九年级数学中考模拟试卷三

合集下载

2024年广西南宁市中考模拟数学试卷(三)

2024年广西南宁市中考模拟数学试卷(三)

2024年广西南宁市中考模拟数学试卷(三)一、单选题1.2024-的相反数是( )A .2024-B .2024C .12024-D .120242.下列图形中,是中心对称图形的是( )A .B .C .D . 3.下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 4.如图是某工厂要设计生产的零件的主视图,这个零件可能是( )A .B .C .D . 5.数据2370000用科学记数法可表示为( )A .62.3710⨯B .52.3710⨯C .70.23710⨯D .423710⨯ 6.若点P (m ﹣1,5)与点Q (3,2﹣n )关于y 轴对称,则m +n 的值是( ) A .﹣5 B .1 C .5 D .117.在同一平面直角坐标系中,正比例函数y =kx 与一次函数y =-kx -k (k ≠0)的大致图象是( )A .B .C .D . 8.在平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系:①AB =BC ,②AC =BD ,③AC ⊥BD ,④AB ⊥BC 中任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( )A .14B .12 C .34 D .19.《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x 只,兔有y 只,那么可列方程组为( )A .35,4494x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .94,2435x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 10.《九章算术》中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深1寸((1ED =寸),锯道长1尺(1AB =尺10=寸),问这块圆形木材的直径是多少.”如图,请根据所学知识计算:圆形木材的直径AC 是()A .13寸B .20寸C .26寸D .28寸11.定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) A .3- B .5 C .34- D .3212.如图,OABC Y 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA V 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D ¢落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .B .C .1,0)D .1,0)二、填空题13.满足式子2≤3x ﹣7<8成立的所有整数解的和为.14.分解因式:244ax ax a -+=.15.学校要从王静,李玉两同学中选拔一人参加运动会志愿者工作,选拔项目为普通话,体育知识和旅游知识.并将成绩依次按4∶3∶3计分. 两人的各项选拔成绩如下表所示,则最终胜出的同学是.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45o ,测得该建筑底部C 处的俯角为17o .若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m .(参考数据:sin170.29≈o ,cos170.96≈o , tan170.31≈o )17.如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为20πcm ,侧面积为240π2cm ,则这个扇形的圆心角的度数是度.18.如图,抛物线y =﹣x 2+2x+3交x 轴于A ,B 两点,交y 轴于点C ,点D 为抛物线的顶点,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG周长的最小值为.三、解答题19.计算:2024()()()1625-+÷---20.先化简,再求值:22311213x x x x x x x+-⋅+-++,其中1x = 21.如图,已知E 是平行四边形ABCD 对角线AC 上的点,连接DE .(1)过点B 在平行四边形内部作射线BF 交AC 于点F ,且使CBF ADE ∠=∠(要求:用尺规作图,保留作图痕迹,不写作法与证明)(2)连接BE ,DF ,判断四边形BFDE 的形状并证明.22.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x (单位:分)进行统计: 七年级 86 94 79 84 71 90 76 83 90 87八年级 88 76 90 78 87 93 75 87 87 79整理如下:根据以上信息,回答下列问题:(1)填空:=a _______,b =________.A 同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由. 23.某县贡桔成本为10元/斤,售价不低于15元/斤,不高于30元/斤.(1)每日贡桔销售量y (斤)与售价x (元/斤)之间的函数关系如图所示,求y 与x 之间的函数关系式;(2)若每天销售利润率不低于60%,且不高于80%,求每日销售的最大利润.24.如图,ABC V 是等腰直角三角形,90ACB ∠=︒,O 为AB 的中点,连接CO 交O e 于点E , O e 与AC 相切于点D .(1)求证:BC 是O e 的切线;(2)延长CO 交O e 于点G ,连接AG 交O e 于点F ,若AC =FG 的长.25.如图,在矩形ABCD 中,5cm AB =,3cm BC =.动点P ,Q 分别从点A ,B 出发,同时以1cm/s 的速度沿折线ADC 和BAD 分别向终点C ,D 运动.设运动时间为(s)(0)x x >,直线PQ ,BQ ,PC ,BC 所围成的图形的面积为2(cm )y .(1)当点P 与点D 重合时,AQ 的长为 cm ;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)当PBQ V 为直角三角形时,直接写出x 的值.26.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为36︒的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在ABC V 中,36A ∠=︒,AB AC =.(1)操作发现:将ABC V 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则BDE ∠=_______︒,设1AC =,BC x =,那么AE =______(用含x 的式子表示);(2)进一步探究发现:BC AC 底腰这个比值被称为黄金比.在(1)的条件下试证明:BC AC 底腰 拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的ABC V是黄金三角形.如图2,在菱形ABCD 中,72BAD ∠=︒,1AB =.求这个菱形较长对角线的长.。

2023年江苏省扬州市中考三模数学试题(含答案)

2023年江苏省扬州市中考三模数学试题(含答案)

