典概型的求法,记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是1(80290389210)905⨯⨯+⨯+++++=,乙的5次综合测评的平均成绩是1442(8039023379)55x x +⨯⨯+⨯+++++=,令442905x+>,解得8x <,即x 的取值可以是07,因此甲的平均成绩超过乙的平均成绩的概率是84105=,选 C .11.(2013新课标高考压轴卷(一)文科数学)从{}1,2,3,4,5中随机选取一个数为a 从{}2,3,4中随机选取一个数b,则b a >的概率是 ( )A .45B .35 C .25D .15【答案】C 【解析】从两个集合中各选1个数有15种,满足b a >的数有,(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)共有6个,所以b a >的概率是62155=,选 C .二、填空题12.(2013届山东省高考压轴卷文科数学)某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为_________【答案】400【解析】设第一、第二、第三小组的频率依次是0.16,0.16t,0.16t 2(t >0),则由后四小组的频率成等差数列可知,0.16t 2+0.07为第四、第五小组的频率之和.由0.16+0.16t +2(0.16t 2+0.07)=1,可得t =54,t =-74(不合题意,舍去).∴第三小组的频率为0.25,故总人数为400人.13.(2013届浙江省高考压轴卷数学文试题)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,数据落在[2,10)内的概率约为________. 【答案】0.4解析 (0.02+0.08)×4=0.4.14.(2013新课标高考压轴卷(一)文科数学)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人)学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为____________.【答案】30【解析】由题意知,12304515120a=++,解得30a=.15.(2013届湖南省高考压轴卷数学(文)试题)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为____________.【答案】1 616.(2013届广东省高考压轴卷数学文试题)某公司为了了解员工们的健康状况,随机抽取了部分员工作为样本,测量他们的体重(单位:公斤),体重的分组区间为[50,55),[55,60),[60,65),[65,70),[70,75],由此得到样本的频率分布直方图,如图4所示.根据频率分布直方图,估计该公司员工体重的众数是_________;从这部分员工中随机抽取1位员工,则该员工的体重在[65,75]的概率是_________.【答案】众数是606562.52+=,∵各分组频率分别为0.15,0.25,0.3,0.2,0.1,∴该员工的体重在[65,75]的概率是0.20.13110+=.17.(2013届上海市高考压轴卷数学(文)试题)平行四边形ABCD中,E为CD的中点.若在平行四边形ABCD内部随机取一点M,则点M取自ABE∆内部的概率为_______________.【答案】12【解析】,根据几何概型可知点M取自△ABE内部的概率为1122ABEABCDAB hSPS AB h∆===,其中h为平图4行四边形底面的高.18.(2013届海南省高考压轴卷文科数学)某公司甲、乙、丙、丁四个部门分别有150、150、400、300名员工,为了解员工对工作的热情,用分层抽样的方法从该公司这四个部门共抽取40名学生进行调查,应在丙部门抽取的员工人数为_16_. 【答案】考点:分层抽样方法.分析:根据四个部门各有的人数,得到公司的总人数,根据要抽取的人数,得到每个个体被抽到的概率,利用丙部门的人数乘以每个个体被抽到的概率,得到丙部门要抽取的人数. 解答:解:∵公司甲、乙、丙、丁四个部门分别有150、150、400、300名员工 ∴本公司共有员工150+150+400+300=1000,∵用分层抽样的方法从该公司这四个部门共抽取40名员工进行调查 ∴每个个体被抽到的概率是=,∵丙部门有400人, ∴要抽取400×=16故答案为:1619.(2013届四川省高考压轴卷数学文试题)小明家的晚报在下午5:30—6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐,则晚报在晚餐开始之前被就送到的概率是__________.【答案】12三、解答题20.(2013届北京市高考压轴卷文科数学)某普通高中共有教师360人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示: 已知在全体教师中随机抽取1名,抽到第二、三批次中女教师的概率分别0.15、0.1.是(Ⅰ)求,,x y z 的值;(Ⅱ)为了调查研修效果,现从三个批次中按1:60的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.