第24章圆单元测试题资料

合集下载

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)

第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。

新人教版数学九年级数学上册《第24章圆》单元测试(有答案)

新人教版数学九年级数学上册《第24章圆》单元测试(有答案)

新人教版数学九年级数学上册《第24章圆》单元测试(有答案)新人教版数学九年级数学上册《第24章圆》单元测试考试分值:120分;考试时间:100分钟一.选择题(共10小题,满分30分)1.(3分)现有两个圆,⊙O1的半径等于篮球的半径,⊙O2的半径等于一个乒乓球的半径,现将两个圆的周长都增添1米,则面积增添许多的圆是()A.⊙O1B.⊙O2C.两圆增添的面积是同样的D.没法确立2.(3分)如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A .C1>C.<C..不可以确立2BC12CC1=C2D3.(3分)如图,⊙O的半径是5,弦AB=6,OE⊥AB于E,则OE的长是()A.2B.3C.4D.54.(3分)如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A.12cm B.6cm C.8cm D.3cm5.(3分)如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB双侧,连结CD交AB于点E.点P从点A出发沿AO向终点O运动,在整个运动过程中,△CEP 与△DEQ的面积和的变化状况是()A.向来减小B.向来不变C.先变大后变小D.先变小后变大1/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)6.(3分)《九章算术》是我国古代有名数学经典,此中对勾股定理的阐述比西方早一千多年,此中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该资料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸7.(3分)图中的五个半圆,周边的两半圆相切,两只小虫同时出发,以同样的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则以下结论正确的选项是()A.甲先到B点B.乙先到B点C.甲、乙同时到 B D.没法确立8.(3分)如图,A城气象台测得台风中心在城正西方向300千米的B处,并以每小时10千米的速度沿北偏东60°的BF方向挪动,距台风中心200千米的范围是受台风影响的地区.若A城遇到此次台风的影响,则A城遭到此次台风影响的时间为()A.小时B.10小时C.5小时D.20小时9.(3分)若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A.30°B.60°C.90°D.120°10.(3分)如图,已知C、D在以AB为直径的⊙O上,若∠CAB=30°,则∠D的度数是()A.30°B.70°C.75°D.60°2/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)二.填空题(共6小题,满分18分)11.(3分)如图,⊙O的弦AB与半径OC订交于点P,BC∥OA,∠C=50°,那么∠APC的度数为.12.(3分)⊙O的半径为10cm,圆心到直线l的距离OM=8cm,在直线l上有一点P且PM=6cm,则点P与⊙O的地点关系是.13.(3分)如图,已知∠BOA=30°,M为OB边上一点,以为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的地点关系是.14.(3分)如图,正六边形ABCDEF的极点B,C分别在正方形AMNP的边AM,MN上.若AB=4,则CN=.15.(3分)如图,图1是由若干个同样的图形(图2)构成的漂亮图案的一部分,图2中,图形的有关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保存π).16.(3分)如图,将一块实心三角板和实心半圆形量角器按图中方式叠放,三角板向来角边与量角器的零刻度线所在直线重合,斜边与半圆相切,重叠部分的量角器弧对应的圆心角(∠AOB)为120°,BC的长为2,则三角板和量角器重叠部分的面积为.三.解答题(共8小题,满分72分)17.(8分)假如从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的3/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)扇形围成一个圆锥(接缝处不重叠),求这个圆锥的高.18.(8分)在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,可否完整装下?若未能装满,求杯内水面离杯口的距离.19.(8分)如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.(8分)如图1,某住所社区在相邻两楼之间修筑一个上方是一个半圆,下方是长方形的仿古通道.1)现有一辆卡车装满家具后,高为3.6米,宽为3.2米,请问这辆送家具的卡车能经过这个通道吗?为何?2)如图2,若通道正中间有一个0.4米宽的隔绝带,问一辆宽1.5米高3.8米的车能经过这个通道吗?为何?21.(10分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O,⊙O与AC的公共点为E,连结DE并延伸交BC的延伸线于点F,BD=BF.(1)试判断AC与⊙O的地点关系并说明原因;4/14(新人教版数学九年级数学上册《第24章圆》单元测试(有答案)((((2)若AB=12,BC=6,求⊙O的面积.(((22.(10分)如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段(AB上.((1)如图1,假如点M是线段AB的中点,且⊙M的半径为4,试判断直线OB(与⊙M的地点关系,并说明原因;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.(((((((((((23.(10分)如图,已知等边△ABC以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点E作EF⊥AB,垂足为点F.(1)请判断EF与⊙O的地点关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为8,求FH的长.(结果保存根号)(((((((((((24.(10分)如图,△ABC是边长为4cm的等边三角形,AD为BC边上的高,点P沿BC向终点C运动,速度为1cm/s,点Q沿CA、AB向终点B运动,速度为2cm/s,若点P、Q两点同时出发,设它们的运动时间为x(s).(l)求x为何值时,PQ⊥AC;x为何值时,PQ⊥AB?2)当O<x<2时,AD能否能均分△PQD的面积?若能,5/14(新人教版数学九年级数学上册《第24章圆》单元测试(有答案)((((说出原因;3)探究以PQ为直径的圆与AC的地点关系,请写出相应地点关系的x的取值范围(不要求写出过程).6/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)参照答案一.选择题1.A.2.B.3.C.4.B.5.C.6.C.7.C.8.B.9.B.10.D.二.填空题11.75°.12.点P在⊙O上.13.相离.14.6﹣2.15..16.+2.三.解答题17.解:∵从半径为5cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==8π,依据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==4cm,7/1418.解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,依据题意得π?()2?x=π?()2?18,解得x=12.5,12.5>10,∴不可以完整装下.19.证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,ON⊥CD,∴CD=2CN=2,OM⊥AB,∴AM=AB=x,在△AOM中,OM==,OM=CD.20.解:(1)如图,设半圆O的半径为R,则R=2,作弦EF∥AD,且EF=3.2,OH⊥EF于H,连结OF,由OH⊥EF,得HF=1.6m,8/14OH+AB=1.2+2.6=3.8>3.6,∴这辆卡车能经过此地道;2)如图2,当车高3.8米时,OH=3.8﹣2.6=1.2米,此时HF==1.6米,∵通道正中间有一个0.4米宽的隔绝带,HM=0.2米,MF=HF﹣HM<1.5米,∴不可以经过.21.解:(1)AC与⊙O相切.连结OE,OD=OE,∴∠ODE=∠OED.BD=BF,∴∠ODE=∠F.∴∠OED=∠F.∴OE∥BF.∴∠AEO=∠ACB=90°.OE⊥AC.∵点E为⊙O上一点,9/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)∴AC与⊙O相切.2)由(1)知∠AEO=∠ACB,又∵∠A=∠A,∴△AOE∽△ABC.∴=.设⊙O的半径为r,则=,解得r=4,∴⊙O的面积为π×42=16π.22.解:(1)直线OB与⊙M相切,原因:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,因此MD∥AO,MD=4.∴∠AOB=∠MDB=90°,MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连结ME,MF,如图2,10/14A(﹣8,0),B(0,6),∴设直线AB的分析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是 y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a6,得a=﹣,+∴点M的坐标为(﹣,).∴23.解:(1)EF是⊙O的切线,∴原因:连结EO,∴∵△ABC是等边三角形,∴∴∠B=∠C=∠A=60°,∴EO=CO,∴∴△OCE是等边三角形,∴∴∠EOC=∠B=60°,∴EO∥AB,∵EF⊥AB,∴EF⊥EO,∴EF是⊙O的切线;∴∴∴2)∵EO∥AB,EO是△ACB的中位线,∵AC=8,11/14AE=CE=4,∵∠A=60°,EF⊥AB,∴∠AEF=30°,AF=2,BF=6,FH⊥BC,∠B=60°.∴∠BFH=30°,BH=3,FH2=BF2﹣BH2,FH=3.24.解:(1)当Q在AB上时,明显PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;如图:①当PQ⊥AB时,BP=x,BQ=x,AC+AQ=2x;∵AC=4,12/14AQ=2x﹣4,2x﹣4+x=4,x=,故x=时PQ⊥AB;(2)过点QN⊥BC于点N,当0<x<2时,在Rt△QNC中,QC=2x,∠C=60°;∴NC=x,∴BP=NC,∵BD=CD,∴DP=DN;∵AD⊥BC,QN⊥BC,∴DP=DN;∵AD⊥BC,QN⊥BC,∴AD∥QN,∴OP=OQ,S△PDO=S△DQO,AD均分△PQD的面积;3)明显,不存在x的值,使得以PQ为直径的圆与AC相离,当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC订交.13/14新人教版数学九年级数学上册《第24章圆》单元测试(有答案)14/14。

第二十四章圆单元测试题

第二十四章圆单元测试题

第二十四章 圆 单元测试题 一、选择题(每小题3分,共30分)1.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm ,则这块扇形铁皮的半径是( )A .24cmB .48cmC .96cmD .192cm2.一元钱硬币的直径约为24mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12mmB .123mmC .6mmD .63mm3.如图,直线AB ,AD 与⊙O 分别相切于点B ,D ,C 为⊙O 上一点,且∠BCD =140°,则∠A 的度数是( )A .70°B .105°C .100°D .110°第3题图 第4题图 第5题图4.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3 C .π- 3 D.2π3- 3 5.如图,矩形ABCD 中,AB =4,BC =3,连接AC ,⊙P 和⊙Q 分别是△ABC 和△ADC 的内切圆,则PQ 的长是( )A.52B. 5C.52D .2 2 6.已知⊙O 的半径是4,OP =3,则点P 与⊙O 的位置关系是( )A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定7.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC =AB B .∠C =12∠BOD C .∠C =∠B D .∠A =∠BOD第7题图 第8题图 第10题图8.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .59.下列说法正确的是( )A .平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若两个圆有公共点,则这两个圆相交10.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E .若∠AOB =3∠ADB ,则( )A .DE =EB B.2DE =EBC.3DE =DO D .DE =OB二、填空题(每小题3分,共24分)11.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°,则∠ACB =________°.第11题图 第12题图 第13题图12.如图,过⊙O 上一点C 作⊙O 的切线,交⊙O 的直径AB 的延长线于点D .若∠D =40°,则∠A 的度数为_______.13.如图,两同心圆的大圆半径长为5cm ,小圆半径长为3cm ,大圆的弦AB 与小圆相切,切点为C ,则弦AB 的长是_________.14.如图,⊙O 是△ABC 的外接圆,直径AD =4,∠ABC =∠DAC ,则AC 的长为_______.第14题图 第15题图 第16题图15.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为__________.16.如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB (阴影部分)的面积为__________.17.如图,圆O 的直径AB 为13cm ,弦AC 为5cm ,∠ACB 的平分线交圆O 于点D ,则CD 的长是____________cm.第17题图 第18题图 18.如图,在矩形ABCD 中,AD =8,E 是边AB 上一点,且AE =14AB .⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线交于另一点F ,且EG ∶EF =5∶2.当边AD 或BC 所在的直线与⊙O 相切时,AB 的长是______.三、解答题(共66分)19.(8分)如图,已知⊙O 中直径AB 与弦AC 的夹角为30°,过点C 作⊙O 的切线交AB 的延长线于点D ,OD =30cm.求直径AB 的长.20.(8分)如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B =70°,求∠CAD 的度数;(2)若AB =4,AC =3,求DE 的长.21.(8分)如图,已知四边形ABCD 内接于圆O ,连接BD ,∠BAD =105°,∠DBC =75°.(1)求证:BD =CD ;(2)若圆O 的半径为3,求BC ︵的长.22.(10分)如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.23.(10分)如图,AB 是⊙O 的直径,点C ,D 在圆上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,分别交OA 的延长线与OC 的延长线于点E ,F ,连接BF .(1)求证:BF 是⊙O 的切线;(2)已知⊙O 的半径为1,求EF 的长.24.(10分)如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,AB =8.(1)利用尺规,作∠CAB 的平分线,交⊙O 于点D (保留作图痕迹,不写作法);(2)在(1)的条件下,连接CD ,OD .若AC =CD ,求∠B 的度数;(3)在(2)的条件下,OD 交BC 于点E ,求由线段ED ,BE ,BD ︵所围成区域的面积(其中BD ︵表示劣弧,结果保留π和根号).25.(12分)如图,在平面直角坐标系中,O (0,0),A (0,-6),B (8,0)三点在⊙P 上.(1)求⊙P 的半径及圆心P 的坐标;(2)M 为劣弧OB ︵的中点,求证:AM 是∠OAB 的平分线;(3)连接BM 并延长交y 轴于点N ,求N ,M 点的坐标.。

第24章 圆 单元测试卷(解析卷)

第24章 圆 单元测试卷(解析卷)

第24章圆单元测试卷参考答案与试题解析一.选择题(共10小题,每小题3分,计30分)1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2B.4C.8D.16解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A.10B.8C.5D.3解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP﹣OA=8﹣x,∴OC2=PC2+OP2,即x2=42+(8﹣x)2,解得x=5,∴⊙O的直径为10.故选:A.3.如图,AB是⊙O的直径,∠BOD=120°,点C为弧BD的中点,AC交OD于点E,DE=1,则AE的长为()A.B.C.D.解:连接OC.∵∠DOB=120°,∴∠AOD=60°,∵=,∴∠DOC=∠BOC=60°,∴=,∴OD⊥AC,设OA=r,则OE=r=DE=1,∴OA=2,∴AE==,故选:A.4.已知圆的半径为3,扇形的圆心角为120°,则扇形的弧长为()A.πB.2πC.3πD.4解:扇形的弧长==2π,故选:B.5.如图,AB是⊙O的直径,点C在⊙O上,半径OD∥AC,如果∠BOD=130°,那么∠B的度数为()A.30°B.40°C.50°D.60°解:∵∠BOD=130°,∴∠AOD=50°,又∵AC∥OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°﹣50°=40°.故选:B.6.有下列结论:(1)三点确定一个圆;(2)弧的度数指弧所对圆周角的度数;(3)三角形的内心是三边中垂线交点,它到三角形各边的距离相等;(4)同圆或等圆中,弦相等则弦所对的弧相等.其中正确的个数有()A.0B.1C.3D.2解:(1)不在同一直线上的三点确定一个圆,故不符合题意;(2)弧的度数指弧所对圆心角的度数;故不符合题意;(3)三角形的内心是三角平分线交点,它到三角形各边的距离相等;故不符合题意;(4)同圆或等圆中,弦相等则弦所对的优弧或劣弧相等,故不符合题意;故选:A.7.圆柱底面半径为3cm,高为2cm,则它的体积为()A.97πcm3B.18πcm3C.3πcm3D.18π2cm3解:圆柱的体积=9π×2=18π(cm3).故选:B.8.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.9.已知五个正数的和等于1,用反证法证明:这五个正数中至少有一个大于或等于,先要假设这五个正数()A.都大于B.都小于C.没有一个小于D.没有一个大于解:已知五个正数的和等于1,用反证法证明这五个正数中至少有一个大于或等于,先要假设这五个正数都小于,故选:B.10.如图,正方形ABCD的边长为8.M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为()A.3B.4C.3或4D.不确定解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.故选:C.二.填空题(共6小题,每小题3分,计18分)11.如图,⊙O的半径为2,点A为⊙O上一点,如果∠BAC=60°,OD⊥弦BC于点D,那么OD 的长是1.解:∵OB=OC,OD⊥BC,∴∠BDO=90°,∠BOD=∠COD=BOC,∵由圆周角定理得:∠BAC=BOC,∴∠BOD=∠BAC,∵∠BAC=60°,∴∠BOD=60°,∵∠BDO=90°,∴∠OBD=30°,∴OD=OB,∵OB=2,∴OD=1,故答案为:1.12.如图的齿轮有30个齿,每两齿之间的间隔相等,则相邻两齿间的圆心角α等于12度.解:相邻两齿间的圆心角α==12°,故答案为:12.13.如图,AB是半圆O的直径,AB=12,AC为弦,OD⊥AC于D,OE∥AC交半圆O于点E,EF ⊥AB于F,若BF=3,则AC的长为6.解:AB是半圆O的直径,AB=12,∴OB=OA=6,∵BF=3,∴OF=OB﹣BF=3,∵OD⊥AC,∴AD=CD,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴AD=OF=3,∴AC=2AD=6;故答案为:6.14.如图,⊙O与正六边形OABCDE的边OA、OE分别交丁点F、G,点M在FG上,则圆周角∠FMG的大小为度120°.解:在优弧FG上取一点T,连接TF,TG.∵ABCDEF是正六边形,∴∠AOE=120°∵∠T=∠FOG,∴∠T=60°,∵∠FMG+∠T=180°,∴∠FMG=120°,故答案为120°.15.如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为π.解:连接OG,DF,∵BC=2,E为BC的中点,∴BE=EC=1,∵AB=3,AF=1,∴BF=2,由勾股定理得,DF==,EF==,∴DF=EF,在Rt△DAF和Rt△FBE中,,∴Rt△DAF≌Rt△FBE(HL)∴∠ADF=∠BFE,∵∠ADF+∠AFD=90°,∴∠BFE+∠AFD=90°,即∠DFE=90°,∵FD=FE,∴∠FED=45°,∵OG=OE,∴∠GOE=90°,∴劣弧的长==π,故答案为:π.16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是2 cm.解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC 是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.三.解答题(共10小题,计102分)17.(10分)已知:如图,BD、CE是△ABC的高,M为BC的中点.试说明点B、C、D、E在以点M为圆心的同一个圆上.证明:连接ME、MD,∵BD、CE分别是△ABC的高,M为BC的中点,∴ME=MD=MC=MB=BC,∴点B、C、D、E在以点M为圆心的同一圆上.18.(10分)如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm.19.(10分)一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10mm。

