2010年全国高中数学联赛安徽赛区预赛试卷及详细答案2010.9.4

合集下载

2010年全国高中数学联赛一试试题及答案

2010年全国高中数学联赛一试试题及答案
−2
6. 两人轮流投掷骰子否则轮由另 一人投掷.先投掷人的获胜概率是
84 . 119 21 7 = ,从而先投掷人的获胜概率为 36 12
解:同时投掷两颗骰子点数和大于 6 的概率为
7 5 7 5 7 + ( )2 × + ( )4 × + " 12 12 12 12 12 7 1 84 . = × = 25 119 12 1− 144
2
数学竞赛之窗博客/
g ( y ) max = a 2 + 3a − 2 = 8 ⇒ a = 2 ,
所以 g ( y ) min = 2
1 + 3 × 2 −1 − 2 = − . 4 1 综上 f ( x) 在 x ∈ [ −1,1] 上的最小值为 − . 4
解二:如图, PC = PC1 , PA1 = PB . 设 A1 B 与 AB1 交于点 O, 则
OA1 = OB, OA = OB1 , A1 B ⊥ AB1 .
因为 PA = PB1 , 所以 PO ⊥ AB1 ,
从而 AB1 ⊥ 平面 PA1 B . 过 O 在平面 PA1 B 上作 OE ⊥ A1 P ,垂足为 E . 连结 B1 E ,则 ∠B1 EO 为二面角 B − A1 P − B1 的平面角. 设 AA1 = 2 ,则易求得
2
3 ≤ a ≤ 12 . 2
解:令 sin x = t ,则原函数化为 g (t ) = ( −at + a − 3)t ,即
2
g (t ) = −at 3 + (a − 3)t .

− at 3 + (a − 3)t ≥ −3 , − at (t 2 − 1) − 3(t − 1) ≥ 0 ,

2010年全国高考理科数学试题及答案-安徽

2010年全国高考理科数学试题及答案-安徽

姓名 座位号(在此卷上答题无效)绝密★启用并使用完毕前2010年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试用时120分钟. 注意事项:1.答卷前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位. 2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米黑色黑水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色签际笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案...........无效..,在试题卷....、草稿纸上答题无效..........4.考试结束,务必将试题卷和答题卡一并上交.参考公式: 如果事件A 与B 互斥,那么 )()()(B P A P B A P +=+ 如果A 与B 是两个任意事件,0)(≠A P ,那么 如果事件A 与B 相互独立,那么 )|()()(A B P A P AB P =)()()(B P A P AB P ≠第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,=+ii 33(A )12341-(B )i 12341- (C )i 6321+ (D )i 6321- (2)若集合}21log |{21≥=x x A ,则=A C R(A )⎪⎪⎭⎫⎝⎛+∞⋃-∞,22]0,( (B )⎪⎪⎭⎫⎝⎛+∞,22 (C )⎪⎪⎭⎫⎢⎣⎡+∞⋃-∞,22]0,( (D )⎪⎪⎭⎫⎢⎣⎡+∞,22 (3)设向量)21,21(),0,1(==b a ,则下列结论中正确的是(A )||||b a = (B )22=⋅b a (C )b b a 与-垂直 (D )b a // (4)若)(x f 是R 上周期为5的奇函数,且满足,2)2(,1)1(==f f 则)4()3(f f -=(A )-1(B )1(C )-2(D )2(5)双曲线方程为1222=-y x ,则它的右焦点坐标为(A ))0,22((B ))0,25((C ))0,26((D ))0,3((6)设0>abc ,二次函数c bx ax x f ++=2)(的图象可能是(7)设曲线C 的参数方程为⎩⎨⎧+-=+=θθsin 31cos 32y x (θ为参数),直线l 的方程为023=+-y x ,则曲线C 到直线l 的距离为10107的点的个数为 (A )1 (B )2 (C )3 (D )4(8)一个几何全体的三视图如图,该几何体的表面积为 (A )280 (B )292(C )360 (D )372(9)动点),(y x A 在圆122=+y x 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知定时t=0时,点A 的坐标是)23,21(,则当120≤≤t 时,动点A 的纵坐标y关于t (单位:秒)的函数的单调递增区间是(A )[0,1] (B )[1,7] (C )[7,12](D )[0,1]和[7,12]、(10)设}{n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是 (A )Y Z X 2=+ (B ))()(X Z Z X Y Y -=-(C )XZ Y=2(D ))()(X Z X X Y Y -=-(在此卷上答题无效)绝密★启用并使用完毕前2010年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)命题“对任何3|4||2|,>-+-∈x x R x ”的否定是 .(12)6⎪⎪⎭⎫ ⎝⎛-x y y x 的展开式中,3x 的系数等于 . (13)设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,048,022y x y x y x 若目标函数)0,0(>>+=b a y abx z 的最大值为8,则b a +的最小值为 .(14)如图所示,程序框图(算法流程图)的输出值=x . (15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐, 分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球 的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球 是红球的事件,则下列结论中正确的是 (写出所有正确结 论的编号). ①52)(1=B P ; ②115)|(1=A B P ;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤)(B P 的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内. (16)(本小题满分12分)设ABC ∆是锐角三角形,c b a ,,分别是内角A ,B ,C 所对边长,并且.sin )3sin()3sin(sin 22B B B A +-+=ππ(Ⅰ)求角A 的值;(Ⅱ)若72,12==⋅a ,求c b ,(其中c b <).(17)(本小题满分12分)设a 为实数,函数.,22)(R x a x e x f x ∈+-= (I )求)(x f 的单调区间与极值;(II )求证:当012ln >->x a 且时,.122+->ax x e x(18)(本小题满分13分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF//AB ,EF ⊥FB ,AB=2EF ,,90︒=∠BFC BF=FC ,H 为BC 的中点.(I )求证:FH//平面EDB ; (II )求证:AC ⊥平面EDB ;(III )求二面角B —DE —C 的大小.(19)(本小题满分13分)已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率.21=e (I )求椭圆E 的方程;(II )求21AF F ∠的角平分线所在直线l 的方程;(III )在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.(20)(本小题满分12分)设数列,,,21 a a ,n a 中的每一项都不为0.证明,}{n a 为等差数列的充分必要条件是:对任何N n ∈,都有.1111113221++=+++n n n a a na a a a a a(21)(本小题满分13分)品酒师需要定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n 瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序,经过一段时间,等其记忆淡忘之后,再让其品尝这n 瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以4321,,,a a a a 表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令.|4||3||2||1|4321a a a a X -+-+-+-=则X 是对两次排序的偏离程度的一种描述. (I )写出X 的可能值集合;(II )假设4321,,,a a a a 等可能地为1,2,3,4的各种排列,求X 的分布列; (III )某品酒师在相继进行的三轮测试中,都有2≤X ,(i )试按(II )中的结果,计算出现这种现象的概率(假定各轮测试相互独立); (ii )你认为该品酒师的酒味鉴别功能如何?说明理由.参考答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)B (2)A (3)C (4)A (5)C (6)D (7)B (8)C (9)D (10)D二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)存在,-2-4|3x x x ∈≤R 使得||+|(12)15(若只写2466C C 或,也可) (13)4 (14)12 (15)②④三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内. (16)(本小题满分12分)本题考查两角和的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力.解:(I )因为2211sin (sin )(sin )sin 2222A B B B B B =+-+222313c o s s i n s i n ,444s i n ,,.23B B B A A A π=-+==±=所以又为锐角所以(II )由12AB AC ⋅=可得c o s 12.c b A= ①由(I )知,3A π=所以24cb =②由余弦定理知2222cos ,a c b cb A a =+==将 ③+②×2,得()100c b 2+=,所以10.c b +=因此,c ,b 是一元二次方程210240t t -+=的两个根. 解此方程并由6, 4.c b c b >==知(17)(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力. (I )解:由()22,()2,.xxf x e x a x f x e x '=-+∈=-∈R R 知令()0,ln 2.,(),()f x x x f x f x ''==得于是当变化时的变化情况如下表:故()f x 的单调递减区间是(,ln 2)-∞,单调递增区间是(ln 2,)+∞,()ln 2f x x =在处取得极小值,极小值为ln 2(ln 2)2ln 222(1ln 2).f ea a =-+=-+(II )证:设2()21,,xg x e x ax x =-+-∈R于是()22,.xg x e x a x '=-+∈R由(I )知当ln 21,()(ln 2)2(1ln 2)0.a g x g a ''>-=-+>时最小值为,()0,()x g x g x '∈>R R 于是对任意都有所以在内单调递增,于是当ln 21,(0,),()(0),a x g x g >-∈+∞>时对任意都有 而(0)0,(0,),()0.g x g x =∈+∞>从而对任意 即22210,2 1.x x e x ax e x ax -+->>-+故(18)(本小题满分13分)本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力.[综合法](1)证:设AC 与BD 交于点G ,则G 为AC 的中点,连EG ,GH , 又H 为BC 的中点,11//,//,//.22GH AB EF AB EF GH ∴∴又 ∴四边形EFHG 为平行四边形,∴EG//FH ,而EG ⊂平面EDB ,∴FH//平面EDB.(II )证:由四边形ABCD 为正方形,有AB ⊥BC ,又EF//AB ,∴EF ⊥BC.而EF ⊥FB ,∵EF ⊥平面BFC ,∴EF ⊥FH ,∴AB ⊥FH. 又BF=FC ,H 为BC 的中点,∴FH ⊥BC. ∴FH ⊥平面ABCD ,∴FH ⊥AC , 又FH//BC ,∴AC=EG.又AC ⊥BD ,EG ⋂BD=G ,∴AG ⊥平面EDB.(III )解:EF ⊥FB ,∠BFC=90°,∴BF ⊥平面CDEF ,在平面CDEF 内过点F 作FK ⊥DE 交DE 的延长线于K , 则∠FKB 为二面角B —DE —C 的一个平面角.设EF=1,则AB=2,又EF//DC ,∴∠KEF=∠EDC ,∴sin ∠EDC=sin ∠∴FK=EFsin ∠,tan ∠FKB=BFFK=∴∠FKB=60° ∴二面角B —DE —C 为60°. [向量法]∵四边形ABCD 为正方形,∴AB ⊥BC ,又EF//AB ,∴EF ⊥BC. 又EF ⊥FB ,∴EF ⊥平面BFC. ∴EF ⊥FH ,∴AB ⊥FH.又BF=FC ,H 为BC 的中点,∴FH ⊥BC ,∴FH ⊥平面ABC. 以H 为坐标原点,HB x 为轴正向,HF z 为轴正向,建立如图所示坐标系.设BH=1,则A (1,—2,0),B (1,0,0), C (—1,0,0),D (—1,—2,0),E (0,—1,1), F (0,0,1).(I )证:设AC 与BD 的交点为G ,连GE ,GH ,则(0,1,0),(0,0,1),(0,0,1)//.G CE HF HF GE -∴==∴又GE ⊂平面EDB ,HF 不在平面EDB 内,∴FH ∥平面EBD ,(II )证: (2,2,0),(0,0,1),0,.AC GE AC GE AC GE =-=⋅=∴⊥又AC ⊥BD ,EG ∩BD=G ,∴AC ⊥平面EDB. (III )解:(1,1,1),(2,2,0).BE BD =--=--设平面BDE 的法向量为111(1,,),n y z =则1111110,120,BE n y z BD n y ⋅=--+=⋅=--=111222222121212121,0,(1,1,0).(0,2,0),(1,1,1),(1,,),0,0,(1,0,1),1cos ,,||||2,60,y z n CD CE CDE y z CD y ∴=-==-=-=-=⋅===-⋅<>===⋅∴<>=n n n n n n n n n n n 即设平面的法向量为则故即二面角B —DE —C 为60°. (19)(本小题满分13分)本题考查椭圆的定义及标准方程,椭圆的简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式,点关于直线的对称等基础知识;考查解析几何的基本思想、综合运算能力、探究意识与创新意识.解:(I )设椭圆E 的方程为22221x y a b +=2222222211,,2,3,221.43c e a c b a c e a x yc e ====-=∴+=由即得椭圆方程具有形式 将A (2,3)代入上式,得22131,2,c c c +==解得 ∴椭圆E 的方程为221.1612x y +=(II )解法1:由(I )知12(2,0),(2,0)F F -,所以直线AF 1的方程为:3(2),3460,4y x x y =+-+=即 直线AF 2的方程为: 2.x =由点A 在椭圆E 上的位置知,直线l 的斜率为正数. 设(,)P x y l 为上任一点,则|346||2|.5x y x -+=-若346510,280x y x x y -+=-+-=得(因其斜率为负,舍去). 所以直线l 的方程为:210.x y --= 解法2:121212121(2,3),(2,0),(2,0),(4,3),(0,3).114(4,3)(0,3)(1,2).535||||2,:32(1),210.A F F AF AF AF AF AF AF k l y x x y -∴=--=-∴+=--+-=-∴=∴-=---=即(III )解法1:假设存在这样的两个不同的点1122(,)(,),B x y C x y 和2121121200001,.2(,),,,22BC y y BC l k x x x x y y BC M x y x y -⊥∴==-++==设的中点为则由于M 在l 上,故00210.x y -+= ①又B ,C 在椭圆上,所以有222211221 1.16121612x y x y +=+=与 两式相减,得222221210,1612x x y y --+= 即12211221()()()()0.1612x x x x y y y y +-+-+=将该式写为122112211108262x x y y y y x x +-+⋅+⋅⋅=-, 并将直线BC 的斜率BC k 和线段BC 的中点,表示代入该表达式中,得0000110,320.812x y x y -=-=即 ② ①×2—②得202,3x y ==,即BC 的中点为点A ,而这是不可能的.∴不存在满足题设条件的点B 和C.解法2:假设存在1122(,),(,)B x y C x y l 两点关于直线对称, 则1,.2BC l BC k ⊥∴=- 221,1,21612x y BC y x m =-++=设直线的方程为将其代入椭圆方程 得一元二次方程2222134()48,120,2x x m x mx m +-+=-+-=即 则12x x 与是该方程的两个根,由韦达定理得12,x x m += 于是121213()2,22m y y x x m +=-++= ∴B ,C 的中点坐标为3(,).24m m 又线段BC 的中点在直线321,1, 4.4m y x m m =-∴=-=上得 即B ,C 的中点坐标为(2,3),与点A 重合,矛盾.∴不存在满足题设条件的相异两点.(20)(本小题满分12分)本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.证:先证必要性设数列{},0,n a d d =的公差为若则所述等式显然成立,若0d ≠,则1223132********122311111111111()1111111(()()())1111()n n n n n n n n n n n a a a a a a a a a a a a d a a a a a a d a a a a a a a a d a a d a a ++++++++++---=+++=-+-++--=-=11.n n a a += 再证充分性.证法1:(数学归纳法)设所述的等式对一切n +∈N 都成立,首先,在等式122313112a a a a a a += ① 两端同乘123132123,2,,,a a a a a a a a a +=即得所以成等差数列,记公差为21,.d a a d =+则假设1(1),1k a a k d n k =+-=+当时,观察如下二等式12231121111,k k k a a a a a a a a --+++= ② 122311111111k k k k k k a a a a a a a a a a -++++++=, ③ 将②代入③,得 111111,k k k k k k a a a a a a ++-+= 在该式两端同乘11111,,(1).k k k a a a k a a ka ++-+=得将111(1),,.k k a a k d a a kd +=+-=+代入其中整理后得由数学归纳法原理知,对一切1(1),n n a a n d +∈=+-N 都有所以{}n a d 是公差为的等差数列.证法2:[直接证法]依题意有1223111111,n n n n a a a a a a a a +++++= ① 12231121211111.n n n n n n a a a a a a a a a a +++++++++= ② ②—①得 12121111n n n n n n a a a a a a +++++=-,在上式两端同乘112111,(1),n n n n a a a a n a na ++++=+-得同理可得11(1),n n a na n a +=-- ③③—④得122()n n n na n a a ++=+即211,{}n n n n n a a a a a +++-=-所以是等差数列,(21)(本小题满分13分)本题考查离散型随机变量及其分布列,考查在复杂场合下进行计数的能力,能过设置密切贴近生产、生活实际的问题情境,考查概率思想在现实生活中的应用,考查抽象概括能力、应用与创新意识.解:(I )X 的可能值集合为{0,2,4,6,8}.在1,2,3,4中奇数与偶数各有两个,所以23,a a 中的奇数个数等于13,a a 中的偶数个数,因此1334|1||3||2||4|a a a a ++--+-与的奇偶性相同,从而2324(|1||3|)(|2||4|)X a a a a =-+++-+-必为偶数.X 的值非负,且易知其值不大于8.容易举出使得X 的值等于0,2,4,6,8各值的排列的例子.(II )可用列表或树状图列出1,2,3,4的一共24种排列,计算每种排列下的X 值,在等可能的假定下,得到(III )(i )首先41(2)(0)(2)246P X P X P X ≤==+===,将三轮测试都有2X ≤的概率记做p ,由上述结果和独立性假设,得311.2166p == (ii )由于152161000p =<是一个很小的概率,这表明如果仅凭随机猜测得到三轮测试都有2X ≤的结果的可能性很小,所以我们认为该品酒师确实有良好的味觉鉴别功能,不是靠随机猜测.。

