八年级数学下册 20 数据的分析重难点突破课件 (新版)新人教版
合集下载
新人教版初中数学八年级下册第20章 数据的分析《20.1.1 平均数》教学PPT
灯泡只数
600≤x <1 000
5
1 000≤x <1 400
10
1 400≤x <1 800
12
1 800≤x <2 200
17
2 200≤x <2 600
6
解:即样本平均数为1 672. 因此,可以估计这批灯泡的平均使用寿命大约是 1 672 h.
样本估计总体
练一练
问题2 某校为了解八年级男生的身高,从八年级
各班随机抽查了共40 名男同学,测量身高情况(单位:
cm)如下图.试估计该 人数
校八年级全部男生的平 20
20
均身高.
15
10
10
6
5
4
0 145 155 165 175 185 身高/cm
课堂小结
(1)在抽样调查得到样本数据后,你如何处理样本 数据并估计总体数据的集中趋势? 样本平均数估计总体平均数.
解:他们的平均身高为: 156+158+160+162+170 =161.2 5
所以,他们的平均身高为161.2 cm.
做一做
问题2 某班级为了解同学年龄情况,作了一次年 龄调查,结果如下:13岁8人,14岁16人,15岁24人, 16岁2人.求这个班级学生的平均年龄(结果取整数).
解:这个班级学生的平均年龄为:
课堂小结
(1)当一组数据中有多个数据重复出现时,如何简便 地反映这组数据的集中趋势? 利用加权平均数.
(2)据频数分布求加权平均数时,你如何确定数据与 相应的权?试举例说明.
数据
频数
权
组中值
课后作业
作业: 必做题:教科书第121页复习巩固第1题; 选做题:教科书第122页综合应用第6题.
600≤x <1 000
5
1 000≤x <1 400
10
1 400≤x <1 800
12
1 800≤x <2 200
17
2 200≤x <2 600
6
解:即样本平均数为1 672. 因此,可以估计这批灯泡的平均使用寿命大约是 1 672 h.
样本估计总体
练一练
问题2 某校为了解八年级男生的身高,从八年级
各班随机抽查了共40 名男同学,测量身高情况(单位:
cm)如下图.试估计该 人数
校八年级全部男生的平 20
20
均身高.
15
10
10
6
5
4
0 145 155 165 175 185 身高/cm
课堂小结
(1)在抽样调查得到样本数据后,你如何处理样本 数据并估计总体数据的集中趋势? 样本平均数估计总体平均数.
解:他们的平均身高为: 156+158+160+162+170 =161.2 5
所以,他们的平均身高为161.2 cm.
做一做
问题2 某班级为了解同学年龄情况,作了一次年 龄调查,结果如下:13岁8人,14岁16人,15岁24人, 16岁2人.求这个班级学生的平均年龄(结果取整数).
解:这个班级学生的平均年龄为:
课堂小结
(1)当一组数据中有多个数据重复出现时,如何简便 地反映这组数据的集中趋势? 利用加权平均数.
(2)据频数分布求加权平均数时,你如何确定数据与 相应的权?试举例说明.
数据
频数
权
组中值
课后作业
作业: 必做题:教科书第121页复习巩固第1题; 选做题:教科书第122页综合应用第6题.
新人教版八年级下册数学教学PPT课件(第20章 数据的分析)
知1-讲
定义:一般地,对于n个数x1,x2,…,xn,我
1 们把 (x1+x2+…+xn)叫做这n个数的算术平 n
均数;
简称平均数;记为 “x”,读作:“x拔”.
知1-讲
例1 〈易错题〉某次舞蹈大赛的记分规则为:从七位评委的打分
中去掉一个最高分和一个最低分后计算平均分作为最后得 分.以下是在该次比赛中七位评委对小菲与小岚的打分情 况(单位:分): 小菲 80 77 82 小岚 79 80 77 83 76 75 78 82 85 89 81
即这20名学生的平均成绩为79分. 18 (2)这20名学生的合格率为 100%=90%. 20
知1-讲
总 结
利用新数据法求平均数的关键是确定好新数,
计算时套用公式即可.
知1-练
1 【中考· 苏州】有一组数据:2,5,5,6,7,这 组数据的平均数为( C )
A.3
B. 4
C. 5
D.6
2 一组数据的和为87,平均数是3,则这组数据的 个数为( C )
知1-导
如果这家公司想招一名综合能力较强的翻译,计
算两名应试者的平均 成绩(百分制)从他们的成绩看, 应该录取谁? 对于上述问题,根据平均数公式,甲的平均成绩为 85 78 85 73 =80.25, 4 73 80 82 83 乙的平均成绩为 =79.5. 4 因为甲的平均成绩比乙高,所以应该录取甲.