人教版九年级数学 上册 第二十四章 圆 单元综合与测试(含答案)

人教版九年级数学 上册 第二十四章 圆 单元综合与测试(含答案)

第二十四章圆单元复习与检测题(含答案)一、选择题1、点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm2、已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P 与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定3、下列说法正确的是()A.三点确定一个圆 B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线 D.三角形的内心到三角形三个顶点距离相等4、同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是()A.外离B.相切C.相交D.内含5、在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°6、如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65C.72 D.757、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与轴相离、与轴相切 B.与轴、轴都相离C.与轴相切、与轴相离 D.与轴、轴都相切8、如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24B.C.等于48 D.最大为489、已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满足条件的⊙C有()A、2个B、4个C、5个D、6个10、已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题11、如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.12、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8㎝,则AC的长等于_______㎝。

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③ B .①③④ C .①②③ D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合.正确的有( )A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是()A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A .πB .2πC .3πD .6π12.如图,已知在⊙O 中,AB=4, AF=6,AC 是直径,AC ⊥BD 于F ,图中阴影部分的面积是( )A. B.C. D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )2π- 2π C.π D.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,求弦BD 的长19.如图,在 Rt △ABC 中,∠C =90°,以 BC 为直径的⊙O 交 AB 于点 D ,过点 D 作∠ADE =∠A ,交 AC 于点 E .(1)求证:DE 是⊙O 的切线;(2)若34BCAC=,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与⊙O有怎样的位置关系?请说明理由.21.如图所示,一个圆锥的高为h=(1)圆锥的母线长与底面圆的半径之比;(2)母线AB与AC的夹角;(3)圆锥的全面积.答案1.A2.A3.D4.B5.A6.D7.D8.B9.A10.B11.C12.D13.A14.6.15.60°16.17.12018.解:如图,作CE ⊥AB 于E .∵∠B=180°-∠A-∠ACB=180°-20°-130°=30°,在Rt △BCE 中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=12BC=1,∵CE⊥BD,∴DE=EB,∴19.(1)证明:连接OD,如图,∵∠C=90°,∴∠A+∠B=90°,∵OB=OD,∴∠B=∠ODB,而∠ADE=∠A,∴∠ADE+∠ODB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE 是⊙O 的切线;(2)解:在Rt△ABC 中34 BC AC∴AC=43×15=20,∵ED 和EC 为⊙O 的切线,∴ED=DC,而∠ADE=∠A,∴DE=AE,∴AE=CE=DE12AC=10,即DE 的长为10.20.(1)连接OC ,D Q 为BC 的中点,∴CD BD =,12BOD BOC ∴∠=∠, 12BAC BOC ∠=∠, A DOB ∴∠=∠;(2)DE 与⊙O 相切,理由如下:A DOB ∠=∠,//AE OD ∴,∴∠ODE+∠E=180°,DE AE ⊥,∴∠E=90°,∴∠ODE=90°,OD DE ∴⊥,又∵OD 是半径,DE ∴与⊙O 相切.21.(1)设圆锥的母线长为l ,底面圆的半径为r .∵圆锥的侧面展开图是半圆,∴2r l ππ=,∴2l r =,∴21l r =::.即圆锥的母线长与底面圆的半径之比为2:1.(2)∵2l r =,即2AB BO =,∴30BAO ∠︒=,∴60BAC ∠︒=,即母线AB 与AC 的夹角为60︒.(3)在Rt AOB 中,222l h r =+,又2l r =,h =∴36r l =,=,∴227S S S rl r πππ全底=+=+=侧人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°3.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100°B.110°C.120°D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3B.12+6C.18+3D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2B.4 C.4D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣πB.2﹣πC.4﹣πD.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2 C.D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.15.△ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为.16.如图,BD为⊙O的直径,=,∠ABD=35°,则∠DBC=°.17.如图,在扇形AOB中,OA=OB=4,∠AOB=120°,点C是上的一个动点(不与点A,B重合),射线AD与扇形AOB所在⊙O相切,点P在射线AD上,连接AB,OC,CP,若AP=2,则CP的取值范围是.三.解答题18.如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.(1)求证:AC为⊙O切线;(2)点F为的中点,连接BF,若BC=,BD=8,求⊙O半径及DF的长.19.如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由;(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.20.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.22.如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.23.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.24.如图,⊙O的直径AB为10cm,点E是圆内接△ABC的内心,CE的延长线交⊙O于点D (1)求AD的长;(2)求DE的长.参考答案一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.3.解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.4.解:在优弧AB上取点C,连接AC、BC,由圆周角定理得,∠ACB=AOB=60°,由圆内接四边形的性质得到,∠APB=180°﹣∠ACB=120°,故选:C.5.解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.6.解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.7.解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x米,则x2+x2=42,解得:x=2,所以正方形桌布的边长是2米.故选:A.8.解:连接OA,OD∵OF⊥AD,∴AC=CD=,在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴AE=2,S阴影=S△OAE﹣S扇形OAF=×2×2﹣×π×22=2﹣π,故选:B.9.解:取DE的中点O,过O作OG⊥AB于G,连接OC,又∵CO=1.5,∴只有C、O、G三点一线时G到圆心O的距离最小,∴此时OG达到最小.∴MN达到最大.作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选:C.10.解:连接AO、PO、EO,设⊙O的半径为r,O C=x,OG=y,由勾股定理可知:,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=,∴正方形PCGQ的面积为6,故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =OB =1,在Rt △COD 中利用勾股定理可知:CD ==,AC =2CD =2,∵sin ∠COD ==, ∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =OB ×AC =×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 扇形AOC ﹣S 菱形ABCO =π﹣2, 故选:C .12.解:连接OD ,∵DF 为圆O 的切线,∴OD ⊥DF ,∵△ABC 为等边三角形,∴AB =BC =AC ,∠A =∠B =∠C =60°, ∵OD =OC ,∴△OCD 为等边三角形,∴∠CDO =∠A =60°,∠ABC =∠DOC =60°, ∴OD ∥AB ,∴DF ⊥AB ,在Rt △AFD 中,∠ADF =30°,AF =2, ∴AD =4,即AC =8,∴FB =AB ﹣AF =8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:C.二.填空题(共5小题)13.解:∵四边形OABC是平行四边形,OC=OA,∴OA=AB,∵OD⊥AB,OD过O,∴AE=BE,=,即OA=2AE,∴∠AOD=30°,∴和的度数是30°∴∠BAD=15°,故答案为:15.14.解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.15.解:作AH⊥BC于H,连结OB,如图,∵AB=AC,AH⊥BC,∴BH=CH=BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH==3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为:8或2.16.解:连接DA、DC,∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠ABD=35°,∴∠ADB=55°,由圆周角定理得,∠ACB=∠ADB=55°,∵=,∴AB=AC,∴∠ABC=∠ACB=55°,∴∠BAC=70°,由圆周角定理得,∠BDC=∠BAC=70°,∴∠DBC=20°,故答案为:20.17.解:如图,当O、C、P三点在一条直线上时,∵射线AD与扇形AOB所在⊙O相切,∴∠OAP=90°,∵AO=4,AP=2,∴=2,∴PC=2﹣4,过点O作OE⊥AB于点E,连接PE、PB,∵OA=OB=4,∠AOB=120°,∴∠OAB=∠OBA=30°,∴AE=BE=2,∠BAP=60°,∴AE=AP,∴△AEP是等边三角形,∴∠AEP=60°,∴∠EPB=30°,∴∠APB=90°,∴==6,∵点C不与A、B重合,∴PC的取值范围是2.故答案为:2.三.解答题(共7小题)18.(1)证明:连接OD,∵BD平分∠ABC,∴∠CBD=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ADO=∠C=90°,∴OD ⊥AC ,∴AC 为⊙O 切线;(2)解:∵BE 为⊙O 的直径,∴∠BDE =90°,∴∠C =∠BDE ,∵∠CBD =∠EBD ,∴△CBD ∽△DBE ,∴,即=,∴BE =10,∴⊙O 半径OB =5;∴DE =6,∵点F 为的中点,∴=,∴∠EDF =∠BDF =45°,过B 作BM ⊥DF 于M ,过E 作EN ⊥DF 于N ,连接EF ,∴BM =BD =4,EN =DE =3,EF =BE =5, ∴S 四边形BDEF =S △BEF +S △BDE =S △DEF +S △DBF ,∴×5×5+×6×8=×3DF +×4DF ,∴DF =7.19.解:(1)ME =MG 成立,理由如下:如图,连接EO ,并延长交⊙O 于N ,连接BC ;∵AB是⊙O的直径,且AB⊥DE,∴,∵点D是的中点,∴,∴,∴,即A C=DE,∠N=∠B;∵ME是⊙O的切线,∴∠MEG=∠N=∠B,又∵∠B=90°﹣∠GAF=∠AGF=∠MGE,∴∠MEG=∠MGE,故ME=MG.(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;故DE=AC=2DF=4;∵∠FAG=∠CAB,∠AFG=∠ACB=90°,∴△AFG∽△ACB,∴,即,解得AG=,GC=AC﹣AG=;设ME=MG=x,则MC=x﹣,MA=x+,由切割线定理得:ME2=MC•MA,即x2=(x﹣)(x+),解得MG=x=;∴AG:MG=:=10:3,即AG与GM的比为.20.(1)证明:如图1,连接OE,∵四边形ABCD是平行四边形,∴AB∥CD,∵DC是⊙O的切线,∴OE⊥CD,∴OE⊥AB,∴∠EOB=90°,∵OE=OB,∴∠ABE=45°;(2)解:如图2,连接OE,则OE⊥CD,设DE=x,则CE=2x,∴AB=CD=3x,∴OA=OE=OB=1.5x,过D作DG⊥AB于G,∴DG=OE=1.5x,OG=DE=x,∴AG=x,∵AB是⊙O的直径,∴∠AFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠AFB=90°,∠BCF=∠DFC,Rt△ADG中,BC=AD===,∵∠A=∠A,∠AFB=∠AGD=90°,∴△AGD∽△AFB,∴,∴=,∴BF=,Rt△BFC中,tan∠DFC=tan∠BCF===.21.解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=5,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,∴AD⊥OA,∵AO是⊙O的半径,∴AD是⊙O的切线,又∵DF是⊙O的切线,∴AD=DF,同理可得CE=CF,∵CD=DF+CF,∴CD=AD+CE.(2)解:连接OD,AF相交于点M,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE==4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=.23.解:(1)∵∠ABC=∠AMC=60°,而AB=AC,∴△ABC为等边三角形,∴△ABC的面积=BC2=×36=9;(2)MA=MB+MC,理由如下:∵BD=DM,∠AMB=∠ACB=60°,∴△BDM为正三角形,∴BD=BM,∵∠ABC=∠DBM=60°,∴∠ABC﹣∠DBC=∠DBM﹣∠DBC,∴∠ABD=∠CBM,在△ABD与△CBM中,,∴△ABD≌△CBM(SAS),∴AD=CM,∴MA=MD+AD=MB+MC.24.解:(1)连接BD,如图,∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵点E是圆内接△ABC的内心,∴CE平分∠ACB,∴∠1=45°,∴∠DBA=∠1=45°,∴△ADB为等腰直角三角形,∴AD=AB=×10=5;(2)连接AE,如图,∵点E是圆内接△ABC的内心,∴∠2=∠4,∵∠1=∠5,∴∠3=∠1+∠2=∠5+∠4,即∠3=∠DAE,∴DE=DA=5.人教版九年级数学(上)第24章《圆》单元检测题一.选择题1.如图,AO是圆锥的高,圆锥的底面半径OB=0.7,AB的长为2.5,则AO的长为()A.2.4 B.2.2 C.1.8 D.1.62.如图,OA为⊙O的半径,点P为OA的中点,Q为⊙O上的点,且∠APQ=135°,若OA=2,则PQ的长度为()A.B.C.3D.3.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含4.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°5.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°6.下列命题错误的是()A.经过平面内三个点有且只有一个圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.圆内接菱形是正方形7.如图,A、B、C是半径为4的⊙O上的三点.如果∠ACB=45°,那么的长为()A.πB.2πC.3πD.4π8.如图,已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内9.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.6﹣πB.6﹣πC.12﹣πD.12﹣π10.如图,BC是⊙O的直径,AB是⊙O的弦,PA,PC均是⊙O的切线,若∠B=40°,则∠P 的度数是()A.80°B.90°C.100°D.120°11.如图,⊙O直径是10,弦AB长为8,M是AB上的一个动点,则OM的长度不可能是()A.5 B.4 C.3 D.212.如图,⊙C过原点,且与坐标轴分别交于点A和点B,点A的坐标为(0,3),点B的坐标为(﹣3,0),且M是第三象限内⊙C上一点,则∠BMO的度数为()A.100°B.110°C.120°D.130°二.填空题13.在边长为的正方形OABC中,D为边BC上一点,且CD=1,以O为圆心,OD为半径作圆,分别与OA、OC的延长线交于点E、F,则阴影部分的面积为.14.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.16.如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.17.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).18.在⊙O中,直径AB=4,PD与⊙O相切于点C,交AB的延长线与点D,且∠PDO=30°,则劣弧的弧长为.三.解答题19.如图,CD是⊙O的直径,若AB⊥CD,垂足B.(1)若∠OAB=40°,求∠C度数;(2)若∠C=30°,AC=4,求⊙O的直径.20.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)PC=2,OA=4,求⊙O的半径.21.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.23.如图,AB是⊙O的直径,AE交⊙O于点F,且与⊙O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求⊙O的半径.24.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.(1)求AC与BD的长;(2)求四边形ADBC的面积.25.如图,在⊙O中,直径CD⊥弦AB于点E,点P是CD延长线上一点,连接PB、BD.(1)若BD平分∠ABP,求证:PB是⊙O的切线;(2)连接AP,延长BD交AP于点F,若BD⊥AP,AB=,OP=,求OE的长度.参考答案一.选择题1.解:由勾股定理得,AO==2.4,故选:A.2.解:作OE⊥PQ于E,连接OQ.∵AP=OP=1,∠APQ=135°,∴∠OPE=45°,∴OE=PE=,在Rt△OQE中,QE===,∴PQ=PE+QE=+=,故选:D.3.解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选:A.4.解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.5.解:∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.6.A、当三点在一直线上时,三点不共圆;故本项错误,符合题意;B、三角形的外心是三角形外接圆的圆心,即三角形三边垂直平分线的交点;它到三角形三个顶点的距离都相等;故本选项正确,不符合题意;C、因为在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立;故本选项正确,不符合题意;D、因为在菱形中只有正方形外接圆;故本项正确,不符合题意;故选:A.7.解:如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°,∵OA=4,∴的长是:=2π.故选:B.8.解:∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选:A.9.解:∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积是:=6×=6,∠FAB=∠EDC =120°,∴图中阴影部分的面积是:6﹣=,故选:B.10.解:连接OA,∵∠B=40°,∴∠AOC=2∠B=80°,∵PA,PC均是⊙O的切线,∴∠OAP=∠OCP=90°,∴∠AOC+∠P=180°,∴∠P=100°,故选:C.11.解:过点O作OD⊥AB于点D,连接OA,由垂线段最短可知当M于点D重合时OM最短,当OM是半径时最长,∵,⊙O的直径为10,∴OA=5,∵弦AB的长为8,OD⊥AB,∴AD=AB=4,在Rt△OAD中,OD===3,∴当OM=3时最短,∴OM长的取值范围是:3≤OM≤5.∴OM的长度不可能是2.故选:D.12.解:∵点A的坐标为(0,3),点B的坐标为(﹣3,0),∴OA=3,OB=3,∴tan∠BAO==,∴∠BAO=60°,∵四边形ABMO是圆内接四边形,∴∠BMO=120°,故选:C.二.填空题(共6小题)13.解:在Rt△OCD中,OD===2,∴∠COD=30°,在Rt△COD和Rt△AOG中,,∴Rt△COD≌Rt△AOG(HL)∴AG=CD=1,∠AOG=∠COD=30°,∴∠DOG=30°,∴阴影部分的面积=×﹣×1××2﹣=3﹣﹣,故答案为:3﹣﹣.14.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON =∠MOB =×40°=20°,由对称性,∠N ′OB =∠BON =20°,∴∠MON ′=∠MOB +∠N ′OB =40°+20°=60°, ∴△MON ′是等边三角形,∴MN ′=OM =OB =AB ==4,∴△PMN 周长的最小值=1+4=5,故答案为:5.15.解:连接OD ,∵CD ⊥AB 于点E ,直径AB 过O ,∴DE =CE =CD =×8=4,∠OED =90°,由勾股定理得:OD ===5,即⊙O 的半径为5.故答案为:5.16.解:如图,连接AF 、DF ,由圆的定义,AD =AF =DF , 所以,△ADF 是等边三角形,∵∠BAD =90°,∠FAD =60°,∴∠BAF =90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.17.解:∵在矩形ABCD 中,AB =3,AD =2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π, 故答案为:6﹣π18.解:∵PD 切⊙O 于C ,∴∠OCD =90°,∵∠PDO =30°,∴∠COD =60°,∴∠AOC =120°,∵直径AB =4,∴半径是2,∴劣弧的弧长是=,故答案为:. 三.解答题(共7小题)19.解:(1)∵AB ⊥CD ,∠OAB =40°,∴∠AOB =50°,∵OA =OC ,∴∠C =∠CAO ,∴∠AOB =2∠C =50°,∴∠C =25°;(2)连接AD ,∵CD 是⊙O 的直径,∴∠CAD =90°,∵∠C =30°,AC =4,∴CD =AC =2.∴⊙O 的直径是2.20.(1)证明:连结OB,如图,∵AB=AC,∴∠1=∠2,∵OA⊥AC,∴∠2+∠3=90°,∵OB=OP,∴∠4=∠5,而∠3=∠4,∴∠5+∠2=90°,∴∠5+∠1=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作OH⊥PB于H,如图,则BH=PH,设⊙O的半径为r,则PA=OA﹣OP=4﹣r,在Rt△PAC中,AC2=PC2﹣PA2=(2)2﹣(4﹣r)2,在Rt△OAB中,AB2=OA2﹣OB2=42﹣r2,而AB=AC,∴(2)2﹣(4﹣r)2=42﹣r2,解得r=1,即⊙O的半径为1.21.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.22.证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴,在Rt△OCD中,.∴.∴图中阴影部分的面积为2﹣π.23.(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB,(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°∵∠1=∠2,∴△ACD∽△ABC,∴=,∵AC2=AD2+CD2=42+82=80,∴AB===10,∴⊙O的半径为10÷2=5.24.解:(1)∵AB是直径,∴∠ACB=90°,∴AC==6(cm),∵CD平分∠ACB,∴BD=AD=AB=5(cm);(2)四边形ADBC的面积=△ABC的面积+△ADB的面积=×6×8+×5×5=49(cm2).25.(1)证明:连接BC,BO,∵CD是⊙O的直径,∴∠CBD=90°,∵CD⊥AB,∴∠DBE=∠C=90°﹣∠CDB,∵OB=OC,∴∠OBC=∠C,∵∠PBD=∠EBD,∴∠PBD=∠OBC,∴∠PBO=90°,∴PB是⊙O的切线;(2)解:连接BC,BO,∵CD是⊙O的直径,∴BC⊥BD,∵BD⊥AP,∴AP∥BC,∴∠C=∠APC,∵CD是⊙O的直径,CD⊥AB,∴AE=BE,∴AP=BP,∴∠APC=∠BPC,∴∠C=∠BPC,∴CE=PE,设OE=x,CO=BO=r,∴r+x=﹣x,∴r=﹣2x,∵AB=,∴BE=AB=,在Rt△BEO中,BO2=OE2+BE2,即(﹣2x)2=x2+()2,解得:x=,x=(不合题意,舍去),∴OE=.。