扬州九年级第三次模拟考试数学试卷一、选择题(每题3分,共24分)1.如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2的值等于( )A .0.3B .C .0.03D .3.据报道,2023年1月研究人员通过研究获得了XBB.1.5病毒毒株,该毒株体积很小,呈颗粒圆形或椭圆形,直径大概为,已知,则用科学记数法表示为()A .B .C .D .4.如图所示几何体是由一个球体和一个圆柱组成的,它从上面看到的形状图是()A .B .C .D .5.如图,,,,则的度数是()A .30°B .40°C .50°D .80°6.已知是整数,当的值是( )A .5B .6C .7D .87.如图,在菱形纸片中,,,分别剪出扇形和,恰好能作为一个锥圆的侧面和底面.若点在上,则的最大值是()0.3±0.03±85nm 91nm 10m -=85nm 60.8510m -⨯70.8510m-⨯88.510m-⨯98510m-⨯a b ∥380∠=︒1220∠-∠=︒1∠x x -x ABCD 6AB =60ABC ∠=︒ABC O O BD BDA .B .C .D .8.如图,点与点关于原点对称.,,,、是的三等分点.反比例函数()的图象经过点,.若的面积为3,则的值为()A .4B .5C .6D .7二、填空题(每题3分共30分)9.若式子在实数范围内有意义,则的取值范围是______.10.因式分解______.11.若一组数据2,3,4,5,7的方差是,另一组数据11,12,13,14,15的方差是,则______(填“>”“<”或“=”).12.一个圆锥的侧面展开图时一个圆心角为216°、半径为的扇形,这个圆锥的底面圆半径为______.13.如图,一副直角三角板(,)按如图所示的位置摆放,如果,那么的度数为______.14.规定一种新的运算:,求的解是______.15.如图,点、、在上,的半径为3,,则的长为______.1-2-1+2+A B 90ACB ∠=︒AC BC =45CAD ∠=︒A E DF ky x=0k >A E ACE △k 1x x-x 4a a 3-=21S 22S 21S 22S 15cm cm 30ACB ∠=︒45BED ∠=︒AC DE ∥EBC ∠*2a b a b =--211*132x x-+=A B C O O AOC ABC ∠=∠AC16.已知,点,,在反比例函数(为常数,)的图像上,则,,的大小关系是______.(用“>”连接)17.如图,点在双曲线()上,点在双曲线(),点在轴的正半轴上,若、、、构成的四边形为正方形,则对角线的长是______.18.如图,在中,,点是的外心,连接并延长交边于点,,,则的值为______.三、解答题(本大题共有10小题,共96分)19.(8分)计算:(1);(2).20.(8分)解不等式组,并写出该不等式组的整数解.21.(8分)树人学校想了解学生家长对“双减”政策的认知情况,随机抽取了部分学生家长进行调查,将抽查的数据结果进行统计,并绘制两幅不完整的统计图(:不太了解,0a b c >>>()1,A a b y -()2,B a c y -()3,C c a y -ky x=k 0k >1y 2y 3y ()5,D m -30y x =-0x <B 12y x=0x <A y A B C D AC ABC △ABC ACB ∠=∠O ABC △CO AB P 3AP =4BP =cos ABC ∠0112452-++︒--53222x x x x +⎛⎫+-÷⎪--⎝⎭()4132235x x x ->-⎧⎪⎨-≤⎪⎩A:基本了解,:比较了解,:非常了解).请根据图中提供的信息回答以下问题:(1)请直接写出这次被调查的学生家长共有______人;(2)请补全条形统计图;(3)试求出扇形统计图中“比较了解”部分所对的圆心角度数;(4)该学校共有6800名学生家长,估计对“双减”政策了解程度为“非常了解”的学生家长大约有多少?22.(8分)把算珠放在计数器的3根插棒上可以构成一个数,例如:如图摆放的算珠表示数210.(1)若将一颗算珠任意摆放在这3根插棒上,则构成的数是三位数的概率是______;(2)若一个数正读与反读都一样,我们就把这个数叫做回文数.现将两颗算珠任意摆放在这3根插棒上,先放一颗算珠,再放另一颗,请用列表或画树状图的方法,求构成的数是三位数且是回文数的概率.23.(10分)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?24.(10分)在中,,是的中点,是的中点,过点作交的延长线于点.(1)求证:;(2)证明四边形是菱形.25.(10分)已知:为的直径,为圆心,点为圆上一点,过点作的切线交的延长线于点,点为上一点,且,连接交于点.B C D Rt ABC △90BAC ∠=︒D BC E AD A AF BC ∥BE F AEF DEB ≌△△ADCF BD O O A B O DA F C O AB AC =BC AD E(1)如图1,求证:;(2)如图2,点为内部一点,连接,.若,的半径为10,,求的长.26.(10分)如图是边长为1的正方形网格,每个小正方形的顶点叫格点,的顶点都在格点上.仅用无刻度的直尺,按要求画出下列图形.(1)的周长为______;(2)如图,点、分别是与竖格线和横格线的交点,画出点关于过点竖格线的对称点;(3)请在图中画出的角平分线.27.(12分)(1)【基础巩固】如图1,内接于,若,弦______;(2)【问题探究】如图2,四边形内接于,若,,点为弧上一动点(不与点,点重合).求证:;(3)【解决问题】如图3,一块空地由三条直路(线段、、)和一条道路劣弧围成,已知千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?求其最大值;若不存在,说明理由.ABF ABC ∠=∠H O OH CH 90OHC HCA ∠=∠=︒O 6OH =DA ABC △ABC △D P AB P D Q ABC △BE ABC △O 60C ∠=︒AB =r =ABCD O 60ADC ∠=︒AD DC =B AC A C AB BC BD +=AD AB BC CDCM DM ==60DMC ∠=︒ CD M C D PP CDDM MC CP PD DMCP28.(12分)在平面直角坐标系中,已知抛物线()与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.(1)当时,直接写出点,,,的坐标:______,______,______;(2)如图1,直线交轴于点,若,求抛物线的解析式;(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.