工程有限元分析英文课件:A Comment on Convergence for 3D
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
displacement relations are given by
x
u x
n i 1
Ni x
ui
y
v y
n i 1
Ni y
vi
z
w z
n i 1
Ni z
wi
yz
v z
w y
n i 1
Ni z
vi
n i 1
Ni y
wi
zx
w x
u z
n i 1
Ni x
wi
n i 1
Ni z
n
Ni 1
i 1
n
Ni xi x
i 1
n
Ni yi y
i 1
n
Ni zi z
i 1
(5.26)
3
Analysis of Three – Dimensional Problems
n
Ni xi x
i 1
n
Ni yi y
i 1
n
Ni zi z
i 1
Above three conditions are the mapping formulations(映
n
1 2 x 3 y 4 z u(x, y, z) Ni 1 2 xi 3 yi 4 zi
i 1
2
Analysis of Three – Dimensional Problems
n
1 2 x 3 y 4 z u(x, y, z) Ni 1 2xi 3 yi 4zi i 1
Analysis of Three – Dimensional Problems
A Comment on Convergence for 3D Curved Elements
As we know, the interpolation functions must be such that ① Constant strain is maintained as the elements are made
(5.27)
4
Analysis of Three – Dimensional Problems
5.3.2 Strain – Displacement Relations
For a three – dimensional analysis we require all the six
strain components, that is x , y , z , yz , zx and xy .
This becomes
1
2
Fra Baidu bibliotek
x
3
y
4z
n
N
i
1
n
Ni
xi
2
n
Ni
yi
3
n
Ni zi 4
i1
i1
i1
i1
Equating coefficients(使系数相等), we come up with necessary
conditions for rigid – body movement and constant strain, that is
following:
u(x, y, z) 1 2x 3 y 4z
(5.23)
where all the alphas are constants. But for the 3D n - node
element we can say the x component of displacement at any point
n
u(x, y, z) Niui i 1
where ui denotes the nodal value of u(x, y, z) .
(5.24)
1
Analysis of Three – Dimensional Problems
At any node i, we then require that
象公式) for isoparametric elements and hence are satisfied
when we use isoparametric elements. We only need to
ensure that for the shape functions
n
Ni 1
i 1
elements.
0
Analysis of Three – Dimensional Problems
Consider a three - dimensional element having n nodal points.
For the rigid - body movement in x - direction we require the
u(xi , yi , zi ) ui 1 2 xi 3 yi 4 zi
(5.25)
n
Now replacing the ui in u(x, y, z) Niui , we have i 1
n
u(x, y, z) Ni 1 2 xi 3 yi 4 zi i 1
Considering u 1 2 x 3 y 4 z ,thus
The element strains are obtained in terms of derivatives of element displacements with respect to the Cartesian coordinates.
5
For a n – nodeAntharelyesi-s odfimTehnrsieoena–l Deilmemeennst,iotnhael Pstrraoibn le–ms
ui
xy
u y
v x
n i 1
Ni y
ui
n i 1
Ni x
vi
(5.34)
u
v
n
ui
Ni ( ,,
) vi
w i1
wi
6
Analysis of Three – Dimensional Problems
Strain – Displacement Transformation
smaller; ②The displacement field for an element must reflect rigid –
body motion when the nodal displacements are compatible
with rigid – body motion.
If these convergence requirements are satisfied in the parent elements, they will prevail(奏效) in the curved geometry of the