第二十四章 圆单元测试试题(含答案)

第二十四章 圆单元测试试题(含答案)

24章 《圆》单元测试(时间120分钟 总分150分)姓名:__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。

其中不正确的有( )个 A 、1 B 、2 C 、3 D 、42、如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD.如果∠DAC =78°,那么∠ADO 等于( )A 、70°B 、64°C 、62°D 、51°3、已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A 、相交B 、相切C 、相离D 、无法确定4、如图,在直角坐标系中,一个圆经过坐标原点O ,交坐标轴于点E ,F ,OE =8,OF =6,则圆的直径长为( )A 、12B 、10C 、14D 、155、如图,直线PA PB ,是O 的两条切线,A B ,分别为切点,120APB =︒∠,10OP = 厘米,则弦AB 的长为( ) A 、53厘米B 、5厘米C 、103厘米D 、532厘米 6、如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是( )A 、55°B 、60°C 、65°D 、70°7、已知A 、B 、C 三点在⊙O 上,且AB 是⊙O 内接正三角形的边长,AC 是⊙O 内接正方形的边长,则∠BAC 的度数为( )A 、15°或105°B 、75°或15°C 、75°D 、105°8、如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( )A 、24329B 、81329C 、8129D 、813289、在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示.若AB=4,AC=2,S 1﹣S 2=,则S 3﹣S 4的值是( )A 、B 、C 、D 、10、如图,点A ,B ,C 均在⊙O 上,若∠A=66°,则∠OCB 的度数是( )A 、24°B 、28°C 、33°D 、48°11、如图,从一张腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A 、10cmB 、15cmC 、10cmD 、20cm12、如图,已知A 、B 两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1,E 是⊙C 上的一动点,则△ABE 面积的最大值为( ) A 、2+B 、3+C 、3+D 、4+二、填空题(共6小题,每小题4分,共24分)13、如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若 BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为 .14、已知一条弧的长是3πcm ,弧的半径是6cm ,则这条弧所对的圆心角是 度15、已知一圆锥的底面半径为1cm ,母线长为4cm ,则它的侧面积为________cm 2(结果保留π). 16、如图,四边形ABCD 内接于半圆O ,其中点A ,D 在直径上,点B ,C 在半圆弧上,AB ∥CD ,∠B=90°,若AO=3,∠BAD=120°,则BC= .17、如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC 的长为半径作CD ︵交OB 于点D.若OA =2,则阴影部分的面积为________.18、如图,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB ,其中正确的结论是________(填序号).三、解答题(共8小题,共78分)19、(8分)如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l ,求⊙O的半径.20、(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.21、(8分)如图,已知在⊙O 中AB=43,AC 是⊙O 的直径,AC⊥BD 于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.22、(8分)已知一个圆的半径为6cm,这个圆的内接正六边形的周长和面积各是多少?23、(10分)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线; (2)若DE=1,BC=2,求劣弧的长l.24、(10分)如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?25、(12分)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图1),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图2),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.26、(14分)如图,已知∠xOy=90°,线段AB=10,若点A在Oy上滑动,点B随着线段AB在射线Ox上滑动(A,B与O不重合),Rt△AOB的内切圆☉K分别与OA,OB,AB切于点E,F,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.【参考答案】 1.D 2.B 3.C 4.B 5.D 6.C 7.B 8.C 9.D 10.D 11.D 12.A 13. 414. 90015. 4π 16. 3.17.32+π12(提示:连接OE.∵点C 是OA 的中点,∴OC =12OA =1.∵OE =OA =2,∴OC =12OE.∵CE ⊥OA ,∴∠OEC =30°.∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB=90°,∴∠BOE =∠AOB -∠COE =30°.∴S 扇形BOE =30π×22360=π3.又S 扇形COD =90π×12360=π4.因此S 阴影=S 扇形BOE +S △OCE -S 扇形COD =π3+32-π4=π12+32.)20.证明:连接OC ,∵OA ⊥CE ,OB ⊥CF ,∴EM=CM ,NF=CN ,∠CMO=∠CNO=90°, ∵C 为的中点, ∴∠AOC=∠BOC , 在△CNO 与△CNO 中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.21.(1)过O 作OE⊥AB 于E,∴AE=23,又∠A=30°,∴AO=4,∠BOC=60°,则有∠BOD=120°,∴S阴影=120360·π·42=163π;(2)∵BCD=120180·π×4=83=2πr,∴r=43,即底面圆半径为43.22.解:如图所示,⊙O 中内接正六边形,OA=6cm.∵正六边形内接于⊙O,∴中心角∠AOB=60°,∴△AOB 是等边三角形,∴AB=OA=6cm,∴周长为::6 AB=36cm.过O 点作OD⊥AB,∴∠AOD=30°,∴AD=12OA=3cm,∴由勾股定理可得OD=33cm,∴S△OAB=12×6×33=93(cm2),∴S正六边形=6×93=543 (cm2).23.(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)解:连接OD ,DC , ∵∠DAC= 21∠DOC ,∠OAC= 21∠BOC , ∴∠DAC=∠OAC ,∵ED=1,DC=2, ∴∠ECD=30°, ∴∠OCD=60°, ∵OC=OD ,∴△DOC 是等边三角形,∴∠BOC=∠COD=60°,OC=2, ∴l==32π. 24.解:学校受到噪音影响.理由如下: 作AH ⊥MN 于H ,如图, ∵PA=160m ,∠QPN=30°,∴AH=21PA=80m , 而80m <100m ,∴拖拉机在公路MN 上沿PN 方向行驶时,学校受到噪音影响, 以点A 为圆心,100m 为半径作⊙A 交MN 于B 、C ,如图, ∵AH ⊥BC ,∴BH=CH ,在Rt △ABH 中,AB=100m ,AH=80m , BH==60m ,∴BC=2BH=120m ,∵拖拉机的速度=18km/h=5m/s , ∴拖拉机在线段BC 上行驶所需要的时间=5120=24(秒), ∴学校受影响的时间为24秒.25.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD ,∵CD是☉O的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.26.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.∵S=ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5.。

人教版九年级上册数学 第24章 《圆》单元测试(含参考答案与试题解析)

人教版九年级上册数学 第24章 《圆》单元测试(含参考答案与试题解析)

九年级数学《圆》单元测试学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+4.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上5.已知⊙O和⊙O′的半径分别为5cm和7cm,且⊙O和⊙O′相切,则圆心距OO′为()A.2 cm B.7 cm C.12 cmD.2 cm或12 cm6.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.27.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=度时,△OBC和△ABD的面积相等;②当∠BAD=度时,四边形OBCD是正方形.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为时,四边形ABCD是菱形.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.参考答案与试题解析一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l=计算即可求出n.【解答】解:设圆锥的展开图扇形的圆心角的度数为n.∵圆锥的底面圆的周长=2π•10=20π,∴圆锥的展开图扇形的弧长=20π,∴20π=,∴n=120.故选C.2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选B.4.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上【分析】根据点与圆的位置关系进行判断.【解答】解:∵d≥R,∴点P在⊙O上或点P在⊙O外.故选D.5.已知⊙O和⊙O′的半径分别为5cm和7cm,且⊙O和⊙O′相切,则圆心距OO′为()A.2 cm B.7 cm C.12 cmD.2 cm或12 cm【分析】此题考虑两种情况:两圆外切或两圆内切.再进一步根据位置关系得到数量关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.【解答】解:当两圆外切时,则圆心距等于两圆半径之和,即7+5=12;当两圆内切时,则圆心距等于两圆半径之差,即7﹣5=2.故选D.6.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.2【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.7.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°【分析】由AB是⊙O的直径,可得知∠ACB=90°,根据三角形内角和为180°可求出∠BAC 的度数,再由同弦的圆周角相等得出结论.【解答】解:∵线段AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=180°﹣∠ACB﹣∠ABC=58°.∵∠CDB与∠BAC均为弦BC的圆周角,∴∠CDB=∠BAC=58°.故选A.8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°【分析】由A,B,C是⊙O上的三点,已知∠AOC=110°,根据圆周角定理,即可求得答案.【解答】解:∵A,B,C是⊙O上的三点,∠AOC=110°,∴∠ABC=∠AOC=55°.故B.9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故选C.10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π【分析】首先证明OE=OC=OB,则可以证得△OEC≌△BED,则S阴影=半圆﹣S扇形OCB,利用扇形的面积公式即可求解.【解答】解:连结BC.∵∠COB=2∠CDB=60°,又∵OB=OC,∴△OBC是等边三角形.∵E为OB的中点,∴CD⊥AB,∴∠OCE=30°,CE=DE,∴OE=OC=OB=2,OC=4.S阴影==.故选D.二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【分析】根据菱形的性质得到∠ACB=∠DCB=(180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是﹣π.【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图,连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×3﹣(﹣×32)=﹣π.故答案为:﹣π.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长2.【分析】由已知条件可知Rt△POA中,OP=2OA,所以可求出∠P=30°,∠O=60°,再在Rt△AOC中,利用勾股定理求解直角三角形即可得到AB的长.【解答】解:∵PA与⊙O相切于点A,∴OA⊥AP,∴三角形△POA是直角三角形,∵OA=2,OP=4,即OP=2OA,∴∠P=30°,∠O=60°,则在Rt△AOC中,OC=OA=1,则AC=,∴AB=2,故答案为2.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.【分析】(1)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;(3)最后由三角形面积公式即可求得OF的长.【解答】解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBE+∠OCF=90°,∴∠BOC=90°;(2)由(1)知,∠BOC=90°.∵OB=6cm,OC=8cm,∴由勾股定理得到:BC==10cm,∴BE+CG=BC=10cm.(3)∵OF⊥BC,∴OF==4.8cm.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.【分析】(1)根据切线长定理得到AE=AF,∠EAO=∠FAO,根据等腰三角形的性质得到AD ⊥EF,根据三角形的内角和得到∠B=∠C=(180°﹣∠BAC),∠AEF=(180°﹣∠BAC),等量代换得到∠AEF=∠B,根据平行线的性质即可得到结论.(2)由AG等于⊙O的半径,得到AO=2OE,由AB是⊙O的切线,得到∠AEO=90°,根据直角三角形的性质得到∠EAO=30°,根据三角形的内角和得到∠AOE=60°,由垂径定理得到DM=MN=,根据三角函数的定义得到∠MOD=60°,根据扇形的面积公式即可得到结论.【解答】(1)证明:∵AB、AC相切于E、F两点,∴AE=AF,∠EAO=∠FAO,∴AD⊥EF,∵AB=AC,∴∠B=∠C=(180°﹣∠BAC),∵AE=AF,∴∠AEF=(180°﹣∠BAC),∴∠AEF=∠B,∴EF∥BC,∴AD⊥BC;(2)解:∵AG等于⊙O的半径,∴AO=2OE,∵AB是⊙O的切线,∴∠AEO=90°,∴∠EAO=30°,∴∠AOE=60°,∵AE=2,∴OE=2,∵OD⊥MN,∴DM=MN=,∵OM=2,∴sin∠MOD==,∴∠MOD=60°,∴∠EOM=60°,∴S扇形EOM==π.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD是正方形.【分析】(1)连接OD.只要证明△COD≌△COB,即可推出∠ODC=∠OBC=90°,推出CD是⊙O的切线.(2))①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD 是正方形.【解答】(1)证明:连接OD.∵AD∥CO,∴∠A=∠BOC,∠ADO=∠DOC,∵OA=OD,∴∠A=∠ADO,∴∠BOC=∠DOC,在△COD和△COB中,,∴△COD≌△COB,∴∠ODC=∠OBC=90°,∴CD是⊙O的切线.(2)①当∠BAD=60度时,△OBC和△ABD的面积相等;理由此时AD=OB,AB=OC,△OBC≌△DAB,所以面积相等.②当∠BAD=45度时,四边形OBCD是正方形.此时∠DOB=90°,∵∠ODC=∠OBC=90°,∴四边形OBCD是矩形,∵OB=OD,∴四边形OBCD是正方形.故答案分别为60,45.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E 点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.【分析】(1)连接AD,由CD是⊙O的直径,得到AD⊥AC,推出AD∥OB,根据平行线等分线段定理得到PA=AB;(2)根据相似三角形的性质得到OB=8,求得AD=4,根据勾股定理得到AC==4,根据垂径定理得到AE=CE=2,由勾股定理即可得到结论【解答】解:(1)A是PB的中点,理由:连接AD,∵CD是⊙O的直径,∴AD⊥AC,∵OB⊥AC,∴AD∥OB,∵PD=OD,∴PA=AB,∴A是PB的中点;(2)∵AD∥OB,∴△APD∽△BPO,∴,∵⊙O半径为8,∴OB=8,∴AD=4,∴AC==4,∵OB⊥AC,∴AE=CE=2,∵OE=AD=2,∴BE=6,∴BC==4.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足当AC=AP时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为60时,四边形ABCD是菱形.【分析】(1)作CE⊥AB于E,由于CA=CB,根据等腰三角形的性质得CE为AB的垂直平分线,则点O在CE上,再根据平行四边形的性质得AB∥CD,(2)当AC=AP时,△CPA≌△ABC.由于AC=BC,AC=AP,则∠ABC=∠BAC,∠APC=∠ACP,根据圆周角定理得∠ABC=∠APC,则∠BAC=∠ACP,加上AC=CA,即可得到△CPA≌△ABC;(3)如图2,连接OC,AC,OB,根据平行线的性质得到∠BCD=120°,根据切线的性质得到∠OCD=90°,推出BO垂直平分AC,即可得到结论.【解答】(1)证明:连接CO并延长交AB于E,如图,∵CD与⊙O相切于点C,∴CE⊥CD,∵四边形ABCD为平行四边形,∴AB∥CD,∴CE⊥AB,∴AE=BE,∴BC=AC;(2)解:当AC=AP时,△CPA≌△ABC.证明如下:∵AC=BC,AC=AP,∴∠ABC=∠BAC,∠APC=∠ACP,∵∠ABC=∠APC,∴∠BAC=∠ACP,在△CPA与△ABC中,,∴△CPA≌△ABC;故答案为:AC=AP;(3)解:当∠ABC的度数为60°时,四边形ABCD是菱形,如图2,连接OC,AC,OB,∵∠ABC=60°,∴∠BCD=120°,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠BCO=30°,∵OB=OC,∴∠OBC=30°,∴∠ABO=30°,∴BO垂直平分AC,∴AB=BC,∴四边形ABCD是菱形.故答案为:60°.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.【分析】(1)由垂直定义得∠E=∠CFD=90°,根据中线知BD=CD,利用“AAS”证△BED≌△CFD 可得答案;(2)根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.【解答】解:(1)∵分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F,∴∠E=∠CFD=90°,∵AD是中线,∵BD=CD,在△BED和△CFD中,∵,∴△BED≌△CFD(AAS),∴BE=CF;(2)∵AB为⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°又∵∠BAC=2∠B∴∠B=30°,∠BAC=60°∵OA=OC∴△OAC是等边三角形.∴OA=AC=6,∠AOC=60°∵AP是⊙O的切线.∴∠OAP=90°∴在直角△OAP中,∠P=90°﹣∠AOC=90°﹣60°=30°∴OP=2OA=2×6=12,∴PA===6.。