【答案】解:(Ⅰ)3600.1554,3600.136x y =⨯==⨯=360865436946624z =-----=(Ⅱ)由题意知,三个批次的人数分别是180,120,60,所以被选取的人数分别为3,2,1(Ⅲ)第一批次选取的三个教师设为123,,A A A ,第二批次的教师为12,B B ,第三批次的教师设为C ,则从这6名教师中随机选出两名教师的所有可能组成的基本事件空间为{1213111212321222313231212,,,,,,,,,,,,,,}A A A A A B A B AC A A A B A B A C A B A B A C B B B C B C Ω=共15个“来自两个批次”的事件包括{111121212223132312,,,,,,,,,,}A B A B AC A B A B A C A B A B A C B C B C Ω=共11个,所以“来自两个批次”的概率1115p =21.(2013届海南省高考压轴卷文科数学)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当20≤Q ≤80时,为酒后驾车;当Q >80时,为醉酒驾车.某市公安局交通管理部门于2012年1月的某天晚上8点至11点在市区昌隆饭店设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q <140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X 的分布列和数学期望. 【答案】解:(Ⅰ) (0.0032+0.0043+0.0050)×20=0.25,0.25×60=15,所以此次拦查中醉酒驾车的人数为15人.(Ⅱ) 易知利用分层抽样抽取8人中含有醉酒驾车者为2人;所以x 的所有可能取值为0,1,2;P(x =0)=3836C C =145,P(X=1)=381226C C C =2815,P(x =2)=382216C C C =283432832281511450)(=⨯+⨯+⨯=X E . 22.(2013届江西省高考压轴卷数学文试题)现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢. (I)求这4个人中恰好有2人去参加甲项目联欢的概率;(II)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率; (III)用,X Y 分别表示这4个人中去参加甲、乙项目联欢的人数,记X Yξ=-,求随机变量ξ的分布列与数学期望E ξ.【答案】解:依题意,这4个人中,每个人去参加甲项目联欢的概率为13,去参加乙项目联欢的概率为23.设“这4个人中恰有i 人去参加甲项目联欢”为事件i A ,(0,1,2,3,4)i =,则4412()()()33i i ii P A C -=.(Ⅰ)这4个人中恰好有2人去参加甲项目联欢的概率22224128()()()3327P A C ==(Ⅱ)设“这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数”为事件B ,34B A A =⋃, 故334434441211()()()()()()3339P B P A P A C C =+=+=. ∴这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率为19(III)ξ的所有可能取值为0,2,4.28(0)()27P P A ξ===,1340(2)()(),81P P A P A ξ==+=0417(4)()(),81P P A P A ξ==+=所以ξ的分布列是14881E ξ=23.(2013届全国大纲版高考压轴卷数学文试题(二))甲.乙两队在进行一场五局三胜制的排球比赛中,规定先赢三局的队获胜,并且比赛就此结束,现已知甲.乙两队每比赛一局,甲队获胜的概率是35,乙队获胜的概率是25,且每局比赛的胜负相互独立. (1)求甲队以3:2获胜的概率;(2)求乙队获胜的概率.【答案】解:(1)甲队以3:2获胜,说明前四局2:2,第五局甲胜,∴甲队以3:2获胜的概率22214223648()()5553125P C =⋅=, (2)乙队获胜的情况有3:0,3:1,3:2三种,∴乙队获胜的概率332222223342232232992()()()()55555553125P C C C =+⋅⋅+⋅=24.(2013届广东省高考压轴卷数学文试题)某校高三年级在5月份进行一次质量考试,考生成绩情况如下表所示:)已知用分层抽样方法在不低于550分的考生中随机抽取5名考生进行质量分析,其中文科考生抽取了2名.(1)求z 的值;(2)图6是文科不低于550分的6名学生的语文成绩的茎叶图,计算这6名考生的语文成绩的方差;(3)已知该校不低于480分的文科理科考生人数之比为1:2,不低于400分的文科理科考生人数之比为2:5,求x 、y 的值.【答案】解:(1)依题意2526z -=,∴9z = (2)1111201251281321341256x +++++==∴这6名考生的语文成绩的方差2 4 0 5 8 113 12 11 图6()()()()()()222222211111251201251251251281251321251341256s ⎡⎤=⨯-+-+-+-+-+-⎣⎦ 22222211450379606⎡⎤=⨯+++++=⎣⎦(3)依题意196192y +=+,35196295x y ++=++ 解得100,41x y ==25.(2013届陕西省高考压轴卷数学(文)试题)2013年1月份以来,我国北方部分城市出现雾霾天气,形成雾霾天气主要原因与 2.5PM 有关. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 2.5PM 日均值越小,空气质量越好. 