2010年全国高中数学联赛预赛试题汇编

2010年全国高中数学联赛预赛试题汇编

函数值域与最值1、 (2010年江西省预赛试题)函数21)(2+-=x x x f 的值域是2、 (2010年安徽省预赛试题)函数242)(xx x x f --=的值域是3、 (2010年山西省预赛试题)若],0[π∈x ,函数xx xx y cos sin 1cos sin ++=的值域是 4、 (2010年辽宁省预赛试题)函数|cos |3|sin |2)(x x x f +=的值域是5、 (2010年全国联赛一试试题)函数xx x f 3245)(---=的值域是6、(2010年河北省预赛试题)已知关于x 的不等式kx x ≥-+2有实数解,则实数k 的取值范围是7、(2010年江西省预赛试题)设多项式)(x f 满足:对R x ∈∀,都有xxx f x f 42)1()1(2-=-++,则)(x f 的最小值是8、(2010年四川省预赛试题)已知函数424)42()(24224+++-++=xxx k k xx f 的最小值是0,则非零实数k 的值是9、(2010年全国联赛一试试题)已知函数xx a y sin )3cos(2-=的最小值为3-,则实数a 的取值范围是10、(2010年全国联赛一试试题)函数)1,0(23)(2≠>-+=a a aax f xx在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 11、(2010年福建省预赛试题)已知函数|2|)(a x x x f -=,试求)(x f 在区间]1,0[上的最大值)(a g12、(2010年辽宁省预赛试题)已知131≤≤a ,若12)(2+-=x axx f 在]3,1[上的最大值为)(a M ,最小值为)(a N ,令)()()(a N a M a g -=函数性质与导数的应用1、(2010年河北省预赛试题)函数)1(+=x f y 的反函数是)1(1+=-x fy,且4007)1(=f ,则=)1998(f2、(2010年山西省预赛试题) 函数2)(2-=axx f ,若2))2((-=f f ,则=a3、(2010年辽宁省预赛试题)不等式xx 256log )1(log >+的整数解的个数为4、(2010年吉林省预赛试题)已知1)1,1(=f ,),(),(**N n m N n m f ∈∈,且对任意*,Nn m ∈都有:①2),()1,(+=+n m f n m f ;②)1,(2)1,1(m f m f =+,则)2008,2010(f 的值为5、(2010年山东省预赛试题)若函数xe ex xf -=ln)(,则=∑=)2011(20101k ke f6、(2010年山东省预赛试题)函数432)(23+++=x xx x f 的图像的对称中心为7、(2010年山东省预赛试题)已知函数)0(4321)(2>--=a x axx f ,若在任何长度为2的闭区间上总存在两点21,x x ,使41|)()(|21≥-x f x f 成立,则a 的最小值为8、(2010年福建省预赛试题)函数)(cossin)(*22N k x x x f kk∈+=的最小值为9、(2010年河南省预赛试题)设11)(+-=x x x f ,记)()(1x f x f =,若))(()(1x f f x f n n =+,则=)(2010x f10、(2010年湖北省预赛试题)对于一切]21,2[-∈x ,不等式0123≥++-x xax恒成立,则实数a 的取值范围为11、(2010年甘肃省预赛试题)设0>a ,函数|2|)(a x x f +=和||)(a x x g -=的图像交于C点且它们分别与y 轴交于A 和B 点,若三角形ABC 的面积是1,则=a 12、(2010年甘肃省预赛试题)函数RR f →:对于一切Rz y x ∈,,满足不等式13、(2010年黑龙江省预赛试题)设)(x f 是连续的偶函数,且当0>x 时是严格单调函数,则满足)43()(++=x x f x f 的所有x 之和为14、(2010年贵州省预赛试题)已知函数2232)(aax xx f --=,且方程8|)(|=x f 有三个不同的实根,则实数=a 15、(2010年安徽省预赛试题)函数=y 的图像与xey =的图像关于直线1=+y x 对称16、(2010年浙江省预赛试题)设442)1()1()(x x x xk x f --+-=,如果对任何]1,0[∈x ,都有)(≥x f ,则k 的最小值为17、(2010年湖南省预赛试题)设函数xx x x f 2cos )24(sinsin 4)(2++⋅=π,若2|)(|<-m x f 成立的充分条件是326ππ≤≤x ,则实数m 的取值范围是18、(2010年新疆维吾尔自治区预赛试题)已知函数221)(xxx f +=,若)1011()1001(...)31()21(),101(...)2()1(f f f f n f f f m ++++=+++=,则=+n m19、(2010年河北省预赛试题)已知函数)1)(1ln(1221)(2≥+++-=m x x mxx f(1)若曲线)(:x f y C=在点)1,0(P 处的切线l 与C 有且只有一个公共点,求m 的值;(2)求证:函数)(x f 存在单调递减区间],[b a ,并求出单调递减区间的长度a b t -=的取值范围。