人教版九年级数学上《第二十四章圆》单元测试题含答案

人教版九年级数学上《第二十四章圆》单元测试题含答案

第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。

人教版九年级数学上册《第24章 圆》单元测试题(含答案)

人教版九年级数学上册《第24章 圆》单元测试题(含答案)

人教版九年级数学上册《第24章圆》单元测试题一.选择题(共10小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.122.如图,已知⊙C的半径为2,圆外一点O满足OC=3.5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为()A.2B.2.5C.3D.3.53.⊙O的半径为3,圆心O到直线l的距离为3,直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切4.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于()A.9πB.18πC.24πD.36π5.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20D.9°6.如图,△ABC是正三角形,曲线ABCDEF…叫做“正三角形的渐开线”,其中弧CD,弧DE,弧EF,…圆心依次按A,B,C循环,它们依次相连接,如果AB=1,那么曲线CDEF的长是()A.8πB.6πC.4πD.2π7.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8B.10C.D.8.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示的位置,第2秒中P点位于点C的位置,……,则第2018秒点P所在位置的坐标为()A.(,)B.(0,1)C.(0,﹣1)D.(,﹣)9.如图,已知直线y=x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26B.24C.22D.2010.已知扇形的半径为3,圆心角为60°,则扇形的面积等于()A.B.πC.D.二.填空题(共8小题)11.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)12.如图,在平面直角坐标系中,已知点A(2,0),B(2﹣a,0),C(2+a,0)(a>0),若点P在以D(5,6)为圆心,2为半径的圆上运动,且始终满足∠BPC=90°,则a的取值范围是.13.若半径为6cm的圆中,一段弧长为3πcm,则这段弧所对的圆心角度数为.14.如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,则△ABC的面积为.15.如图,有一座石拱桥,上部拱顶部分是圆弧形,跨度BC=10m,拱高为(10﹣5)m,那么弧BC所在圆的半径等于.16.如图,AB是⊙O的直径,M、N分别是AO,BO的中点,CM⊥AB,DN⊥AB,则的度数.17.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.18.一个边长为4的正四边形的半径是.三.解答题(共8小题)19.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD 能通过这个隧道吗?请说明理由.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,若EC=BC,且∠1=∠2.求证:DC =BC.21.如图,⊙O的两条弦AB,CD交于点E,OE平分∠BED.(1)求证:AB=CD.(2)若∠BED=60°,EO=2,求BE﹣AE的值.22.如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.23.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为上一动点,求证:PA=PC+PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.24.已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.25.如图,已知OA、OB是⊙O的两条半径,C、D为OA、OB上的两点,且AC=BD.求证:AD =BC.26.Rt△ABC中,∠C=90°,点E在AB上,BE=AE=2,以AE为直径作⊙O交AC于点F,交BC于点D,且点D为切点,连接AD、EF.(1)求证:AD平分∠BAC;(2)求阴影部分面积.(结果保留π)参考答案与试题解析一.选择题(共10小题)1.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.2.解:连接OP,PC,OC,∵OP≥OC﹣PC=3.5﹣2=1.5,∴当点O,P,C三点共线时,OP最小,最小值为1.5,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,AB有最小值为2OP=3,故选:C.3.解:∵圆心到直线的距离=圆的半径,∴直线与圆的位置关系为相切.故选:B.4.解:圆锥的侧面积=×2π×3×6=18π.故选:B.5.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.6.解:∵∠CAD,∠DBE,∠ECF是等边三角形的外角,∴∠CAD=∠DBE=∠ECF=120°AC=1∴BD=2,CE=3∴弧CD 的长=×2π×1弧DE 的长=×2π×2弧EF 的长=×2π×3∴曲线CDEF =×2π×1+×2π×2+×2π×3=4π. 故选:C .7.解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =8,∴BD =CD =4,∠BDO =90°,由勾股定理得:OD ===3, ∴AD =OA +OD =5+3=8,在Rt △ADB 中,由勾股定理得:AB ==4, 故选:D .8.解:作PE ⊥OA 于E ,∵OP =1,∠POE =45°,∴OE =PE =,即点P 的坐标为(,), 则第2秒P 点为(0,1),根据题意可知,第3秒P 点为(﹣,),第4秒P 点为(﹣1,0),第5秒P 点为(﹣,﹣),第6秒P 点为(0,﹣1),第7秒P 点为(,﹣),第8秒P 点为(1,0), 2018÷8=252……2,∴第2018秒点P 所在位置的坐标为(0,1),故选:B .9.解:过D作DM⊥AB于M,连接BD,如图,由题意:B(8,0),C(0,﹣6),∴OB=8,OC=6,BC=10,则由三角形面积公式得,×BC×DM=×OB×DC,∴10×DM=64,∴DM=6.4,∴圆D上点到直线y=x﹣6的最小距离是6.4﹣2=4.4,∴△ABC面积的最小值是×10×4.4=22,故选:C.10.解:扇形的面积==,故选:A.二.填空题(共8小题)11.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,但弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确,正确的结论有②③,故答案为:②③.12.解:∵A(2,0),B(2﹣a,0),C(2+a,0),∴AB=AC=a,∵∠BPC=90°,∴PA=AB=BC=a,∵DA==3,∴点P为直线AD与圆的交点重合时,a取最大和最小值,即3﹣2≤a≤3+2.故答案为3﹣2≤a≤3+2.13.解:圆心角的度数为3π×180°÷6π=90°.故答案为:90°.14.解:设CE=x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.=AC•BC∴S△ABC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12;故答案为:12.15.解:设圆弧所在圆的圆心为O,半径为r,连接OB,过O作OA⊥BC于D交于A,则BD=BC=5,AD=10﹣5,∴OD=r﹣10+5,∵OB2=BD2+OD2,∴r2=52+(r﹣10+5)2,解得:r=10,故答案为:10.16.解:∵AB是⊙O的直径,M、N分别是AO,BO的中点,∴2OM=OC,2ON=OD,∵CM⊥AB,DN⊥AB,∴∠CMO=∠DNO=90°,∴∠MCO=∠NDO=30°,∴∠MOC=∠NOD=60°,∴∠COD=180°﹣60°﹣60°=60°,∴的度数是60°,故答案为:60°17.解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.18.解:连接OA、OB,如图所示,∵四边形ABCD是正四边形,∴∠AOB==90°,∴△AOB是等腰直角三角形,∴OA=OB=AB=2;故答案为:2.三.解答题(共8小题)19.解:如图所示:连接OC,∵OA=AE=0.5m,∴OB=1.9+0.5=2.4m,∴BC===3.2>3m∴一辆高3米,宽1.9米的卡车能通过隧道.20.证明:∵EC=BC,∴∠CBE=∠CEB,∴∠1+∠CBD=∠2+∠BAC,∵∠1=∠2,∴∠CBD=∠BAC,∵∠BAC=∠BDC,∴∠CBD=∠BDC,∴BC=CD.21.(1)证明:过点O作AB、CD的垂线,垂足为M、N,如图,∵OE平分∠BED,且OM⊥AB,ON⊥CD,∴OM=ON,∴AB=CD;(2)解:∵∠BED=60°,OE平分∠BED,∴∠BEO=∠BED=30°,∵OM⊥AB,∴∠OME=90°,∵OE=2,∴∴=1,∴==,∵OM⊥AB,∴BM=AM,∴BE﹣AE=BM+EM﹣(AM﹣EM)=2EM=2.22.(Ⅰ)证明:连接OD,OB.∵D为的中点,∴∠BOD=∠COD.∵OB=OC,∴OD⊥BC,∴∠OGC=90°.∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(Ⅱ)解:∵四边形ABDC是⊙O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A+2∠A=180°,∴∠A=60°,∵OA=OB,∴△OAB等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴=.23.证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠PAC,∴△BEC≌△APC,∴PA=BE=PB+PC.(2分)(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(4分)(3)答:;证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴∴(7分)24.解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∵AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴=,∴∠ABD=∠CBD=×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.25.解:∵OA、OB是⊙O的两条半径,∴AO=BO,∵AC=BD,∴OC=OD,在△OCB和△ODA中,∴△OCB≌△ODA(SAS),∴AD=BC.26.(1)证明:连接OD交EF于M.∵BC切⊙O于D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠DAC=∠ODA,∵OD=OA,∴∠OAD=∠ODA,∴∠OAD=∠DAC,∴AD平分∠ABC.(2)连接OF.∵AE是直径,∴∠AFE =90°,∵EF ∥BC ,∴==,∵∠C =∠AFE =∠ODC =90°, ∴四边形DMFC 是矩形,∴DM =CF =AF ,∵OM =DM =OD =OE , ∴∠OEM =30°,∴∠EOF =120°,∵BE =AE =2,∴OE =2,∴OM =1,EM =,EF ﹣2,∴S 阴=S 扇形OEF ﹣S △OEF =﹣×2×1=﹣.。

第24章《圆》单元复习测试题(含答案)

第24章《圆》单元复习测试题(含答案)

