高中数学(苏教版,必修四)【课时作业与单元检测】第二章平面向量(14份)2.2.1
苏教版高中数学(必修4)单元测试-第二章
第二章《平面向量》测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( ). A.(0,0)=a ,(1,2)=-b B.(1,2)=-a ,(2,4)=-b C.(3,5)=a ,(6,10)=b D.(2,3)=-a ,(6,9)=b2.若ABCD 是正方形,E 是CD 的中点,且AB =a ,AD =b ,则=( ). A.12+b a B.12-b a C. 12+a b D. 12-a b 3.若向量a 与b 不共线,0⋅≠a b ,且()()⋅⋅=-⋅a a bc a a b ,则向量a 与c 的夹角为( ).A.π2B.π6C.π3D.04.设i ,j 是互相垂直的单位向量,向量(1)3m =+-a i j ,(1)m =+-b i j ,()()+⊥-a b a b ,则实数m 为( ).A.2-B.2 C.21-D.不存在 5.已知向量a ,b 满足1=a ,4=b ,且2⋅=a b ,则a 与b 的夹角为( ). A .6π B .4π C .3π D .2π6.若平面向量b 与向量(2,1)=a 平行,且||=b ,则=b ( ).A .)2,4(B .)2,4(--C .)3,6(-D .)2,4(或)2,4(--7.在四边形ABCD 中,2AB =+a b ,4BC =--a b ,53CD =--a b ,则四边形ABCD 是( ).A.长方形B.平行四边形 C.菱形 D.梯形 8.下列说法正确的个数为( ).①()()()λ⋅=λ⋅=⋅λa b a b a b ; ②⋅=⋅a b a b ; ③()+⋅=⋅+⋅a b c a c b c ; ④()()⋅⋅=⋅⋅a b c a b c ; A.1 B.2 C.3 D.49.在边长为1的等边三角形ABC 中,设BC =a ,CA =b ,AB =c ,则⋅+⋅+⋅a b b c c a 等于( ). A.23 B.23- C.0 D.3 10.已知a ,b 均为单位向量,它们的夹角为︒60,那么|3|+=a b ( ). A.7 B.10 C.13 D.4 11.若非零向量a ,b 满足-=a b b ,则( ).A.22>-b a bB.22<-b a bC.22>-a a bD.22<-a a b12.如图,点M 是△ABC 的重心,则-+为( ). A.0B.4C.4D.4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.已知(2,3)=a ,(4,7)=-b ,则a 在b 上的投影等于___________. 14.已知(1,2)=a ,(3,2)=-b ,若k +a b 与3-a b 平行,则=k . 15.已知三点(1,2),(2,1),(2,2)A B C -,,E F 为线段BC 的三等分点, 则AE AF ⋅= .16.设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:⨯a b 是一个向量,它的模||||||sin θ⨯=⋅a b a b .若(1)=-a ,=b ,则||⨯=a b .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17.(本小题满分10分)设向量OA )1,3(=,OB )2,1(-=,向量OB OC ⊥,BC ∥OA ,又OD +OA =OC ,求.18.(本小题满分12分)以原点O 和)2,4(A 为两个顶点作等腰直角三角形OAB ,︒=∠90B ,求点B 的坐标和.19.(本小题满分12分)已知向量(3,4),(6,3),(5,3)OA OB OC x y =-=-=---. (1)若点,,A B C 能构成三角形,求,x y 满足的条件;(2)若△ABC 为等腰直角三角形,且B ∠为直角,求,x y 的值.20.(本小题满分13分)已知)0,2(A ,)2,0(B ,)sin ,(cos ααC ,(0)α<<π.(1)若7||=+(O 为坐标原点),求与的夹角; (2)若BC AC ⊥,求αtan 的值.21.(本小题满分13分)如图,B A O ,,三点不共线,且2=,3=(1)试用,a b 表示向量OE ;(2)设线段CD OE AB ,,的中点分别为N M L ,,, 试证明N M L ,,三点共线.22.(本小题满分14分)在平面直角坐标系中,O 为坐标原点,已知向量(1,2)=-a ,又点)0,8(A ,),(t n B ,),sin (t k C θ,其中02θπ≤≤. (1)若AB ⊥a 且||5||AB OA =,求向量OB ;(2)若向量AC 与向量a 共线,当4>k 时,且sin t θ取最大值为4时,求⋅.第二章《平面向量》测试题参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.D A ,B ,C 选项中的两个向量均共线,故选D.2.B 111222BE BC CE AD CD AD AB =+=+=-=-b a . 3.A ∵()[]0⋅⋅⋅=⋅-=⋅-⋅=⋅-⋅=⋅⋅a a b a aa c a a a a ab a a a a a b a b, ∴⊥a c . 4.A()()[(2)(4)][(2)](2)(4)(2)m m m m m m m m +⋅-=++-⋅-+=+--+a b a b i j i j084=+=m , 故2-=m . 5.C 21cos 42θ⋅===a b a b ,故3θπ=.6.D 设(2,)k k k ==b a ,而||=b ,则=,即2k =±,故(4,2)=b 或(4,2)--.7.D 822AD AB BC CD BC =++=--=a b ,且||||BC AD ≠. 8.A 易知①③正确,9.B 原式3||||cos120||||cos120||||cos1202=⋅︒+⋅︒+⋅︒=-a b b c c a .10.C 3+===a b 11.A |2||||||||||||2|=+=-+>--=-b b b a b b a b b a b . 12.C 4)2(2=--=-+.二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.)13.565 ||cos ||5θ⋅===a b a b 14.31- (1,2)(3,2)k k +=+-a b ,3(1,2)3(3,2)(10,4)-=--=-a b ,由()//(3)k +-a b a b ,得14(3)10(22),3k k k --=+=-.15.3 )3,1(-=AB ,)3,0(=BC ,)2,1(31-=+=,)1,1(32-=+=, 3)1()2(11=-⨯-+⨯=⋅AF AE .16.2cos ||||θ⋅==⋅a b a b 21sin =θ,1||2222⨯=⨯⨯=a b . 三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17.解:设),(y x =,∵⊥, ∴0=⋅, ∴02=-x y ,① 又∵∥,)2,1(-+=y x , ∴0)1()2(3=+--x y , 即073=--x y ,②由①,②解得14=x ,7=y ,∴)7,14(=,则=-)6,11(=. 18.解:如图,设),(y x B ,则),(y x =,)2,4(--=y x ,∵︒=∠90B , ∴OB ⊥AB ,∴0)2()4(=-+-y y x x ,即y x y x 2422+=+,①设OA 的中点为C ,则)1,2(C ,)1,2(=,,2(-=y x ∵△ABO 为等腰直角三角形, ∴⊥, ∴01)2(2=-+-y x , 即52=+y x ,②解①,②得⎩⎨⎧==3,1y x 或⎩⎨⎧-==,1,3y x ∴)3,1(B 或)1,3(-B ,从而)1,3(-=或)3,1(--=. 19.解:(1)若点,,A B C 能构成三角形,则这三点不共线,(3,1),AB =(2,1),AC x y =-- ∴3(1)2y x -≠-,∴,x y 满足的条件为31y x -≠(2)(3,1),AB =(1,)BC x y =---,若B ∠为直角,则AB BC ⊥, ∴3(1)0x y ---=, 又||||AB BC =,∴22(1)10x y ++=,再由3(1)y x =--,解得03x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩.20.解:(1)∵)sin ,cos 2(αα+=+,7||=+,∴7sin )cos 2(22=++αα, ∴21cos =α. 又(0,)α∈π, ∴3απ=, 即3AOC π∠=,又2AOB π∠=, ∴OB 与OC 的夹角为6π.(2))sin ,2(cos αα-=AC ,)2sin ,(cos -=ααBC ,由⊥, ∴0=⋅, 可得21sin cos =+αα,① ∴41)sin (cos 2=+αα, ∴43cos sin 2-=αα, ∵(0,)α∈π, ∴(,)2απ∈π,又由47cos sin 21)sin (cos 2=-=-αααα,ααsin cos -0<,∴ααsin cos -=-27,② 由①,②得471cos -=α,471sin +=α,从而374tan +-=α. 21.解:(1)∵C E B ,,三点共线,∴OE x =OC )1(x -+OB x 2=a )1(x -+b ,① 同理,∵D E A ,,三点共线,可得y =a )1(3y -+b ,② 比较①,②,得⎩⎨⎧-=-=)1(31,2y x y x解得=x 52, =y 54,∴=4355+a b . (2)∵2OL +=a b ,143210OM OE +==a b ,123()22ON OC OD +=+=a b,∴61210MN ON OM +=-=a b ,210ML OL OM +=-=a b,∵ML MN 6=, ∴N M L ,,三点共线.22.解:(1)),8(t n -=, ∵AB ⊥a , ∴028=+-t n ,即t n 28=-,又∵||5||AB OA =, ∴22285)8(⨯=+-t n ,即22855⨯=t , ∴8±=t ,∴)8,24(=OB 或)8,8(--=OB . (2)),8sin (t k -=θ,AC 与向量a 共线, ∴16sin 2+-=θk t ,kk k k t 32)4(sin 2sin )16sin 2(sin 2+--=+-=θθθθ, ∵4>k , ∴140<<k , ∴当k4sin =θ时,sin t θ取最大值为32k ,由324k=,得8k =,此时,(4,8)6OC θπ==, ∴32)8,4()0,8(=⋅=⋅.。
苏教版必修四第2章平面向量作业题及答案解析:2.2.1
§2.2 向量的线性运算 2.2.1 向量的加法课时目标 1.理解向量加法的法则及其几何意义.2.能用法则及其几何意义正确作出两个向量的和.1.向量的加法的定义已知向量a 和b ,在平面内任取一点O ,作OA →=a ,AB →=b ,则向量OB →叫做a 与b 的和,记作________.即a +b =OA →+AB →=________. 求两个向量和的运算叫做向量的加法. 2.向量的加法法则 (1)三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量________叫做a 与b 的和(或和向量),记作________,即a +b =AB →+BC →=________.上述求两个向量和的作图法则,叫做向量求和的三角形法则.对于零向量与任一向量a 的和有a +0=________+________=________. (2)平行四边形法则如图所示,已知两个不共线的非零向量a ,b ,作OA →=a ,OC →=b ,则O 、A 、C 三点不共线,以________,________为邻边作________________,则对角线上的向量________=a +b ,这个法则叫做两个向量求和的平行四边形法则. (3)多边形法则已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的________为始点,第n个向量的________为终点的向量叫做这n 个向量的和向量.即A 1A 2→+A 2A 3→+…+A n A n +1=____________.这个法则叫做向量求和的多边形法则. 3.向量加法的运算律(1)交换律:a +b =________________.(2)结合律:(a +b )+c =________________.一、填空题1.化简AB →+DF →+CD →+BC →+F A →=________.2.已知菱形ABCD 的边长为1,∠BAD =120°,则向量AB →+AD →的模为________.3.在正六边形ABCDEF 中,AB →=a ,F A →=b ,则EC →=________.(用a ,b 表示)4.如图所示,在平行四边形ABCD 中,O 是对角线的交点,下列结论不正确的是______.(填相应结论的序号)①AB →=CD →,BC →=DA →; ②AD →+OD →=DA →; ③AO →+OD →=AC →+CD →; ④AB →+BC →+CD →=DA →.5.在四边形ABCD 中,AC →=AB →+AD →,则四边形ABCD 的形状一定是________.6.已知在矩形ABCD 中,AB =2,BC =3,则|AB →+BC →+AC →|=________. 7.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →=________.8.如图所示,在正六边形ABCDEF 中,若AB =1,则|AB →+FE →+CD →|=________.9.设E 是平行四边形ABCD 外一点,如图所示,化简下列各式 (1)DE →+EA →=________; (2)BE →+AB →+EA →=________; (3)DE →+CB →+EC →=________; (4)BA →+DB →+EC →+AE →=________.10.已知△ABC 是正三角形,给出下列等式: ①|AB →+BC →|=|BC →+CA →|; ②|AC →+CB →|=|BA →+BC →|; ③|AB →+AC →|=|CA →+CB →|; ④|AB →+BC →+AC →|=|CB →+BA →+CA →|.其中正确的有______.(写出所有正确等式的序号) 二、解答题11.一艘船以5 km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.12.如图所示,在平行四边形ABCD 的对角线BD 的延长线和反向延长线上取点F ,E ,使BE =DF .求证:四边形AECF 是平行四边形.能力提升13.已知|AB →|=3,|BC →|=5,则|AC →|的取值范围是__________.14.已知点G 是△ABC 的重心,则GA →+GB →+GC →=__________.1.三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的.当两个向量首尾相连时常选用三角形法则,当两个向量共始点时,常选用平行四边形法则. 2.向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.§2.2 向量的线性运算 2.2.1 向量的加法知识梳理1.a +b OB →2.(1)AC → a +b AC →0 a a(2)OA OC 平行四边形 OB →(3)始点 终点 3.(1)b +a (2)a +(b +c ) 作业设计 1.0解析 原式=AB →+BC →+CD →+DF →+F A →=0.2.1解析 ∵AB →+AD →=AC →,且△ABC 为等边三角形, ∴|AB →+AD →|=|AC →|=1. 3.a +b解析 EC →=FB →=F A →+AB →=a +b . 4.①②④ 5.平行四边形解析 ∵AC →=AB →+BC →=AB →+AD →,∴BC →=AD →. ∴四边形ABCD 为平行四边形. 6.213解析 |AB →+BC →+AC →|=|AC →+AC →|=2|AC →| =2AB 2+BC 2=213. 7.BC →解析 BC →+DC →+BA →=BC →+AB →+BA →=BC →. 8.2解析 |AB →+FE →+CD →|=|AB →+BC →+CD →|=|AD →|=2.9.(1)DA → (2)0 (3)DB → (4)DC →或AB → 10.①③④解析 AB →+BC →=AC →,BC →+CA →=BA →, 而|AC →|=|BA →|,故①正确; |AB →|≠|BA →+BC →|,故②不正确; 画图可知③,④正确. 11.解如图所示,OA →表示水流速度,OB →表示船垂直于对岸的方向行驶的速度,OC →表示船实际航行的速度,∠AOC =30°,|OB →|=5. ∵四边形OACB 为矩形,∴|OA →|=|AC →|tan 30°=53,|OC →|=|OB →|sin 30°=10,∴水流速度大小为5 3 km/h ,船实际速度为10 km/h.12.证明 AE →=AB →+BE →,FC →=FD →+DC →,因为四边形ABCD 是平行四边形,所以AB →=DC →,因为FD =BE ,且FD →与BE →的方向相同,所以FD →=BE →,所以AE →=FC →,即AE 与FC 平行且相等, 所以四边形AECF 是平行四边形. 13.[2,8]解析 |AC →|=|AB →+BC →|≤|AB →|+|BC →|=8, 且|AC →|=|AB →+BC →|≥||AB →|-|BC →||=2.∴2≤|AC →|≤8. 14.0解析 如图所示,连接AG 并延长交BC 于E 点,点E 为BC 的中点,延长AE 到D 点,使GE =ED ,则GB →+GC →=GD →,GD →+GA →=0, ∴GA →+GB →+GC →=0.。