2010年普通高等学校招生全国统一考试(安徽卷)数学试题 (理科)(有详解)(word版)

2010年普通高等学校招生全国统一考试(安徽卷)数学试题 (理科)(有详解)(word版)

绝密★启用前2010年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分钟,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效........ 4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+ 如果A 与B 是两个任意事件,()0P A ≠,那么如果事件A 与B 相互独立,那么 ()()()|P AB P A P B A =()()()P AB P A P B =第Ⅰ卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、i= ( ) A、14 B、14+ C、12+ D、12- 1.B3)313912412i i i +===++,选B.21i =-得结论.2、若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A C R = ( ) A 、2(,0],2⎛⎫-∞+∞ ⎪⎪⎝⎭ B 、2⎛⎫+∞ ⎪ ⎪⎝⎭C 、2(,0][,)2-∞+∞ D 、,)2+∞ 2.A3、设向量()1,0=a ,11,22⎛⎫=⎪⎝⎭b ,则下列结论中正确的是 ( )A 、=a bB 、∙=a bC 、-a b 与b 垂直D 、a ∥b 3.C【解析】11(,)22--a b =,0)(=∙-,所以-a b 与b 垂直.【规律总结】根据向量是坐标运算,直接代入求解,判断即可得出结论.4、若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -= ( ) A 、-1 B 、1 C 、-2 D 、2 4.A5、双曲线方程为2221x y -=,则它的右焦点坐标为 ( )A 、2⎛⎫ ⎪ ⎪⎝⎭B 、⎫⎪⎪⎝⎭C 、⎫⎪⎪⎝⎭D 、)5.C【解析】双曲线的2211,2a b ==,232c =,c =⎫⎪⎪⎝⎭. 【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用222c a b =+求出c 即可得出交点坐标.但因方程不是标准形式,很多学生会误认为21b =或22b =,从而得出错误结论.6、设0abc >,二次函数()2f x ax bx c =++的图象可能是( )A 、B 、C 、D 、6.D【解析】当0a >时,b 、c 同号,(C )(D )两图中0c <,故0,02bb a<->,选项(D )符合. 【方法技巧】根据二次函数图像开口向上或向下,分0a >或0a <两种情况分类考虑.另外还要注意c 值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.7、设曲线C 的参数方程为23cos 13sin x y θθ=+⎧⎨=-+⎩(θ为参数),直线l 的方程为320x y -+=,则曲线C上到直线l 距离为10的点的个数为 A 、1 B 、2 C 、3 D 、47.B【解析】化曲线C 的参数方程为普通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离3d ==,直线和圆相交,过圆心和l 平行的直线和圆的2个交点3>-,在直线l 的另外一侧没有圆上的点符合要求,所以选B. 【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 3>,进而得出结论.8、一个几何体的三视图如图,该几何体的表面积为 ( )A 、280B 、292C 、360D 、372 8.C【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。

2010年高考安徽省数学试卷-理科(含详细答案)

2010年高考安徽省数学试卷-理科(含详细答案)

绝密★启用前启用前2010年普通高等学校招生全国统一考试(安徽卷) 数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分钟,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效........。

4.考试结束,务必将试题卷和答题卡一并上交。

.考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A 与B 互斥,那么互斥,那么()()()P A B P A P B +=+ 如果如果A 与B 是两个任意事件,()0P A ¹,那么那么如果事件A 与B 相互独立,那么相互独立,那么 ()()()|P AB P A P B A = ()()()P AB P A P B =第Ⅰ卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、i 是虚数单位,33i i=+333333333i i+33i+3i -22225、双曲线方程为2221x y -=,则它的右焦点坐标为,则它的右焦点坐标为A 、2,02æöç÷ç÷èøB 、5,02æöç÷ç÷èøC 、6,02æöç÷ç÷èøD 、()3,05.C 【解析】双曲线的2211,2a b ==,232c =,62c =,所以右焦点为6,02æöç÷ç÷èø. 【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用222c a b =+求出c 即可得出交点坐标.但因方程不是标准形式,很多学生会误认为21b =或22b =,从而得出错误结论. 6、设0a b c >,二次函数()2f x ax bx c =++的图象可能是的图象可能是6.D 【解析】当0a >时,b 、c 同号,(C )(D )两图中0c <,故0,02b b a<->,选项(D )符合. 【方法技巧】根据二次函数图像开口向上或向下,分0a >或0a <两种情况分类考虑另外还要注意c 值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等. 7、设曲线C 的参数方程为23cos 13sin x y q q=+ìí=-+î(q 为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 距离为71010的点的个数为的点的个数为A 、1 B 、2 C 、3 D 、4 7.B 【解析】化曲【解析】化曲线线C 的参数方程为普的参数方程为普通方程:通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离|23(1)2|71031010d -´-+==<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,又71071031010>-,在直线l 的另外一侧没有圆上的点符合要求,所以选B. 【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为71010,然后再判断知71071031010>-,进而得出结论. 8、一个几何体的三视图如图,该几何体的表面积为、一个几何体的三视图如图,该几何体的表面积为A 、280 B 、292 C 、360 D 、372 8.C 【解析】该几何体由两个长方体组合而成,该几何体由两个长方体组合而成,其表面积等于下面长方体的全其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。

2010年全国高中数学联赛试题及答案

2010年全国高中数学联赛试题及答案

PA1 B .
过 O 在平面 PA1 B 上作 OE ^ A1 P ,垂足为 E . 连结 B1 E ,则 ÐB1 EO 为二面角 B - A1 P - B1 的平面 设 AA1 = 2 ,则易求得 PB = PA1 = 5, AO = B1O = 1 在直角 DPA1O 中, A1O × PO = A1 P × OE ,即
2 4 2 4
5
声明:本资料未经过编辑加工,可能存在错误,敬请谅解。 更多资料详见华东师大版《高中数学联赛备考手册(预赛试题集锦) 》
容 易 知 道 当 -1 £ z £ 1 时 , 0 £ h ( z ) £ 2, 0 £ h(-z) £ 2 . 从 而 当 -1 £ z £ 1 时 ,

h( z ) + h(- z ) £2 , 即 2
a1 = 3, b1 = 1, a2 = b2 ,3a5 = b3 ,且存在常数 a, b 使得对每一个正整数 n 都有 an = log a bn + b ,
则a+b = 5. .
2x
函数 f ( x ) = a
+ 3a x - 2( a > 0, a ¹ 1) 在区间 x Î [- 1,1] 上的最大值为 8,则它在这个
A1 C1 OA1 = OB, OA = OB , E 1 A 1B ^ AB1 B1 O A P
6 . 4
所以 sin a =
解法二:如图, PC = PC1 , PA1 = PB . 设 .
A1 B

AB1



O,

因为 PA = PB1 , 所以 PO ^ AB1 , 从而 AB1 ^ 平

区间上的最小值是 . 6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于 6 者为胜,否则轮 由另一人投掷.先投掷人的获胜概率是 . 7. 正 三 棱 柱 ABC - A1 B1C1 的 9 条 棱 长 都 相 等 , P 是 CC1 的 中 点 , 二 面 角 . .

2010年全国高中数学联赛——试试题及参考答案(A卷)

2010年全国高中数学联赛——试试题及参考答案(A卷)

从 而 有 3 6 ” 1 一 l . 一 +口对 一 切 正 整 数 + (一 ) o 9 g
都成立 , 即 6 一3 (一1l  ̄+口对 一切 正 整数 r 成立 一 ) g9 o / 都
从而 lg 9 o . —6, 一 一 l&9 , 一3 0 +口
段 A 的垂 直平 分线 与 z轴交 于 点 C, B 求AA C面积 的最 B
中 学 生 数 学 ・ 0 1 2月 上 ・第 4 1 ( 中 ) 21 年 1期 高
21 0 0年坌 国高 巾数 学 联 赛一 i 式 试 题及 蓥 考答案 ( A謇 )





1 .解
参 考答案
易 知 -( ) 定 义 域 是 [ , ] 且 厂 ) 厂z 的 58 , ( 在
值.