①用含的代数式表示;②设(),请直接写出的最大值.2446y ax ax a =++-0a >x A B A B y C D 6a =A B C D A B D DC x E 4tan 3AED ∠=N OC P P x Q AN F F FH DE ⊥H P t f FP FH =+t f 5t m -<≤0m <f初三数学三模答案一、选择题1.C 2.A 3.C 4.C 5.C 6.A 7.B 8.A二.填空题9. 10. 11.> 12.9 13.15° 14. 15.16. 171819.(本题满分8分)(1)2 (2)20.(本题满分8分)解不等式①得:解不等式②得:不等式组的解集是:整数解是:3,421.(本题满分8分)(1)这次抽样调查的家长有(人);(2)表示“基本了解”的人数为:(人),表示“非常了解”的人数为:(人)图略(3)“比较了解”部分所对应的圆心角是:(4)(人)22.(本题满分8分)(1)(2)画树状图如下:共有9种等可能的结果,其中构成的数是三位数且是回文数的结果有2种,∴构成的数是三位数且是回文数的概率为.23.(本题满分10分)解:设该景点在设施改造后平均每天用水吨,则在改造前平均每天用水吨,根据题意,得.0x ≠()()2121a a a +-57x =123y y y >>3x -2x >4x ≤24x <≤510%50÷=5030%15⨯=505152010---=2036014450⨯=︒︒106800136050⨯=1329x 2x 202052x x-=解得.经检验:是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.24.(本题满分10分)(1)∵,∴,∵是的中点,是边上的中线,∴,,在和中,,∴;(2)由(1)知,,则.∵,∴.∵,∴四边形是平行四边形,∵,是的中点,是的中点,∴,∴四边形是菱形.25.(本题满分10分)(1)证明:∵为的直径,∴,∴,∵是的切线,∴,∴,∴,∵,∴,∵,∴;(2)解:连接,∵,∴,∴,∵,∴,∴,即,∴,∵,∴,∴,∵,的半径为10,∴,,∴.26.(本题满分10分)(1)的周长(2)如图,点即为所求;(3)如图,线段即为所求.2x =2x =AF BC ∥AFE DBE ∠=∠E AD AD BC AE DE=BD CD =AFE △DBE △AFE DBEFEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFE DBE ≌△△AFE DBE ≌△△AF DB =DB DC =AFCD =AF BC ∥ADCF 90BAC ∠=︒D BC E AD 12AD DC BC ==ADCF BD O 90BAD ∠=︒90D ABD ︒∠+∠=FB O 90FBD ∠=︒90FBA ABD ︒∠+∠=FBA D ∠=∠AB AC =C ABC ∠=∠C D ∠=∠ABF ABC ∠=∠OC 90OHC HCA ∠=∠=︒AC OH ∥ACO COH ∠=∠OB OC =OBC OCB ∠=∠ABC CBO ACB OCB ∠+∠=∠+∠ABD ACO ∠=∠ABD COH ∠=∠90H BAD ︒∠=∠=ABD HOC ∽△△2AB BDOH OC==6OH=O 212AB OH ==20BD =16DA ==ABC △549=++=Q BE27.(本题满分12分)(1)2(2)证明:在上取点,使,连接,,∵,,∴为等边三角形,∴,,∵四边形为圆的内接四边形,∴,∴,∵,∴,∴,∴,∴为等边三角形,∴,,∴,∴,∴,∴;(3)解:存在.∵千米,∴当取得最大值时,四边形的周长最大,连接,过点作于点,设,∵,,,∴,∴,∴,∴,BD E BE BC =EC AC AD CD =60ADC ∠=︒ADC △DC AC =60DCA ∠=︒ABCD O 180ABC ADC ︒∠+∠=120ABC ︒∠=AD CD = AD CD=ABD CBD ∠=∠60CBD ∠=︒BEC △BC CE =60BCE ∠=︒BCA ECD ∠=∠()SAS ACB DCE ≌△△AB DE =DB DE BE AB BC =+=+CM DM ==DP CP +DMCP PM O OHDM ⊥H OH x =DM CM =OM OM =DO CO =()SSS DOM COM ≌△△1302DMO CMO DMC ︒∠=∠=∠=HM=DH =-∵,∴,∴或(舍去),∴,∴,∴、、、四点共圆,∴,由(2)可知,故当是直径时,最大值为2,∵四边形的周长,∴四边形的周长的最大值为:即四条慢跑道总长度(即四边形的周长)的最大值为.28.(本题满分12分)(1)、、的坐标分别为、、;(2),令,则,则点,函数的对称轴为,故点的坐标为,由点、的坐标得,直线的表达式为:,令,则,故点,则,,解得:,∴抛物线的表达式为:.(3)①如图,作与的延长线交于点,由(2)知,抛物线的表达式为:,故点、的坐标分别为、,则点,由点、的坐标得,直线的表达式为:;设点,则点;则,222DH OH OD +=)2221x +=12x =1x =12OH =1OM =D P C M 120DPC ︒∠=DP CP PM +=PM PD PC +DMCP DM CM PC PD PD PC =+++=++DMCP 2+DMCP 2+A B D ()3,0-()1,0-()2,6--2446y ax ax a =++-0x =46y a =-()0,46C a -2x =-D ()2,6--C D CD 246y ax a =+-0y =32x a =-32,0E a ⎛⎫- ⎪⎝⎭32OE a =-644332OC a tan AED OE a -∠===-23a =22810333y x x =+-PF ED J 22810333y x x =+-A C ()5,0-100,3⎛⎫- ⎪⎝⎭50,3N ⎛⎫- ⎪⎝⎭A N AN 1533y x =--22810,333P t t t ⎛⎫+- ⎪⎝⎭15,33F t t ⎛⎫-- ⎪⎝⎭225333PF t t =--+由点、的坐标得,直线的表达式为:,则点,故,∵,轴,故,,∴,故,则,;②(且);∴当时,;当时,. 5,02E ⎛⎫ ⎪⎝⎭C CE 41033y x =-410,33J t t ⎛⎫- ⎪⎝⎭5533FJ t =-+FH DE ⊥JF y ∥90FHJ EOC ︒∠=∠=FJH ECO ∠=∠FJH ECO ∽△△FH FJ OE CE =1OE FH FJ t CE=⨯=-+()2225283143333f PF FH t t t t t =+=--++-+=--+()2228226433333f t t t =--+=-++5t m -<≤0m <53m -<<-2max 28433f m m =--+30m -≤<max 263f =。