苏教版高中数学必修四:第2章 平面向量2.2.2课时作业(含答案)
苏教版高中数学必修四:第2章平面向量2.2.2课时作业(含答案)----14573d1c-6ebb-11ec-97cb-7cb59b590d7d苏教版高中数学必修四:第2章-平面向量2.2.2课时作业(含答案)2.2.2矢量减法课时目标1.了解向量减法的原理及其几何意义。
2可以使用定律及其几何意义来正确区分两个向量向量的减法(1)定义:如果B+x=a,向量x称为a和B之间的差,记录为a-B。
求两个向量之间的差的操作称为向量减法→→(2)方法:取平面上的任意点O为OA=a,OB=B,然后取向量a-B=______如图所示(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为→→__________,被减向量的终点为__________的向量.例如:oa-ob=__________.一、填空→→→1.如果OA=a,OB=B,那么AB=____2.若a与b反向,且|a|=|b|=1,则|a-b|=________.→→→→3.化简(ab-cd)-(ac-bd)的结果是________.4.→→→→→如图所示,在梯形abcd中,ad∥bc,ac与bd交于o点,则ba-bc-oa+od+da=________.5.如图所示,已知从O到平行四边形三个顶点a、B和C的向量分别为a→,B,C,然后od=_____________________→→→6.在钻石ABCD中,∠ DAB=60°,|ab |=2,然后|BC+DC |=_______→→→→7.假设OA=a,OB=B,OC=C,OD=D,并且四边形ABCD是平行四边形,那么a-B+C-D=___→→→8.如果| ab |=5和|AC |=8,则| BC |的值范围为___→→9.在边长为1的正三角形ABC中,|ab bc |的值为___10.已知非零向量a,b满足|a|=7+1,|b|=7-1,且|a-b|=4,则|a+b|=________.二、解答题11.→→→如图所示,o是平行四边形abcd的对角线ac、bd的交点,设ab=a,da=b,oc=c,→求证:b+c-a=oa.12.→→→如图所示,已知正方形abcd的边长为1,ab=a,bc=b,ac=c,试作出下列向量并分别求出其长度(1) a+b+c;(2)a-b+c。
(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
苏教版高中数学必修4第2章 平面向量 全章复习讲义(含答案解析)
【知识梳理】知识点一:向量的有关概念 1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也就是用来表示向量的有向线段的长度). 2.向量的表示方法:(1)字母表示法:如,,,a b c r r rL 等.(2)几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r等.(3)坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量a r 与b r相等,记为a b =r r .4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的. 5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量. 6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量. 7.相反向量:长度相等且方向相反的向量. 知识点二、向量的运算 1.运算定义 运 算 图形语言符号语言坐标语言加法与减法OA --→+OB --→=OC --→OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 2,y 2)则OA OB +uu u r uuu r=(x 1+x 2,y 1+y 2) OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积AB a λ--→→=R λ∈记a →=(x ,y) 则()a x y λλλ→=,两个向量的数量积cos ,a b a b a b ⋅=⋅r r r r r r记1122(,),(,)a x y b x y ==r r则a b →→⋅=x 1x 2+y 1y 22.运算律坐标语言:设非零向量()()1122,,,a b x y x y ==r r,则⇔⊥→→b a 02121=+y y x x(4)两个向量数量积的重要性质:①22||→→=a a 即 2||→→=a a (求线段的长度);②(垂直的判断);③cos a ba bθ⋅=⋅r r r r (求角度).注:1. 向量的线性运算(1)在正确掌握向量加法减法运算法则的基础上能结合图形进行向量的计算,将数和形有机结合,并能利用向量运算完成简单的几何证明;(2)向量的加法表示两个向量可以合成,利用它可以解决有关平面几何中的问题,减法的三角形法则应记住:连接两端(两向量的终点),指向被减(箭头指向被减数).记清法则是灵活运用的前提. 2. 共线向量与三点共线问题向量共线的充要条件实质上是由实数与向量的积得到的.通常用来判断三点在同一条直线上或两直线平行.该定理主要用于证明点共线、求系数、证直线平行等题型问题. (1)用向量证明几何问题的一般思路:先选择一组基底,并运用平面向量基本定理将条件和结论表示成向量的形式,再通过向 量的运算来证明. (2)向量在几何中的应用:①证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件)0(//→→→→→→≠=⇔b b a b a λ⇔(x 1,y 1)=λ(x 2,y 2)②证明垂直问题,常用垂直的充要条件⇔02121=+y y x x③求夹角问题,利用cos a ba bθ⋅=⋅r r r r⇔⊥→→b a 0=⋅→→b a ⇔⊥→→b a 0=⋅→→b a 222221212121y x y x y y x x +++=222222222(3)(75)0,(4)(72)0.716150730802,112cos .602a b a b a b a b a a b b a a b b a b b a b b a b a b bθθ+-=--=+-=-+===∴===∴=or r r r r r r rg g r r r r g r r r r g r r r r r g r r r g r r r g 由已知:即两式相减,得代入其中任一式,得,例10.已知向量(cos(),sin()),(cos(),sin())22a b ππθθθθ=--=--r r ,(1)求证:a b ⊥r r ;(2)若存在不等于0的实数k 和t ,使2(3),,x a t b y ka tb =++=-+r r r u r r r 满足x y ⊥r u r 试求此时2k t t+的最小值。
苏教版高中数学必修4第2章《平面向量》章末测试题(教师版).docx
一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中横线上) 1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为__________. 解析:由a ·b =0,得3×2+m ×(-1)=0,∴m =6. 答案:63.已知|a |=4,|b |=6,a 与b 的夹角为60°,则|3a -b |=__________. 解析:由|3a -b |2=9a 2-6a ·b +b 2=9×42-6×4×6×cos60°+62=108,可求得|3a -b |=6 3. 答案:6 34.在△ABC 中,AB =AC =4,且AB →·AC →=8,则这个三角形的形状是__________.解析:由AB →·AC →=|AB →||AC →|cos A =8,得cos A =12,所以A =60°,△ABC 是等边三角形. 答案:等边三角形.5.若A (-1,-2),B (4,8),C (5,x ),且A ,B ,C 三点共线,则x =__________.解析:因为A ,B ,C 三点共线,所以AB →,AC →共线.所以存在实数k ,使得AB →=kAC →.又因为A (-1,-2),B (4,8),C (5,x ),所以AB →=(5,10),AC →=(6,x +2),所以(5,10)=k (6,x +2).所以⎩⎨⎧5=6k ,10=k (x +2),解得⎩⎪⎨⎪⎧k =56,x =10.答案:106.已知向量a =(6,2)与b =(-3,k )的夹角是钝角,则k 的取值范围是__________.解析:因为a ,b 的夹角θ是钝角,所以-1<cos θ<0.又因为a =(6,2),b =(-3,k ),所以cos θ=a ·b|a ||b |=k -9109+k 2,即-1<k -9109+k 2<0.解得k <9且k ≠-1.故所求k 的取值范围为(-∞,-1)∪(-1,9).答案:(-∞,-1)∪(-1,9)7.若平面向量a ,b 满足|a +b |=1,a +b 平行于x 轴,b =(2,-1),则a =__________.解析:设向量a 的坐标为(m ,n ),则a +b =(m +2,n -1),由题设,得⎩⎨⎧(m +2)2+(n -1)2=1,n -1=0,解得⎩⎨⎧ m =-1,n =1,或⎩⎨⎧m =-3,n =1.∴a =(-1,1)或(-3,1).答案:(-1,1)或(-3,1)8.如图,半圆O 中AB 为其直径,C 为半圆上任一点,点P 为AB 的中垂线上任一点,且|CA →|=4,|CB →|=3,则AB →·CP →=__________.解析:AB →·CP →=AB →·(CO →+OP →)=AB →·CO →+AB →·OP →=(CB →-CA →)·CO →+AB →·OP →=(CB →-CA →)·CA →+CB→2+0=12(|CB →|2-|CA →|2)=12(32-42)=-72.答案:-729.给出下列命题:①若a 与b 为非零向量,且a ∥b 时,则a -b 必与a 或b 中之一的方向相同;②若e 为单位向量,且a ∥e ,则a =|a |e ;③a ·a ·a =|a |3;④若a 与b 共线,又b 与c 共线,则a 与c 必共线,其中假命题有__________.解析:①命题中a -b 有可能为0,其方向是任意的,故错;③命题中三个向量的数量积应为向量,故为假命题.答案:①②③④10.若向量AB →=(3,-1),n =(2,1),且n ·AC →=7,那么n ·BC →=__________.解析:n ·BC →=n ·(AC →-AB →)=n ·AC →-n ·AB →=7-5=2. 答案:211.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态,已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为__________.解析:由于质点处于平衡状态,所以F 1+F 2+F 3=0,则F 3=-(F 1+F 2),所以|F 3|2=F 23=[-(F 1+F 2)]2=F 21+2F 1·F 2+F 22=22+42+2×2×4×12=4+16+8=28,所以F 3=27. 答案:2713.(2010年高考辽宁卷改编)平面上O ,A ,B 三点不共线,设OA →=a ,OB →=b ,则△OAB 的面积等于__________.解析:设a 、b 间的夹角为θ,则S △OAB =12|a ||b |·sin θ=12|a ||b |·1-cos 2θ=12|a ||b | 1-⎝⎛⎭⎫a ·b |a ||b |2=12|a ||b |·|a |2|b |2-(a ·b )2|a |2|b |2 =12|a |2|b |2-(a ·b )2. 答案:12|a |2|b |2-(a ·b )214.(2010年高考山东卷改编)定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法错误的是__________.①若a 与b 共线,则a ⊙b =0; ②a ⊙b =b ⊙a ;③对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b ); ④(a ⊙b )2+(a ·b )2=|a |2|b |2.解析:若a =(m ,n )与b =(p ,q )共线,则mq -np =0,依运算“⊙”知a ⊙b =0,即①正确.由于a ⊙b =mq -np ,且b ⊙a =np -mq ,因此a ⊙b =-b ⊙a ,即②不正确.对于③,由于λa =(λm ,λn ),因此(λa )⊙b =λmq -λnp ,又λ(a ⊙b )=λ(mq -np )=λmq -λnp ,即③正确.对于④,(a ⊙b )2+(a ·b )2=m 2q 2-2mnpq +n 2p 2+(mp +nq )2=m 2(p 2+q 2)+n 2(p 2+q 2)=(m 2+n 2)(p 2+q 2)=|a |2|b |2,即④正确.故选②.答案:②二、解答题(本大题共6小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +k c )∥(2b -a ),求实数k 的值;(2)设d =(x ,y )满足(d -c )∥(a +b )且|d -c |=1,求d .解:(1)∵(a +k c )∥(2b -a ),且a +k c =(3+4k,2+k ),2b -a =(-5,2),∴2×(3+4k )-(-5)×(2+k )=0,∴k =-1613.(2)∵d -c =(x -4,y -1),a +b =(2,4),(d -c )∥(a +b )且|d -c |=1,∴⎩⎨⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=1,解得⎩⎪⎨⎪⎧x =4+55,y =1+255,或⎩⎪⎨⎪⎧x =4-55,y =1-255.∴d =⎝⎛⎭⎪⎫20+55,5+255或d =⎝ ⎛⎭⎪⎫20-55,5-255. 16.(本小题满分14分)AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),BC →∥DA →. (1)求x 与y 的关系式;(2)若有AC →⊥BD →,求x 、y 的值及四边形ABCD 的面积.解:(1)∵AD →=AB →+BC →+CD →=(6,1)+(x ,y )+(-2,-3)=(x +4,y -2),∴DA →=-AD →=(-x -4,2-y ).又BC →∥DA →,BC →=(x ,y ),∴x (2-y )-y (-x -4)=0,即x +2y =0.(2)∵AC →=AB →+BC →=(6,1)+(x ,y )=(x +6,y +1), BD →=BC →+CD →=(x ,y )+(-2,-3)=(x -2,y -3), 且AC →⊥BD →,∴AC →·BD →=0,即(x +6)(x -2)+(y +1)(y -3)=0. 又由(1)的结论x +2y =0,∴(6-2y )(-2y -2)+(y +1)(y -3)=0, 化简得y 2-2y -3=0, ∴y =3或y =-1.当y =3时,x =-6.于是有 BC →=(-6,3),AC →=(0,4),BD →=(-8,0). ∴|AC →|=4,|BD →|=8.∴S 四边形ABCD =12|AC →|·|BD →|=16. 同理y =-1时,x =2.于是有BC →=(2,-1),AC →=(8,0),BD →=(0,-4). ∴|AC →|=8,|BD →|=4.∴S 四边形ABCD =12|AC →|·|BD →|=16.即⎩⎨⎧ x =-6,y =3,或⎩⎨⎧x =2,y =-1, S 四边形ABCD =16.17.