①代入②得
求 得
9 2 =d +6 +9 +1 d d ,
一 6g 9 ,一 .
1.本 小题 满 分 2 分 ) 0( O 已知抛 物线 一6 x上 的 两个
动 点 A( 1Y ) B x , z , 中 固 ≠而 且 2 +z —4 线 x ,1 和 ( 2y ) 其 1 7 2 . 1
[ ,] 的最 大 值 为 8 则 它 在 这 个 区间 上 的最 小 值 是 一11上 ,

... ..... ..... .._ 一
从而可知
3 .解
一— 睾≤a 1 . ≤ 2
由 对 称 性 知 , 要 先 考 虑 轴 上 方 的 情 只
6 .两 人轮 流投 掷骰 子 , 每人 每 次投 掷 两颗 , 一 个使 第
= 1
8 .方程 z +z 0 0满 足 ≤ + 一2 1 ≤ 的 正 整 数 解 ( , ,) z y z 的个 数是

2010安徽高考数学试题及答案

2010安徽高考数学试题及答案

2010安徽高考数学试题及答案2010年普通高等学校招生全国统一考试(安徽卷)数学(文)一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是正确的。

1. 若x,y∈R,则“x²+y²=0”是“xy=0”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2. 已知函数f(x)=x²-4x+m,若f(x)的值域为[-1,+∞),则m的值为A. 3B. 4C. 5D. 63. 已知函数f(x)=x³+1,若f'(1)=3a+1,则a的值为A. 0B. 1C. 2D. 34. 已知数列{an}的前n项和为Sn,若Sn=n²+n-6,且a1=-4,则a5的值为A. 5B. 6C. 7D. 85. 已知直线l:x+y+2=0与圆C:(x-1)²+(y-1)²=4,若圆心C到直线l的距离为d,则d的值为A. 1B. 2C. 36. 已知函数f(x)=x³-3x,若f'(a)=0,则a的值为A. -1B. 0C. 1D. 27. 已知函数f(x)=x²-4x+m,若f(x)在区间[2,+∞)上为增函数,则m的取值范围为A. (-∞,4]B. [4,+∞)C. (-∞,4)D. [4,+∞)8. 已知函数f(x)=x³-3x,若f'(1)=0,则f(1)的值为A. -2B. 0D. 29. 已知等比数列{an}的公比为q≠1,若a1+a2+a3=7,a4+a5+a6=21,则a7+a8+a9的值为A. 42B. 63C. 84D. 12610. 已知函数f(x)=x³-3x,若f'(x)=0的两根为x₁和x₂,则x₁+x₂的值为A. 0B. 1C. 2D. 311. 已知双曲线C:x²/a²-y²/b²=1(a>0,b>0)的一条渐近线方程为y=(√3)x,则双曲线的离心率为B. 2C. √6D. 312. 已知函数f(x)=x³-3x,若f'(x)=0的两根为x₁和x₂,则|x₁-x₂|的值为A. 1B. 2C. 3D. 4二、填空题:本题共4小题,每小题4分,共16分。

2010全国高中数学联赛试题及答案

2010全国高中数学联赛试题及答案

2010年全国高中数学联合竞赛一试试卷(考试时间:10月17日上午8∶00—9∶20)一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.函数()f x 的值域是 .2.已知函数()2cos 3sin y a x x =-的最小值为3-,则实数a 的取值范围是 . 3.双曲线221x y -=的右半支与直线100x =围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 .4.已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中13a =,11b =,22a b =,533a b =,且存在常数α,β使得对每一个正整数n 都有log n n a b αβ=+,则αβ+= .5.函数()232xx f x aa =+-(0a >,1a ≠)在区间[]1,1x ∈-上的最大值为8,则它在这个区间上的最小值是 .6.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 .7.正三棱柱111ABC A B C -的9条棱长都相等,P 是1CC 的中点,二面角11B A P B α--=,则sin α= .8.方程2010x y z ++=满足x y z ≤≤的正整数解(x ,y ,z )的个数是 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分16分)已知函数()32f x ax bx cx d =+++(0a ≠),当01x ≤≤时,()'1f x ≤,试求a 的最大值.10.(本小题满分20分)已知抛物线26y x =上的两个动点A (1x ,1y )和B (2x ,2y ),其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.11.(本小题满分20分)证明:方程32520x x +-=恰有一个实数根r ,且存在唯一的严格递增正整数数列{}n a ,使得31225a a a r r r =+++.解 答1. ]3,3[- 提示:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-.2. 1223≤≤-a 提示:令t x =sin ,则原函数化为t a at t g )3()(2-+-=,即 t a at t g )3()(3-+-=.由3)3(3-≥-+-t a at ,0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即3)(2-≥+t t a . (1)当1,0-=t 时(1)总成立;对20,102≤+<≤<t t t ;对041,012<+≤-<<-t t t .从而可知 1223≤≤-a . 3. 9800 提示:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为98009848512=+⨯.3 提示 :设}{n a 的公差为}{,n b d 的公比为q ,则,3q d =+ (1) 2)43(3q d =+, (2)(1)代入(2)得961292++=+d d d ,求得9,6==q d .从而有βα+=-+-19log )1(63n n 对一切正整数n 都成立,即βα+-=-9log )1(36n n 对一切正整数n 都成立.从而βαα+-=-=9log 3,69log ,求得 3,33==βα,333+=+βα.5. 41- 提示:令,y a x=则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的.当10<<a 时,],[1-∈a a y ,211max 1()32822g y a a a a ---=+-=⇒=⇒=, 所以412213)21()(2min -=-⨯+=y g ;当1>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 1217 提示:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为+⨯+⨯+127)125(127)125(1274217121442511127=-⨯=.提示:解法一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=P B A B BP BA .设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x BP m z x BA m⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x P B n x A B n 由此可设 )3,1,0(),1,0,1(==n m ,所以cos m n m n α⋅=⋅,即2cos cos 4αα=⇒=. 所以 410sin =α. 解法二:如图,PB PA PC PC ==11, . 设BA 1与1AB 交于点,O则1111,,OA OB OA OB A B AB ==⊥ .11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E .连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得3,2,5111=====PO O B O A PA PB .在直角O PA 1∆中,OE P A PO O A ⋅=⋅11,即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OE O B E B O B . 4105542sin sin 111===∠=E B O B EO B α. 8. 336675 提示:首先易知2010=++z y x 的正整数解的个数为1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类: (1)z y x ,,均相等的正整数解的个数显然为1;OEPC 1B 1A 1CBA(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.9. 解法一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得)21(4)1(2)0(23f f f a '-'+'=.所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤ 8≤, 所以38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38. 解法二:c bx ax x f ++='23)(2. 设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g .设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b az b a z a z g z h .容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . 从而当11≤≤-z 时,22)()(0≤-+≤z h z h , 即21434302≤++++≤c b a z a , 从而 0143≥+++c b a ,2432≤z a ,由 102≤≤z 知38≤a .又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.10. 解法一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=. 线段AB 的垂直平分线的方程是)2(30--=-x y y y . (1) 易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.由(1)知直线AB 的方程为)2(30-=-x y y y ,即 2)(300+-=y y y x . (2) (2)代入x y 62=得12)(2002+-=y y y y ,即012222002=-+-y y y y . (3)依题意,21,y y 是方程(3)的两个实根,且21y y ≠,所以22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+=]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=. 定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==.220209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆ )9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤7314= . 当且仅当2202249y y -=+,即0y =,A B 或A B -时等号成立. 所以,ABC ∆面积的最大值为7314. 解法二:同解法一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, 2222122112))656665(21(t t t t t t S ABC --+=∆ 221221)5()(23+-=t t t t)5)(5)(24(23212121++-=t t t t t t 3)314(23≤,所以7314≤∆ABC S , 当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t6572+-=t,66((33A B +-或66((33A B -时等号成立. 所以,ABC ∆面积的最大值是7314. 11.令252)(3-+=x x x f ,则056)(2>+='x x f ,所以)(x f 是严格递增的.又043)21(,02)0(>=<-=f f ,故)(x f 有唯一实数根1(0,)2r ∈.所以 32520r r +-=,3152rr-=4710r r r r =++++.故数列),2,1(23 =-=n n a n 是满足题设要求的数列. 若存在两个不同的正整数数列 <<<<n a a a 21和 <<<<n b b b 21满足52321321=+++=+++ b b b a a a r r r r r r , 去掉上面等式两边相同的项,有+++=+++321321t t t s s s r r r r r r ,这里 <<<<<<321321,t t t s s s ,所有的i s 与j t 都是不同的.不妨设11t s <,则++=++<21211t t s s s r r r r r ,112111111121211=--<--=++≤++<--rr r r r s t s t ,矛盾.故满足题设的数列是唯一的.2010年全国高中数学联合竞赛加试试卷(A 卷)(考试时间:10月17日上午9∶40—12∶10)一、(本题满分40分)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.二、(本题满分40分)设k 是给定的正整数,12r k =+.记()()()1f r f r r r ==⎡⎤⎢⎥, ()()()()()1l l f r f f r -=,2l ≥.证明:存在正整数m ,使得()()m f r 为一个整数.这里x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥.三、(本题满分50分)给定整数2n >,设正实数1a ,2a ,…,n a 满足1k a ≤,1k =,2,…,n ,记12kk a a a A k+++=,1k =,2,…,n .求证:1112n nk k k k n a A ==--<∑∑. 四、(本题满分50分)一种密码锁的密码设置是在正n 边形12n A A A 的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?M解 答1. 用反证法.若A ,B ,D ,C 不四点共圆,设三角形ABC 的外接圆与AD 交于点E ,连接BE 并延长交直线AN 于点Q ,连接CE 并延长交直线AM 于点P ,连接PQ . 因为2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O ) ()()2222PO r KO r=-+-,同理()()22222QK QO r KO r =-+-,所以 2222PO PK QO QK -=-, 故OK ⊥PQ . 由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=. ① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=, ② 1MC DE APCD EA PM ⋅⋅=. ③ 由①,②,③可得NB MC BD CD =, 所以ND MDBD DC=,故△DMN ∽ △DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆.注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅, ④则P ,E ,F ,A 四点共圆,故PFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅,⑤⑤-④,得2PK PE PC AK KE =⋅-⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ).MFE OK CBA注2:若点E 在线段AD 的延长线上,完全类似.2. 记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法. 当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭为整数. 假设命题对1(1)v v -≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+,这里,0i α=或者1,1,2,i v v =++.于是 ()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭2122kk k =+++ 11211212(1)2()222v v v vv v v ααα-++++=+++⋅++⋅+++12k '=+, ①这里1121122(1)2()22v v v v v v v k ααα-++++'=++⋅++⋅+++.显然k '中所含的2的幂次为1v -.故由归纳假设知,12r k ''=+经过f 的v 次迭代得到整数,由①知,(1)()v fr +是一个整数,这就完成了归纳证明.3. 由01k a <≤知,对11k n ≤≤-,有110,0kniii i k ak an k ==+<≤<≤-∑∑.注意到当,0x y >时,有{}max ,x y x y -<,于是对11k n ≤≤-,有11111kn n k i i i i k A A a a n k n ==+⎛⎫-=-+ ⎪⎝⎭∑∑11111n ki i i k i a a n k n =+=⎛⎫=-- ⎪⎝⎭∑∑ 11111max ,nk i i i k i a a n k n =+=⎧⎫⎛⎫<-⎨⎬ ⎪⎝⎭⎩⎭∑∑ 111max (),n k k n k n ⎧⎫⎛⎫≤--⎨⎬ ⎪⎝⎭⎩⎭1kn=-, 故111nnnk kn k k k k a AnA A ===-=-∑∑∑()1111n n nk n k k k AA A A --===-≤-∑∑111n k k n -=⎛⎫<-⎪⎝⎭∑12n -=. 4. 对于该种密码锁的一种密码设置,如果相邻两个顶点上所赋值的数字不同,在它们所在的边上标上a ,如果颜色不同,则标上b ,如果数字和颜色都相同,则标上c .于是对于给定的点1A 上的设置(共有4种),按照边上的字母可以依次确定点23,,,n A A A 上的设置.为了使得最终回到1A 时的设置与初始时相同,标有a 和b 的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a ,b ,c ,使得标有a 和b 的边都是偶数条的方法数的4倍.设标有a 的边有2i 条,02n i ⎡⎤≤≤⎢⎥⎣⎦,标有b 的边有2j 条,202n i j -⎡⎤≤≤⎢⎥⎣⎦.选取2i 条边标记a 的有2in C 种方法,在余下的边中取出2j 条边标记b 的有22jn i C -种方法,其余的边标记c .由乘法原理,此时共有2i n C 22jn i C -种标记方法.对i ,j 求和,密码锁的所有不同的密码设置方法数为222222004n n i i j n n i i j C C -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫ ⎪⎪ ⎪⎝⎭∑∑. ① 这里我们约定001C =.当n 为奇数时,20n i ->,此时22221202n i jn i n ij C-⎡⎤⎢⎥⎣⎦---==∑. ②代入①式中,得()()2222222221222000044222n n i n n i j i n i i n i n n i n n i j i i C C C C -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦----====⎛⎫ ⎪== ⎪⎪⎝⎭∑∑∑∑ 022(1)(21)(21)nnk n kk n kk n n nn k k C C --===+-=++-∑∑ 31n =+.当n 为偶数时,若2n i <,则②式仍然成立;若2ni =,则正n 边形的所有边都标记a ,此时只有一种标记方法.于是,当n 为偶数时,所有不同的密码设置的方法数为222222004n n i i j n n i i j C C -⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫ ⎪= ⎪⎪⎝⎭∑∑()122210412n i n i n i C ⎡⎤-⎢⎥⎣⎦--=⎛⎫ ⎪⨯+ ⎪ ⎪⎝⎭∑ ()222124233n i n i n n i C ⎡⎤⎢⎥⎣⎦--==+=+∑.综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n+种;当n 为偶数时有33n+种.。