山东省德州市德城区2023届九年级下学期中考三模数学试卷(含答案)

山东省德州市德城区2023届九年级下学期中考三模数学试卷(含答案)

;2023九年级数学中考模拟试题一、选择题(本大题共12小题)1.计算的结果是()A.-3B.3C.-12D.122.下列运算正确的是()A.B.C.D.3.下列图形:其中轴对称图形的个数是()A.4B.3C.2D.14.2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力,将44.8万度用科学记数法可以表示为()A.度B.度C.度D.度5.如图,,点A在直线上,点B在直线上,,,,则的度数是()A.B.C.D.6.如图,是⊙的直径,,,,则⊙的半径为()A.B.C.D.7.某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.78.如图,四边形中.,,交于点E,以点E为圆心,为半径,且的圆交于点F,则阴影部分的面积为()A.B.C.D.9.抛物线上部分点的横坐标,纵坐标的对应值如表:下列结论不正确的是()046A.抛物线的开口向下B.抛物线的对称轴为直线C.抛物线与轴的一个交点坐标为D.函数的最大值为10.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.B.C.D.11.如图,平行四边形的对角线,相交于点O.点E为的中点,连接并延长交于点F,,.下列结论:①;②;③四边形是菱形;④.其中正确结论的个数是()A.4B.3C.2D.112.如图,四边形为矩形,,.点P是线段上一动点,点M为线段上一点.,则的最小值为()A.B.C.D.二、填空题(本大题共6小题,只要求填写最后结果)13.计算:__________.14.如图,四边形为平行四边形,则点B的坐标为________.15.如图,在中,,⊙过点A、C,与交于点D,与相切于点C,若,则__________16.如图,某一时刻太阳光从窗户射入房间内,与地面的夹角,已知窗户的高度,窗台的高度,窗外水平遮阳篷的宽,则的长度为______(结果精确到).17.将从1开始的连续自然数按以下规律排列:若有序数对表示第n行,从左到右第m个数,如表示6,则表示99的有序数对是_______.18.如图,四边形为正方形,点E是的中点,将正方形沿折叠,得到点B的对应点为点F,延长交线段于点P,若,则的长度为___________.三、解答题(本大题共7小题,解答应写出必要的文字说明、证明过程或推演步骤)19.(1)化简:(2)化简:20.2022年3月23日.“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:,B组:.C组:,D组:,E组:,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)本次调查一共随机抽取了名学生的成绩,频数直方图中,所抽取学生成绩的中位数落在组;(2)补全学生成绩频数直方图:(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.21.如图,点A在第一象限,轴,垂足为C,,,反比例函数的图像经过的中点B,与交于点D.(1)求k值;(2)求的面积.22.泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.23.如图,矩形中,点E在上,,与相交于点O.与相交于点F.(1)若平分,求证:;(2)找出图中与相似的三角形,并说明理由;(3)若,,求的长度.24.若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.(1)求二次函数的表达式;(2)若点M在直线上,且在第四象限,过点M作轴于点N.①若点N在线段上,且,求点M的坐标;②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.25.问题探究(1)在中,,分别是与的平分线.①若,,如图,试证明;②将①中的条件“”去掉,其他条件不变,如图,问①中的结论是否成立?并说明理由.迁移运用(2)若四边形是圆的内接四边形,且,,如图,试探究线段,,之间的等量关系,并证明.答案1.B解析:==3故选:B.2.C解析:解:A、,故本选项错误,不符合题意;B、,故本选项错误,不符合题意;C、,故本选项正确,符合题意;D、,故本选项错误,不符合题意;故选:C3.B解析:从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图找不到对称轴,不是轴对称图形,不符合题意;第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意;因此,第1、2、4都是轴对称图形,共3个.故选:B.4.C解析:解:44.8万度度.故选:C.5.A解析:解:∵AB=BC,∴∠BAC=∠C=25°,∵,∴∠ABD=∠1=60°,∴∠2=180°-∠C-∠BAC-∠ABD=180°-25°-25°-60°=70°,故选A.6.D解析:解:如图,连接CO并延长CO交⊙于点E,连接AE,∵OA=OC,∴∠ACE=∠CAB,∵,∴∠ACD=∠ACE,∴,∴AE=AD=2,∵CE是直径,∴∠CAE=90°,∴,∴⊙的半径为.故选:D.7.D解析:解:A、由题意可知,最高成绩是9.4环,故此选项不合题意;B、平均成绩是(环,故选项不合题意;C、9环出现了3次,出现次数最多,所以这组成绩的众数是9环,故此选项不合题意;D、这组成绩的方差是,故此选项符合题意.