(本小题满分14分)如图所示,一艘小船从河岸A 处出发渡河,小船保持与河岸垂直的方向行驶,经过10 min 到达正对岸下游120 m 的C 处,如果小船保持原来的速度逆水向上游与岸成α角的方向行驶,则经过12.5 min 恰好到达正对岸B 处,求河的宽度d .解:由题意作出示意图.图1为船第一次运动速度合成图.图2为船第二次运动速度合成图.设河水流速为v 水,船速为v 船,由题意,得两次运动时间分别为t 1=d |v 船|,t 2=d|v 船|sin α.沿河岸方向有BC =|v 水|t 1;由第二次垂直河岸,有|v 船|cos α=|v 水|.将t 1=10 min ,t 2=12.5 min ,BC =120 m 代入以上各式,解得d =200 m. 所以河的宽度为200 m.18.(本小题满分16分)已知a +b +c =0,且|a |=3,|b |=5,|c |=7. (1)求a 与b 的夹角θ;(2)是否存在实数k ,使k a +b 与a -2b 垂直?解:(1)因为a +b +c =0,所以a +b =-c ,所以|a +b |=|c |,所以(a +b )2=|c |2,即a 2+2a ·b +b 2=c 2,所以a ·b =c 2-a 2-b 22=152,所以cos θ=a ·b |a ||b |=12,所以θ=60°. (2)若存在实数k ,使k a +b 与a -2b 垂直,则(k a +b )·(a -2b )=k a 2-2b 2-2k a ·b +a ·b =-6k -852=0,解得k =-8512.所以存在实数k 使得k a +b 与a -2b 垂直.19.(本小题满分16分)以原点和A (5,2)为两个顶点作等腰直角三角形OAB ,若B =90°,求点B 和AB →的坐标.解:设B (x ,y ),则|OB →|=x 2+y 2. ∵B (x ,y ),A (5,2), ∴|AB →|=(x -5)2+(y -2)2,∴x 2+y 2=(x -5)2+(y -2)2, 即10x +4y =29.①又∵OB →⊥AB →, ∴OB →·AB →=0,又∵OB →=(x ,y ),AB →=(x -5,y -2),∴x (x -5)+y (y -2)=0,即x 2-5x +y 2-2y =0.②由①②组成方程组为⎩⎨⎧10x +4y =29,x 2-5x +y 2-2y =0. 解得⎩⎨⎧x 1=32,y 1=72,或⎩⎨⎧x 2=72,y 2=-32.∴B 点的坐标为⎝⎛⎭⎫32,72或⎝⎛⎭⎫72,-32.∴AB →=⎝⎛⎭⎫-72,32或AB →=⎝⎛⎭⎫-32,-72.20.(本小题满分16分)如图所示,在Rt △ABC 中,已知BC =a ,若长为2a 的线段PQ 以点A 为中点,问PQ →与BC →夹角θ取何值时,BP →·CQ →的值最大?并求出这个最大值.解:法一:∵AB →⊥AC →,∴AB →·AC →=0, ∵AP →=-AQ →,BP →=AP →-AB →,CQ →=AQ →-AC →, ∴BP →·CQ →=(AP →-AB →)·(AQ →-AC →) =AP →·AQ →-AP →·AC →-AB →·AQ →+AB →·AC →=-a 2-AP →·AC →+AB →·AP →=-a 2+AP →·(AB →-AC →)=-a 2+12PQ →·BC →=-a 2+a 2·cos θ.故当cos θ=1即θ=0(PQ →与BC →方向相同)时,BP →·CQ →最大,其最大值为0.法二:以A 为坐标原点,两直角边AB 、AC 分别为x 轴、y 轴建立直角坐标系,如图. 设|AB →|=c ,|AC →|=b ,则A (0,0),B (c,0),C (0,b ), 且|PQ →|=2a ,|BC →|=a ,设点P (x ,y ),则Q (-x ,-y ), ∴BP →=(x -c ,y ),CQ →=(-x ,-y -b ), BC →=(-c ,b ),PQ →=(-2x ,-2y ). ∴BP →·CQ →=(x -c )·(-x )+y (-y -b )=-(x 2+y 2)+cx -by =-a 2+cx -by .∵cos θ=PQ →·BC →|PQ →|·|BC →|=cx -bya 2,∴cx -by =a 2·cos θ, ∴BP →·CQ →=-a 2+a 2cos θ.故当cos θ=1,即θ=0(PQ →与BC →方向相同)时,BP →·CQ →最大,其最大值为0.。
苏教版高中数学必修4章末练测:第二章平面向量(含参考答案).docx
第2章平面向量(数学苏教版必修4)16.(15分)已知实数a,b,c,d,求函数f(x)的最小值.17.(21分)平面内给定三个向量a=(3,2),b =(-1,2),c=(4,1).(1)求满足a=m b+n c的实数m,n;(2)若(a+k c)∥(2b-a),求实数k;(3)设d=(x,y)满足(d-c)∥(a+b),且|d-c|=1,求向量d.18.(14分)设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为零的实数.(1)若x=a+(t-3)b与y=-k a+t b垂直,求k关于t的函数表达式k=f(t);(2)求函数k=f(t)的最小值. 19.(15分)一条河的两岸平行,河的宽度d为500 m,一条船从A处出发航行到河的正对岸B 处,船航行的速度|v1|=10 km/h,水流速度|v2|=4 km/h,那么v1与v2的夹角(精确到1°)多大时,船才能垂直到达对岸B处?船行驶多少时间?(精确到0.1 min)第2章平面向量(数学苏教版必修4)答题纸得分:一、填空题1. 2. 3. 4. 5. 6.7. 8. 9. 10. 11. 12.13. 14.二、解答题15.16.17.18.19.第2章平面向量(数学苏教版必修4)答案一、填空题1. a+c-b解析:如图,点O到平行四边形三个顶点A、B、C结合图形有ODuuu r=OAuu u r+ADu u u r=OAuu u r+BCuuu r=OAuu u r+OCuuu r-OBuuu r=a+c-b.2. ○2解析:|a·b|=|a||b||cos θ|≤|a|·|b|,其中θ为a与b3.45a-45b 解析:利用向量的三角形法则求解.如图,∵a·b=0,∴a⊥b,∴∠ACB=90°,∴又CD⊥AB,A D∴ AC 2=AD ·AB ,∴AD=5. ∴ AD u u u r=45AB uuu r =45(a -b )=45a -45b . 4.5 解析:|a +b |2=a 2+2a ·b +b 2=|a |2+2a ·b +|b |2=50,即5+2×10+|b |2=50,∴ |b |=5.5. 解析:利用平面向量共线和垂直的条件求解. ∵ a =(x,1),b =(1,y ),c =(2,-4), 由a ⊥c 得a ·c =0,即2x-4=0,∴ x=2. 由b ∥c ,得1×(-4)-2y=0,∴ y=-2. ∴ a =(2,1),b =(1,-2).∴ a +b =(3,-1),∴ |a +b6.π6解析:∵ a ∥b ,∴ 13×32-t a n cos =0,即sin =12,∴ =π6.7. P 在AC 边上 解析:∵ PA uu u r +PB uu u r +PC uuu r=AB uuu r, ∴ PA uu u r +PC uuu r =AB uuu r +BP uu u r =AP uuu r ,即PC uuu r=2AP uuu r . ∴ A 、C 、P 三点共线,即P 在AC 边上.8.○2 解析:取a =(1,0),b =(0,-1),满足条件a ·b =0,a 2=b 2,但不能推得a =0或b =0,a =b 或a =-b ,故选项○1、○3均假;向量数量积运算不满足消去律,故选项○4假. 9. 13 解析:∵ OA uuu r + OB uuu r + OC uuu r = 0 ,∴ OB uuu r + OC uuu r = AO uuu r ,设 OB uuu r + OC uuu r =OD uuu r, ∴O 是AD 的中点,要求面积之比的两个三角形是同底的三角形, ∴面积之比等于三角形的高之比,∴比值是13, 10.(2-,2) 解析:设b =(x ,y ),则|b |=|a |=,a ·b =|a ||b |·cos π4=××2=2,即x 2+y 2=5,x+2y=2,解得x=2-,y=2(舍去x=2,y=2).故b =(2-,2). 11.-25 解析:∵|AB uuu r|2+|BC uuu r|2=|CA uu u r|2,∴ △ABC 为直角三角形,AB ⊥BC , cos A=35,cos C=45. ∴原式=3×4×0+4×5×(45-)+5×3×(35-)=25-.12.(5,4) 解析:设AB uuu r =(x ,y ),∵ AB uuu r与a 同向,∴ AB uuu r =λa (λ>0),即(x ,y )=λ(2,3).∴ 2,3.x y λλ=⎧⎨=⎩又|AB uuu r |=2,∴ x 2+y 2=52.∴ 4λ2+9λ2=52,解得λ=2(负值舍去). ∴ 点B 的坐标为(5,4).13. 1 解析:设OC uuu r =(x,y),由OC uuu r ⊥OB uuu r,得-x+2y=0.① 由BC uuu r =OC uuu r -OB uuu r =(x+1,y-2), BC uuu r ∥OA uuu r ,得(x+1)-3(y-2)=0.②由①②联立,解得x=14,y=7.故OD uuu r =OC uuu r -OA uuu r=(14,7)-(3,1)=(11,6).14.只要写出-4c,2c,c(c ≠0)中一组即可,如-4,2,1等 解析:由k 1a 1+k 2a 2+k 3a 3=0得12313,12323,20,421002k k k k k k k k k k ++==-⎧⎧⇒⎨⎨-+==⎩⎩∴ k 1=-4c,k 2=2c,k 3=c(c ≠0). 二、解答题15.证明:引入向量a =(a ,b ),b =(c ,d ). 设向量a 、b 的夹角为,则(ac+bd )2=(a ·b )2=(|a ||b |cos )2≤(|a ||b |)2=(a 2+b 2)(c 2+d 2). 16.解:引入向量a =(x+a ,b ),b =(c-x ,d ), 则原函数变为f (x )=|a |+|b |.∴ f (x )=|a |+|b |≥|a +b∴ 函数f (x17.解:(1)因为a =m b +n c ,所以(3,2)=(-m+4n,2m+n ),所以5,43,9228.9m m n m n n ⎧=⎪-+=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩(2)因为(a +k c )∥(2b -a ),又a + k c =(3+4k,2+k),2b -a =(-5,2), 所以2(3+4k )+5(2+k )=0,即k=-1613. (3)因为d -c =(x-4,y-1),a +b =(2,4), 又(d -c )∥(a +b ),|d -c |=1,所以22444(4)2(1)0,55(4)(1)1,1155x x x y x y y y ⎧⎧=+=-⎪⎪---=⎧⎪⎪⎨⎨⎨-+-=⎩⎪⎪=+=-⎪⎪⎩⎩解得或 所以d =(4+,或d =(4-).18.解:(1)∵ a ⊥b ,∴ a ·b =0. 又x ⊥y ,∴ x ·y =0, 即[a +(t-3)b ]·(-k a +t b )=0,-k a 2-k (t-3)a ·b +t a ·b +t (t-3)b 2=0.将|a |=2,|b |=1代入上式得-4k+t 2-3t=0,即k=f (t )=14(t 2-3t ). (2)由(1)知k=f (t )=14(t 2-3t )=14(t-32)2916-,∴ 当t=32时,k 最小=916-.19.解:如图,根据向量的平行四边形法则和解三角形知识可得| v 1|2=| v得| v 9.2(km/h ). ∵ cos (π-)=21v v =410=25,∴ π-≈1130π,即≈1930π=114°,时间t=d v ≈0.59.2=592(h ),即约3.3 min. 答:v 1与v 2的夹角约为114°时船才能垂直到达对岸B 处,大约行驶。
(典型题)高中数学必修四第二章《平面向量》检测题(有答案解析)
一、选择题1.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A1B .221-C .231-D .712.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( ) A .4B .25C .325+D .63.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行B .垂直C .夹角是锐角D .夹角是钝角4.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为()A .2B .1C .0D .-15.已知非零向量a →,b→夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D6.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC++=D .ED 在BC 方向上的投影为767.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( ) A B .1C .2D .8.已知(),0A a ,()0,C c ,2AC=,1BC =,0AC BC ⋅=,O 为坐标原点,则OB的取值范围是( ) A .(1⎤⎦B .(1⎤⎦ C .1⎤⎦D .)1,+∞9.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,2]B .[0,2]C .2,222]+D .[222,2]-10.已知向量(6,4),(3,),(2,3)a b k c =-==-,若//a b ,则b 与c 的夹角的余弦值为( ) A .1213B .1213-C .45-D .4511.ABC 中,5AB =,10AC =,25AB AC =,点P 是ABC 内(包括边界)的一动点,且32()55AP AB AC R λλ=-∈,则||AP 的最大值是( )A .2BCD 12.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( )A .6B .83C .127D .4二、填空题13.在ABC 中,AB AC =,E ,F 是边BC 的三等分点,若3AB AC AB AC +=-,则cos EAF ∠=_______________14.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________.15.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________. 16.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 17.在△ABC 中,BD =2DC ,过点D 的直线与直线AB ,AC 分别交于点E ,F ,若AE =x AB ,AF =y AC (x >0,y >0),则x +y 的最小值为_____.18.在ABC 中,AB =AC =G 为ABC 的重心,则AG BC ⋅=________.19.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.20.在ABC △中,已知4CA =,CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.在直角坐标系xoy 中,单位圆O 的圆周上两动点A B 、满足60AOB ∠=︒(如图),C 坐标为()1,0,记COA α∠=(1)求点A 与点B 纵坐标差A B y y -的取值范围; (2)求AO CB ⋅的取值范围; 22.设()2,0a →=,(3b →=.(1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值;(2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值.23.已知,,a b c 是同一平面内的三个向量,其中()1,2a =. (1)若35b =,且//a b ,求b 的坐标;(2)若2c =,且()()2a c a c +⊥-,求a 与c 的夹角θ的余弦值. 24.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cossin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ;(2)若22212a b c =+,试求sin()A B -的值 25.如图,在直角△ABC 中,点D 为斜边BC 的靠近点B 的三等分点,点E 为AD 的中点,3,6AB AC ==(1)用,AB AC 表示AD 和EB ; (2)求向量EB 与EC 夹角的余弦值.26.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数,m n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立. 因此,AP 的最小值为31. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+.2.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b-=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到22981382a b a b t t -+-+=++,最后利用基本不等式即可解决.3.D解析:D 【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角. 【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角, 故选:D. 【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目.4.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩可得A (1,0),此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