九年级数学第二十四章《圆》单元复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.已知AB是半径为6的圆的一条弦,则AB的长不可能是()A.8 B.10 C.12 D.142.已知⊙O的半径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断3.在圆内接四边形ABCD中,∠A=80°,则∠A的对角∠C=()A.20°B.40°C.80°D.100°4.如题4图,在⊙O中,AB=AC.若∠B=75°,则∠A的度数为()题4图A.15°B.30°C.75°D.60°5.如题5图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=36°,则∠D的度数为()题5图A.72°B.54°C.45°D.36°6.已知半径为9的扇形的弧长为6π,该扇形的面积为()A.18πB.27πC.36πD.54π7.如题7图,点I为△ABC的外心,且∠BIC=150°,则∠A的度数为()题7图A.70°B.75°C.140°D.150°8.如题8图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长,交⊙O于点C,连接AC.若AB =8,∠P=30°,则AC=()A .43B .42C .4D .39.小英家的圆形镜子被打碎了,她拿了如题9图(网格中的每个小正方形边长为1)所示的一块碎片到玻璃店,配制成形状、大小与原来 一致的镜面,则这个镜面的半径是( )A .2B .5C .22D .310.如题10图,将矩形ABCD 绕点A 逆时针旋转90°得到矩形AEFG ,点D 的旋转路径为DG .若AB =2,BC =4,则阴影部分的面积为( )A .π2B .8π3C .4π3+43D .4π3+23二、填空题(本大题7小题,每小题4分,共28分)11.已知⊙O 的半径为5cm ,点P 在⊙O 内,则OP ________5cm.(填“>”“<”或“=”) 12.如题12图,⊙O 的半径为6,OA 与弦AB 的夹角是30°,则弦AB 的长是__________.13.如题13图,从⊙O 外一点P 引⊙O 的两条切线P A ,PB ,切点分别是A ,B ,若P A =6cm ,C 是AB 上一动点(点C 与A ,B 两点不重合),过点C 作⊙O 的切线,分别交P A ,PB 于点D ,E ,则△PED 的周长是________cm.14.如题14图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =________.题14图15.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝处忽略不计),则这个圆锥的底面圆的半径为________.16.如题16图,AB 是⊙O 的弦,AB =8,C 是⊙O 上一动点,且∠ACB =45°.若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是________.题16图17.如题17图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B ,直线MN 与l 1相交于点M ,与l 2相交于点N ,⊙O 的半径为1,∠1=60°,直线MN 从图中位置向右平移.下列结论:①l 1和l 2的距离为2;②MN =433 ;③当直线MN 与⊙O 相切时,∠MON =90°;④当AM +BN =433 时,直线MN 与⊙O 相切.其中正确的结论是____________.(填序号)题17图三、解答题(一)(本大题3小题,每小题6分,共18分)18.如题18图,点A ,B ,C ,D 在⊙O 上,BD =AC .求证:AB =CD .题18图19.用铁皮制作如题19图所示的圆锥形容器盖,求这个容器盖所需铁皮的面积(结果保留π),并求制作容器盖的扇形的圆心角.题19图20.如题20图,在△ABC 中,AB =AC .(1)求作一点P ,使得点P 为△ABC 外接圆的圆心;(保留作图痕迹,不要求写作法) (2)在(1)的条件下,连接AP ,BP ,延长AP 交BC 于点D ,若∠BAC =50°,求∠PBC 的度数.题20图四、解答题(二)(本大题3小题,每小题8分,共24分)21.如题21图,隧道的截面由半圆和矩形构成,矩形的长BC为12m,宽AB为3m,若该隧道内设双行道,现有一辆货运卡车高8m,宽2.3m,则这辆货运卡车能否通过该隧道?请说明理由.题21图22.如题22图,已知△ABC内接于⊙O,AD为⊙O的直径,点C在劣弧AB上(不与点A,B重合),设∠DAB=α,∠ACB=β,小明同学通过画图和测量得到以下近似数据:α30°35°40°50°60°80°β120°125°130°140°150°170°试判断α与β之间的关系,并给出证明.题22图23.在如题23图所示的网格中,每个小正方形的顶点叫格点,且边长均为1,△ABC的三个顶点均在格点上,以点A为圆心的EF与BC相切于点D,分别交AB,AC于点E,F.(1)求△ABC三边的长;(2)求图中由线段EB,BC,CF及EF所围成的阴影部分的面积.题23图五、解答题(三)(本大题2小题,每小题10分,共20分)24.如题24图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E,D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①AB是⊙O的切线;②∠EDC=∠FDC.(2)求CD的长.题24图25.阅读以下材料,并回答问题:若一个三角形两边平方的和等于第三边平方的两倍,我们称这样的三角形为奇异三角形.(1)命题“等边三角形一定是奇异三角形”是________命题;(填“真”或“假”)(2)在△ABC中,∠C=90°,△ABC的内角∠A,∠B,∠C所对边的长分别为a,b,c,且b>a,若Rt △ABC 是奇异三角形,求a ∶b ∶c 的值;(3)如题25图,已知AB 是⊙O 的直径,C 是⊙O 上一点(点C 与点A ,B 不重合),D 是ADB 的中点,点C ,D 在直径AB 的两侧,若存在点E ,使得AE =AD ,CB =CE .求证:△ACE 是奇异三角形.题25图参考答案1.D 2.A 3.D 4.B 5.B 6.B 7.B 8.A 9.B 10.D 11.< 12.63 13.12 14.36° 15.1 16.42 17.①②③④ 18.证明:∵BD =AC ,∴BD =AC .∴BD -AD =AC -AD ,即AB =CD .∴AB =CD .19.解:由图可知圆锥的底面圆的直径为80 cm ,母线长为50 cm , ∴圆锥的底面圆的周长为80π cm.∴圆锥形容器盖的侧面展开图的弧长为80π cm. ∴面积为 12 ×80π×50=2 000π(cm 2).设制作容器盖的扇形的圆心角为n °. ∴n π×50180=80π.解得n =288.答:这个容器盖所需铁皮的面积为2 000π cm 2,制作容器盖的扇形的圆心角为288°. 20.解:(1)如答题20图,点P 即为△ABC 外接圆的圆心.答题20图(2)∵点P 为△ABC 外接圆的圆心,AB =AC ,∠BAC =50°, ∴AD ⊥BC ,∠BAP =∠CAP =25°,P A =PB . ∴∠BPD =2∠BAP =50°,∠BDP =90°. ∴∠PBD =90°-50°=40°,即∠PBC =40°.21.解:这辆货运卡车能通过该隧道.理由如下:如答题21图,设点O 为AD 的中点,在AD 上取点G ,使得OG =2.3,过点G 作GF ⊥BC 于点F ,延长FG 交半圆于点E ,则GF =AB =3,半圆的半径OE =12 AD =12BC =6.答题21图∴EG =OE 2-OG 2 =62-2.32 ≈5.54.∴EF =EG +GF ≈5.54+3=8.54>8. ∴这辆货运卡车能通过该隧道. 22.解:β-α=90°.证明:如答题22图,连接BD .答题22图∵AD 为⊙O 的直径,∴∠DBA =90°. ∵∠DAB =α,∴∠D =90°-α. ∵B ,D ,A ,C 四点共圆, ∴∠ACB +∠D =180°. ∵∠ACB =β,∴β+90°-α=180°.∴β-α=90°.23.解:(1)由图可得AB =22+62 =210 ,AC =62+22 =210 , BC =42+82 =45 .(2)由(1)得AB 2+AC 2=(210 )2+(210 )2=(45 )2=BC 2. ∴∠BAC =90°. 如答题23图,连接AD ,则AD ⊥BC ,BD =DC =12BC =25 .答题23图∴AD =AB 2-BD 2 =(210)2-(25)2 =25 . ∴S 阴=S △ABC -S 扇形AEF =12 AB ·AC -90π360 ·AD 2=20-5π.24.(1)证明:①如答题24图,连接OC .∵OA =OB ,CA =CB ,∴OC ⊥AB . ∵OC 为⊙O 的半径, ∴AB 是⊙O 的切线.②∵OA =OB ,CA =CB ,∴∠AOC =∠BOC . ∴EC =FC .∴∠EDC =∠FDC .答题24图(2)解:如答题24图,过点O 作ON ⊥DF 于点N ,延长DF 交AB 于点M . ∵ON ⊥DF ,OD =OF ,DF =6, ∴DN =NF =12 DF =3,∠DON =∠FON .在Rt △ODN 中,OD =12 DE =5,DN =3,∴ON =OD 2-DN 2 =4.∵∠AOC =∠BOC ,∠DON =∠FON , ∴∠BOC +∠FON =12 ×180°=90°.∴∠OCM =∠CON =∠MNO =90°. ∴四边形OCMN 是矩形.∴CM =ON =4,MN =OC =12DE =5.在Rt △CDM 中,CM =4,DM =DN +MN =8, ∴CD =DM 2+CM 2 =82+42 =45 . 25.(1)解:真. (2)解:∵∠C =90°,∴a 2+b 2=c 2.①∵Rt △ABC 是奇异三角形,且b >a ,∴a 2+c 2=2b 2.② 由①②,得b =2 a ,c =3 a .∴a ∶b ∶c =1∶2 ∶3 . (3)证明:如答题25图,连接BD .答题25图∵AB是⊙O的直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,AC2+CB2=AB2,在Rt△ADB中,AD2+BD2=AB2.∵点D是ADB的中点,∴AD=BD.∴AD=BD.∴AB2=AD2+BD2=2AD2.∴AC2+CB2=2AD2.又CB=CE,AE=AD,∴AC2+CE2=2AE2.∴△ACE是奇异三角形。

人教版九年级数学上册 第24章圆 单元测试(含解析)

人教版九年级数学上册 第24章圆 单元测试(含解析)

第24章圆单元测试(时间120分钟,总分值120分)一、选择题(每题3分,共30分)1.如图,在☉O中,弦的条数是()A.2B.3C.4D.以上均不正确2.如图,△ABC为☉O的内接三角形,AB为☉O的直径,点D在☉O上,∠ADC=55°,那么∠BAC的大小等于()A.55°B.45°C.35°D.30°(第1题图)(第2题图)3.用反证法证明“三角形的三个外角中至少有两个钝角〞时,假设正确的选项是()A.假设三个外角都是锐角B.假设至少有一个钝角C.假设三个外角都是钝角D.假设三个外角中至多有一个钝角4.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB 为半径的扇形(忽略铁丝的粗细),那么所得扇形DAB的面积为()A.6B.7C.8D.95.如图,在正八边形ABCDEFGH中,连接AC,AE,那么AE的值是()ACA.1B.√2C.2D.√36.圆锥的侧面展开图的面积是15π,母线长是5,那么圆锥的底面半径为()B.3C.4D.6A.32⏜的7.如图,四边形ABCD是☉O的内接四边形,☉O的半径为2,∠B=135°,那么AC长为()A.2π B .πC.π2D.π38.在△ABC 中,∠C=90°,AC=6,BC=8,以C 为圆心r 为半径画☉C ,使☉C 与线段AB 有且只有两个公共点,那么r 的取值范围是( ) A.6≤r ≤8 B.6≤r<8 C.245<r ≤6D.245<r ≤89.如图,在半径为2,圆心角为90°的扇形ACB 内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,那么阴影局部的面积为( ) A .π-1 B.2π-1 C.12π-1D.12π-210.如图,在△ABC 中,AB=5,AC=3,BC=4,将△ABC 绕点A 逆时针旋转30°后得到△ADE ,点B 经过的途径为BD ⏜,那么图中阴影局部的面积为( ) A.2512πB.43πC.34π D.512π(第9题图) (第10题图)二、填空题(每题4分,共24分)11.如下图,在平面直角坐标系xOy 中,半径为2的☉P 的圆心P 的坐标为(-3,0),将☉P 沿x 轴正方向平移,使☉P 与y 轴相切,那么平移的间隔 为 . 12.将量角器按如下图的方式放置在三角形纸板上,使顶点C 在半圆上,点A ,B 的读数分别为100°,150°,那么∠ACB 的大小为 度.(第11题图) (第12题图)13.如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,假设要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,那么r 的取值范围是 .14.(2021·贵阳)如图,四边形ABCD 是☉O 的内接正方形,假设正方形的面积等于4,那么☉O 的面积等于 .15.如下图,☉M 与x 轴相交于点A (2,0),B (8,0),与y 轴相切于点C ,那么圆心M 的坐标是 .⏜于点E,以点16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB⏜交OB于点D.假设OA=2,那么阴影局部的面积O为圆心,OC的长为半径作CD为.(第14题图)(第15题图)(第16题图)三、解答题(共66分)17.⏜的中点,CD⊥OA,CE⊥OB,求证:AD=BE.(6分)如图,☉O中,C为AB18.(6分)如图,在△ABC中,点D是AC边上一点,以AD为直径的☉O与边BC相切于点E,且AB=BE.求证:AB是☉O的切线.19. (8分)圆柱的底面直径是60毫米,高为100毫米,圆锥的底面直径是120毫米,且圆柱的体积比圆锥的体积多一半,求圆锥的高是多少?20.(8分)如图,AB,CD是☉O中互相垂直的两条直径,以A为圆心,OA为半径画弧,与☉O交于E,F两点.(1)求证:AE是☉O的内接正六边形的一边;(2)请在图上继续画出这个正六边形.21.(8分)如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A,B,C及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的途径长.22.(8分)如图,AB是☉O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE是☉O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.23.(10分)如图,△ABC是☉O的内接三角形,直径HF交AC于D,HF,BC的延长线交于点E.(1)假设HF⊥AB,求证:∠OAD=∠E.(2)假设A点是下半圆上一动点,当点A运动到什么位置时,△CDE的外心在△CDE 一边上?请简述理由.24.(12分)如图,等腰直角三角形ABC中,AB=AC=√2 cm,P在BC上,以C为圆心,PC为半径画弧交边AC于D,以B为圆心,PB为半径画弧交边AB于E.设PB=x cm,图中阴影局部的面积为y cm2(π取3).(1)求y关于x的函数解析式;(2)写出自变量x的取值范围;(3)当P在什么位置时,y有最大值?最大值是多少?参考答案1.C解析:在☉O中,有弦AB,弦DB,弦CB,弦CD.共有4条弦.2.C解析:∵AB为☉O的直径,∴∠ACB=90°.∵∠B=∠ADC=55°,∴∠BAC=90°-∠B=35°.3.D4.D解析:∵正方形的边长为3,∴BD⏜的弧长=6,∴S扇形DAB =12lr=12×6×3=9.5.B解析:如下图,连接AG,GE,EC,那么四边形ACEG为正方形,故AEAC=√2.6.B解析:设底面半径为R,那么底面周长=2πR,圆锥的侧面展开图的面积=12×2πR×5=15π,∴R=3.7.B 解析:如下图,连接OA ,OC.∵∠B=135°,∴∠D=180°-135°=45°, ∴∠AOC=90°, 那么AC ⏜的长=90π×2180=π.8.C9.A 解析:在Rt △ACB 中,AB=√22+22=2√2,∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,CD=BD=√2,∴D 为半圆的中点,S 阴影局部=S 扇形ACB-S △ADC =14π×22-12×(√2)2=π-1.10.A 解析:∵AB=5,AC=3,BC=4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影局部的面积=△AED 的面积+扇形ADB 的面积-△ABC 的面积,∴阴影局部的面积=扇形ADB 的面积=30π×52360=2512π.11.1或5 解析:当☉P 位于y 轴的左侧且与y 轴相切时,平移的间隔 为1;当☉P 位于y 轴的右侧且与y 轴相切时,平移的间隔 为5.12.25 解析:设量角器的半圆圆心为O ,连接OA ,OB ,由题意得∠AOB=50°,∵∠ACB 与∠AOB 都对应AB⏜,∴∠ACB=12∠AOB=25°. 13.3<r<5 解析:在直角△ABD 中,CD=AB=4,AD=3,那么BD=√32+42=5.由图可知3<r<5.14.2π 解析:正方形的边长AB=2,那么☉O 的半径是2×√22=√2,那么☉O 的面积是π(√2)2=2π.15.(5,4) 解析:如下图,连接AM ,作MN ⊥x 轴于点N ,那么AN=BN.∵点A (2,0),B (8,0), ∴OA=2,OB=8, ∴AB=OB-OA=6. ∴AN=BN=3.∴ON=OA+AN=2+3=5,那么M的横坐标是5,圆的半径是5.在直角△AMN 中,MN=√AM2-AN2=√52-32=4,那么M的纵坐标是4.故M的坐标是(5,4).16.π12+32解析:如下图,连接OE,AE.∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE =60π×22360=23π,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=90π×22360−90π×12360−(2 3π−12×1×√3)=34π-23π+√32=π12+32.17.分析:此题需先证出∠AOC=∠BOC,再根据CD⊥OA,CE⊥OB,得出∠ODC=∠OEC,从而证出△COD≌△COE,得出OD=OE,再根据OA=OB,即可得出AD=BE.证明:∵点C是AB⏜的中点,∴∠AOC=∠BOC.∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC,又∵OC=OC,∴△COD≌△COE(AAS).∴OD=OE.∵OA=OB,∴AD=BE.18.分析:连接OB,OE,由AD为圆O的直径得到OA=OE,由BC为圆O的切线,得到OE垂直于BC,利用SSS得出三角形ABO与三角形BEO全等,由全等三角形的对应角相等得到∠BAO=∠BEO=90°,即OA垂直于AB,即可得证.证明:如下图,连接OE,OB.∵AD是圆O的直径,圆O与BC相切于点E,∴OA=OE,OE⊥BC,∵OA=OE,OB=OB,AB=BE,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO=90°,即OA⊥AB,那么AB为圆O的切线.19.分析:圆柱的体积=底面积×高;圆锥的体积=13底面积×高.关系式为圆柱的体积=圆锥的体积×1.5,把相应数值代入即可.解:设圆锥高为x 毫米,13π×(1202)2·x ×(1+12)=π×(602)2×100,解得x=50.答:圆锥高为50毫米.20.分析:(1)连接OE ,OF ,AF ,得到△AOE 是等边三角形,从而得到AE 是正六边形的一边;(2)用以AE 的长为圆规两脚间的间隔 ,分别在圆上截得相等的弧长. 解:(1)证明:如下图,连接OE ,OF ,AF.∵AE=OA=OE ,∴△AOE 是等边三角形,∠OAE=60°, 同理可证△OAF 是等边三角形,∴∠OAF=60°,∴AE=AF ,且∠EAF=∠OAE+∠OAF=120°,∴AE 是☉O 的内接正六边形的一边. (2)用圆规截取AE 弧的弧长,然后以B 点为圆心,在圆上截得相等的弧长,获得G ,H 点,然后顺次将A ,E ,G ,B ,H 和F 连接起来就得到正六边形. 21.分析:(1)根据图形平移的性质画出平移后的△A 1B 1C 1即可;(2)根据图形旋转的性质画出△ABC 绕点O 旋转180°后得到的△A 2B 2C 2; (3)根据弧长的计算公式列式即可求解. 解:(1)△A 1B 1C 1如下图.(2)△A 2B 2C 2如下图.(3)∵OA=4,∠AOA 2=180°,∴点A 绕着点O 旋转到点A 2所经过的途径长为180π×4180=4π.22.分析:(1)连接AC ,由题意得AD ⏜=CD ⏜=CB ⏜,∠DAC=∠CAB ,即可证明AE ∥OC ,从而得出∠OCE=90°,即可证得结论;(2)四边形AOCD 为菱形.由AD⏜=CB ⏜,那么∠DCA=∠CAB 可证明四边形AOCD 是平行四边形,再由OA=OC ,即可证明平行四边形AOCD 是菱形(一组邻边相等的平行四边形是菱形). 解:(1)如下图,连接AC ,∵点C ,D 是半圆O 的三等分点, ∴AD⏜=CD ⏜=CB ⏜,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC,∴∠OCE+∠E=180°.∵CE⊥AD,∴∠OCE=90°,∴OC⊥CE,∴CE是☉O的切线.(2)四边形AOCD为菱形.理由是:⏜=CB⏜,∴∠DCA=∠CAB,∴CD∥OA;∵AD又∵AE∥OC,∴四边形AOCD是平行四边形.∵OA=OC,∴平行四边形AOCD是菱形.23.分析:(1)首先连接OB,由HF⊥AB,根据垂径定理与圆周角定理,即可求得∠AOH=∠ACB,继而可得∠AOD=∠ECD,又由∠ODA=∠CDE,即可证得∠OAD=∠E;(2)当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.因为直径所对的圆周角是直角,直角三角形的外心在其一边上.解:(1)证明:如下图,连接OB.⏜=AH⏜,∵HF⊥AB,∴BH∴∠AOH=∠ACB=1∠AOB.2∵∠AOD+∠AOH=180°,∠ECD+∠ACB=180°,∴∠AOD=∠ECD.∵∠ODA=∠CDE,∴∠OAD=∠E.(2)当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.理由:①当AB是直径时,△CDE的外心在△CDE一边上.∵AB是直径,∴∠ACB=90°,∴∠DCE=90°,即△CDE是直角三角形,∴△CDE的外心在△CDE边DE上;②当A 运动到使AC ⊥HF 时,△CDE 是直角三角形.此时△CDE 的外心在△CDE 边CE 上.综上两种情况下,当AB 是直径或AC ⊥DF 时,△CDE 的外心在△CDE 的一边上. 24.分析:(1)利用扇形面积以及等腰直角三角形的性质得出面积即可;(2)利用三角形边长得出自变量x 的取值范围; (3)利用(1)中所求求出面积最值即可. 解:(1)∵AB=AC=√2 cm,∴BC=2 cm .∵设PB=x cm,∴PC=(2-x )cm, ∴y=12×√2×√2−45π·x 2360−45π·(2-x )2360=1-πx 28−π(2-x )28=1-π(2-2x+x 2)4=-34x 2+32x-12.(2)∵以B 为圆心,PB 为半径画弧交边AB 于E ,∴0≤x ≤√2.(3)∵y=-34x 2+32x-12,∴当x=1时,y 最大=14,∴当PB=1 cm 时,即P 为BC 的中点时,y 有最大值,最大值是14cm 2.。