故选:D.8.B解析:解:过点E作EG⊥CD于点G,如图所示:∵DE⊥AD,∴∠ADE=90°,∵∠A=60°,∴∠AED=90°-∠A=30°,∵,∴,∵ED=EF,∴,∴,∵,∴,∵DE=6,,∴,,∴,∴,.故选:B.9.C解析:解:把,,分别代入得,解得,抛物线解析式为,,抛物线开口向下,所以A选项正确,不符合题意;当时,,解得,,抛物线与轴的交点坐标为,,所以C选项错误,符合题意.,抛物线的对称轴为直线,所以B选项正确,不符合题意;当时,有最大值,所以D选项正确,不符合题意;故选:C.10.A解析:解:∵这批椽的数量为x株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x−1)文,依题意得:3(x−1)x=6210,故选:A.11.A解析:解:点为的中点,,又,,,是等边三角形,,,,即,故①正确;在平行四边形中,,,,,在和中,,,,四边形是平行四边形,又,点为的中点,,平行四边形是菱形,故③正确;,在中,,,故②正确;在平行四边形中,,又点为的中点,,故④正确;综上所述:正确的结论有4个,故选:A.12.D解析:设AD的中点为O,以O点为圆心,AO为半径画圆∵四边形为矩形∴∵∴∴∴点M在O点为圆心,以AO为半径的圆上连接OB交圆O与点N∵点B为圆O外一点∴当直线BM过圆心O时,BM最短∵,∴∴∵故选:D.13.解析:解:,故答案为:.14.解析:解:四边形为平行四边形,,即将点平移到的过程与将点平移到的过程保持一致,将点平移到的过程是:(向左平移4各单位长度);(上下无平移);将点平移到的过程按照上述一致过程进行得到,即,故答案为:.15.##64度解析:如下图所示,连接OC从图中可以看出,是圆弧对应的圆周角,是圆弧对应的圆心角得.∵BC是圆O的切线∴∵∴∴∴故答案为:.16.4.4m##4.4米解析:解:根据题意得:AD∥CP,∵∠DPC=30°,∴∠ADB=30°,∵,∴,∵AF=2m,CF=1m,∴BC=AF+CF-AB=2.54m,∴,即的长度为4.4m.故答案为:4.4m.17.解析:第1行的第一个数字:第2行的第一个数字:第3行的第一个数字:第4行的第一个数字:第5行的第一个数字:…..,设第行的第一个数字为,得设第行的第一个数字为,得设第n行,从左到右第m个数为当时∴∵为整数∴∴∴故答案为:.18.2解析:解:连接AP,如图所示,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,∵点E是BC的中点,∴BE=CE=AB=3,由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,∴AD=AF,∠AFP=∠D=90°,在Rt△AFP和Rt△ADP中,,∴Rt△AFP≌Rt△ADP(HL),∴PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,∴(3+x)2=32+(6−x)2,解得x=2,则DP的长度为2,故答案为:2.19.(1);(2)解析:(1)解:原式(2)解:20.(1)400 名,D(2)见解析(3)1680人(4)见解析,解析:(1)解:名,所以本次调查一天随机抽取400 名学生的成绩,频数直方图中,∴第200位和201位数落在D组,即所抽取学生成绩的中位数落在D组;故答案为:400,D(2)解:E组的人数为名,补全学生成绩频数直方图如下图:(3)解:该校成绩优秀的学生有(人);(4)解:根据题意,画树状图如图,共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,恰好抽中一名男生和一名女生的概率为.21.(1)2(2)解析:(1)解:根据题意可得,在中,,,,,,,,的中点是B,,;(2)解:当时,,,,.22.A种茶每盒100元,B种茶每盒150元解析:解:设第一次购进A种茶每盒x元,B种茶每盒y元,根据题意,得解,得A种茶每盒100元,B种茶每盒150元.23.(1)证明见解析(2),与相似,理由见解析(3)解析:(1)证明:如图所示:四边形为矩形,,,,,又平分,,,又与互余,与互余,;(2)解:,与相似.理由如下:,,,又,,,,;(3)解:,,,,在矩形中对角线相互平分,图中,①,,,,在矩形中,②,由①②,得(负值舍去),.24.(1)(2)①;②解析:(1)解:二次函数的图象经过点,.又抛物线经过点,对称轴为直线,解得∶抛物线的表达式为.(2)解∶①设直线的表达式为.点A,B的坐标为,,∴,解得∶,直线的表达式为.根据题意得∶点C与点关于对称轴直线对称,.设点N的坐标为.轴,.∴.,解,得.点M的坐标;②连接与交与点E.设点M的坐标为,则点N的坐标为四边形是正方形,,,.∵MN⊥x轴,轴.E的坐标为...∴P的坐标.点P在抛物线上,.解,得,.点P在第四象限,舍去.即.点M坐标为.25.(1)①见解析;②结论成立,见解析;(2),见解析解析:(1)①,,.又、分别是、的平分线.点D、E分别是、的中点.,..②结论成立,理由如下:设与交于点F,由条件,得,.又...∴.在上截取.由∵BF=BF,∴...又∵CF=CF,∴.∴.(2),理由如下:∵四边形是圆内接四边形,∴.∵,∴,,∴.∴.作点B关于的对称点E,连结,,的延长线与的延长线交于点M,与交于点F,∴,.∴.∴∴∴∵AE、DC分别是、的角平分线由②得.。