(好题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(2)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( ) A .23B .72C .103D .4333.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行B .垂直C .夹角是锐角D .夹角是钝角4.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .35.设平面向量()a=1,2,()b=2,y -,若a b ,则2a b -等于( ) A .4B .5C .35D .456.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( ) A 21B 2C 21D .22+7.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53C .523+D .58.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==9.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为43,则AC 的长为( ) A .43B .433C .3D .2310.设O 为ABC 内一点,已知2332OA OB OC AB BC CA ++=++,则::AOB BOC COA S S S ∆∆∆= ( )A .1:2:3B .2:3:1C .3:1:2D .3:2:111.设O 是△ABC 的外接圆圆心、且720OA OB OC ++=,则∠BOC =( ) A .6π B .3π C .2π D .23π 12.在ABC 中,2BAC π∠=,2AB AC ==,P 为ABC 所在平面上任意一点,则()PA PB PC ⋅+的最小值为( )A .1B .12-C .-1D .-2二、填空题13.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AM MB=__________.14.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 16.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =,则AF ·BE =_____.17.已知平面非零向量,,a b c ,满足a b ⊥且||1c =,已知22150,||||a a c a c b c -⋅-=-=-,则||a b +的取值范围是________18.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.19.已知P 为圆22(4)2x y +-=上一动点,点()1,1Q ,O 为坐标原点,那么OP OQ ⋅的取值范围为________.20.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE .(2)当2AE EB =时,求证:AD CE ⊥.22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小; (2)若3c =,求2a b +的取值范围.23.对于任意实数a,b ,c ,d ,表达式ad bc -称为二阶行列式(determinant ),记作a b c d,(1)求下列行列式的值: ①1001;②1326;③251025--; (2)求证:向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=;(3)讨论关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解的条件,并求出解.(结果用二阶行列式的记号表示). 24.解答下列问题:(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程; (2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是310的直线方程. 25.如图,在OAB 中,P 为边AB 上的一点2BP PA =,6OA =,2OB =且OA 与OB 的夹角为60︒.(1)设OP xOA yOB =+,求x ,y 的值; (2)求OP AB ⋅的值.26.已知||2,||3,a b a ==与b 的夹角为120°. (1)求(2)(3)a b a b -⋅+与||a b +的值; (2)x 为何值时,xa b -与3ab 垂直?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113,22222ya y b y x ⎛⎫⎛⎛⎫+-=+-=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离,∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR ==故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、3,22Q ⎛⎫⎪ ⎪⎝⎭两点间的距离,考查了运算求解能力.2.A解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=3.D解析:D 【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角. 【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角, 故选:D. 【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目.4.A解析:A 【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 5.D解析:D 【分析】利用向量共线定理即可得出y ,从而计算出2a b -的坐标,利用向量模的公式即可得结果. 【详解】//,220a b y ∴-⨯-=,解得4y =-,()()()221,22,44,8a b ∴-=---=,2224845a b ∴-=+=,故选D.【点睛】本题主要考查平面向量平行的性质以及向量模的坐标表示,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.6.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出. 【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴(1)(x -+x ﹣1)2+(y ﹣1)2=1.∴c 的最大值11==.故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.7.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ONOM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.8.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.9.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为16bc =,即得AC 的长. 【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=.因为ABC 的面积为1sin 1623b c bc π⨯⨯⨯=∴=.所以2316,b b =∴=所以AC = 故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.10.B解析:B 【分析】根据23OA OB OC ++=32AB BC CA ++,化简得到12033OA OB OC ++=,设12,33OB OD OC OE ==,则O 为ADE 的重心,有AODAOEDOES SS==,则93,,232AOB BOC AOC S S S S S S ∆∆∆===求解. 【详解】由23OA OB OC ++=32AB BC CA ++,得233322OAOA OB OC OB OA OC OB OA OC ++=-+-+-, 整理得:320OA OB OC ++=,12033OA OB OC ∴++=,设12,33OB OD OC OE ==,则0OA OD OE ++=,即O 为ADE 的重心,AODAOEDOESSSS ∴===,则93,,232AOB BOC AOC S S S S S S ∆∆∆===, 93::3::2:3:122AOB BOC AOC S S S ∆∆∆∴==,故选:B. 【点睛】本题主要考查平面向量的平面几何中的应用,属于中档题.11.B解析:B 【分析】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,可得1,2,7===OC OF OE ,利用余弦定理,再利用两角和余弦公式可得3BOC π∠=【详解】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,+=OC OF OE ,所以1,2,7===OC OF OE 2273cos sin 21777∠==∠=⨯⨯EOC EOC , 2222713cos sin 2272727+-∠==∠=⨯⨯EOF EOF 3331cos cos()2727727∠=∠+∠==BOC COE EOF3π∴∠=BOC故选:B 【点睛】本题考查了平面几何和向量的综合,考查了运算求解能力和逻辑推理能力,属于中档题目.12.C解析:C 【分析】以,AB AC 为,x y 建立平面直角坐标系,设(,)P x y ,把向量的数量积用坐标表示后可得最小值. 【详解】如图,以,AB AC 为,x y 建立平面直角坐标系,则(0,0),(2,0),(0,2)A B C ,设(,)P x y ,(,)PA x y =--,(2,)PB x y =--,(,2)PC x y =--,(22,22)PB PC x y +=--,∴()22(22)(22)2222PA PB PC x x y y x x y y⋅+=----=-+-22112()2()122x y =-+--,∴当11,22x y ==时,()PA PB PC ⋅+取得最小值1-.故选:C .【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示.二、填空题13.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.14.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而min7MN==故答案为 【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①2=,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.【分析】通过建立直角坐标系利用向量的坐标运算转化求解即可【详解】以为坐标原点建立直角坐标系如图:因为直角梯形ABCD 中AB ∥CDAB ⊥ADAB=AD=4CD=8若所以所以则故答案为:【点睛】本题考查 解析:11-【分析】通过建立直角坐标系,利用向量的坐标运算转化求解即可. 【详解】以A 为坐标原点,建立直角坐标系如图:因为直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =所以(0,0)A ,(4,0)B ,(1,4)E ,(5,1)F , 所以(5,1)AF =,(3,4)BE =-, 则15411AF BE ⋅=-+=-. 故答案为:11-【点睛】本题考查向量的坐标运算,向量的数量积的应用,是基本知识的考查.17.【分析】设设则由得到再利用得到再设得到根据可解得结果【详解】因为所以可设设则由得所以由得化简得所以所以由得所以设则所以所以由得解得所以所以所以故答案为:【点睛】本题考查了向量的数量积的坐标运算考查了 解析:31311]【分析】设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150,||||a a c a c b c -⋅-=-=-,得到00152x x x =-,00152y y y =-,再利用221x y +=,得到222200002200225()604x y x y x y +++-=,再设2200x y t +=,得到2220225()2464t t t x t -=--,根据22250464t tt-≥-,可解得结果.【详解】因为a b ⊥,所以可设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150a a c -⋅-=,得200215x x x -=,所以0152x x x =-, 由||||a c b c -=-222200()()x x y x y y -+=+-200215y y y -=,所以00152y y y =-, 所以由221x y +=,得2200001515()()4x y x y -+-=, 所以22220002200225()604x y x y x y +++-=, 设2200x y t +=(0)t >,则220022564()t t x t x +=-,所以4200225064t x tx t-+=-,所以2220225()2464t t tx t-=--,由22250464t t t-≥-,得2649000t t -+≤,解得3232t -≤≤+所以221)1)t ≤≤,11t ≤≤,所以00|||(,)|1a b x y ⎤+===⎦,故答案为:1]. 【点睛】本题考查了向量的数量积的坐标运算,考查了向量的模长公式,属于中档题.18.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在 解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=, 所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.19.【分析】先将圆的方程化为参数方程设利用数量积运算结合三角函数的性质求解【详解】因为圆的方程所以其参数方程为:设所以因为所以故答案为:【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函 解析:[2,6]【分析】先将圆的方程化为参数方程2,42x cos R y θθθ⎧=⎪∈⎨=+⎪⎩,设(2,42)P θθ+,利用数量积运算结合三角函数的性质求解. 【详解】因为圆的方程22(4)2x y +-=,所以其参数方程为:2,42x cos R y θθθ⎧=⎪∈⎨=⎪⎩, 设(2,42)P θθ,所以2cos (42)2sin()44πθθθ⋅=++=++OP OQ ,因为[]sin()1,14πθ+∈-,所以[2,6]⋅∈OP OQ . 