2010年全国高中数学联赛试题及答案_百度文库

2010年全国高中数学联赛试题及答案_百度文库
时,有max,xyxy,于是对11kn,有
11111k nnkiiiikAAaankn
11111nk iiikiaankn
1 1111max, n kiiikiaankn
条,02 ni,标有b的边有2j
条,202nij .选取2i条边标记a的有2inC种方法,在余下的边中取出2j条边标记b的有22j niC种方法,其余的边标记c.由乘法原理,此时共有2inC22jniC种标记方法.对i,j求和,密码锁的所有不同的密码设置方法数为
声明:本资料未经过编辑加工,可能存在错误,敬请谅解。 更多资料详见华东师大版《高中数学联赛备考手册(预赛试题集锦)》
9 2. (40分)设k是给定的正整数
,1 2 rk .记(1)()()frfrrr, ()()lfr(1)(()),2lffrl.证明:存在正整数m,使得()()mfr为一个整数.这里,x表示不 小于实数x
AQAP QNPM . ① 由梅内劳斯(Menelaus)定理,得
EQ P O N M KD C B A
声明:本资料未经过编辑加工,可能存在错误,敬请谅解。 更多资料详见华东师大版《高中数学联赛备考手册(预赛试题集锦)》
10 1NBDEAQ BDEAQN , ②
2222220 04nniijnniijCC . ① 这里我们约定0 01C. 当n为奇数时,20ni,此时
为偶数时,若2ni ,则②
式仍然成立;若2 n i,则正n边形的所有边都标记a,此时只有一种标记方法.于是,当n为偶数时,所有不同的密码设置的方法数为
声明:本资料未经过编辑加工,可能存在错误,敬请谅解。 更多资料详见华东师大版《高中数学联赛备考手册(预赛试题集锦)》

2010年全国高中数学联赛安徽赛区预赛(含详解)

2010年全国高中数学联赛安徽赛区预赛(含详解)

2010年全国高中数学联赛安徽赛区预赛试卷(考试时间:2010年9月4日9:00—11:30) 本试卷共12小题,满分150分;一、填空题(每小题8分,共64分)1.函数()2f x x =的值域是 .2.函数y = 的图象与x y e =的图象关于直线1x y +=对称.3.正八面体的任意两个相邻面所成二面角的余弦值等于 .4.设椭圆22111x y t t +=+-与双曲线1xy =相切,则t = . 5.设z 是复数,则|1||||1|z z i z -+-++的最小值等于 .6.设a ,b ,c 是实数,若方程320x ax bx c +++=的三个根构成公差为1的等差数列,则a ,b ,c 应满足的充分必要条件是 .7.设O 是ABC ∆的内心,5AB =,6AC =,7BC =,OP xOA yOB zOC =++,0,,1x y z ≤≤,动点P 的轨迹所覆盖的平面区域的面积等于 .8.从正方体的八个顶点中随机选取三点,构成直角三角形的概率是 .二、解答题(共86分)9.(20分)设数列{}n a 满足10a =,121n n a a -=+,2n ≥.求n a 的通项公式.10.(22分)求最小正整数n 使得224n n ++可被2010整除.11.(22分)已知ABC ∆的三边长度各不相等,D ,E ,F 分别是A ∠,B ∠,C ∠的平分线与边BC ,CA ,AB 的垂直平分线的交点.求证:ABC ∆的面积小于DEF ∆的面积.12.(22分)桌上放有n 根火柴,甲乙二人轮流从中取走火柴.甲先取,第一次可取走至多1n -根火柴,此后每人每次至少取走1根火柴.但是不超过对方刚才取走火柴数目的2倍.取得最后一根火柴者获胜.问:当100n =时,甲是否有获胜策略?请详细说明理由.2010年全国高中数学联赛安徽赛区预赛试卷参考答案及评分标准一、填空题(每小题8分,共64分)1.答案:4⎡⎤-⎣⎦. 提示:因04x ≤≤,设22cos x α-=(0απ≤≤),则4cos 2sin 4)4y αααϕ=-+=++(其中cos ϕ=,sin ϕ=ϕ为锐角), 所以当0α=时,max 8y =,当αϕπ+=时,min 4y =-,故4y ⎡⎤∈-⎣⎦.2. 答案:1ln(1)x --提示:因两函数图象关于直线1x y +=对称,所以1x y →-,1y x →-,∴11y x e--=,解得1ln(1)y x =--. 3. 答案:13- 提示:正八面体由两个棱长都相等的正四棱锥组成,所以任意两个相邻面所成二面角是正四棱锥侧面与底面所成二面角α的两倍.∵tan α=,∴2211cos 1tan 3αα==+,则21c o s 22c o s 13αα=-=-. 4.提示:由椭圆方程22111x y t t +=+-知,1t >,设其参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)代入双曲线方程1xy =,得sin 2θ=1=,故t =5.答案:1提示:在复平面上,设(1,0)A -,(1,0)B ,(0,1)C ,则当Z 为ABC ∆的费马点时,|1||||1|z z i z -+-++取得最小值,最小值为11+=.6. 答案:213a b =-且3273a a c =-. 提示:设三个根为1α-,α,1α+,则32(1)()(1)x ax bx c x x x ααα+++=-+---,右边展开与左边比较得3a α-=,2(1)(1)(1)(1)31b ααααααα=-++++-=-,(1)(1)c ααα-=-+,消去α得2313273a b a ac ⎧=-⎪⎪⎨⎪=-⎪⎩,这就是所求的充要条件.7.答案:提示:如图,根据向量加法的几何意义,知点P 在图中的三个平形四边形及其内部运动,所以动点P 的轨迹所覆盖的平面区域的面积等于等于ABC ∆面积的2倍,即8. 答案:67提示:从正方体的八个顶点中随机选取三点,共有38C 个三角形,其中直角三角形有3412C ⨯个,所求“构成直角三角形”的概率是34381267C C ⨯=. 二、解答题(共86分)9. 解:特征根法. 又114221n n n a a a --++=+,11111n n n a a a ----=+,…………(10分) 得21212222(2)(2)(2)111nn n n n n n a a a a a a ----+++=-⋅=-==----,于是(2)2(2)1n n n a -+=--.…(20分) 10. 解: 22010|24n n ++⇔2222240mod 2240mod3240mod5240mod 67n n n n n n n n ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩2220mod31mod543mod 67n n n n n n ⎧+=⎪⇔+=⎨⎪+=⎩……(10分) 又20mod30n n n +=⇔=或2mod 3,21mod52mod5n n n +=⇔=, 243mod 6710n n n +=⇔=或56mod 67,故所求最小正整数77n =.…………(22分)11. 证明:由题设可证A ,B C ,D ,E ,F 六点共圆. …………(10分)不妨设圆半径为1,则有1(sin 2sin 2sin 2)2ABC S A B C ∆=++,1(sin sin sin )2DEF S A B C ∆=++. 由于sin 2sin 2sin 2A B C ++ 111(sin 2sin 2)(sin 2sin 2)(sin 2sin 2)222A B B C C A =+++++ sin()sin()sin()sin()sin()sin()A B A B B C B C C A C A =+-++-++- sin()sin()sin()A B B C C A <+++++sin sin sin A B C =++∴ABC ∆的面积小于DEF ∆的面积. …………(22分)12. 解:把所有使得甲没有有获胜策略的初始火柴数目n 从小到大排序为:1n ,2n ,3n ,…,不难发现其前4项分别为2,3,5,8. 下面我们用数学归纳法证明:(1){}i n 满足11i i i n n n +-=+;(2)当i n n =时,乙总可取到最后一根火柴,并且乙此时所取的火柴数目1i n -≤;(3)当1i i n n n +<<时,甲总可取到最后一根火柴,并且甲此时所取的火柴数目i n ≤. ……………………………………(10分)设i k n n =-(4i ≥),注意到212i i i n n n --<<. 当12i n k ≤<时,甲第一次时可取k 根火柴,剩余2i n k >根火柴,乙无法获胜. 当12i i n k n -≤<时,21i i n k n --<<,根据归纳假设,甲可以取到第k 根火柴,并且甲此时所取的火柴数目2i n -≤,剩余22i i n n ->根火柴,乙无法获胜.当1i k n -=时,设甲第一次时取走m 根火柴,若m k ≥,则乙可取走所有剩小的火柴;若m k <,则根据归纳假设,乙总可以取到第k 根火柴,并且乙此时所取的火柴数目2i n -≤,剩余22i i n n ->根火柴,甲无法获胜.综上可知,11i i i n n n +-=+.因为100不在数列{}i n ,所以当100n =时,甲有获胜策略. …………(22分)。