各数据与a的差:x1-a=x1′,x2-a=x2′,…
,
1 n
xn-a=xn′,则x=a+ .
(x1′+x2′+…+xn′)
知1-练
1 利用计算器求一组数据的平均数时,一般步骤可分
统计 状态;② 为三步:①选择统计模式,进入________ 数据 ;③显示________ 统计 结果. 依次输入各________ 2 某同学使用计算器求30个数据的平均数时,错将其 中的一个数据105输入为15,那么由此求出的平均数 与实际平均数的差是( D ) A.-3.5 B.3 C.0.5 D.-3
新人教版八年级数学下册《二十章 数据的分析 20.1 数据的集中趋势 20.1.2中位数与众数 众数》课件_24
小组合作
6个小组分别测出一组和本组同学相关 的生活数据,然后由组长说说本组同学 所得数据的平均数、中位数和众数,并 选择其中一个数据代表来说明本组数据 的特征。
课堂小结
通过今天的学习,你 们都有哪些收获和同 学们交流分享?
(A)众数 (B)中位数
(C)平均数 (D)都不是
(C)平均数 (D)都不是
★★闯关
1.在一次数学竞赛中,5名学生的成绩从低到高排列依 次是 55,57,61,62,98,那么他们的中位数是多少?
2.样本8,8,9,10,12,12,12,13 的中位数和众 数分别是 11 和 12 .
3.数据11, 8, 2, 7, 9, 2, 7, 3, 2, 0, 5的中位数
2.在一次“环保从我做起”的比赛中,12名同学拾塑料袋
的成绩如下(单位:个):
2346,2490,3860,4204,4554,46,485,548,578)的中位数是多少?
中位数:
1 2
46 + 48
= 47
(2)他一的名成同绩学比的一成半绩以是上48同个学,的他成的绩成好绩。如何?
6, 3
(3)2,5,3,0,4,-6,2,-8,4,3
2,3,4
一组数据
可以有一个众
数,可以有两
个或多个众数
。
当堂检测 ★闯关
1.一组数据的中位数一定只有一个。( √ ) 2.一组数据的众数一定只有一个。( × )
3.一组数据的中位数一定是这组数据中的某一个数,
而平均数一定不是这组数据中的某一个数。( × )
是5
.
4.数据15,20,20,22,30,30的众数是 20,30 .
★★★闯关
人教版八年级数学下册第二十章数据的分析PPT教学课件
听、说、读、写的成绩按照2:1:3:4的比确定.
重要程度 不一样!
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
解:
x甲 =
85
22+78 11+85 2+1+3+4
33+73 ,
44
=79.5
x乙 =
73
2+80 1+82 2+1+3+4
3+83
解:这个跳水队运动员的平均年龄为:
x=
13 8 14 16 15 24 16 2
8 16 24 2
≈__1_4___(岁).
答:这个跳水队运动员的平均年龄约为_1_4_岁__.
练习
下表是校女子排球队队员的年龄分布,
年龄∕岁
13
14
15
16
频数
1
4
演讲能力
(50%) (40%)
演讲效果
(10%)
A
85
95
95
B
95
85
95
解:选手A的最后得分是
85×50%+95×40%+95×10% 50%+40%+10%
选手B的最后得分是
95×50%+85×40%+95×10% 50%+40%+10%
=42.5+38+9.5
=47.5+34+9.5
=90.
=91.
由上可知选手B获得第一名,选手A获得第二名.
选手 演讲内容
演讲能力
演讲效果
A
85
95
95
B
95
85
95
重要程度 不一样!
应试者 听 说 读 写 甲 85 78 85 73 乙 73 80 82 83
解:
x甲 =
85
22+78 11+85 2+1+3+4
33+73 ,
44
=79.5
x乙 =
73
2+80 1+82 2+1+3+4
3+83
解:这个跳水队运动员的平均年龄为:
x=
13 8 14 16 15 24 16 2
8 16 24 2
≈__1_4___(岁).
答:这个跳水队运动员的平均年龄约为_1_4_岁__.