故答案为:[2,6] 【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函数的性质,还考查了运算求解的能力,属于中档题.20.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④ 【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N , 则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥. 对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件. 对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件, 对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④. 【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3ay =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 22.(1)2C 3π=;(2)(323,.【分析】(1)根据向量m n ⊥得到22sin sin (sin sin )sin 0B C A B B -++=,再由正弦定理将边化为角的表达式,结合余弦定理求得角C 的值.(2)利用正弦定理求的△ABC 的外接圆半径,将2a b +表示成A 与B 的三角函数式,利用辅助角公式化为角A 的函数表达式;再由角A 的取值范围求得2a b +的范围. 【详解】 (1)∵m n ⊥ ∴0m n ⋅=∴22sin sin (sin sin )sin 0B C A B B -++= ∴222c a b ab =++ ∴1cos 2C =- 又()0,C π∈ . ∴23C π=. (2)∵23C π=,c =∴△ABC 外接圆直径2R=2∴24sin 2sin a b A B +=+4sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭4sin sin A A A =+-3sin A A =6A π⎛⎫=+ ⎪⎝⎭∵0,3A π⎛⎫∈ ⎪⎝⎭∴,662A πππ⎛⎫+∈ ⎪⎝⎭ ∴1sin ,162A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭∴2a b +的取值范围是 .【点睛】本题考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题.23.(1)1,0,0;(2)证明见解析;(3)当11220a b a b ≠时,有唯一解,11221122c b c b x a b a b =,11221122a c a c y ab a b =. 【分析】(1)利用行列式的定义可以直接求出行列式的值.(2)若向量(),p a b =与向量(),q c d =共线,由0q ≠和0q =时,分别推导出0a b c d=;反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,不妨设0c ≠,则ad b c =,,ab p a c ⎛⎫= ⎪⎝⎭,推导出a p q c =⋅,//p q ,当0c 且0d =时,0q =,(),p a b =与0q =共线,由此能证明向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)求出()12211221a b a b x c b c b -=-,()12211221a b a b x a c a c -=-,由此能求出当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解,并能求出解. 【详解】 解:(1)解:①10101=②131623026=⨯-⨯=; ③()()2522551001025-=-⨯--⨯=-.(2)证明:若向量(),p a b =与向量(),q c d =共线,则: 当0q ≠时,有0ad bc -=,即0a b c d=,当0q =时,有0c d ==,即0a b ad bc c d=-=,∴必要性得证. 反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,即0q ≠时, 不妨设0c ≠,则ad b c =,∴,ab p a c ⎛⎫= ⎪⎝⎭, ∵(),q c d =,∴ap q c=⋅,∴//p q ,∴(),p a b =与(),q c d =共线, 当0c且0d =时,0q =,∴(),p a b =与0q =共线,充分性得证.综上,向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)用2b 和1b 分别乘上面两个方程的两端,然后两个方程相减,消去y 得:()12211221a b a b x c b c b -=-,①同理,消去x ,得:()12211221a b a b x a c a c -=-,②∴当12210a b a b -≠时,即11220a b a b ≠时,由①②得: 1122121*********c b c b x a b a b a b c b c b a b -==-,1122122111122122a c a c a c a cy a b a b a b a b -==-, ∴当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解,且11221122c b c b x a b a b =,11221122a c a c y ab a b =. 【点睛】此题考查行列式求值,考查向量共线的充要条件的证明,考查二元一次方程有解的条件及解的求法,考查运算求解能力,属于中档题24.(1)3x+4y+3=0或3x+4y-7=0 (2) 3x-y+9=0或3x-y-3=0 【详解】试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解. 试题解:(1)设所求直线上任意一点P (x ,y ),由题意可得点P 到直线的距离等于1,即34215x y d +-==,∴3x+4y-2=±5,即3x+4y+3=0或3x+4y-7=0.(2)所求直线方程为30x y c -+=,由题意可得点P,即d ==,∴9c =或3c =-,即3x-y+9=0或3x-y-3=0. 考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系25.(1)23x =,13y =;(2)623-. 【分析】(1)由向量的加减运算,可得()2233=+=+=+-OP OB BP OB BA OB OA OB ,进而可得答案.(2)用OAOB ,表示OP AB ⋅,利用向量数量积公式,即可求得结果. 【详解】(1)因为2BP PA =,所以23BP BA =. ()22213333OP OB BP OB BA OB OA OB OA OB =+=+=+-=+.又OP xOA xOB =-,又因为OA 、OB 不共线,所以,23x =,13y =(2)结合(1)可得:()2133OP AB OA OB OB OA ⎛⎫⋅=+⋅- ⎪⎝⎭.2222113333=⋅-+-⋅OA OB OA OB OA OB 22121333=⋅-+OA OB OA OB , 因为6OA =,2OB =,且OA 与OB 的夹角为60︒. 所以22112162626232333OP AB ⋅=⨯⨯⨯-⨯+⨯=-. 【点睛】本题考查了向量的加减运算、平面向量基本定理、向量的数量积运算等基本数学知识,考查了运算求解能力和转化的数学思想,属于基础题目.26.(1)34-2)当245x =-时,xa b -与3a b 垂直.【分析】(1)先由数量积的定义求出3a b ⋅=-,由数量积的运算性质可得22(2)(3)253a b a b a a b b -⋅+=+⋅-,222||||2a b a b a a b b +=+=+⋅+,将条件及a b ⋅的值代入,可得答案. (2)由xa b -与3a b 垂直,可得22()(3)(31)30xa b a b xa x a b b -⋅+=+-⋅-=,将条件代入可求出x 的值.【详解】(1)||||cos ,23cos1203a b a b a b ︒⋅=〈〉=⨯⨯=-.22(2)(3)25324153934a b a b a a b b -⋅+=+⋅-=⨯--⨯=-.222||||2469a b a b a a b b +=+=+⋅+=-+=(2)因为()(3)xa b a b -⊥+,所以22()(3)(31)3493270xa b a b xa x a b b x x -⋅+=+-⋅-=-+-=,即245x =-. 所以当245x =-时,xa b -与3a b 垂直.【点睛】本题考查向量数量积的定义和运算性质,求模长,根据向量垂直其数量积为零求参数的值,属于中档题.。
苏教版高中数学必修四:第2章-平面向量2.3.2(1)课时作业(含答案)
2.3.2 平面向量的坐标运算(一) 课时目标1.理解平面向量坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量.2.掌握平面向量的坐标运算,能准确运用向量的加法、减法、数乘的坐标运算法则进行有关的运算.1.平面向量的坐标表示(1)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个________________i ,j 作为基底,对于平面上的向量a ,有且只有一对有序实数x ,y 使得a =________,则____________________叫作向量a 的坐标,记作________.(2)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则OA →=________,若A (x 1,y 1),B (x 2,y 2),则AB →=________________.2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =________________,即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a =(x 1,y 1),b =(x 2,y 2),则a -b =________________,即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a =(x ,y ),λ∈R ,则λa =________,即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一、填空题1.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________. 2.已知a -12b =(1,2),a +b =(4,-10),则a =______. 3.已知平面上三点A (2,-4),B (0,6),C (-8,10),则12AC →-14BC →的坐标是________. 4.已知向量a =(1,2),b =(2,3),c =(3,4),且c =λ1a +λ2b ,则λ1,λ2的值分别为________.5.已知M (3,-2),N (-5,-1)且MP →=12MN →,则点P 的坐标为________. 6.在平行四边形ABCD 中,AC 为一条对角线.若AB →=(2,4),AC →=(1,3),则BD →=________.7.已知四边形ABCD 为平行四边形,其中A (5,-1),B (-1,7),C (1,2),则顶点D 的坐标为________.8.已知A (-1,-2),B (2,3),C (-2,0),D (x ,y ),且AC →=2BD →,则x +y =________.9.若向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.10.函数y =x 2+2x +2按向量a 平移所得图象的解析式为y =x 2,则向量a 的坐标是 ________.二、解答题11.已知a =(-2,3),b =(3,1),c =(10,-4),试用a ,b 表示c .12.已知平面上三个点坐标为A(3,7),B(4,6),C(1,-2),求点D的坐标,使得这四个点为构成平行四边形的四个顶点.能力提升13.已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(-1,1),n∈R}是两个向量集合,则P∩Q=________.14.在直角坐标系xOy中,向量a,b,c的方向和长度如图所示,分别求它们的坐标.1.在平面直角坐标系中,平面内的点、以原点为起点的向量、有序实数对三者之间建立一一对应关系.关系图如图所示:2.向量的坐标和这个向量的终点的坐标不一定相同.当且仅当向量的起点在原点时,向量的坐标才和这个终点的坐标相同.2.3.2 平面向量的坐标运算(一)知识梳理1.(1)单位向量 x i +y j 有序实数对(x ,y ) a =(x ,y )(2)(x ,y ) (x 2-x 1,y 2-y 1)2.(1)(x 1+x 2,y 1+y 2) (2)(x 1-x 2,y 1-y 2)(3)(λx ,λy )作业设计1.(-1,2) 2.(2,-2) 3.(-3,6)4.-1,2解析 由⎩⎪⎨⎪⎧ λ1+2λ2=3,2λ1+3λ2=4.解得⎩⎪⎨⎪⎧ λ1=-1,λ2=2. 5.⎝⎛⎭⎫-1,-32 解析 设P (x ,y ),由(x -3,y +2)=12×(-8,1), ∴x =-1,y =-32. 6.(-3,-5)解析 ∵AC →=AB →+AD →,∴AD →=AC →-AB →=(-1,-1).∴BD →=AD →-AB →=(-3,-5).7.(7,-6)解析 设D (x ,y ),由AD →=BC →,∴(x -5,y +1)=(2,-5).∴x =7,y =-6.8.112解析 ∵AC →=(-2,0)-(-1,-2)=(-1,2),BD →=(x ,y )-(2,3)=(x -2,y -3),又2BD →=AC →,即(2x -4,2y -6)=(-1,2),∴⎩⎪⎨⎪⎧ 2x -4=-1,2y -6=2, 解得⎩⎪⎨⎪⎧ x =32,y =4,∴x +y =112. 9.-1解析 ∵A (1,2),B (3,2),∴AB →=(2,0).又∵a =AB →,它们的坐标一定相等.∴(x +3,x 2-3x -4)=(2,0).∴⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0, ∴x =-1.10.(1,-1)解析 函数y =x 2+2x +2=(x +1)2+1的顶点坐标为(-1,1),函数y =x 2的顶点坐标为(0,0),则a =(0,0)-(-1,1)=(1,-1).11.解 设c =x a +y b ,则(10,-4)=x (-2,3)+y (3,1)=(-2x +3y,3x +y ),∴⎩⎪⎨⎪⎧ 10=-2x +3y ,-4=3x +y , 解得x =-2,y =2,∴c =-2a +2b .12.解 (1)当平行四边形为ABCD 时,AB →=DC →,设点D 的坐标为(x ,y ).∴(4,6)-(3,7)=(1,-2)-(x ,y ),∴⎩⎪⎨⎪⎧ 1-x =1,-2-y =-1, ∴⎩⎪⎨⎪⎧ x =0,y =-1. ∴D (0,-1); (2)当平行四边形为ABDC 时,仿(1)可得D (2,-3);(3)当平行四边形为ADBC 时,仿(1)可得D (6,15).综上可知点D 可能为(0,-1),(2,-3)或(6,15).13.{(1,1)}解析 设a =(x ,y ),则P =⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧ x =1y =m , ∴集合P 是直线x =1上的点的集合.同理集合Q 是直线x +y =2上的点的集合,即P ={(x ,y )|x =1},Q ={(x ,y )|x +y -2=0}.∴P ∩Q ={(1,1)}.故选A.14.解 设a =(a 1,a 2),b =(b 1,b 2),c =(c 1,c 2),则a 1=|a |cos 45°=2×22=2, a 2=|a |sin 45°=2×22=2; b 1=|b |cos 120°=3×⎝⎛⎭⎫-12=-32, b 2=|b |sin 120°=3×32=332; c 1=|c |cos(-30°)=4×32=23, c 2=|c |sin(-30°)=4×⎝⎛⎭⎫-12=-2. 因此a =(2,2),b =⎝⎛⎭⎫-32,332, c =(23,-2).。
苏教版高中数学必修4第二章平面向量单元练习().doc