2010年全国高中数学联赛试题与参考答案

2010年全国高中数学联赛试题与参考答案

2010年全国高中数学联合竞赛一试试题一、填空题(本题满分64分,每小题8分)1.函数()5243f x x x =--的值域是______________.2.已知函数2(cos 3)sin y a x x =-的最小值为3-,则实数a 的取值范围是_____________.3.双曲线221x y -=的右半支与直线100x =围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是___________.4.已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122533,1,,3a b a b a b ====,且存在常数,αβ使得对每一个正整数n 都有log n n a b αβ=+,则αβ+=____________.5. 函数2()32(0,1)x x f x a a a a =+->≠在区间[1,1]x ∈-上的最大值为8,则它在这个区间上的最小值是___________________.6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率为_________________.7.正三棱柱111ABC A B C -的9条棱长都相等,P 是1CC 的中点,二面角11B A P B α--=,则sin α=_____________.8.方程2010x y z ++= 满足x y z ≤≤的正整数解(,,)x y z 的个数是_____________.二、解答题(本题满分56分)9.(本小题满分16分)已知函数32()(0)f x ax bx cx d a =+++≠,当01x ≤≤时,|()|1f x '≤,试求a 的最大值.10. (本小题满分20分)已知抛物线26y x =上的两个动点11(,)A x y 和22(,)B x y ,其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值.11. (本小题满分20分)证明:方程32520x x +-=恰有一个实根r ,且存在唯一的严格递增正整数列{}n a ,使得31225a a a r r r =+++ .2010年全国高中数学联合竞赛加试试题一、(本题满分40分)如图,锐角三角形ABC的外心为O,K是边BC上一点(不是边BC的中点),D是线段AK延长线上一点,直线BD与AC交于点N,直线CD与AB交于点M.求证:若OK MN⊥,则,,,A B D C四点共圆.二、(本题满分40分)设k是给定的正整数,12r k=+.记()()f r f r r r==⎡⎤⎢⎥(1),(1)()(()),2l lf r f f r l-=≥().证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如11,112⎡⎤==⎡⎤⎢⎥⎢⎥⎢⎥.三、(本题满分50分)给定整数2n >,设正实数12,,,n a a a 满足1k a ≤,1,2,,k n = ,记12,1,2,,.kk a a a A k n k+++==求证:1112nnk k k k n a A ==--<∑∑.四、(本题满分50分)一种密码锁的密码设置是在正n 边形12n A A A 的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:这种密码锁共有多少种不同的密码设置.2010年全国高中数学联合竞赛一试试题参考答案与评分标准一、填空题1.[3]-.2.3122a -≤≤ 3.9800. 4. 3335.14-. 6.1217. 7.104. 8.336675. 1.2..3.由对称性知,只需先考虑x 轴上方的情况,设(1,2,,99)y k k == 与双曲线右半支交于点k A ,与直线100x =交于点k B ,则线段k k A B 内部的整点个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)9949k k =-=⨯∑,又x 轴上有98个整点,则所求整点个数为24999+98=9800⨯⨯. 4.5.6.=1217. 7.8.二、解答题9.10.11.2010年全国高中数学联合竞赛加试试题参考答案与评分标准一、二、三、四、。

2010-2012年安徽高中数学联赛

2010-2012年安徽高中数学联赛
7. 答案: 12 6 提示:如图,根据向量加法的几何意义,知点 P 在图中的三个平形四 边形及其内部运动,所以动点 P 的轨迹所覆盖的平面区域的面积等于等于
∆ABC 面积的 2 倍,即 12 6 .
8. 答案:
6 7
3
提示:从正方体的八个顶点中随机选取三点,共有 C8 个三角形,其中 直角三角形有 12 × C4 个,所求“构成直角三角形”的概率是 二、解答题(共 86 分) 9. 解:特征根法. 又 an + 2 =
12.(22 分)桌上放有 n 根火柴,甲乙二人轮流从中取走火柴.甲先取,第一次可取走至多 n − 1 根火柴, 此后每人每次至少取走 1 根火柴.但是不超过对方刚才取走火柴数目的 2 倍.取得最后一根火柴者获胜. 问:当 n = 100 时,甲是否有获胜策略?请详细说明理由.
数苑从来思不停
博客
/ahhzsy
数苑从来思不停

博客
/ahhzsy
第 4 页 共 9 页
爱思考
爱数学
2011 年全国高中数学联赛安徽省预赛
一、填空题(每小题 8 分,共 64 分) 1.以 X 表示集合 X 的元素个数 . 若有限集合 A, B, C 满足 A ∪ B = 20 , B ∪ C = 30 ,
取得最小值,最小值为 1 − 提示:设三个根为 α − 1 , α , α + 1 ,则 x3 + ax 2 + bx + c = ( x − α + 1)( x − α )( x − α − 1) ,
数苑从来思不停
博客
/ahhzsy
第 2 页 共 9 页
12. 解:把所有使得甲没有有获胜策略的初始火柴数目 n 从小到大排序为: n1 , n2 , n3 , …,不难发现 其前 4 项分别为 2,3,5,8. 下面我们用数学归纳法证明: (1) {ni } 满足 ni +1 = ni + ni −1 ; (2)当 n = ni 时,乙总可取到最后一根火柴,并且乙此时所取的火柴数目 ≤ ni −1 ; (3)当 ni < n < ni +1 时,甲总可取到最后一根火柴,并且甲此时所取的火柴数目 ≤ ni . ……………………………………(10 分) 设 k = n − ni ( i ≥ 4 ) ,注意到 ni − 2 < 当1 ≤ k < 当