2012年2月29日,国家环保部发布的《环境空气质量标准》见下表:某环保部门为了了解甲、乙两市的空气质量状况,在过去某月的30天中分别随机抽取了甲、乙两市6天的 2.5PM 日均值作为样本,样本数据茎叶图如上右图所示(十位为茎,个位为叶). (Ⅰ)分别求出甲、乙两市 2.5PM 日均值的样本平均数,并由此判断哪个市的空气质量较好;(Ⅱ)若从甲市这6天的样本数据中随机抽取两天的数据,求恰有一天空气质量超标的概率.【答案】【解析】(Ⅰ)甲市抽取的样本数据分别是34,42,67,71,79,85;乙市抽取的样本数据为31,48,45,65,73,86.344267717985636x +++++==甲,314845657386586x +++++==乙.因为x x >甲乙,所以乙市的空气质量较好.(Ⅱ)由茎叶图知,甲市6天中有4天空气质量未超标,有2天空气质量超标,记未超标的4天数据为,,,a b c d ,超标的两天数据为,m n ,则6天中抽取两天的所有情况为: ,,,,,,,,,,,,,,ab ac ad am an bc bd bm bn cd cm cn dm dn mn ,基本事件总数为15.记“恰有一天空气质量超标”为事件A,则事件A 包含的基本事件为:,,,,,,,am bm cm dm an bn cn dn , 事件数为8. 所以8()15P A =. 即恰有一天空气质量超标的概率为815. 26.(2013届安徽省高考压轴卷数学文试题)( 12分)为了了解调研初一年级新学生的智力水平,某校按10%的比例对700名初一学生按性别分别进行“智力评分”抽样检查,测得“智力评分”的频数分布表如下表1、表2.表1:男生“智力评分”频数分布表表2:女生“智力评分”频数分布表(1)求初一的男生人数并完成下面的频率分布直方图;(2)估计该校学生“智力评分”在[)165180,之间的概率; (3)从样本中“智力评分”在[)180190,的男生中任选2人,求至少有1人“智力评分”在[)185190,之间的概率.【答案】【解析】(1)样本中男生人数是40,由分成抽样比例是10%可得初一的男生人数是400,男生的频率分布直方图如图所示3分(2)由表1和表2知,样本中“智力评分”在165180中人数是5+14+13+6+3+1=42,样本的容量是70,所以样本中学生“智力评分”在165180之间的频率是423705f ==,由f 估计学生“智力评分”在165180之间的概率是35p =.8分(3)样本中“智力评分”在180185之间的有4人,设其编号是①、②、③、④,样本中“智力评分”在185190间的男生有2人,设其编号为⑤、⑥,从中任取2人的结果总数是①②、①③、①④、①⑤、①⑥、②③、②④、②⑤、②⑥、③④、③⑤、③⑥、④⑤、④⑥、⑤⑥共15种,至少有1人“智力评分”在185190间的有9种,因此,所求概率是93155p ==12分.27.(2013届福建省高考压轴卷数学文试题)已知向量),(),1,2(y x b a ==(Ⅰ)若{1,0,1},{2,1,2}x y ∈-∈--,求向量a b ⊥的概率;(Ⅱ)若用计算机产生的随机二元数组(,)x y 构成区域Ω:1122x y -<<⎧⎨-<<⎩,求二元数组(,)x y 满足22y x +≥1的概率.【答案】解:(Ⅰ)从{1,0,1},{2,1,2}x y ∈-∈--取两个数,x y 的基本事件有(1,2),(1,1),(1,2),(0,2),------ (0,1),(0,2),(1,2),(1,1),(1,2)---,共9种设“向量a b ⊥”为事件A 若向量a b ⊥,则20x y +=∴事件A 包含的基本事件有(1,2),(1,2)-,共2种 ∴所求事件的概率为2()9P A =(Ⅱ)二元数组(,)x y 构成区域Ω={(,)|11,22}x y x y -<<-<< 设“二元数组(,)x y 满足22y x +≥1”为事件B 则事件B =22{(,)|11,22,1}x y x y x y -<<-<<+≥ 如图所示∴所求事件的概率为21()11248P B ππ⨯=-=-⨯28.(2013届重庆省高考压轴卷数学文试题)袋中有九张卡片,其中绿色四张,标号分别为0,1,2,3;黄色卡片三张,标号分别为0,1,2;黑色卡片两张,标号分别为0,1.现从以上九张卡片中任取(无放回,且每张卡片取到的机会均等)两张.(Ⅰ)求颜色不同且卡片标号之和..等于3的概率; (Ⅱ)记所取出的两张卡片标号之积..为X ,求3X …的概率.【答案】(Ⅰ)从九张卡片中取出两张所有可能情况有2936C =种颜色不同且标号之和为3的情况有6种 ∴61366P == (Ⅱ) 312(3),(4),(6)363636P X P X P X ======()312133636366P X =++=… 29.(2013届山东省高考压轴卷文科数学)某市芙蓉社区为了解家庭月均用水量(单位:吨),从社区中随机抽查100户,获得每户2013年3月的用水量,并制作了频率分布表和频率分布直方图(如图). (Ⅰ)分别求出频率分布表中a 、b 的值,并估计社区内家庭月用水量不超过3吨的频率;(Ⅱ)设321、A 、A A 是月用水量为[0,2)的家庭代表.21、B B 是月用水量为[2,4]的家庭代表.若从这五位代表中任选两人参加水价听证会,请列举出所有不同的选法,并求家庭代表21、B B 至少有一人被选QPABC中的概率.【答案】【解析】(Ⅰ)由频率分布直方图可得0.50.50.25a=⨯=,∴月用水量为[1.5,2)的频数为25.