第二章平面向量单元练习(必修4)一、填空题1.若有以下命题:① 两个相等向量的模相等; ② 若a 和b 都是单位向量,则b a =;③ 相等的两个向量一定是共线向量; ④ b a //,b c //,则c a //;⑤ 零向量是唯一没有方向的向量; ⑥ 两个非零向量的和可以是零。
其中正确的命题序号是 。
2. 在水流速度为4h km /的河流中,有一艘船沿与水流垂直的方向以8h km /的速度航行,则船自身航行速度大小为____________h km /。
3. 任给两个向量a 和b ,则下列式子恒成立的有________________。
① ||||||b a b a +≥+ ② ||||||b a b a -≥- ③||||||b a b a +≤- ④ ||||||b a b a -≤-4. 若a AB 3=,a CD 5-=且||||BC AD =,则四边形ABCD 的形状为________。
5.梯形ABCD 的顶点坐标为)2,1(-A ,)4,3(B ,)1,2(D 且DC AB //,CD AB 2=,则点C 的坐标为___________。
6. ABC ∆的三个顶点坐标分别为),(11y x A ,)(22y x B ,)(33y x C ,若G 是ABC ∆的重心,则G 点的坐标为__________,=++GC GB GA __________________。
7. 若向量)1,1(=a ,)1,1(-=b ,)2,1(-=c ,则=c ___________(用a 和b 表示)。
8. 与向量)4,3(=a 平行的单位向量的坐标为 ________________。
9. 在ABC ∆中,已知7=AB ,5=BC ,6=AC ,则=∙BC AB ________________。
10.设)3,(x a =,)1,2(-=b ,若a 与b 的夹角为钝角,则x 的取值范围是 __ ____。
数学必修4单元检测:第2章平面向量附答案 含解析 精品
数学苏教必修4第2章平面向量单元检测(满分:100分 时间:60分钟)一、填空题(本大题共10小题,每小题5分,共50分)1.化简()()AB MB BO BC OM ++++的结果为__________.2.已知OA =(2,8),OB =(-7,2),则13AB等于__________.3.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y 等于__________. 4.已知|a |=6,e 为单位向量,当a ,e 的夹角为120°时,a·e 等于__________. 5.关于平面向量a ,b ,c ,有下列三个命题: ①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3;③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°.其中真命题的序号为________.(写出所有真命题的序号)6.已知点A (1,-2),若向量AB与a =(2,3)同向,AB = B 的坐标为__________.7.若向量a ,b 满足|a|=|b|=1,a 与b 的夹角为120°,则a·a +a·b =__________. 8.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++ ,则实数m =__________.9.(2012江苏高考,9)如图,在矩形ABCD 中,AB BC =2,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅= AE BF ⋅的值是__________.10.O 为△ABC 中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅+的最小值是__________.二、解答题(本大题共4小题,共50分)11.(12分)(1)已知a =(4,2),求与a 垂直的一个单位向量的坐标. (2)若|a |=2,|b |=1,且a 与b 的夹角为120°,求|a +b |的值.12.(12分)如图,已知△ABC 的三个顶点的坐标为A (-5,-1),B (4,1),C (0,4).(1)求△ABC 的面积.(2)若四边形ABCD 为平行四边形,求D 点的坐标.13.(12分)某人骑车以每小时a 千米的速度向东行驶,感到风从正北方向吹来,而当速度为2a 千米/时,感到风从东北方向吹来,试求实际风速和方向.14.(14分)已知平面上三个向量a ,b ,c ,其中a =(1,2).(1)若|c |=c ∥a ,求c 的坐标;5 2,且a+2b与2a-b垂直,求a与b的夹角θ的余弦值.(2)若|b|=参考答案1. 答案:AC解析:运用向量加法的多边形法则运算求解. 2. 答案:(-3,-2)解析:∵AB OB OA =-=(-9,-6),∴13AB=(-3,-2). 3. 答案:7解析:∵a ∥b ,∴2(-1+y )-3×4=0,∴y =7. 4. 答案:-3解析:a·e =|a|·|e|·cos 120°=6×12⎛⎫- ⎪⎝⎭=-3. 5. 答案:②解析:当a =0时,①不成立;对于②,若a ∥b ,则-2k =6,∴k =-3,②成立;对于③,由于|a |=|b |=|a -b |,则以|a |,|b |为邻边的平行四边形为菱形,如图.∠BAD =60°,AC=a +b ,由菱形的性质可知,a 与a +b 的夹角为∠DAC =30°.6. 答案:(5,4)解析:由题意可设AB=λa =(2λ,3λ)(λ>0),∵AB = =.解得λ=2,∴AB=(4,6).又∵A (1,-2),∴B (5,4). 7. 答案:12解析:a·a +a·b =|a|2+|a||b|cos 120°=12. 8. 答案:1解析:设△ABC 是直角三角形,∠C =90°,则H 与C 重合,O 为AB 的中点,OA OB OC OH ++=,故m =1.9.解析:由AB AF ⋅= ()AB AD DF ⋅+即AB AD AB DF ⋅+⋅=又∵AB AD ⊥,∴0AB AD ⋅= ,∴AB DF ⋅=故AE BF ⋅ =()()AB BE BC CF ⋅⋅+=AB BC AB CF BE BC BE CF ⋅+⋅+⋅+⋅ =210()02AB DF DC BC +⋅-++ =AB DF AB DC ⋅-⋅ +22AB +22+210. 答案:-2解析:设OA =x,0≤x ≤2,则OM=2-x ,如图.由题意易得OC OM MC =+ ,OB OM MB =+.又∵MC MB =- ,∴()OA OB OC ⋅+=2OA OM ⋅ =2OA OM |cos 180°=2OA OM -=-2x (2-x )=2(x 2-2x )=2(x -1)2-2.当x =1时有最小值-2,此时O 为AM 的中点. 11. 解:(1)与向量a 垂直的一个向量为(-2,4), 又|a |=∴与向量a垂直的一个单位向量的坐标为,即⎛ ⎝⎭. (2)由已知a ·b =2×1×12⎛⎫-⎪⎝⎭=-1, ∴|a +b |2=22+(-2)+1=3,∴|a +b |12. 解:(1)设AB 边上的高为CE .设E (x ,y ),则CE =(x ,y -4),AE =(x +5,y +1),AB=(9,2).由于CE AB ⊥,则9x +2(y -4)=0.①由于AE 与AB共线,则2(x +5)-9(y +1)=0.②由①②解得14,175,17x y ⎧=⎪⎪⎨⎪=⎪⎩则CE =1463,1717-⎛⎫ ⎪⎝⎭.S △ABC=13522AB CE == . (说明:本题还可用数量积去解).(2)设D (m ,n ),∵AD=(m +5,n +1),BC =(-4,3),又∵AD BC = ,∴54,13,m n +=-⎧⎨+=⎩∴9,2.m n =-⎧⎨=⎩ ∴D (-9,2). 13. 解:设a 表示此人以每小时a 千米的速度向东行驶的向量,无风时此人感到风速为-a ,设实际风速为v ,那么此人感到的风速为v -a .如图,设OA =-a ,OB=-2a , ∵PO OA PA += , ∴PA=v -a . 这就是感到由正北方向吹来的风速.∵PO OB PB += , ∴PB=v -2a .于是当此人的速度是原来的2倍时,所感受到由东北方向吹来的风速就是PB, 由题意知∠PBO =45°,P A ⊥BO ,BA =AO , 从而,△POB 为等腰直角三角形. ∴PO =PB,即|v |,的西北风. 14. 解:(1)不妨设c =λa =(λ,2λ), 所以|c |2=5λ2.∵|c |=|c |2=20. ∴5λ2=20,∴λ=±2.∴c =(2,4)或c =(-2,-4). (2)∵a =(1,2),∴|a |=∵(a +2b )⊥(2a -b ), ∴(a +2b )·(2a -b )=0,∴2a 2+3a·b -2b 2=0, ∴2×5+3a·b -2×254=0. ∴a·b =56. ∴cos θ=·515||||6152=⨯=a b a b .。
高中数学(苏教版,必修四)【课时作业与单元检测】第二
§2.4 向量的数量积(二)课时目标1.掌握数量积的坐标表示, 会进行平面向量数量积的坐标运算.2.能运用数量积的坐标表示求两个向量的夹角,会用数量积的坐标表示判断两个平面向量的垂直关系,会用数量的坐标表示求向量的模.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b =____________.即两个向量的数量积等于它们________________________.2.平面向量的模(1)向量模公式:设a =(x 1,y 1),则|a |=________.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB →|=________________.3.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=________________=________________________.4.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔________________.一、填空题1.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |=________.2.已知a =(3,3),b =(1,0),则(a -2b )·b =______.3.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=45,则b =________.4.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________.5.若a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.6.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值为________.7.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =________.8.已知向量a =(2,1),a ·b =10,|a +b |=52,则|b |=________.9.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为________.10.已知a =(-2,-1),b =(λ,1),若a 与b 的夹角α为钝角,则λ的取值范围为________.二、解答题11.已知a 与b 同向,b =(1,2),a·b =10.(1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .12.已知三个点A (2,1),B (3,2),D (-1,4),(1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值.能力提升13.已知向量a =(1,1),b =(1,a ),其中a 为实数,O 为原点,当此两向量夹角在⎝⎛⎭⎫0,π12变动时,a 的范围是________.14.若等边三角形ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题提供了完美的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.§2.4 向量的数量积(二)知识梳理1.x 1x 2+y 1y 2 对应坐标的乘积的和2.(1)x 21+y 21 (2)(x 2-x 1)2+(y 2-y 1)23.a·b |a||b | x 1x 2+y 1y 2x 21+y 21x 22+y 224.x 1x 2+y 1y 2=0作业设计1.2解析 由(2a -b )·b =0,则2a ·b -|b |2=0,∴2(n 2-1)-(1+n 2)=0,n 2=3.∴|a |=1+n 2=2.2.1 解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1.3.(-4,8)解析 由题意可设b =λa =(λ,-2λ),λ<0,则|b |2=λ2+4λ2=5λ2=80,∴λ=-4,∴b =-4a =(-4,8).4.2 3解析 a =(2,0),|b |=1,∴|a |=2,a ·b =2×1×cos 60°=1.∴|a +2b |=a 2+4×a ·b +4b 2=2 3. 5.655解析 设a 、b 的夹角为θ, 则cos θ=2×(-4)+3×722+32(-4)2+72=55, 故a 在b 方向上的投影为|a |cos θ=13×55=655. 或直接根据a·b |b |计算a 在b 方向上的投影. 6.1665解析 ∵a =(4,3),∴2a =(8,6).又2a +b =(3,18),∴b =(-5,12),∴a ·b =-20+36=16.又|a |=5,|b |=13,∴cos 〈a ,b 〉=165×13=1665. 7.⎝⎛⎭⎫-79,-73 解析 设c =(x ,y ),由(c +a )∥b 有-3(x +1)-2(y +2)=0,① 由c ⊥(a +b )有3x -y =0,②联立①②有x =-79,y =-73,则c =(-79,-73). 8.5解析 ∵|a +b |=52,∴|a +b |2=a 2+2a ·b +b 2=5+2×10+b 2=(52)2,∴|b |=5.9.-17解析 由a =(-3,2),b =(-1,0),知λa +b =(-3λ-1,2λ),a -2b =(-1,2).又(λa +b )·(a -2b )=0,∴3λ+1+4λ=0,∴λ=-17. 10.⎝⎛⎭⎫-12,2∪(2,+∞)解析 由题意cos α=a·b |a||b |=-2λ-15·λ2+1, ∵90°<α<180°,∴-1<cos α<0,∴-1<-2λ-15·λ2+1<0, ∴⎩⎪⎨⎪⎧ -2λ-1<0,-2λ-1>-5λ2+5, 即⎩⎪⎨⎪⎧ λ>-12,(2λ+1)2<5λ2+5, 即⎩⎪⎨⎪⎧λ>-12,λ≠2,∴λ的取值范围是⎝⎛⎭⎫-12,2∪(2,+∞). 11.解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4).(2)∵b·c =1×2-2×1=0,a·b =10,∴a (b·c )=0a =0,(a·b )c =10×(2,-1)=(20,-10).12.(1)证明 ∵A (2,1),B (3,2),D (-1,4),∴AB →=(1,1),AD →=(-3,3),∴AB →·AD →=1×(-3)+1×3=0,∴AB →⊥AD →,即AB ⊥AD .(2)解 AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →.设C 点坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4), ∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5.∴C 点坐标为(0,5).由于AC →=(-2,4),BD →=(-4,2),所以AC →·BD →=8+8=16,|AC →|=2 5,|BD →|=2 5.设AC →与BD →夹角为θ,则cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0, ∴解得矩形的两条对角线所成的锐角的余弦值为45.13.⎝⎛⎭⎫33,1∪(1,3)解析 已知OA →=(1,1),即A (1,1)如图所示,当点B 位于B 1和B 2时,a 与b 夹角为π12,即∠AOB 1=∠AOB 2=π12,此时,∠B 1Ox =π4-π12=π6,∠B 2Ox =π4+π12=π3, 故B 1⎝⎛⎭⎫1,33,B 2(1,3),又a 与b 夹角不为零, 故a ≠1,由图易知a 的范围是⎝⎛⎭⎫33,1∪(1,3). 14.-2解析 建立如图所示的直角坐标系,根据题设条件即可知A (0,3),B (-3,0),M (0,2), ∴MA →=(0,1),MB →=(-3,-2).∴MA →·MB →=-2.。