九年级数学 第24章 圆单元测试卷(含答案)

九年级数学 第24章 圆单元测试卷(含答案)

第二十四章 圆单元测试卷班级 姓名 座号 成绩一、选择题(每题5分,共30分) 1.下列说法正确的是( )A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.直径是圆中最长的弦D.不同的圆中不可能有相等的弦2.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 和D 两点,AB =10cm ,CD =6cm ,则AC 长为( )A.0.5cmB.1cmC.1.5cmD.2cm第2题第3题第5题3.如图,⊙O 的半径为2cm ,过点O 向直线l 引垂线,垂足为A ,OA 的长为3cm ,将直线l 沿OA 方向移动,使直线l 与⊙O 相切,那么平移的距离为( )A.1cmB.3cmC.5cmD.1cm 或5cm4.⊙O 1和⊙O 2的半径分别为8和5,两圆没有公共点,则圆心距12O O 的取值范围是( )A.12O O >13B.12O O <3C.3<12O O <13D.12O O >13或0≤12O O <3 5.如图,木工师傅从一块边长为60cm 的正三角形木板上锯出一块正六边形木板,那么这正 六边形木板的边长为( )A.18cmB.20cmC.22cmD.24cm6.如图,在正方形铁皮上剪下圆形和扇形,使之恰好围成如图所示的圆锥模型,设圆的半径为r ,扇形的半径为R ,则圆半径与扇形半径之间的关系是( ) A.2r R = B.3r R = C.4r R = D.5r R = 二、填空题(每题5分,计30分)7.如图,⊙O 的直径CD 与弦AB (非直径)交于点M ,添加一个条件 ,就可得点M 是AB 的中点.第6题第7题第8题8.如图,P A 是⊙O 的切线,切点为A ,P A∠APO =30,则⊙O 的半径长为 . 9.如图,已知⊙O 的半径为5,弦AB 的长为8,点P 为弦AB 上一动点,连接OP ,则线段OP 的最小长度为 .10.如图,△ABC 三边与⊙O 分别切于D 、E 、F ,AB =7cm ,AC =5cm ,AD =2cm ,则BC = cm . 11.如图,在同心圆中三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是.第9题第10题第11题第12题12.如图,在平面直角坐标系中,⊙O 与两坐标轴分别交于点A 、B 、C ,已知:A (6,0)、B (-2,0), 则点C的坐标为 .三、解答题(共40分)13.(15分)如图,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE =BF ,请你找出线段OE 与OF 的数量关系,并给予证明.14.(25分)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在⊙O 上,∠CAB =30.(1)CD 是⊙O 的切线吗?说明你的理由; (2)AC =_____,请给出合理的解释.参考答案一、选择题(每题5分,共30分) 1.下列说法正确的是( C )A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.直径是圆中最长的弦D.不同的圆中不可能有相等的弦2.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 和D 两点,AB =10cm ,CD =6cm ,则AC 长为( D )A.0.5cmB.1cmC.1.5cmD.2cm第2题第3题第5题3.如图,⊙O 的半径为2cm ,过点O 向直线l 引垂线,垂足为A ,OA 的长为3cm ,将直线l 沿OA 方向移动,使直线l 与⊙O 相切,那么平移的距离为( D )A.1cmB.3cmC.5cmD.1cm 或5cm4.⊙O 1和⊙O 2的半径分别为8和5,两圆没有公共点,则圆心距12O O 的取值范围是( D )A.12O O >13B.12O O <3C.3<12O O <13D.12O O >13或0≤12O O <3 5.如图,木工师傅从一块边长为60cm 的正三角形木板上锯出一块正六边形木板,那么这正 六边形木板的边长为( B )A.18cmB.20cmC.22cmD.24cm6.如图,在正方形铁皮上剪下圆形和扇形,使之恰好围成如图所示的圆锥模型,设圆的半径为r ,扇形的半径为R ,则圆半径与扇形半径之间的关系是( C ) A.2r R = B.3r R = C.4r R = D.5r R = 二、填空题(每题5分,计30分)7.如图,⊙O 的直径CD 与弦AB (非直径)交于点M ,添加一个条件 AB ⊥CD ,就可得点M 是AB 的中点.第6题第7题第8题8.如图,P A 是⊙O 的切线,切点为A ,P A ∠APO =30,则⊙O 的半径长为 2 . 9.如图,已知⊙O 的半径为5,弦AB 的长为8,点P 为弦AB 上一动点,连接OP ,则线段OP 的最小长度为 3 .10.如图,△ABC 三边与⊙O 分别切于D 、E 、F ,AB =7cm ,AC =5cm ,AD =2cm ,则BC = 8 cm .11.如图,在同心圆中三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是2π .第9题第10题第11题第12题12.如图,在平面直角坐标系中,⊙O '与两坐标轴分别交于点A 、B 、C ,已知:A (6,0)、B (-2,0), 则点C的坐标为) (0,23 .三、解答题(共40分)13.(15分)如图,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE =BF ,请你找出线段OE 与OF 的数量关系,并给予证明.解:OE =OF . 证明:连接OA 、OB ∵OA =OB∴∠A =∠B 又∵AE =BF ∴△OAE ≌△OBF ∴OE =OF14.(25分)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在⊙O 上,∠CAB =30.(1)CD 是⊙O 的切线吗?说明你的理由; (2)AC =_____,请给出合理的解释. 解:(1)CD 是⊙O 的切线.连接OC ,BC . 则∠OCA =∠OAC =30°. ∴∠COB =2∠OAC =60° ∵OC =OB∴△OBC 为正三角形∴∠OCB =∠OB C=60°,BC =OB∵BD =OB (2)AC =CD∴BD =BC 理由:由(1)可知:∠D =30° ∴∠BCD =∠D ∴∠CAO =∠D 又∵∠OBC =∠BCD +∠D ∴AC =CD ∴∠BCD =∠D =30° ∴∠OCD =∠OCB +∠BCD =90° 即OC ⊥CD∴CD 为⊙O 的切线.。

第24章圆的单元测试

第24章圆的单元测试

第24章圆的单元测试一、选择题(每小题3分,共30分)̂=AĈ,∠AOB=122°,则∠AOC的度数为()1、如图,在☉O中,ABA、122°B、120°C、61°D、58°2、若☉O的半径为5cm,点A到圆心O的距离为4cm,那么点A与☉O的位置关系是()A、点A在圆外B、点A在圆上C、点A在圆内D、不能确定3、☉O的半径为5,圆心O到直线l的距离为3,则直线l与☉O的位置关系是()A、相交B、相切C、相离D、无法确定4、在☉O中,60°的圆心角所对的弧长是3π,则☉O的半径是()A、9B、18C、9 πD、18 π5、如图,☉O是ΔABC的外接圆,∠A=50°,则∠BOC的度数为()A、40°B、50°C、80°D、100°6、如图,AB是☉O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm,则DC的长为()A、5cmB、2.5cmC、2cmD、1cm7、如图,在☉O中,直径CD⊥弦AB,若∠C= 30°,则∠BOD的度数是()A、30°B、40°C、50°D、60°8、如图,∠DCE是圆的内接四边形ABCD的一个外角,如果∠DCE= 75°,那么∠BAD的度数是()A、65°B、75°C、85°D、105°9、如图,已知C、D在以AB为直径的☉O上,若∠CAB=35°,则∠D的度数是()A、30°B、70°C、55°D、60°10、如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC,BD,则图中阴影部分的面积为()πB、πC、2 πD、4 πA、12二、填空题(每小题4分,共24分)11、如图,AB是☉O的直径,直线PA与☉O相切于点A,PO交☉O 于点C,连接BC.若∠P=50°,则∠ABC的度数为____________。

人教版九年级数学上册 《第24章圆》单元测试含答案解析

人教版九年级数学上册 《第24章圆》单元测试含答案解析

《第24章圆》一、填空题1.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40° B.80° C.160°D.120°2.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm3.已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定4.如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.5.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切6.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为2,则CD的长为()A.2 B.4 C.2 D.47.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.758.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π二、选择题9.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.10.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=x,BE=y,用含x,y 的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.12.如图,∠AOB=30°,OM=6,那么以M为圆心,4为半径的圆与直OA的位置关系是.13.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= cm.14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是.三、解答题(7+7+8+8)15.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).16.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 寸,CD= 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.17.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.18.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE ⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.《第24章圆》(北京市西城区重点中学)参考答案与试题解析一、填空题1.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40° B.80° C.160°D.120°【考点】三角形的外接圆与外心.【分析】根据圆周角定理得∠BOC=2∠A=160°.【解答】解:∵点O为△ABC的外心,∠A=80°,∴∠BOC=2∠A=160°.故选C.【点评】熟练运用圆周角定理计算,即在同圆或等圆中同弧所对的圆周角等于它所对的圆心角的一半.2.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm【考点】垂径定理;勾股定理.【专题】计算题.【分析】过P作AB⊥OP交圆与A、B两点,连接OA,故AB为最短弦长,再解Rt△OPA,即可求得AB的长度,即过点P的最短弦的长度.【解答】解:过P作AB⊥OP交圆与A、B两点,连接OA,如下图所示:故AB为最短弦长,由垂径定理可得:AP=PB已知OA=3,OP=2在Rt△OPA中,由勾股定理可得:AP2=OA2﹣OP2∴AP==cm∴AB=2AP=2cm故此题选D.【点评】本题考查了最短弦长的判定以及垂径定理的运用.3.已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【考点】点与圆的位置关系.【分析】根据题意可知点P可能在圆外也可能在圆上,也可能在圆内,所以无法确定.【解答】解:∵PA=,⊙O的直径为2∴点P的位置有三种情况:①在圆外,②在圆上,③在圆内.故选D.【点评】本题考查了圆的认识,做题时注意多种情况的考虑.4.如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意,分P在OC、CD、DO之间3个阶段,分别分析变化的趋势,又由点P作匀速运动,故①③都是线段,分析选项可得答案.【解答】解:根据题意,分3个阶段;①P在OC之间,∠APB逐渐减小,到C点时,为45°,②P在CD之间,∠APB保持45°,大小不变,③P在DO之间,∠APB逐渐增大,到O点时,为90°;又由点P作匀速运动,故①③都是线段;分析可得:B符合3个阶段的描述;故选:B.【点评】本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.5.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题应将该点的横纵坐标分别与半径对比,大于半径的相离,等于半径的相切.【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选A.【点评】直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.6.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为2,则CD的长为()A.2 B.4 C.2 D.4【考点】切线的性质.【专题】压轴题.【分析】连接OC,BC,AB是直径,CD是切线,先求得∠OCD=90°再求∠COB=2∠A=60°,利用三角函数即可求得CD的值.【解答】解:连接OC,BC,AB是直径,则∠ACB=90°,∵CD是切线,∴∠OCD=90°,∵∠A=30°,∴∠COB=2∠A=60°,CD=OC•tan∠COD=2.故选A.【点评】本题利用了切线的性质,直径对的圆周角是直角求解.7.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.75【考点】三角形的外接圆与外心;等边三角形的性质;正方形的性质.【分析】根据等边三角形和正方形的性质,求得中心角∠POR和∠POD,二者的差就是所求.【解答】解:连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POR=×360°=120°,∵四边形ABCD是⊙O的内接正方形,∴∠AOD=90°,∴∠DOP=×90°=45°,∴∠AOQ=∠POR﹣∠DOP=75°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.8.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π【考点】扇形面积的计算;多边形内角与外角.【专题】压轴题.【分析】圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积2公式计算即可.【解答】解:图中五个扇形(阴影部分)的面积是=1.5π故选B.【点评】解决本题的关键是把阴影部分当成一个扇形的面积来求,圆心角为五边形的内角和.二、选择题9.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为(2,0).【考点】确定圆的条件;坐标与图形性质.【专题】网格型.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)【点评】能够根据垂径定理的推论得到圆心的位置.10.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为cm.【考点】切线的性质.【专题】压轴题.【分析】连接AD,则有AD是△ABC的斜边上的高,可判定△ABC是等腰直角三角形,所以BC=AB=2,利用点D是斜边的中点,可求AD=BC=cm.【解答】解:连接AD;∵∠A=90°,AB=AC=2cm,∴△ABC是等腰直角三角形,∴BC=AB=2;∵点D是斜边的中点,∴AD=BC=cm.【点评】本题利用了切线的性质,等腰直角三角形的判定和性质求解.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=x,BE=y,用含x,y 的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.【考点】垂径定理的应用.【专题】数形结合.【分析】此题中隐含的不等关系:直径是圆中最长的弦,所以AB≥CD.首先可以表示出AB=x+y,再根据相交弦定理的推论和垂径定理,得CD=2CE=2.【解答】解:∵直径AB⊥弦CD于点E,∴CE=DE,根据相交弦定理的推论,得CE2=AE•BE,则CE=,∴CD=2CE=2.又∵AB=x+y,且AB≥CD,∴x+y≥2.【点评】本题考查:直径是圆中最长的弦;相交弦定理的推论以及垂径定理的综合应用.12.如图,∠AOB=30°,OM=6,那么以M为圆心,4为半径的圆与直OA的位置关系是相交.【考点】直线与圆的位置关系.【分析】利用直线l和⊙O相切⇔d=r,进而判断得出即可.【解答】解:过点M作MD⊥AO于点D,∵∠AOB=30°,OM=6,∴MD=3,∴MD<r∴以点m为圆心,半径为34的圆与OA的位置关系是:相交.故答案为:相交.【点评】此题主要考查了直线与圆的位置,正确掌握直线与圆相切时d与r的关系是解题关键.13.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= 8cm.【考点】圆周角定理.【专题】压轴题.【分析】结合等腰三角形的性质、圆周角定理、三角形的内角和定理求得三角形AOC是等腰直角三角形,再根据勾股定理即可求解.【解答】解:连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵∠B=∠OAC=∠AOC,∴∠AOC=90°.∴AC=OA=8cm.【点评】此题综合运用了等腰三角形的性质、圆周角定理、三角形的内角和定理以及勾股定理.14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是垂径定理.【考点】垂径定理的应用;作图—复杂作图.【分析】利用垂径定理得出任意两弦的垂直平分线交点即可.【解答】解:根据小亮作图的过程得到:小亮的作图依据是垂径定理.故答案是:垂径定理.【点评】此题主要考查了复杂作图以及垂径定理,熟练利用垂径定理的性质是解题关键.三、解答题(7+7+8+8)15.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).【考点】等边三角形的判定;圆周角定理.【专题】证明题.【分析】(1)连接OD,根据切线的性质得到OD⊥DE,从而得到平行线,得到∠ODB=∠A,∠ODB=∠B,则∠A=∠B,得到AC=BC,从而证明该三角形是等边三角形;(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.【解答】证明:(1)连接OD,得OD∥AC;∴∠BDO=∠A;又OB=OD,∴∠OBD=∠ODB;∴∠OBD=∠A;∴BC=AC;又∵AB=AC,∴△ABC是等边三角形;(2)如上图,连接CD,则CD⊥AB;∴D是AB中点;∵AE=AD=AB,∴EC=3AE;∴AE=CE.【点评】本题中作好辅助线是解题的关键,连接过切点的半径是圆中常见的辅助线作法之一.另外还要掌握等边三角形的判定和性质以及30°的直角三角形的性质.16.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 1 寸,CD= 10 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【考点】垂径定理的应用;勾股定理.【分析】根据题意容易得出AB和CD的长;连接OB,设半径CO=OB=x寸,先根据垂径定理求出CA 的长,再根据勾股定理求出x的值,即可得出直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.【点评】本题考查了勾股定理在实际生活中的应用;根据题意作出辅助线,构造出直角三角形,运用勾股定理得出方程是解答此题的关键.17.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.【考点】圆心角、弧、弦的关系.【专题】几何综合题.【分析】(1)根据垂径定理知,弧CD=2弧BC,由圆周角定理知,弧BC的度数等于∠BOC的度数,弧AD的度数等于∠CPD的2倍,可得:∠CPD=∠COB;(2)根据圆内接四边形的对角互补知,∠CP′D=180°﹣∠CPD,而:∠CPD=∠COB,∴∠CP′D+∠COB=180°.【解答】(1)证明:连接OD,∵AB是直径,AB⊥CD,∴.∴∠COB=∠DOB=∠COD.又∵∠CPD=∠COD,∴∠CPD=∠COB.(2)解:∠CP′D+∠COB=180°.理由如下:连接OD,∵∠CPD+∠CP′D=180°,∠COB=∠DOB=∠COD,又∵∠CPD=∠COD,∴∠COB=∠CPD,∴∠CP′D+∠COB=180°.【点评】本题利用了垂径定理和圆周角定理及圆内接四边形的性质求解.18.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE ⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.【考点】切线的判定;等边三角形的性质.【分析】(1)连接OD,根据等边三角形的性质求出∠ODE=90°,根据切线的判定定理证明即可;(2)连接AD,BF,根据等边三角形的性质求出DC、CF,根据直角三角形的性质求出EC,结合图形计算即可.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴,.∵∠EDC=30°,∴.∴FE=FC﹣EC=1.人教版九年级数学【点评】本题考查的是切线的判定、等边三角形的性质以及直角三角形的性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.。