2010年全国高考理科数学试题及答案-安徽

2010年全国高考理科数学试题及答案-安徽

姓名 座位号(在此卷上答题无效)绝密★启用并使用完毕前2010年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试用时120分钟. 注意事项:1.答卷前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位. 2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米黑色黑水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色签际笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案...........无效..,在试题卷....、草稿纸上答题无效..........4.考试结束,务必将试题卷和答题卡一并上交.参考公式: 如果事件A 与B 互斥,那么 )()()(B P A P B A P +=+ 如果A 与B 是两个任意事件,0)(≠A P ,那么 如果事件A 与B 相互独立,那么 )|()()(A B P A P AB P =)()()(B P A P AB P ≠第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,=+ii 33(A )12341- (B )i 12341- (C )i 6321+ (D )i 6321- (2)若集合}21log |{21≥=x x A ,则=A C R(A )⎪⎪⎭⎫⎝⎛+∞⋃-∞,22]0,( (B )⎪⎪⎭⎫⎝⎛+∞,22 (C )⎪⎪⎭⎫⎢⎣⎡+∞⋃-∞,22]0,( (D )⎪⎪⎭⎫⎢⎣⎡+∞,22 (3)设向量)21,21(),0,1(==b a ,则下列结论中正确的是(A )||||b a = (B )22=⋅b a (C )b b a 与-垂直 (D )b a // (4)若)(x f 是R 上周期为5的奇函数,且满足,2)2(,1)1(==f f 则)4()3(f f -=(A )-1(B )1(C )-2(D )2(5)双曲线方程为1222=-y x ,则它的右焦点坐标为(A ))0,22((B ))0,25((C ))0,26((D ))0,3((6)设0>abc ,二次函数c bx ax x f ++=2)(的图象可能是(7)设曲线C 的参数方程为⎩⎨⎧+-=+=θθsin 31cos 32y x (θ为参数),直线l 的方程为023=+-y x ,则曲线C 到直线l 的距离为10107的点的个数为 (A )1 (B )2 (C )3 (D )4(8)一个几何全体的三视图如图,该几何体的表面积为 (A )280 (B )292(C )360 (D )372(9)动点),(y x A 在圆122=+y x 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知定时t=0时,点A 的坐标是)23,21(,则当120≤≤t 时,动点A 的纵坐标y关于t (单位:秒)的函数的单调递增区间是(A )[0,1] (B )[1,7] (C )[7,12](D )[0,1]和[7,12]、(10)设}{n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是 (A )Y Z X 2=+ (B ))()(X Z Z X Y Y -=-(C )XZ Y=2(D ))()(X Z X X Y Y -=-(在此卷上答题无效)绝密★启用并使用完毕前2010年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)命题“对任何3|4||2|,>-+-∈x x R x ”的否定是 .(12)6⎪⎪⎭⎫ ⎝⎛-x y y x 的展开式中,3x 的系数等于 . (13)设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,048,022y x y x y x 若目标函数)0,0(>>+=b a y abx z 的最大值为8,则b a +的最小值为 .(14)如图所示,程序框图(算法流程图)的输出值=x . (15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐, 分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球 的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球 是红球的事件,则下列结论中正确的是 (写出所有正确结 论的编号). ①52)(1=B P ; ②115)|(1=A B P ;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤)(B P 的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内. (16)(本小题满分12分)设ABC ∆是锐角三角形,c b a ,,分别是内角A ,B ,C 所对边长,并且.sin )3sin()3sin(sin 22B B B A +-+=ππ(Ⅰ)求角A 的值;(Ⅱ)若72,12==⋅a ,求c b ,(其中c b <).(17)(本小题满分12分)设a 为实数,函数.,22)(R x a x e x f x ∈+-= (I )求)(x f 的单调区间与极值;(II )求证:当012ln >->x a 且时,.122+->ax x e x(18)(本小题满分13分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF//AB ,EF ⊥FB ,AB=2EF ,,90︒=∠BFC BF=FC ,H 为BC 的中点.(I )求证:FH//平面EDB ; (II )求证:AC ⊥平面EDB ;(III )求二面角B —DE —C 的大小.(19)(本小题满分13分)已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率.21=e (I )求椭圆E 的方程;(II )求21AF F ∠的角平分线所在直线l 的方程;(III )在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.(20)(本小题满分12分)设数列,,,21 a a ,n a 中的每一项都不为0.证明,}{n a 为等差数列的充分必要条件是:对任何N n ∈,都有.1111113221++=+++n n n a a na a a a a a(21)(本小题满分13分)品酒师需要定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n 瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序,经过一段时间,等其记忆淡忘之后,再让其品尝这n 瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以4321,,,a a a a 表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令.|4||3||2||1|4321a a a a X -+-+-+-=则X 是对两次排序的偏离程度的一种描述. (I )写出X 的可能值集合;(II )假设4321,,,a a a a 等可能地为1,2,3,4的各种排列,求X 的分布列; (III )某品酒师在相继进行的三轮测试中,都有2≤X ,(i )试按(II )中的结果,计算出现这种现象的概率(假定各轮测试相互独立); (ii )你认为该品酒师的酒味鉴别功能如何?说明理由.参考答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)B (2)A (3)C (4)A (5)C (6)D (7)B (8)C (9)D (10)D二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)存在,-2-4|3x x x ∈≤R 使得||+|(12)15(若只写2466C C 或,也可) (13)4 (14)12 (15)②④三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内. (16)(本小题满分12分)本题考查两角和的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力.解:(I )因为2211sin (sin )(sin )sin 2222A B B B B B =+-+222313c o s s i n s i n ,444s i n ,,.23B B B A A A π=-+==±=所以又为锐角所以(II )由12AB AC ⋅=可得c o s 12.c b A =①由(I )知,3A π=所以 24cb =②由余弦定理知2222cos ,a c b cb A a =+==将 ③+②×2,得()100c b 2+=,所以10.c b +=因此,c ,b 是一元二次方程210240t t -+=的两个根. 解此方程并由6, 4.c b c b >==知(17)(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力. (I )解:由()22,()2,.xxf x e x a x f x e x '=-+∈=-∈R R 知令()0,ln 2.,(),()f x x x f x f x ''==得于是当变化时的变化情况如下表:故()f x 的单调递减区间是(,ln 2)-∞,单调递增区间是(ln 2,)+∞,()ln 2f x x =在处取得极小值,极小值为ln 2(ln 2)2ln 222(1ln 2).f ea a =-+=-+(II )证:设2()21,,xg x e x ax x =-+-∈R于是()22,.xg x e x a x '=-+∈R由(I )知当ln 21,()(ln 2)2(1ln 2)0.a g x g a ''>-=-+>时最小值为,()0,()x g x g x '∈>R R 于是对任意都有所以在内单调递增,于是当ln 21,(0,),()(0),a x g x g >-∈+∞>时对任意都有 而(0)0,(0,),()0.g x g x =∈+∞>从而对任意 即22210,2 1.x x e x ax e x ax -+->>-+故(18)(本小题满分13分)本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力.[综合法](1)证:设AC 与BD 交于点G ,则G 为AC 的中点,连EG ,GH , 又H 为BC 的中点,11//,//,//.22GH AB EF AB EF GH ∴∴又 ∴四边形EFHG 为平行四边形,∴EG//FH ,而EG ⊂平面EDB ,∴FH//平面EDB.(II )证:由四边形ABCD 为正方形,有AB ⊥BC ,又EF//AB ,∴EF ⊥BC.而EF ⊥FB ,∵EF ⊥平面BFC ,∴EF ⊥FH ,∴AB ⊥FH. 又BF=FC ,H 为BC 的中点,∴FH ⊥BC. ∴FH ⊥平面ABCD ,∴FH ⊥AC , 又FH//BC ,∴AC=EG.又AC ⊥BD ,EG ⋂BD=G ,∴AG ⊥平面EDB.(III )解:EF ⊥FB ,∠BFC=90°,∴BF ⊥平面CDEF ,在平面CDEF 内过点F 作FK ⊥DE 交DE 的延长线于K , 则∠FKB 为二面角B —DE —C 的一个平面角.设EF=1,则AB=2,又EF//DC ,∴∠KEF=∠EDC ,∴sin ∠EDC=sin ∠∴FK=EFsin ∠tan ∠FKB=BFFK=∴∠FKB=60° ∴二面角B —DE —C 为60°. [向量法]∵四边形ABCD 为正方形,∴AB ⊥BC ,又EF//AB ,∴EF ⊥BC. 又EF ⊥FB ,∴EF ⊥平面BFC. ∴EF ⊥FH ,∴AB ⊥FH.又BF=FC ,H 为BC 的中点,∴FH ⊥BC ,∴FH ⊥平面ABC. 以H 为坐标原点,HB x 为轴正向,HF z 为轴正向,建立如图所示坐标系.设BH=1,则A (1,—2,0),B (1,0,0), C (—1,0,0),D (—1,—2,0),E (0,—1,1), F (0,0,1).(I )证:设AC 与BD 的交点为G ,连GE ,GH ,则(0,1,0),(0,0,1),(0,0,1)//.G CE HF HF GE -∴==∴又GE ⊂平面EDB ,HF 不在平面EDB 内,∴FH ∥平面EBD ,(II )证: (2,2,0),(0,0,1),0,.AC GE AC GE AC GE =-=⋅=∴⊥又AC ⊥BD ,EG ∩BD=G ,∴AC ⊥平面EDB. (III )解:(1,1,1),(2,2,0).BE BD =--=--设平面BDE 的法向量为111(1,,),n y z =则1111110,120,BE n y z BD n y ⋅=--+=⋅=--=111222222121212121,0,(1,1,0).(0,2,0),(1,1,1),(1,,),0,0,(1,0,1),1cos ,,||||2,60,y z n CD CE CDE y z CD y ∴=-==-=-=-=⋅===-⋅<>===⋅∴<>=n n n n n n n n n n n 即设平面的法向量为则故即二面角B —DE —C 为60°. (19)(本小题满分13分)本题考查椭圆的定义及标准方程,椭圆的简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式,点关于直线的对称等基础知识;考查解析几何的基本思想、综合运算能力、探究意识与创新意识.解:(I )设椭圆E 的方程为22221x y a b+=2222222211,,2,3,221.43c e a c b a c e a x yc e ====-=∴+=由即得椭圆方程具有形式 将A (2,3)代入上式,得22131,2,c c c +==解得 ∴椭圆E 的方程为221.1612x y +=(II )解法1:由(I )知12(2,0),(2,0)F F -,所以直线AF 1的方程为:3(2),3460,4y x x y =+-+=即 直线AF 2的方程为: 2.x =由点A 在椭圆E 上的位置知,直线l 的斜率为正数. 