(好题)高中数学必修四第二章《平面向量》测试(答案解析)(2)
一、选择题1.已知向量,a b ,满足||1,||2a b ==,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤,则向量,a b 的夹角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,63ππ⎡⎤⎢⎥⎣⎦ D .20,3π⎡⎤⎢⎥⎣⎦2.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .0,(1,)3⎛⋃+∞ ⎝⎭C .3⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞3.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .324.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .65.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A B .5C .2D6.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-7.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( ) A .8B .4C .6D .38.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b +B .3255a b + C .2133a b +D .1233a b +9.在ABC 中,D 为AB 的中点,E 为AC 边上靠近点A 的三等分点,且BE CD ⊥,则cos2A 的最小值为( ) A .267B .27-C .17-D .149-10.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-11.设O 是△ABC 的外接圆圆心、且720OA OB OC ++=,则∠BOC =( ) A .6π B .3π C .2π D .23π 12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56π B .23π C .3π D .6π 二、填空题13.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x a b -⋅=0有两相等实根,则向量a 与b 的夹角是_____. 16.已知点()0,1A ,()3,2B,向量()4,3AC =,则向量BC =______.17.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =,则AF ·BE =_____.18.已知平面非零向量,,a b c ,满足a b ⊥且||1c =,已知22150,||||a a c a c b c -⋅-=-=-,则||a b +的取值范围是________19.设向量a ,b ,c ,满足1a b ==,12a b ⋅=-,a c -与b c -的夹角为60︒,则c 的最大值等于________20.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______.三、解答题21.如图,在菱形ABCD 中,1,22BE BC CF FD ==.(1)若EF x AB y AD =+,求32x y +的值; (2)若||6,60AB BAD =∠=︒,求AC EF ⋅.22.已知(cos ,sin )a αα=,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求向量a b +与a b -所成的夹角; (2)若k a b +与a k b -的模相等,求2αβ-的值(k 为非零的常数).23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点. (1)若AB AC ⊥求实数m 的值; (2)在(1)的条件下,求△ABC 的面积.26.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+ (1)判断,a b 是否共线; (2)若//a c ,求x 的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据向量不等式得到7a b +≤,平方得到1a b ⋅≤,代入数据计算得到1cos 2α≤得到答案. 【详解】由||1a =,||2b =,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤ 可得:()()27a b c a b c a c b c +⋅≤+⋅≤⋅+⋅≤ 可得:()227a b +⋅≤,7a b +≤平方得到2227a b a b ++⋅≤,即1a b ⋅≤1cos 1,cos ,23a b a b παααπ⋅=⋅≤∴≤∴≤≤故选:B 【点睛】本题考查了向量夹角的计算,利用向量三角不等式的关系进行求解是解题的关键.2.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a所满足的条件,最后求得结果.【详解】由题意得24,(0,0),(,1),(3,1)2T a O A a B aaππ==-,因为OAB为钝角三角形,所以0OA OB⋅<或0AB AO⋅<,即2310a-<,或2220a-+<,从而30a<<或1a >.故选:B.【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题. 3.A解析:A【解析】Rt AOB中,0OA OB⋅=,∴2AOBπ∠=,∵5OA=,25OB=|,∴225AB OA OB=+=,∵AB边上的高线为OD,点E位于线段OD上,建立平面直角坐标系,如图所示;则)5,0A、(025B,、设(),D m n,则OAD BAO∽,∴OA ADAB OA=,∴1AD=,∴15AD AB=,即()(155,255m n=-,,求得55m=,∴4525,D ⎛⎫ ⎪⎪⎝⎭;则45254525,,OE OD λλλλ⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 45255,EA λλ⎛⎫=-- ⎪ ⎪⎭; ∵34OE EA ⋅=, ∴2454525354λλλ⎛⎫⎛⎫⋅--= ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为()()45251,1ED OD OE λλ⎛⎫=-=-- ⎪ ⎪⎝⎭,当34λ=时,551,2ED ⎛⎫== ⎪ ⎪⎝⎭;当14λ=时,35353,2ED ⎛⎫== ⎪ ⎪⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A. 4.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.5.B解析:B 【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模. 【详解】由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B.【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解. 6.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a b a b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭.故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.7.D解析:D 【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF . 【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D. 【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.8.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x yy z x y zx z+=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC=+=+=+-=+3255a b=+.故选:B【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.9.D解析:D【分析】作出图形,用AB、AC表示向量BE、CD,由BE CD⋅可得出2232cos7c bAbc+=,利用基本不等式求得cos A的最小值,结合二倍角的余弦公式可求得cos2A的最小值.【详解】如下图所示:13BE AE AB AC AB=-=-,12CD AD AC AB AC=-=-,BE CD⊥,则221171132623BE CD AC AB AB AC AB AC AB AC⎛⎫⎛⎫⋅=-⋅-=⋅--=⎪ ⎪⎝⎭⎝⎭,即22711cos0623cb A c b--=,可得22322626cos7c b bcAbc+=≥=当且仅当62b=时,等号成立,所以,22261cos22cos121749A A⎛⎫=-≥⨯-=-⎪⎪⎝⎭.故选:D. 【点睛】本题考查二倍角余弦值最值的求解,考查平面向量垂直的数量积的应用,同时也考查了基本不等式的应用,考查计算能力,属于中等题.10.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-;当OP ,OA 反向时,取得最大值,为246+=.∴PM PN ⋅的取值范围为[]2,6-.故选:A.【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.11.B解析:B【分析】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,可得1,2,7===OC OF OE ,利用余弦定理,再利用两角和余弦公式可得3BOC π∠=【详解】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,+=OC OF OE ,所以1,2,7===OC OF OE 2273cos sin 21777∠==∠=⨯⨯EOC EOC , 2222713cos sin 2272727+-∠==∠=⨯⨯EOF EOF 3331cos cos()2727727∠=∠+∠==BOC COE EOF 3π∴∠=BOC故选:B【点睛】本题考查了平面几何和向量的综合,考查了运算求解能力和逻辑推理能力,属于中档题目. 12.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】 由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】 解: 由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅, 可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=,即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形,由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-,解得||2DA =,ABC ∆的边长为4cos30︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,可得B(3,3),C(3,D(2,0)-,由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC=,可得M 为PC 中点,即有3cos sin (,)22Mθθ+,则2223cos sin ||3=2+2BM θθ⎛+⎛⎫-+ ⎪⎝⎭⎝2(3cos )4θ-=+=3712sin 64πθ⎛⎫+- ⎪⎝⎭=, 当sin 16πθ⎛⎫-= ⎪⎝⎭,即23πθ=时,取得最大值,且为494. 故答案为:494. 【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-【分析】延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可.【详解】如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小;设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形;设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-,故答案为:2-.【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【分析】由关于的方程有两相等实根可得解得即可求出与的夹角【详解】∵已知|且关于的方程有两相等实根∴设向量与的夹角为则可解得则向量与的夹角为故答案为:【点睛】本题考查向量的夹角考查方程的解的应用 解析:23π 【分析】 由关于x 的方程20x a b a x +-⋅=有两相等实根,可得240a a b ∆=+⋅=,解得1cos 2θ=-,即可求出a 与b 的夹角 【详解】∵已知|2a b =,0b ≠,且关于x 的方程20x a b a x +-⋅=有两相等实根, ∴240a a b ∆=+⋅=,设向量a 与b 的夹角为θ,则()2242cos 0b b b θ∆=+⨯=,可解得1cos 2θ=- 0θπ≤≤,则向量a 与b 的夹角θ为23π故答案为:23π 【点睛】 本题考查向量的夹角,考查方程的解的应用16.【分析】根据向量的坐标运算即可求出【详解】因为所以故答案为:【点睛】本题考查了向量的坐标运算向量模的坐标公式属于基础题目【分析】根据向量的坐标运算即可求出.【详解】因为()0,1A ,()3,2B ,所以()3,1AB =,()()()4,33,11,2BC AC AB =-=-=,21BC ==【点睛】本题考查了向量的坐标运算,向量模的坐标公式,属于基础题目.17.【分析】通过建立直角坐标系利用向量的坐标运算转化求解即可【详解】以为坐标原点建立直角坐标系如图:因为直角梯形ABCD 中AB ∥CDAB ⊥ADAB=AD=4CD=8若所以所以则故答案为:【点睛】本题考查 解析:11-【分析】通过建立直角坐标系,利用向量的坐标运算转化求解即可.【详解】以A 为坐标原点,建立直角坐标系如图:因为直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =所以(0,0)A ,(4,0)B ,(1,4)E ,(5,1)F ,所以(5,1)AF =,(3,4)BE =-,则15411AF BE ⋅=-+=-.故答案为:11-【点睛】本题考查向量的坐标运算,向量的数量积的应用,是基本知识的考查.18.【分析】设设则由得到再利用得到再设得到根据可解得结果【详解】因为所以可设设则由得所以由得化简得所以所以由得所以设则所以所以由得解得所以所以所以故答案为:【点睛】本题考查了向量的数量积的坐标运算考查了 解析:31311]【分析】设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150,||||a a c a c b c -⋅-=-=-,得到00152x x x =-,00152y y y =-,再利用221x y +=,得到222200002200225()604x y x y x y +++-=,再设2200x y t +=,得到2220225()2464t t t x t -=--,根据22250464t t t -≥-,可解得结果. 