故2100928b =-=,得4b =由频率分布表可知,月用水量不超过3吨的频率为0.92, 所以,家庭月用水量不超过3吨的频率约为0.92(Ⅱ)由1A 、2A 、3A 、1B 、2B 五代表中任选2人共有如下10种不同选法,分别为:12()A A ,,13()A A ,,11()A B ,,12()A B ,,23()A A ,,21()A B ,,22()A B ,,31()A B ,,32()A B ,,12()B B ,记“1B 、2B 至少有一人被选中”的事件为A ,事件A 包含的基本事件为:11()A B ,,12()A B ,,21()A B ,,22()A B ,,31()A B ,,32()A B ,,12()B B ,,共包含7个基本事件数又基本事件的总数为10,所以7()10P A =. 即家庭代表1B 、2B 至少有一人被选中的概率为71030.(2013届四川省高考压轴卷数学文试题)为考察某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:药物效果试验列联表设从没服药的动物中任取两只,未患病数为ξ;从服用药物的动物中任取两只,未患病数为η,工作人员曾计算过38(0)(0)9P P ξη=== (1)求出列联表中数据,,,x y M N 的值,请根据数据画出列联表的等高条形图,并通过条形图判断药物是否有效;(2)求ξ与η的均值并比较大,请解释所得出结论的实际含义; (3)能够以97.5%的把握认为药物有效吗? 参考数据:【答案】(1)解:0.0613.50.1614.50.3815.520.3216.50.0817.515.7⨯+⨯+⨯+⨯+⨯=,所以估计该班百米测试成绩的平均数为15.7秒(2)由直方图知,成绩在[14,16)内的人数为:500.16500.3827⨯+⨯=人,所以该班成绩良好的人数为27人ξ的取值为0,1,2223250506(0)2450C P C ξ===1123272501242(1)2450C C P C ξ=== 227250702(2)2450C P C ξ===ξ的分布列为所以ξ的数学期望为252724507022245012421=⨯+⨯=ξE (3)由直方图知,成绩在)14,13[的人数为306.050=⨯人,分别设为x 、y 、z , 成绩在)18,17[ 的人数为408.050=⨯人,分别设为A 、B 、C 、D .若[)14,13,∈n m 时,有yz xz xy ,,3种情况; )(23C若[)18,17,∈n m 时,有CD BD BC AD AC AB ,,,,,6种情况;(C 24)若n m ,分别在[)14,13和[)18,17内时,共有12种情况所以基本事件总数为21种,事件“||1m m ->”所包含的基本事件个数有12种. ∴(||1)P m n ->=742112= 31.(2013届全国大纲版高考压轴卷数学文试题(一))已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲.乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率. 【答案】解:(Ⅰ)设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件A .B 相互独立,且 23241()2C P A C ==, 24262()5C P B C ==所以取出的4个球均为黑球的概率为121()()()255P A B P A P B ⋅=⋅=⨯=(Ⅱ)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C .D 互斥,且21132422464()15C C C P C C C ==, 123422461()5C C P D C C ==所以取出的4个球中恰有1个红球的概率为 417()()()15515P C D P C P D +=+=+= 答32.(2013届湖南省高考压轴卷数学(文)试题)某学校团委组织生态兴趣小组在学校的生态园种植了一批树苗,为了解树苗的生长情 况,在这批树苗中随机抽取了 50棵测量高度(单位:厘米),其统计数据如下表所示:将频率作为概率,解决下列问题:(I)在这批树苗中任取一棵,其高度不低于65厘米的概率是多少?(II)为进一步了解这批树苗的情况,再从高度在[35,45)中的树苗A,B,C 中移出2棵, 从高度在[85,95]中的树苗D,E,F,G,H 中移出1棵进行试验研究,则树苗A 和树苗D 同时被移出的概率是多少?【答案】解:⑴∵在65cm 以上的频数为15+10+5+30∴在这批树苗中任取一棵,其高度不低于65cm 的概率为 P 1=5030=53 ⑵事件“从(35,45)中移出2棵树苗,事件从(85,95)中移出1棵树苗,”包含的基本事件是15个,其中满足在(35,45)中和(85,95)中的树苗同时被移出的事件共2个 ∴其概率p 2=152 33.(2013届新课标高考压轴卷(二)文科数学)为预防X 病毒爆发,某生物技术公司研制出一种X 病毒疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个样本分成三组,测试结果如下表:已知在全体样本中随机抽取1个,抽到组疫苗有效的概率是0.33.(Ⅰ)现用分层抽样的方法在全体样本中抽取360个测试结果,应在C 组抽取样本多少个? (Ⅱ)已知465≥b ,30≥c ,求通过测试的概率.【答案】解:(I)∵33.02000=a,∴ 660=a ∵50090660776732000=----=+c b ,∴ 应在C 组抽取样个数是902000500360=⨯(个); (II)∵500=+c b ,465≥b ,30≥c ,∴(b ,c )的可能性是(465,35),(466,34),(467,33),(468,32),(469,31),(470,30), 若测试没有通过,则200%)901(20009077=-⨯>++c ,33>c , (b ,c )的可能性是(465,35),(466,34), 通过测试的概率是32621=-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013高考真题分类汇编:概率与统计1.