设(,)P x y l 为上任一点,则|346||2|.5x y x -+=-若346510,280x y x x y -+=-+-=得(因其斜率为负,舍去). 所以直线l 的方程为:210.x y --= 解法2:121212121(2,3),(2,0),(2,0),(4,3),(0,3).114(4,3)(0,3)(1,2).535||||2,:32(1),210.A F F AF AF AF AF AF AF k l y x x y -∴=--=-∴+=--+-=-∴=∴-=---=即(III )解法1:假设存在这样的两个不同的点1122(,)(,),B x y C x y 和2121121200001,.2(,),,,22BC y y BC l k x x x x y y BC M x y x y -⊥∴==-++==设的中点为则由于M 在l 上,故00210.x y -+= ①又B ,C 在椭圆上,所以有222211221 1.16121612x y x y +=+=与 两式相减,得222221210,1612x x y y --+= 即12211221()()()()0.1612x x x x y y y y +-+-+=将该式写为122112211108262x x y y y y x x +-+⋅+⋅⋅=-, 并将直线BC 的斜率BC k 和线段BC 的中点,表示代入该表达式中,得0000110,320.812x y x y -=-=即 ② ①×2—②得202,3x y ==,即BC 的中点为点A ,而这是不可能的.∴不存在满足题设条件的点B 和C.解法2:假设存在1122(,),(,)B x y C x y l 两点关于直线对称, 则1,.2BC l BC k ⊥∴=- 221,1,21612x y BC y x m =-++=设直线的方程为将其代入椭圆方程 得一元二次方程2222134()48,120,2x x m x mx m +-+=-+-=即 则12x x 与是该方程的两个根,由韦达定理得12,x x m += 于是121213()2,22m y y x x m +=-++= ∴B ,C 的中点坐标为3(,).24m m 又线段BC 的中点在直线321,1, 4.4m y x m m =-∴=-=上得 即B ,C 的中点坐标为(2,3),与点A 重合,矛盾.∴不存在满足题设条件的相异两点.(20)(本小题满分12分)本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.证:先证必要性设数列{},0,n a d d =的公差为若则所述等式显然成立,若0d ≠,则1223132********122311111111111()1111111(()()())1111()n n n n n n n n n n n a a a a a a a a a a a a d a a a a a a d a a a a a a a a d a a d a a ++++++++++---=+++=-+-++--=-=11.n na a +=再证充分性.证法1:(数学归纳法)设所述的等式对一切n +∈N 都成立,首先,在等式122313112a a a a a a += ①两端同乘123132123,2,,,a a a a a a a a a +=即得所以成等差数列,记公差为21,.d a a d =+则假设1(1),1k a a k d n k =+-=+当时,观察如下二等式12231121111,k k k a a a a a a a a --+++= ②122311111111k k k k k ka a a a a a a a a a -++++++=, ③将②代入③,得111111,k k k k k ka a a a a a ++-+=在该式两端同乘11111,,(1).k k k a a a k a a ka ++-+=得将111(1),,.k k a a k d a a kd +=+-=+代入其中整理后得由数学归纳法原理知,对一切1(1),n n a a n d +∈=+-N 都有所以{}n a d 是公差为的等差数列.证法2:[直接证法]依题意有1223111111,n n n n a a a a a a a a +++++= ①12231121211111.n n n n n n a a a a a a a a a a +++++++++= ②②—①得12121111n n n n nn a a a a a a +++++=-,在上式两端同乘112111,(1),n n n n a a a a n a na ++++=+-得同理可得11(1),n n a na n a +=-- ③③—④得122()n n n na n a a ++=+即211,{}n n n n n a a a a a +++-=-所以是等差数列,(21)(本小题满分13分)本题考查离散型随机变量及其分布列,考查在复杂场合下进行计数的能力,能过设置密切贴近生产、生活实际的问题情境,考查概率思想在现实生活中的应用,考查抽象概括能力、应用与创新意识.解:(I )X 的可能值集合为{0,2,4,6,8}.在1,2,3,4中奇数与偶数各有两个,所以23,a a 中的奇数个数等于13,a a 中的偶数个数,因此1334|1||3||2||4|a a a a ++--+-与的奇偶性相同,从而2324(|1||3|)(|2||4|)X a a a a =-+++-+-必为偶数.X 的值非负,且易知其值不大于8.容易举出使得X 的值等于0,2,4,6,8各值的排列的例子.(II )可用列表或树状图列出1,2,3,4的一共24种排列,计算每种排列下的X 值,在等可能的假定下,得到(III )(i )首先41(2)(0)(2)246P X P X P X ≤==+===,将三轮测试都有2X ≤的概率记做p ,由上述结果和独立性假设,得 311.2166p == (ii )由于152161000p =<是一个很小的概率,这表明如果仅凭随机猜测得到三轮测试都有2X ≤的结果的可能性很小,所以我们认为该品酒师确实有良好的味觉鉴别功能,不是靠随机猜测.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年全国高中数学联赛安徽赛区预赛试卷及详细答案(考试时间:2010年9月4日9:00—11:30)题号 一 二总分9 10 11 12 得分 评卷人复核人注意:1.本试卷共12小题,满分150分;2.用钢笔、圆珠笔或签字笔作答;3.书写不要超过装订线;4.不能使用计算器.一、填空题(每小题8分,共64分) 1.函数()2f x x =-__________________________.2.函数y =_____________________的图象与x y e =的图象关于直线1x y +=对称.3.正八面体的任意两个相邻面所成二面角的余弦值等于__________________________.4.设椭圆22111xyt t +=+-与双曲线1xy =相切,则t =__________________________.5.设z 是复数,则|1||||1|z z i z -+-++的最小值等于__________________________.6.设a ,b ,c 是实数,若方程320x ax bx c +++=的三个根构成公差为1的等差数列,则a ,b ,c 应满足的充分必要条件是__________________________.7.设O 是A B C ∆的内心,5A B =,6A C =,7B C =,O P xO A yO B zO C =++,0,,1x y z ≤≤,动点P 的轨迹所覆盖的平面区域的面积等于________________________.8.从正方体的八个顶点中随机选取三点,构成直角三角形的概率是__________________.二、解答题(共86分)9.(20分)设数列{}n a 满足10a =,121n n a a -=+,2n ≥.求n a 的通项公式.10.(22分)求最小正整数n使得224++可被2010整除.n n11.(22分)已知A B C∠的平分线与边∆的三边长度各不相等,D,E,F分别是A∠,C∠,B∆的面积小于D E FB C,C A,A B的垂直平分线的交点.求证:A B C∆的面积.12.(22分)桌上放有n根火柴,甲乙二人轮流从中取走火柴.甲先取,第一次可取走至多1n-根火柴,此后每人每次至少取走1根火柴.但是不超过对方刚才取走火柴数目的2倍.取得最后一根火柴者获胜.问:当100n=时,甲是否有获胜策略?请详细说明理由.2010年全国高中数学联赛安徽赛区预赛试卷参考答案及评分标准一、填空题(每小题8分,共64分)1.答案:48⎡⎤-⎣⎦.提示:因04x≤≤,设22cosxα-=(0απ≤≤),则4cos2sin4)4yαααϕ=-+=++(其中cosϕ=,sinϕ=,ϕ为锐角),所以当0α=时,m ax8y=,当αϕπ+=时,min4y=-48y⎡⎤∈-⎣⎦.2. 答案:1ln(1)x--提示:因两函数图象关于直线1x y+=对称,所以1x y→-,1yx→-,∴11yx e--=,解得1ln(1)y x=--.3. 答案:13-提示:正八面体由两个棱长都相等的正四棱锥组成,所以任意两个相邻面所成二面角是正四棱锥侧面与底面所成二面角α的两倍.∵tanα=,∴2211cos1tan3αα==+,则21c o s22c o s13αα=-=-.4. 答案:提示:由椭圆方程22111x yt t+=+-知,1t>,设其参数方程为xyθθ⎧=⎪⎨=⎪⎩(θ为参数)代入双曲线方程1xy=,得sin2θ=.1=,故t=.5. 答案:1+提示:在复平面上,设(1,0)A-,(1,0)B,(0,1)C,则当Z为AB C∆的费马点时,|1||||1|z z i z-+-++取得最小值,最小值为11333-++=+.6. 答案:213ab =-且3273aa c =-.提示:设三个根为1α-,α,1α+,则32(1)()(1)x ax bx c x x x ααα+++=-+---, 右边展开与左边比较得3a α-=,2(1)(1)(1)(1)31b ααααααα=-++++-=-,(1)(1)c ααα-=-+,消去α得2313273ab a ac ⎧=-⎪⎪⎨⎪=-⎪⎩,这就是所求的充要条件. 7. 答案:提示:如图,根据向量加法的几何意义,知点P 在图中的三个平形四边形及其内部运动,所以动点P 的轨迹所覆盖的平面区域的面积等于等于A B C ∆面积的2倍,即8. 答案:67提示:从正方体的八个顶点中随机选取三点,共有38C 个三角形,其中直角三角形有3412C ⨯个,所求“构成直角三角形”的概率是34381267C C ⨯=.二、解答题(共86分) 9. 解:特征根法. 又114221n n n a a a --++=+,11111n n n a a a ----=+,…………(10分)得21212222(2)(2)(2)111nn n n n n n a a a a a a ----+++=-⋅=-==---- ,于是(2)2(2)1nn na -+=--.………………(20分)10. 解: 22010|24n n ++⇔2222240m od 2240m od 3240m od 5240m od 67n n n n n n nn ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩2220m od 31m od 543m od 67n n n n n n ⎧+=⎪⇔+=⎨⎪+=⎩ …………(10分)又20mod 30n n n +=⇔=或2m od 3,21mod 52mod 5n n n +=⇔=,243mod 6710n n n +=⇔=或56m od 67, 故所求最小正整数77n =.…………(22分)11. 证明:由题设可证A ,B C ,D ,E ,F 六点共圆. …………(10分)不妨设圆半径为1,则有1(s i n 2s i n 2s i2A B C S A B C ∆=++,1(sin sin sin )2D E F S A B C ∆=++.由于sin 2sin 2sin 2A B C ++ 111(sin 2sin 2)(sin 2sin 2)(sin 2sin 2)222A B B C C A =+++++sin()sin()sin()sin()sin()sin()A B A B B C B C C A C A =+-++-++- sin()sin()sin()A B B C C A <+++++ sin sin sin A B C =++∴A B C ∆的面积小于D E F ∆的面积. …………(22分)12. 解:把所有使得甲没有有获胜策略的初始火柴数目n 从小到大排序为:1n ,2n ,3n ,…,不难发现其前4项分别为2,3,5,8. 下面我们用数学归纳法证明:(1){}i n 满足11i i i n n n +-=+;(2)当i n n =时,乙总可取到最后一根火柴,并且乙此时所取的火柴数目1i n -≤; (3)当1i i n n n +<<时,甲总可取到最后一根火柴,并且甲此时所取的火柴数目i n ≤. ……………………………………(10分) 设i k n n =-(4i ≥),注意到212i i i n n n --<<.当12i n k ≤<时,甲第一次时可取k 根火柴,剩余2i n k >根火柴,乙无法获胜.当12i i n k n -≤<时,21i i n k n --<<,根据归纳假设,甲可以取到第k 根火柴,并且甲此时所取的火柴数目2i n -≤,剩余22i i n n ->根火柴,乙无法获胜.当1i k n -=时,设甲第一次时取走m 根火柴,若m k ≥,则乙可取走所有剩小的火柴;若m k <,则根据归纳假设,乙总可以取到第k 根火柴,并且乙此时所取的火柴数目2i n -≤,剩余22i i n n ->根火柴,甲无法获胜.综上可知,11i i i n n n +-=+.因为100不在数列{}i n ,所以当100n =时,甲有获胜策略. …………(22分)。

相关文档
最新文档