九年级中考数学模拟试卷(3)

九年级中考数学模拟试卷(3)

九年级中考数学模拟试卷(3)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.(3分)气温由﹣5℃上升了4℃时的气温是()A.﹣1℃B.1℃C.﹣9℃D.9℃2.(3分)如图摆放的下列几何体中,左视图是圆的是()A.B.C.D.3.(3分)月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为()A.38.4×104B.3.84×105C.0.384×106D.3.84×1064.(3分)函数y=1x+3中,自变量x的取值范围是()A.x>﹣3B.x<3C.x≠﹣3D.x≠3 5.(3分)在平面直角坐标系中,点(2,﹣1)关于x轴对称的点是()A.(2,1)B.(1,﹣2)C.(﹣1,2)D.(﹣2,﹣1)6.(3分)分式方程3x−1−1=0的解为()A.x=1B.x=2C.x=3D.x=47.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD 的周长为32,则OE的长为()A.3B.4C.5D.68.(3分)下列运算中,正确的是()A.a4•a4=a16B.a+2a2=3a3C.a3÷(﹣a)=﹣a2D.(﹣a3)2=a59.(3分)如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是()A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC 10.(3分)如图,二次函数y=a(x+1)2+k的图象与x轴交于A(﹣3,0),B两点,下列说法错误的是()A.a<0B.图象的对称轴为直线x=﹣1C.点B的坐标为(1,0)D.当x<0时,y随x的增大而增大二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)计算:|﹣5|=.12.(4分)如图,在▱ABCD中,过点C作CE⊥AB,垂足为E,若∠EAD=40°,则∠BCE 的度数为.13.(4分)某班为了解同学们一周在校参加体育锻炼的时间,随机调查了10名同学,得到如下数据:锻炼时间(小时)5678人数1432则这10名同学一周在校参加体育锻炼时间的平均数是小时.14.(4分)如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:√12−4sin60°+(2020﹣π)0.(2)解不等式组:{x+2>−1,2x−13≤3.16.(6分)化简:(3a−2−1a+2)•(a2﹣4).17.(8分)热气球的探测器显示,从热气球A处看大楼BC顶部C的仰角为30°,看大楼底部B的俯角为45°,热气球与该楼的水平距离AD为60米,求大楼BC的高度.(结果精确到1米,参考数据:√3≈1.73)18.(8分)如图,一次函数y=12x+1的图象与反比例函数y=kx的图象相交于A(2,m)和B两点.(1)求反比例函数的解析式;(2)求点B的坐标.19.(10分)为了解同学们最喜欢一年四季中的哪个季节,数学社在全校随机抽取部分同学进行问卷调查,根据调查结果,得到如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了名同学;扇形统计图中,“春季”所对应的扇形的圆心角的度数为;(2)若该学校有1500名同学,请估计该校最喜欢冬季的同学的人数;(3)现从最喜欢夏季的3名同学A,B,C中,随机选两名同学去参加学校组织的“我爱夏天”演讲比赛,请用列表或画树状图的方法求恰好选到A,B去参加比赛的概率.20.(10分)如图,AB 是⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D .(1)求证:∠CAD =∠CAB ;(2)若AD AB =23,AC =2√6,求CD 的长.四、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)在单词“mathematics ”中任意选择一个字母,选到字母“a ”的概率是 .22.(4分)若m 2﹣2m =1,则代数式2m 2﹣4m +3的值为 .23.(4分)三角形的两边长分别为4和7,第三边的长是方程x 2﹣8x +12=0的解,则这个三角形的周长是 .24.(4分)如图,有一张长方形纸片ABCD ,AB =8cm ,BC =10cm ,点E 为CD 上一点,将纸片沿AE 折叠,BC 的对应边B ′C ′恰好经过点D ,则线段DE 的长为 cm .25.(4分)如图,在平面直角坐标系xOy 中,一次函数y =x +1的图象与反比例函数y =2x的图象交于A ,B 两点,若点P 是第一象限内反比例函数图象上一点,且△ABP 的面积是△AOB 的面积的2倍,则点P 的横坐标为 .五、解答题(本大题共3个小题,共30分)26.(8分)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.27.(10分)如图,Rt△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上,连接BE.(1)求证:DC平分∠ADE;(2)试判断BE与AB的位置关系,并说明理由;(3)若BE=BD,求tan∠ABC的值.28.(12分)如图,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0).(1)求抛物线的解析式;(2)若P为线段AB上一点,∠APO=∠ACB,求AP的长;(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.。