人教版九年级上册第24章《圆》单元测试(含答案解析)

人教版九年级上册第24章《圆》单元测试(含答案解析)

人教版九年级上册第24章《圆》单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个命题中,正确的个数是()①经过三点一定可以画圆;②任意一个三角形一定有一个外接圆;③三角形的内心是三角形三条角平分线的交点;④三角形的外心到三角形三个顶点的距离都相等;⑤三角形的外心一定在三角形的外部.A.4个B.3个C.2个D.1个2( )A B.2 C.3 D.3.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3∶4∶6,则∠D的度数为() A.60°B.80°C.100°D.120°4.如图,AB是⊙O的直径,C,D是圆上两点,连接AC,BC,AD,CD.若∠CAB=55°,则∠ADC的度数为()A.55°B.45°C.35°D.25°5.下列图形中,∠B=2∠A的是()A.B.C.D.6.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A .100°B .110°C .120°D .130°7.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .88.如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( )A .30°B .40°C .45°D .50°9.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC=∠AEC ;③CB 平分∠ABD ;④AF=DF ;⑤BD=2OF ;⑥△CEF ≌△BED ,其中一定成立的是( )A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤ 10.如图,A,B,C 是⊙O 上三个点,∠AOB=2∠BOC,则下列说法中正确的是( )A .∠OBA=∠OCAB .四边形OABC 内接于⊙OC ..AB=2BCD.∠OBA+∠BOC=90°11.如图,⊙O与AC相切于点A,且AB=AC,BC与⊙O相交于点D,下列说法不正确的是().A.∠C = 45°B.CD=BD C.∠BAD=∠DAC D.CD=AB12.如图,在正方形ABCD中,AC,以点C为圆心、AC长为半径画弧,点E在BC的延长线上,则阴影部分的面积为()A.6π﹣4 B.6π﹣8 C.8π﹣4 D.8π﹣8二、填空题13.正八边形的中心角为______度.14.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=__.15.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.16.如图,AB是⊙O的直径,点C和点D是⊙O上两点,连接AC、CD、BD,若CA=CD,∠ACD=80°,则∠CAB=__°17.如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为_____cm.18.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O 于点F,则∠BAF=__.19.如图,⊙O是△ABC的内切圆,⊙O切BC于点D,BD=3,CD=2,△ABC的周长为14,则AB=__.20.已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.21.如图,圆内接四边形ABDC,延长BA和DC相交于圆外一点P,∠P=30°,∠D=70°,则∠ACP=__.22.如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为_______________.23.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为3,则阴影部分的面积为__(结果保留π).24.如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10,则图中阴影部分的面积为__.25.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题26.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.27.如图,线段AB经过圆心O,交⊙O于点A、C,点D在⊙O上,连接AD,BD,∠A=∠B=30°.证明:(1)BD是⊙O的切线(2)如果BD=2求OC的长28.如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的AC,AG与线段CG所围成的阴影部分的面积.29.如图,点E为⊙O的直径AB上一个动点,点C、D在下半圆AB上(不含A、B 两点),且∠CED=∠OED=60°,连OC、OD(1)求证:∠C=∠D;(2)若⊙O的半径为r,请直接写出CE+ED的变化范围.30.已知⊙O 的直径为10,点A ,点B ,点C 在⊙O 上,CAB ∠的平分线交⊙O 于点D . (1)如图①,若BC 为⊙O 的直径,6AB =,求AC ,BD ,CD 的长.(2)如图②,若60CAB ∠=︒,求BD 的长.31.已知⊙O 的半径为2,∠AOB=120°.(1)点O 到弦AB 的距离为 ;.(2)若点P 为优弧AB 上一动点(点P 不与A 、B 重合),设∠ABP=α,将△ABP 沿BP 折叠,得到A 点的对称点为A′;①若∠α=30°,试判断点A′与⊙O 的位置关系;②若BA′与⊙O 相切于B 点,求BP 的长;③若线段BA′与优弧APB 只有一个公共点,直接写出α的取值范围.32.如图,O 的直径AB 为10cm ,弦BC 为5cm ,D 、E 分别是ACB ∠的平分线与O ,AB 的交点,P 为AB 延长线上一点,且PC PE =.()1求AC 、AD 的长;()2试判断直线PC与O的位置关系,并说明理由.33.如图:CD是⊙O的直径,线段AB过圆心O,且CD=2,连接AC、AD、BD、BC,AD、CB分别交⊙O于E、F.(1)问四边形CEDF是何种特殊四边形?请证明你的结论;(2)当AC与⊙O相切时,四边形CEDF是正方形吗?请说明理由.参考答案1.B【详解】试题分析:①必须不在同一条直线上的三个点才能确定一个圆,错误;②任意一个三角形一定有一个外接圆,正确;③三角形的内心是三角形三条角平分线的交点,正确;④三角形的外心是三角形三条垂直平分线的交点,三角形的外心到三角形三个顶点的距离都相等,正确;⑤三角形的外心不一定在三角形的外部,错误;故选B.考点:命题与定理.2.B【详解】试题解析:如图:∵∴AB=1OA,2∵OA2=AB2+OB2,OA)2+2,∴OA2=(12解得OA=2.故选B.考点:1.正多边形和圆;2.勾股定理.3.C【分析】根据圆内接四边形的对角互补的性质列式计算即可.【详解】解:根据圆内接四边形的性质可得:∠A+∠C=∠B+∠D=180°,设∠A=3x ,则∠B=4x ,∠C=6x ,则3x+6x=180°,解得:x=20°,则∠B=80°,∠D=180°-80°=100°. 故选:C考点:圆内接四边形的性质.4.C【分析】证出Rt △ABC ,求出∠B 的度数,由圆周角定理即可推出∠ADC 的度数.【详解】∵AB 是O 的直径,90ACB ∴∠=,55CAB ∠=,35B ∴∠=,35.ADC B ∴∠=∠=故选C.【点睛】本题考查了圆周角定理等及其推论,解题关键是能够灵活运用圆周角定理及其推论. 5.D【分析】根据圆周角定理对各选项进行逐一分析即可.【详解】解:A 中,∠A=∠B ;B 中,∠A 与∠B 的大小无法判定;C 中,∠A+∠B=180°;D 中,∠B=2∠A .故选D .【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.A【分析】首先在优弧BC上取点E,连接BE,CE,由点B、D、C是⊙O上的点,∠BDC=130°,即可求得∠E的度数,然后由圆周角定理,即可求得答案.【详解】解:在优弧BC上取点E,连接BE,CE,如图所示:∵∠BDC=130°,∴∠E=180°-∠BDC=50°,∴∠BOC=2∠E=100°.故选A.【点睛】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.C【详解】∵直径AB垂直于弦CD,∴CE=DE=1CD,2∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=4,∴x2+x2=16,解得:即:∴故选C .8.B【详解】试题解析:,50.OA OB OAB ABO =∴∠=∠=在ABO 中,80.AOB ∴∠=140.2ACB AOB ∴∠=∠= 故选B.9.D【详解】①∵AB 是O 的直径,90ADB ∴∠=,∴AD ⊥BD , ②∵∠AOC 是O 的圆心角,∠AEC 是O 的圆内部的角,∴∠AOC ≠∠AEC ,③OC BD ,∴∠OCB =∠DBC ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠DBC ,∴CB 平分∠ABD ,④∵AB 是O 的直径,90ADB ∴∠=,AD BD ∴⊥,OC BD ,90AFO ∴∠=,∵点O 为圆心,∴AF =DF ,⑤由④有,AF =DF ,∵点O 为AB 中点,∴OF 是△ABD 的中位线,∴BD =2OF ,⑥∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,故选D.10.D【详解】试题解析:过O 作OD ⊥AB 于D 交O 于E ,则AE BE =,1,2AE BE AOE BOE AOB ∴=∠=∠=∠, ∵∠AOB =2∠BOC ,∴∠AOE =∠BOE =∠BOC ,∴AE BE BC ==,∴AE =BE =BC ,∴2BC >AB ,故C 错误;∵OA =OB =OC ,12(180)90OBA AOB BOC ∴∠=-∠=-∠,13(180)9022OCA AOC BOC ∠=-∠=-∠, ∴∠OBA ≠∠OCA ,故A 错误;∵点A ,B ,C 在O 上,而点O 是圆心,∴四边形OABC 不内接于O ,故B 错误;12BOE BOC AOB ∠=∠=∠, 90BOE OBA ∠+∠=,90∴∠+∠=,故D正确;OBA BOC故选D.点睛:垂直于弦的直径平分弦并且平分弦所对的两条弧.11.D【详解】连接OD、AD,如图所示:∵⊙O与AC相切于点A,∴∠BAC=90o,又∵AB=AC,∴∠C =∠B= 45°,故A选项正确;∵OD=OB,∴∠OBD=∠ODB=45°,∴∠BOD=90°,又∵∠BAC=90o,∴OD//AC,又∵O是AB的中点,∴OD是△ABC的中位线,∴点D是BC的中点,∴BD=CD=AD,故B选项是正确的;∵点D是BC的中点,AB=AC,∴AD是△ABC的中线、∠BAC的角平分线、BC上的高(三线合一),∴∠BAD=∠DAC,故C选项是正确的;故D选项是错误的;故选D.12.A先根据勾股定理求出AC 的长,再由正方形的性质得出∠ACD=45°,根据S 阴影=S 扇形ACE -S △ACD 即可得出结论.【详解】解:∵在正方形ABCD 中,∴,∠ACD=45°.∵点E 在BC 的延长线上,∴∠DCE=90°,∴∠ACE=45°+90°=135°,∴S 阴影=S 扇形ACE -S △ACD =2135π413602⨯-⨯π4- 故选A .【点睛】本题考查的是扇形面积的计算,熟记扇形的面积公式及正方形的性质是解答此题的关键. 13.45°【分析】运用正n 边形的中心角的计算公式360n ︒计算即可. 【详解】解:由正n 边形的中心角的计算公式可得其中心角为360458︒=︒, 故答案为45°. 【点睛】本题考查了正n 边形中心角的计算.14.80°【分析】根据平行线的性质由AB ∥CD 得到∠C=∠ABC=40°,然后根据圆周角定理求解.【详解】解:∵AB ∥CD ,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.15.35r <<.【详解】试题分析:根据勾股定理可求得BD=5,三个顶点A 、B 、C 中至少有一个点在圆内,点A 与点D 的距离最近,点A 应该在圆内,所以r>3,三个顶点A 、B 、C 中至少有一个点在圆外,点B 与点D 的距离最远,点B 应该在圆外,所以r<5,所以r 的取值范围是35r <<. 考点:勾股定理;点和圆的位置关系.16.40【分析】根据等腰三角形的性质先求出∠CDA ,根据∠CDA=∠CBA ,再根据直径的性质得∠ACB=90°,由此即可解决问题.【详解】解:如图,连接BC ,∵CA=CD ,∴∠CAD=∠CDA ,∵∠ACD=80°,∴∠CAD+∠CDA+∠ACD=180°∴∠CAD=∠CDA=12(180°-∠ACD )=50°, ∴∠ABC=∠ADC=50°(同弧所对的圆周角相等),∵AB 是直径,∴∠ACB=90°,∴∠CAB=90°-∠B=40°.故答案为40.【点睛】本题考查圆周角定理、直径的性质、等腰三角形的性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.17.【分析】连接AO,如图,由OA=OC得到∠OCA=∠CAO=22.5°,则利用三角形外角性质可得∠AOD=45°,接着根据垂径定理得到AE=BE,且可判断△OAE为等腰直角三角形,然后根据等腰直角三角形的性质可得OE AE AO==,AE,所以AB=2AE=【详解】解:如图,连接AO,OA=OC,∴∠OCA=∠CAO=22.5°,∴∠AOD=45°,∵CD⊥AB,∴AE=BE,△OAE为等腰直角三角形,而CD=6,∴OA=3,则OE AE AO===根据垂径定理,2==.AB AE故答案为.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰三角形的性质.18.15°【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圆周角定理得1152BAF BOF∠=∠=,故答案为15°.19.5【分析】如图所示:由切线长定理可知:BE=BD=3,CD=CF=2,AE=AF,然后根据△ABC的周长为14求解即可.【详解】解:如图所示:由切线长定理可知:BE=BD=3,CD=CF=2,AE=AF.设AE=AF=x.根据题意得:2x+3+3+2+2=14.解得:x=2.∴AE=2.∴AB=BE+AE=3+2=5.故答案为;5.【点睛】本题主要考查的是三角形的内切圆,利用切线长定理得到BE=BD=3,CD=CF=2,AE=AF 是解题的关键.20.5.【详解】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.21.80°【详解】∵四边形ABCD是圆内接四边形,∴∠D+∠BAC=180°,∵∠D=70°,∴∠BAC=110°,∴∠PAC=180°-∠BAC=70°,又∵∠P=30°,∴∠ACP=180°-∠P-∠PAC=80°,故答案为80°.22.26°【分析】连接OA,则△PAO是直角三角形,根据圆周角定理即可求得∠POA的度数,进而根据直角三角形的性质求解.【详解】解:连接OA.∴∠PAO=90°,∵∠O=2∠B=64°,∴∠P=90°-64°=26°.故答案为:26°.【点睛】本题主要考查了切线的性质,以及圆周角定理,正确利用定理,作出辅助线求得∠POA的度数是解题的关键.23.3π【分析】首先连接OC,OE,分别交BD,DF于点M,N,易证得S△OBM=S△DCM,同理:S△OFN=S△DEN,则可得S阴影=S扇形OCE.【详解】解:连接OC,OE,分别交BD,DF于点M,N,∵正六边形ABCDEF内接于⊙O,∴∠BOC=60°,∠BCD=∠COE=120°,∵OB=OC,∴△OBC是等边三角形,∴∠OBC=∠OCB=60°,∴∠OCD=∠OCB,∵BC=CD,∴∠CBD=∠CDM=30°,BM=DM ,∴∠OBM=30°,S △DCM =S △BCM ,∴∠OBM=∠CBD ,∴OM=CM ,∴S △OBM =S △BCM ,∴S △OBM =S △DCM ,同理:S △OFN =S △DEN ,∴S 阴影=S 扇形OCE =21203360π⨯⨯=3π. 故答案为3π.【点睛】此题考查了正多边形与圆的知识以及扇形的面积公式.注意证得S 阴影=S 扇形OCE 是关键.24【详解】由题意得:四边形ABCD 为等腰梯形.AB CD ∴= AC 平分BCD ∠AB AD CD ∴==120ADC ∠=︒60ABC ∴∠=︒又BC 为直径90BAC ∴∠=︒AB AD CD r ∴===四边形ABCD 周长为102r ∴=1=22S 阴∴25.10cm【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得12•2π•r•30=300π,解得r=10(cm).故答案为10cm.