【详解】因为a b ⊥,所以可设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150a a c -⋅-=,得200215x x x -=,所以00152x x x =-, 由||||a c b c -=-222200()()x x y x y y -+=+-200215y y y -=,所以00152y y y =-, 所以由221x y +=,得2200001515()()4x y x y -+-=, 所以222200002200225()604x y x y x y +++-=, 设2200x y t +=(0)t >,则220022564()t t x t x +=-,所以4200225064t x tx t-+=-,所以2220225()2464t t t x t -=--, 由22250464t t t-≥-,得2649000t t -+≤,解得3223132231t -≤≤+, 所以22(311)(311)t -≤≤+, 所以311311t -≤≤+, 所以220000|||(,)|311,311a b x y x y t ⎡⎤+==+=∈-+⎣⎦,故答案为:[311,311]-+.【点睛】本题考查了向量的数量积的坐标运算,考查了向量的模长公式,属于中档题. 19.【分析】作向量根据已知条件可得出与的夹角为四点共圆再结合正余弦定理可得出结果【详解】解:如下图作向量与的夹角为即又与的夹角为即与夹角为四点共圆当为直径时最大在中由余弦定理得:的外接圆的直径为四点共圆 解析:2【分析】作向量OA a =,OB b =,OC c =,根据已知条件可得出a 与b 的夹角为120︒,A ,O ,B ,C 四点共圆,再结合正余弦定理可得出结果.【详解】解:如下图,作向量OA a =,OB b =,OC c =,∴CA a c =-,CB b c =-,1a b ==,1cos ,2a b a b a b ⋅=⋅⋅=-, ∴a 与b 的夹角为120︒,即120AOB ∠=︒.∴120AOB ∠=︒.又a c -与b c -的夹角为60︒,即CA 与CB 夹角为60︒,∴A ,O ,B ,C 四点共圆.∴当OC 为直径时c 最大,在AOB 中,由余弦定理得: 2222cos1203AB OA OB OA OB =+-⋅︒=,∴3AB =.∴AOB 的外接圆的直径为2sin120AB =︒. ∴A ,O ,B ,C 四点共圆的圆的直径为2.∴c 的最大值为2. 故答案为:2.【点睛】 本题主要考查向量在几何图形中的应用,考查正余弦定理,考查数形结合的能力,分析问题能力,属于中档题.20.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题 解析:52 【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可.【详解】因为0a b c d +++=, 所以++=-a b c d , 所以()()22++=-a b c d , 所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d , 因为2a =,3b =,4c =,4d =,所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.三、解答题21.(1)1-;(2)9-.【分析】(1)利用平面向量基本定理,取AB AD 、为基底,利用向量加减法可解;(2)把所有的向量用基底AB AD 、表示后,计算AC EF ⋅.【详解】解:(1)因为1,22BE BC CF FD ==, 所以12122323EF EC CF BC DC AD AB =+=-=-, 所以21,32x y =-=, 故213232132x y ⎛⎫+=⨯-+⨯=- ⎪⎝⎭. (2)∵AC AB AD =+, ∴2212121()23236AC EF AB AD AD AB AD AB AB AD ⎛⎫⋅=+⋅-=--⋅⎪⎝⎭ ∵ABCD 为菱形∴||=||6AD AB = ∴2211||||cos 66AC EF AB AB BAD ⋅=--∠. 11136369662=-⨯-⨯⨯=-, 即9AC EF ⋅=-.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.22.(1)90;(2)4π-. 【分析】(1)先求出1a b ==,利用数量积运算法则可求得()()0a b a b +⋅-=,从而证得结论;(2)利用向量坐标运算求得ka b +和a kb -,利用模长相等可求得cos()0αβ-=,根据角的范围可确定最终取值.(1)由已知得:1a b ==,则:()()22·0a b a b a b +-=-=, 因此:()()a b a b +⊥-,因此,向量a b +与a b -所成的夹角为90;(2)由(cos ,sin )a αα=,(cos ,sin )b ββ=,可得()cos cos ,sin sin k a b k k αβαβ+=++, ()cos cos ,sin sin a k b k k αβαβ-=--, (cos ka b k +=,(cos a kb α-=∴(cos cos k α+=整理可得:2k =即:()4cos 0k βα-=, 0k ≠ ,()cos 0βα∴-=,即()cos 0αβ-=,00αβππαβ<<<∴-<-<,因此:2παβ-=-, 即:24αβπ-=-. 【点睛】本题主要考查了向量的数量积运算,根据向量模长相等关系求解参数值的问题;关键是能够熟练掌握向量的坐标运算,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】(1)设向量a 与b 的夹角θ,()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-=2244a a b b -⋅+=4123627-+=.【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)2C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 2y x y θθ=-=. 所以3cos x θθ=+,23y θ=,2211sin cos sin 2cos 233333xy θθθθθ=+=+-2112cos 2)323θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)1;(2)【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABC S AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC ,所以向量(1,4),(4,1)AB m AC =--=--,又因为AB AC ⊥,所以4(1)40m --+=,解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--, 所以4,17AB AC ==所以11422ABC S AB AC =⨯⨯=⨯= 【点睛】 本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题. 26.(1),a b 不共线;(2)23x =【分析】(1)根据平面向量共线定理判断.(2)由平面向量共线定理计算.【详解】解:(1)若a 与b 共线,由题知a 为非零向量, 则有b a λ=,即64(32)m n m n λ-=+, 6342λλ=⎧∴⎨-=⎩得到2λ=且2λ=-, λ∴不存在,即a 与b 不平行. (2) ∵//a c ,∴存在实数r ,使得c ra =, 即32m xn rm rn +=+, 即132r x r=⎧⎨=⎩,解得23x =. 【点睛】本题考查平面向量共线定理,掌握平面向量共线定理是解题基础.。
苏教版高中数学必修四第二章平面向量习题单元测试
平面向量单元测试题(苏教版)班级 姓名 考号 一,选择题:(5分×8=40分)1,下列说法中错误的是 ( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2,下列命题正确的是 ( )A. 若→a 、→b 都是单位向量,则 →a =→bB . 若AB =DC , 则A 、B 、C 、D 四点构成平行四边形 C. 若两向量→a 、→b 相等,则它们是始点、终点都相同的向量 D. AB 与BA 是两平行向量3,下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量AB 的长度与向量BA 的长度相等 ,D 、若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。
4,已知向量(),1m =a ,若,a =2,则 m = ( ) A .1 3 C. 1± D.35,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ∥→b ,则有 ( ) A ,1x 2y +2x 1y =0, B , 1x 2y ―2x 1y =0, C ,1x 2x +1y 2y =0, D , 1x 2x ―1y 2y =0,6,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ⊥→b ,则有 ( ) A ,1x 2y +2x 1y =0, B , 1x 2y ―2x 1y =0, C ,1x 2x +1y 2y =0, D , 1x 2x ―1y 2y =0,7,在ABC ∆中,+则ABC ∆一定是 ( ) A .钝角三角形B .锐角三角形C .直角三角形D .不能确定8,已知向量,,a b c r r r 满足||1,||2,,a b c a b c a ===+⊥u u r r r r r r r ,则a b r r 与的夹角等于 ( )A .0120B 060C 030D 90o 二,填空题:(5分×4=20分)9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2 向量的线性运算 2.2.1 向量的加法
课时目标
1.理解向量加法的法则及其几何意义.2.能用法则及其几何意义正确作出两个向量的和.
1.向量的加法的定义
已知向量a 和b ,在平面内任取一点O ,作OA →=a ,AB →=b ,则向量OB →
叫做a 与b 的和,记作
________.即a +b =OA →+AB →
=________. 求两个向量和的运算叫做向量的加法. 2.向量的加法法则 (1)三角形法则
如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →
=b ,则向量________叫做
a 与
b 的和(或和向量),记作________,即a +b =AB →+BC →
=________.上述求两个向量和的作图法则,叫做向量求和的三角形法则.
对于零向量与任一向量a 的和有a +0=________+________=________. (2)平行四边形法则
如图所示,已知两个不共线的非零向量a ,b ,作OA →=a ,OC →
=b ,则O 、A 、C 三点不共线,以________,________为邻边作________________,则对角线上的向量________=a +b ,这个法则叫做两个向量求和的平行四边形法则. (3)多边形法则
已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的________为始点,第n 个向量的
________为终点的向量叫做这n 个向量的和向量.即A 1A 2→+A 2A 3→
+…+A n A n +1=____________.这个法则叫做向量求和的多边形法则. 3.向量加法的运算律
(1)交换律:a +b =________________.
(2)结合律:(a +b )+c =________________.
一、填空题
1.化简AB →+DF →+CD →+BC →+F A →
=________.
2.已知菱形ABCD 的边长为1,∠BAD =120°,则向量AB →+AD →
的模为________.
3.在正六边形ABCDEF 中,AB →=a ,F A →=b ,则EC →
=________.(用a ,b 表示)
4.如图所示,在平行四边形ABCD 中,O 是对角线的交点,下列结论不正确的是______.(填相应结论的序号)
①AB →=CD →,BC →=DA →; ②AD →+OD →=DA →; ③AO →+OD →=AC →+CD →; ④AB →+BC →+CD →=DA →.
5.在四边形ABCD 中,AC →=AB →+AD →
,则四边形ABCD 的形状一定是________.
6.已知在矩形ABCD 中,AB =2,BC =3,则|AB →+BC →+AC →
|=________. 7.
如图所示,在平行四边形ABCD 中,BC →+DC →+BA →
=________.
8.如图所示,在正六边形ABCDEF 中,若AB =1,则|AB →+FE →+CD →
|=________.
9.
设E 是平行四边形ABCD 外一点,如图所示,化简下列各式 (1)DE →+EA →
=________; (2)BE →+AB →+EA →
=________; (3)DE →+CB →+EC →
=________; (4)BA →+DB →+EC →+AE →
=________.
10.已知△ABC 是正三角形,给出下列等式: ①|AB →+BC →|=|BC →+CA →|; ②|AC →+CB →|=|BA →+BC →|; ③|AB →+AC →|=|CA →+CB →|; ④|AB →+BC →+AC →|=|CB →+BA →+CA →|.
其中正确的有______.(写出所有正确等式的序号) 二、解答题
11.一艘船以5 km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.
12.
如图所示,在平行四边形ABCD 的对角线BD 的延长线和反向延长线上取点F ,E ,使BE =DF . 求证:四边形AECF 是平行四边形.
能力提升
13.已知|AB →|=3,|BC →|=5,则|AC →
|的取值范围是__________.
14.已知点G 是△ABC 的重心,则GA →+GB →+GC →
=__________.
1.三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的.当两个向量首尾相连时常选用三角形法则,当两个向量共始点时,常选用平行四边形法则.
2.向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.
§2.2 向量的线性运算 2.2.1 向量的加法
知识梳理
1.a +b OB →
2.(1)AC → a +b AC →
0 a a
(2)OA OC 平行四边形 OB →
(3)始点 终点
3.(1)b +a (2)a +(b +c ) 作业设计 1.0
解析 原式=AB →+BC →+CD →+DF →+F A →
=0. 2.1
解析 ∵AB →+AD →=AC →
,且△ABC 为等边三角形, ∴|AB →+AD →|=|AC →
|=1. 3.a +b
解析 EC →=FB →=F A →+AB →
=a +b . 4.①②④
5.平行四边形
解析 ∵AC →=AB →+BC →=AB →+AD →,∴BC →=AD →
. ∴四边形ABCD 为平行四边形. 6.213
解析 |AB →+BC →+AC →|=|AC →+AC →|=2|AC →
| =2AB 2+BC 2=213. 7.BC →
解析 BC →+DC →+BA →=BC →+AB →+BA →=BC →
. 8.2
解析 |AB →+FE →+CD →|=|AB →+BC →+CD →|=|AD →
|=2.
9.(1)DA → (2)0 (3)DB → (4)DC →或AB → 10.①③④
解析 AB →+BC →=AC →,BC →+CA →=BA →
, 而|AC →|=|BA →
|,故①正确; |AB →|≠|BA →+BC →
|,故②不正确; 画图可知③,④正确. 11.解
如图所示,OA →表示水流速度,OB →表示船垂直于对岸的方向行驶的速度,OC →
表示船实际航行的
速度,∠AOC =30°,|OB →
|=5. ∵四边形OACB 为矩形,
∴|OA →
|=|AC →|tan 30°=53,
|OC →
|=|OB →|sin 30°
=10,
∴水流速度大小为5 3 km/h ,船实际速度为10 km/h.
12.证明 AE →=AB →+BE →,FC →=FD →+DC →,因为四边形ABCD 是平行四边形,所以AB →=DC →
,因
为FD =BE ,且FD →与BE →的方向相同,所以FD →=BE →
,
所以AE →=FC →
,即AE 与FC 平行且相等, 所以四边形AECF 是平行四边形. 13.[2,8]
解析 |AC →|=|AB →+BC →|≤|AB →|+|BC →
|=8, 且|AC →|=|AB →+BC →|≥||AB →|-|BC →
||=2.
∴2≤|AC →
|≤8. 14.0
解析如图所示,连接AG并延长交BC于E点,点E为BC的中点,延长AE到D点,使GE =ED,
则GB→+GC→=GD→,GD→+GA→=0,
∴GA→+GB→+GC→=0.。