四川省绵阳市 中考数学模拟试卷(三)(解析版)

四川省绵阳市 中考数学模拟试卷(三)(解析版)

四川省绵阳市中考数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.222.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×10113.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣25.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,39.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:311.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<012.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为cm.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B点左侧),与y轴交于点C,对称轴为直线x=,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限);(1)求抛物线的解析式和点D的坐标;(2)点M是抛物线上的动点,在x轴上存在一点N,使得A、D、M、N四个点为顶点的四边形是平行四边形,求出点M的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.25.已知△ABC,AC=BC,CD⊥AB于点D,点F在BD上,连接CF,AM⊥CF于点M,AM交CD于点E.(1)如图1,当∠ACB=90°时,求证:DE=DF;(2)如图2,当∠ACB=60°时,DE与DF的数量关系是(3)在2的条件若tan∠EAF=,EM=,连接EF,将∠DEF绕点E逆时针旋转,旋转后角的两边交线段CF于N、G两点,交线段BC于P、T两点(如图3),若CN=3FN,求线段GT的长.四川省绵阳市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.22【考点】正数和负数.【分析】根据高于标准记为正,可得低于标准记为负.【解答】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作﹣0.15米,故选:A.【点评】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.2.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:331.92亿=331 9200 0000=3.3192×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、一星期有7天是必然事件,故A错误;B、袋中有三个红球,摸出一个球是红球是必然事件,故B错误;C、字母M是轴对称图形,字母N不是轴对称图形,故C错误;D、任意买一张车票,座位刚好靠窗口是随机事件,故D正确;故选:D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣2【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+2≥0且3x≠0,解得:x≥﹣2且x≠0.故选A.【点评】考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选:A.【点评】本题考查了三视图的知识,关键是掌握三视图所看的位置.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别利用平行四边形以及矩形、菱形和正方形的判定方法分别判断得出即可.【解答】解;A、若AB∥CD,AB=CD,则四边形ABCD是平行四边形,故此选项正确;B、若AC⊥BD,AC=BD,无法得到四边形ABCD是矩形,故此选项错误;C、若AC⊥BD,AB=AD,CB=CD,无法得到四边形ABCD是菱形,故此选项错误;D、若AB=BC=CD=AD,无法得到四边形ABCD是正方形,故此选项错误.故选:A.【点评】此题主要考查了平行四边形以及矩形、菱形和正方形的判定方法,正确掌握相关判定定理是解题关键.7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元【考点】二元一次方程组的应用.【专题】计算题.【分析】设每张甲票、每张乙票的价格分别是x元,y元,列方程组得,求解即可.【解答】解:设每张甲票、每张乙票的价格分别是x元,y元,则,解得,答:每张甲票、每张乙票的价格分别是10元,8元.故选A.【点评】本题考查了二元一次方程组的应用,找出等量关系,列出方程组,是解此题的关键.8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3【考点】中位数;加权平均数.【分析】根据平均数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,则平均数为:=3.5,中位数为:=3.5.故选C.【点评】本题考查了平均数和中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.【考点】列代数式.【分析】第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,第一块和第二块玻璃之间的距离是(﹣)×.窗子的通风面积为①中剩下的部分.【解答】解:[a﹣﹣﹣×(﹣)]×b=ab.故选B.【点评】此题有一定的难度,主要是不能准确的找到窗子的通风部位.应该根据图示找到窗子通风的部位在那里,是那个长方形,其长和宽式多少,都需要求出来,再进行面积计算.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:3【考点】相似三角形的判定与性质.