练习
下表是校女子排球队队员的年龄分布,
年龄∕岁
13
14
15
16
频数
1
4
演讲能力
(50%) (40%)
演讲效果
(10%)
A
85
95
95
B
95
85
95
解:选手A的最后得分是
85×50%+95×40%+95×10% 50%+40%+10%
选手B的最后得分是
95×50%+85×40%+95×10% 50%+40%+10%
=42.5+38+9.5
=47.5+34+9.5
=90.
=91.
由上可知选手B获得第一名,选手A获得第二名.
选手 演讲内容
演讲能力
演讲效果
A
85
95
95
B
95
85
95
八年级数学下册 第二十章 数据的分析 20.2 数据的波动程度(2)课件 (新版)新人教版.pptx
第二十章 数据的分析
数据的波动程 度(2)
1
目录 contents
8分钟小测 精典范例 变式练习 巩固提高
2
8 分钟小测
1.样本数据3,6,a,4,2的平均数是5,则这个样 本的方差是__8____. 2.题1中数据都加1,则这组数据的平均数为 ____6___,方差为__8_____ 3猜测:题1中数据都加a,则这组数据的平均数为 ____a_+_5_,方差为__8____。 4.若一组数据a1,a2,…,an的方差是5,则一组 新数据2a1,2a2,…,2an的方差是(C ) A.5 B.10 C.25 D.50
3
8 分钟小测
5.在某次训练中,甲、乙两名射击运动员各射击 10发子弹的成绩统计图如图所示,对于本次训练, 有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲 的射击成绩比乙稳定;④乙的射击成绩比甲稳定, 由统计图可知正确的结论是(B)
A. ①③ B. ①④ C. ②③ D. ②④
4
精典范例
知识点1.方差在统计决策中的应用 例1.下表记录了甲、乙、丙、丁四名射击运动员 最近几次选拔赛成绩的平均数和方差:
C.两班成绩一样稳定
D.无法确定
6
精典范例
例2.为了从甲、乙两名同学中选拔一个参加比赛
,对他们的射击水平进行了测验,两个在相同条件
下各射靶10次,命中的环数如下(单位:环)
甲:7,8,6,8,6,5,9,10,7,4
乙:9,5,7,8,6,8,7,6,7,7
(1)求
_
x甲
,x_乙 ,S甲2,S乙2;
B.7 C.8
D.19
11
巩固提高
5. 一组数据:2018,2018,2018,2018,2018, 2018的方差是 0. 6. 在某次军事夏令营射击考核中,甲、乙两名同 学各进行了5次射击,射击成绩如图所示,则这两 人中水平发挥较为稳定的是 甲 同学.
数据的波动程 度(2)
1
目录 contents
8分钟小测 精典范例 变式练习 巩固提高
2
8 分钟小测
1.样本数据3,6,a,4,2的平均数是5,则这个样 本的方差是__8____. 2.题1中数据都加1,则这组数据的平均数为 ____6___,方差为__8_____ 3猜测:题1中数据都加a,则这组数据的平均数为 ____a_+_5_,方差为__8____。 4.若一组数据a1,a2,…,an的方差是5,则一组 新数据2a1,2a2,…,2an的方差是(C ) A.5 B.10 C.25 D.50
3
8 分钟小测
5.在某次训练中,甲、乙两名射击运动员各射击 10发子弹的成绩统计图如图所示,对于本次训练, 有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲 的射击成绩比乙稳定;④乙的射击成绩比甲稳定, 由统计图可知正确的结论是(B)
A. ①③ B. ①④ C. ②③ D. ②④
4
精典范例
知识点1.方差在统计决策中的应用 例1.下表记录了甲、乙、丙、丁四名射击运动员 最近几次选拔赛成绩的平均数和方差:
C.两班成绩一样稳定
D.无法确定
6
精典范例
例2.为了从甲、乙两名同学中选拔一个参加比赛
,对他们的射击水平进行了测验,两个在相同条件
下各射靶10次,命中的环数如下(单位:环)
甲:7,8,6,8,6,5,9,10,7,4
乙:9,5,7,8,6,8,7,6,7,7
(1)求
_
x甲
,x_乙 ,S甲2,S乙2;
B.7 C.8
D.19
11
巩固提高
5. 一组数据:2018,2018,2018,2018,2018, 2018的方差是 0. 6. 在某次军事夏令营射击考核中,甲、乙两名同 学各进行了5次射击,射击成绩如图所示,则这两 人中水平发挥较为稳定的是 甲 同学.