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.26.证明见解析【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点睛】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.27.(1)见解析(2【详解】试题分析:(1)连接OD,根据∠A和∠B的度数求出∠ADB的度数,然后根据OA=OD求出∠ODA 的度数,从而可以得到∠ODB 的度数;(2)根据△BOD 为直角三角形和BD 的长度,求出OD 的长度,然后OC=OD 求出OC 的长度.试题解析:(1)连接OD ∵OA=OD ∴∠ODA=∠A=30°∵∠A=∠B=30° ∴∠ADB=180°-30°-30°=120° ∴∠ODB=120°-30°=90° ∴BD 是⊙O 的切线.(2)∵∠BDO=90° ∠B=30° BD=2 ∴∴考点:圆的切线的证明、等腰三角形的性质.28.(1)证明见解析;(2) S 阴影=524π-. 【详解】试题分析:(1)根据正方形的性质可得AB =BC =AD =2,∠ABC =90°,再根据旋转变化只改变图形的位置不改变图形的形状可得△ABF 和△CBE 全等,根据全等三角形对应角相等可得∠F AB =∠ECB ,∠ABF =∠CBE =90°,全等三角形对应边相等可得AF =EC ,然后求出∠AFB +∠F AB =90°,再求出∠CFG =∠F AB =∠ECB ,根据内错角相等,两直线平行可得EC ∥FG ,再根据一组对边平行且相等的四边形是平行四边形判断出四边形EFGC 是平行四边形,然后根据平行四边形的对边平行证明;(2)求出FE 、BE 的长,再利用勾股定理列式求出AF 的长,根据平行四边形的性质可得△FEC 和△CGF 全等,从而得到S △FEC =S △CGF ,再根据S 阴影=S 扇形BAC +S △ABF +S △FGC ﹣S 扇形F AG 列式计算即可得解.试题解析:(1)证明:在正方形ABCD 中,AB =BC =AD =2,∠ABC =90°.∵△BEC 绕点B逆时针旋转90°得到△ABF ,∴△ABF ≌△CBE ,∴∠F AB =∠ECB ,∠ABF =∠CBE =90°,AF =CE ,∴∠AFB +∠F AB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,∴∠CFG =∠F AB =∠ECB ,∴EC ∥FG .∵AF =CE ,AF =FG ,∴EC =FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG ;(2)解:∵AD =2,E 是AB 的中点,∴BF =BE =12AB =12×2=1,∴AF由平行四边形的性质,△FEC ≌△CGF ,∴S △FEC =S △CGF ,∴S 阴影=S 扇形BAC +S △ABF +S △FGC﹣S 扇形F AG =29021121(12)136022π⨯+⨯⨯+⨯+⨯ =524π- . 点睛:本题考查了正方形的性质,全等三角形的判定与性质,旋转变换的性质,勾股定理的应用,扇形的面积计算,综合题,但难度不大,熟记各性质并准确识图是解题的关键.29.(1)证明见解析;(2)r<CE+ED<2r【分析】(1)延长CE交⊙O于D′,连接OD′,由已知求得∠AEC=60°,进而求得∠DEO=∠D′EO=60°,根据圆是轴对称图形即可证得∠D=∠D′,ED=ED′,然后根据等腰三角形的性质求得∠D′=∠C,从而证得结论;(2)证得∠COD′>60°,从而证得CD′>OC=OD′,由CD′<OC+OD′,CE+ED=CE+ED′=CD′,从而得出r<CE+ED<2r.【详解】证明:(1)延长CE交⊙O于D′,连接OD′∵∠CED=∠OED=60°,∴∠AEC=60°,∴∠OED′=60°,∴∠DEO=∠D′EO=60°,由轴对称的性质可得∠D=∠D′,ED=ED′,∵OC=OD′,∴∠D′=∠C,∴∠C=∠D;(2)∵∠D′EO=60°,∴∠C<60°,∴∠C=∠D′<60°,∴∠COD′>60°,∴CD′>OC=OD′,∵CD′<OC+OD′,∵CE+ED=CE+ED′=CD′,∴r<CE+ED<2r.【点睛】本题考查了轴对称的性质,轴对称﹣最短路线问题,等腰三角形的性质,三角形外角的性质以及三角形三边之间的关系,圆是轴对称图形是本题的关键.30.(1)AC=8,(2)5.【分析】(1)根据直径得出∠CAB=∠BDC=90°,然后根据Rt△CAB的勾股定理得出AC的长度,然后根据等腰直角△BDC求出BD和CD的长度;(2)连接OB,OD,根据AD平分∠CAB,且∠CAB=60°得出∠DOB=2∠DAB=60°,从而得出△OBD为等边三角形,从而得出BD的长度.【详解】(1)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:.∵AD平分∠CAB,∴CD BD=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴(2)、如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=1∠CAB=30°,2∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.考点:圆的基本性质31.(1)1;(2)①点A′在⊙O上;②③0°<α<30°或60°≤α<120°【分析】(1)如图,作辅助线;证明∠AOC=60°,得到OC=1.(2)①证明∠PAB=90°,得到PB是⊙O的直径;证明∠PA′B=90°,即可解决问题.②证明∠A′BP=∠ABP=60°;借助∠APB=60°,得到△PAB为正三角形,求出AB的长即可解决问题.③直接写出α的取值范围即可解决问题.【详解】解:(1)如图,过点O作OC⊥AB于点C;∵OA=OB,则∠AOC=∠BOC=12×120°=60°,∵OA=2,∴OC=1.故答案为1.(2)①∵∠AOB=120°∴∠APB=12∠AOB=60°,∵∠PBA=30°,∴∠PAB=90°,∴PB是⊙O的直径,由翻折可知:∠PA′B=90°,∴点A′在⊙O上.②由翻折可知∠A′BP=∠ABP,∵BA′与⊙O相切,∴∠OBA′=90°,∴∠ABA′=120°,∴∠A′BP=∠ABP=60°;∵∠APB=60°,∴△PAB为正三角形,∴BP=AB;∵OC⊥AB,∴AC=BC;而OA=2,OC=1,∴AC=3,∴③α的取值范围为0°<α<30°或60°≤α<120°.【点睛】该题主要考查了翻折变换、垂径定理及其应用问题;解题的关键是灵活运用翻折变换、垂径定理等几何知识点来分析、判断、推理或解答.32.(1)AC=AD=()2直线PC与O相切,理由详见解析.【分析】(1)连接BD,利用直径所对的圆周角是直角得两个直角三角形,再由角平分线得:∠ACD=∠DCB=45°,由同弧所对的圆周角相等可知:△ADB是等腰直角三角形,利用勾股定理可以求出直角边AC的长也是利用勾股定理列式求得;(2)连接半径OC ,证明垂直即可;利用直角三角形中一直角边是斜边的一半得:这条直角边所对的锐角为30°,依次求得∠COB 、∠CEP 、∠PCE 的度数,最后求得∠OCP=90°,结论得出.【详解】解:(1)连接BD ,∵AB 是⊙O 的直径,∴∠ACB=∠ADB=90°',∵CD 平分∠ACB ,∴∠ACD=∠DCB=45°,∴∠ABD=∠ACD=45°,∠DAB=∠DCB=45°,∴△ADB 是等腰直角三角形,∵AB=10,∴在Rt △ACB 中,AB=10,BC=5,∴∴AC =AD =()2直线PC 与O 相切,理由是:连接OC , 在Rt ACB 中,10AB =,5BC =,∴30BAC ∠=,∵OA OC =,∴30OCA OAC ∠=∠=,∴60COB ∠=,∵45ACD ∠=,∴453015∠=-=,OCD∴156075∠=∠+∠=+=,CEP COB OCD=,∵PC PE∴75∠=∠=,PCE CEP∴157590∠=∠+∠=+=,OCP OCD ECP∴直线PC与O相切.【点睛】本题考查了直线和圆的位置关系,直线和圆的位置关系有三种:相离、相切、相交;重点是相切,本题是常考题型,在判断直线和圆的位置关系时,首先要看直线与圆有几个交点,根据交点的个数来确定其位置关系,在证明直线和圆相切时有两种方法:①有半径,证明垂直,②有垂直,证半径;本题属于第①种情况.33.(1)四边形CEDF是矩形(2)四边形CEDF是正方形.【详解】试题分析:(1)根据对角线互相平分的四边形为平行四边形先判断四边形ADBC是平行四边形,根据平行四边形的性质可得CB∥AD,根据平行四边形的性质可得∠CFD+∠EDF=180°,再由直径所对的圆周角为直角,即可判断∠CFD=∠CED=∠EDF=90°,所以四边形CEDF是矩形;(2)由AC是⊙O的切线,CD是直径,可得∠ACD=90°,在Rt△ACO中,OC=1,根据勾股定理求得AC =2,则CD=AC=2,∠CDE=45°,有因∠DEC=90°,DE=CE,即可判断矩形CEDF是正方形.试题解析:(1)四边形CEDF是矩形.证明:∵CD是⊙O的直径,∴∠CFD=∠CED=90°,∵CD⊙O的直径,∴OC=OD,∵OA=OB,∴四边形ADBC是平行四边形,∴CB∥AD,∴∠CFD+∠EDF=180°,∴∠EDF=90°,∴四边形CEDF是矩形.(2)四边形CEDF是正方形.理由:∵AC是⊙O的切线,CD是直径,∴∠ACD=90°,在Rt△ACO中,OC=1,221AC+=5,∴AC=2,则CD=AC=2,∠CDE=45°,又∵∠DEC=90°∴DE=CE,∴矩形CEDF是正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
B
O
A
C
O A
B
M
B
C
P
A
100︒
(2)
C O
B
A
(1) (2) (3) (4) (5)
九年级数学《圆》单元测试题
班级 姓名
一、选择题(30分)
1、如图(1),已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数是( ) A.80° B.100° C.120° D.130°
2、如图(2),⊙O 的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( ) A、2 B、3 C、4 D、5
3、如图(3),已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( )
A 、25º
B 、29º
C 、30º
D 、32°
4、已知:如图(4),∠BPC = 50°,∠ABC = 60°, 则∠ACB 是( )
A.40°
B.50°
C. 60°
D. 70°
5、已知⊙O 的半径为10cm,弦AB ∥CD,AB=12cm,CD=16cm,则AB 和CD 的距离为( ) A.2cm B.14cm C.2cm 或14cm D.10cm 或20cm
6、AB 是⊙O 的弦,∠AOB = 80°,则AB 所对的圆周角是( ) A .40° B .40°或140° C .20° D .80°或100°
7、如图(5),⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB, ∠AOC=84°,则∠E 等于( ) A .42 ° B .28° C .21° D .20°
8、如图将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕 AB 的长为( )A 、2cm B 、3cm C 、23cm D 、25cm
9. 如图所示,AB 是⊙O 的一固定直径,它把⊙O 分成上、下两个
半圆,自上半圆上一点C 作弦CD ⊥AB .∠OCD 的平分线交⊙O 于点P , 当点C 在上半圆 (不包括AB 两点)上移动时,点P( ) A .到CD 的距离保持不变 B .位置不变、 C. 等分
D .随C 点的移动而移动 10、如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起, OA =3,OC =1,分别连结AC 、BD ,则图中阴影部分的面积为( )
A.
1
2
π B. π C. 2π D. 4π 二、填空题(42分)
1、如图,⊙O 的半径为5cm ,圆心到弦AB 的距离为3cm ,则弦
O A
B 图5
O
A
B
C
A B O AB 的长为________cm
2、在半径为1的圆中,长度等于2的弦所对的圆心角是 度。

3、在直径为10m 的圆柱形油槽内装入一些油后,截面如图所示如果油面宽8AB m =,那么油的最大深度是
4、如图,在⊙O 中弦 1.8AB cm =,圆周角30ACB ∠=︒,则⊙O 的直径等于 cm
5、一点和⊙O 上的最近点距离为4cm ,最远距离为9cm ,则这圆的半径是 cm .
6、如图,正方形ABCD 内接于⊙O ,点P 在AD 上,则∠BPC= . 7.如图,AB 是⊙O 的直径, 弧BC=弧BD ,∠A=25°,则∠BOD=
8、在平面直角坐标系xOy 中,已知点A (0,2),⊙A 的半径是2,⊙P 的半径是1,满足与⊙A 及x 轴都相切的⊙P 有 个. 9.半径为1,圆心角是300º的弧长为 .
10.在半径为12cm 的圆中,一条弧长为π6cm ,此弧所对的圆周角是 .
11.两同心圆中,大圆的弦AB 切小圆于C 点,且AB=20cm,则夹在两圆间的圆环面积是
2cm ________.
12.在Rt △ABC 中,直角边AC=5cm,BC=12cm,以BC 为轴旋转一周所得圆锥的侧面积为
2cm ________,以
AC 为轴旋转一周所得圆锥的侧面积为2cm ________.
13、如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中, B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为 . 14、已知⊙O 1与⊙O 2相切,⊙O 1的半径为
9 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是( )A .1 cm B .5 cm C .1
cm 或5 cm D .0.5cm 或2.5cm 三、解答题(6+6+8+9+9+10=48分) 1、如图所示,在Rt △ABC 中,∠C=90°,AC=8,BC=15,以C 为圆心,AC 为半径的⊙C 交AB 于D ,求AD 长.
2、(2012陕西)如图,PA PB 、分别与圆O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N . (1)求证:=OM AN ;
(2)若圆0的半径=3R ,=9PA ,求OM 的长.
3、如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交于D.
BC
(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.Array 4. (2012•长沙)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
与点D.(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2,求CD的长.
6.(2012张家界)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧上一动点(不与A.C重合).
(1)求∠APC与∠ACD的度数;
(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.
(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.
7.如图,AB 是⊙O 的直径,点D 在⊙O 上, OC ∥AD 交⊙O 于E, 点F 在CD 延长线 上, 且∠BOC+∠ADF=90︒. (1)求证: ; (2)求证:CD 是⊙O 的切线.
8.如图,角PAQ 是直角,圆O 与AP 相切于点T ,与AQ 交于B,C 两点(1)BT 是否平分∠OBA,说说你的理由 (2)若已知AT=4,弦BC=6试求圆O 的半径R
9.如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AB=8cm ,AD=24cm ,BC=26cm ,AB 为⊙O 的直径.动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以3cm/s 的速度运动,P 、Q 两点同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t ,求:
(1)t 分别为何值时,四边形PQCD 为平行四边形、等腰梯形? (2)t 分别为何值时,直线PQ 与⊙O 相切、相离、相交?
F
A O
E B
D。

相关文档
最新文档