【2013安徽文5】若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )(A )23 (B )25 (C )35 (D )9102.【2013重庆文6】下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[)20,30内的概率为( )(A )0.2 (B )0.4 (C )0.5 (D )0.63.【2013湖南文9】已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB ∆的最大边是AB ”发生的概率为12,则AD AB =( ) (A )12 (B )14 (C(D4.【2013江西文4】集合{}2,3A =,{}1,2,3B =,从,A B 中各取任意一个数,则这两数之和等于4的概率是( ) (A )23 (B )13 (C )12 (D )165.【2013湖南文3】某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。
为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =( )(A )9 (B )10 (C )12 (D )136.【2013山东文10】将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示。
则7个剩余分数的方差为( )(A )1169 (B )367(C )36 (D7.【2013四川文7】某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。
以组距为5将数据分组成[)0,5,[)5,10,…,[)30,35,[]35,40时,所作的频率分布直方图是( )(B)(A)(C)(D)8.【2013新课标文3】从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )169.【2013陕西文5】对一批产品的长度(单位:mm )进行抽样检测,下图为检测结果的频率分布直方图。
根据标准,产品长度在区间[)20,25上的为一等品,在区间[)15,20和区间[)25,30上的为二等品,在区间[)10,15和[)30,35上的为三等品。
用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )(A )0.09 (B )0.20 (C )0.25 (D )0.4510.【2013江西文5】总体有编号为01,02,,20 的20个个体组成。
利 用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( ) (A )08 (B )07 (C )02 (D )0111.【2013辽宁文5】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)[)20,40,40,60,60,80,80,100。
若低于60分的人数是15人,则该班的学生人数是( ) (A )45 (B )50 (C )55 (D )6012.【2013湖北文】四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且2.347 6.423y x =-;②y 与x 负相关且3.476 5.648y x =-+;③y 与x 正相关且 5.4378.493y x =+;④y 与x 正相关且4.326 4.578y x =--。
其中一定不正确...的结论的序号是( ) (A )①② (B )②③ (C )③④ (D )①④13.【2013福建文11】已知x 与y 之间的几组数据如右表。
假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=。
若某同学根据上表中前两组数据()1,0和()2,2求得的直线方程为a x b y '+'=,则以下结论正确的是( ) (A )a a b b'>'>ˆ,ˆ (B )a a b b '<'>ˆ,ˆ (C )a a b b '>'<ˆ,ˆ (D )a a b b '<'<ˆ,ˆ 14.【2013浙江文12】从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于________。
15.【2013湖北文】在区间[]2,4-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________。
16.【2013福建文】利用计算机产生01 之间的均匀随机数a ,则时间“013<-a ”发生的概率为________。
17.【2013福建文13】若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为____________。
18.【2013辽宁文16】为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据。
已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________。
19.【2013上海文6】某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________。
20.【2013湖北文12】某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4。
则⑴平均命中环数为_________;⑵命中环数的标准差为_________。
21.【2013新课标Ⅱ卷文13】从1,2,3,4,5中任取两个不同的数,其和为5的概率是_____。
22.【2013上海文11】盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_______(结果用最简分数表示)。
23.【2013江西文】小波已游戏方式决定是去打球、唱歌还是去下棋。
游戏规则为以O 为起点,再从123456,,,,,A A A A A A (如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X ,若0X >就去打球,若0X =就去唱歌,若0X <就去下棋。
⑴写出数量积X 的所有可能取值;⑵分别求小波去下棋的概率和不.去唱歌的概率。
24.【2013陕西文】有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下。
⑴为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B 组中抽取了6人。
请将其余各组抽取的人数填入下表;⑵在⑴中,若,A B 两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率。
25.【2013四川文】某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生。
⑴分别求出按程序框图正确编程运行时输出y的值为i 的概率()1,2,3i P i =;⑵甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为()1,2,3i i =的频数。
以下是甲、乙所作频数统计表的部分数据。
当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为()1,2,3i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大。
26.【2013辽宁文19】现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答。
试求:⑴所取的2道题都是甲类题的概率;⑵所取的2道题不是同一类题的概率。
27.【2013天津文】某产品的三个质量指标分别为,,x y z ,用综合指标S x y z =++评价该产品的等级。
若4S ≤,则该产品为一等品。
先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如右表。
⑴利用上表提供的样本数据估计该批产品的一等品率;⑵在该样品的一等品中,随机抽取两件产品,①用产品编号列出所有可能的结果;②设事件B 为“在取出的2件产品中,每件产品的综合指标S 都等于4”,求事件B 发生的概率。
28.【2013湖南文】某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。
根据历年的种植经验,一株该种作物的年收获量Y (单位:kg )与它的“相近”作物株数X 之间的关系如右表所示。
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
⑴完成右上表,并求所种作物的平均年收获量;⑵在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率。
29.【2013安徽文17】为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如右。
⑴若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);⑵设甲、乙两校高三年级学生这乙甲090285511824457966332220070011226685332211960600133345583352335547次联考数学平均成绩分别为12,x x ,估计12x x -的值。
30.【2013新课标II 文】经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元。
根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示。
经销商为下一个销售季度购进了130t 该农产品,以X (单位:t ,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润。
⑴将T 表示为X 的函数;⑵根据直方图估计T 不少于57000元的概率。
31.【2013广东文】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如右表。
⑴根据频数分布表计算苹果的重量在[)90,95的频率;⑵用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,其中重量在[)80,85的有几个?⑶在⑵中抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有1个的概率。
32.【2013山东文】某小组共有,,,,A B C D E 五位同学,他们的身高(单位:米)以及体重指标(单位:2千克/米)如右表所示。