【分析】由AD∥BC,GE∥BC,易证得△AOD∽△COB,△OGE∽△OBC,又由AD=1,BC=3,点G是BD 的中点,根据相似三角形的对应边成比例,易得OG=OD,继而求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∵AD=1,BC=3,∴OD:OB=AD:BC=1:3,∴OD=BD,∵点G是BD的中点,∴DG=BD,∴OD=OG,∵GE∥BC,∴△OGE∽△OBC,∴GE:BC=OG:OB=OD:OB=1:3.故选:B.【点评】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<0【考点】二次函数图象上点的坐标特征.【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值小于0,确定m ﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令y=x2﹣5x+6=0,解得:x=2或x=3.∵当自变量x取m时对应的值小于0,∴2<m<3,∴m﹣1<2,m+1>3,∴y1>0,y2>0.故选:A.【点评】此题考查了抛物线与x轴的交点和二次函数图象上的点的特征,解题的关键是求得抛物线与横轴的交点坐标.12.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD【考点】切线的性质.【分析】证明BC是⊙O的切线,进而得到P是CD的中点,利用中位线定理求出OE∥AB,据此判断A 正确;证明E是BC的中点,利用∠CDB是直角,据此得到BC=2DE,判断B选项正确;证明△ACD∽△EDF,即可得到AC•DF=DE•CD,判断C选项正确;只有当PE=PD时DE才等于PD,据此判断D选项错误.【解答】解:∵∠ACB=90°,∴BC是⊙O的切线,∵BC是⊙O的切线,∴OE垂直平分CD,∠OEC=∠OED,∴P是CD的中点,∴OP∥AB,∴OE∥AB,A选项正确,∵OE∥AB,O是AC的中点,∴E是BC的中点,∵AC是直径,∴∠ADC=90°,∴CD⊥AB,∴∠CDB=90°,∴BC=2DE,B选项正确;∵EF⊥AB,∴∠DFE=∠ADC=90°,∵DE=CD,BC是⊙O的切线,∴DE是⊙O的切线,∴∠EDF=∠CAD,∴△ACD∽△EDF∴,∴AC•DF=DE•CD,C选项正确.在四边形PDFE中,我们可以证明它是矩形,而不具备证明它是正方形的条件, ∴DE=,只有PE=PD时DE才等于PD,D选项错误,故选D.【点评】本题考查了圆的切线的性质、圆周角定理,相似三角形的判定与性质,切线长性质及三角形的中位线的运用,解答本题的关键是熟练掌握切线的判定定理以及切线的性质,此题有一定的难度.二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为160cm.【考点】有理数的加法.【专题】应用题.【分析】根据有理数的加法,即可解答.【解答】解:140+20=160(cm).故答案为:160.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数加法法则.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=65°.【考点】平行线的性质.【分析】由题意知,∠1+∠3=90°;然后根据“两直线平行,内错角相等”推知∠2=∠3.【解答】解:如图,根据题意,知∠1+∠3=90°.∵∠1=25°,∠3=65°.又∵AB∥CD,∴∠2=∠3=65°;故答案是“65°.【点评】本题考查了平行线的性质.解题时,要注意挖掘出隐含在题中的已知条件∠1+∠3=90°.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是3或4.【考点】三角形三边关系;一元一次不等式的整数解.【分析】先求出不等式的解集,再根据x是符合条件的正整数判断出x的可能值,再由三角形的三边关系求出x的值即可.【解答】解:2x﹣1<9,解得:x<5,∵x是它的正整数解,∴x可取1,2,3,4,根据三角形第三边的取值范围,得2<x<14,∴x=3,4.故答案为:3或4.【点评】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是2+2.【考点】剪纸问题.【专题】压轴题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.【点评】本题主要考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】根据旋转的性质可以得到∠P′CA=∠PCB,进而可以得到∠P′CP=∠ACB=90°,进而得到等腰直角三角形,求解即可.【解答】解:∵△AP′C是由△BPC绕着点C旋转得到的,∴∠P′CA=∠PCB,CP′=CP,∴∠P′CP=∠ACB=90°,∴△P′CP为等腰直角三角形,可得出∠AP′B=90°,∵PA=,PB=1,∴AP′=1,∴PP′==2,∴PC=,故答案为.【点评】本题考查了旋转的性质及勾股定理的知识,解题的关键是正确的利用旋转的性质得到相等的量.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是520.【考点】规律型:数字的变化类.【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第100次以后所产生的那个新数串的所有数之和.【解答】解:设A=3,B=9,C=8,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B﹣A)+B+(C﹣B)+C=B+2C=(A+B+C)+1×(C﹣A);n=2时,S2=A+(B﹣2A)+(B﹣A)+A+B+(C﹣2B)+(C﹣B)+B+C=﹣A+B+3C=(A+B+C)+2×(C﹣A);…故n=100时,S100=(A+B+C)+100×(C﹣A)=﹣99A+B+101C=﹣99×3+9+101×8=520.故答案为:520.【点评】此题主要考查了数字变化类,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)【考点】分式的混合运算;零指数幂;二次根式的混合运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值,绝对值,零指数次幂以及分母有理化进行计算即可;(2)根据运算顺序,先算括号里面的,再算除法即可.【解答】解:(1)原式=3×1+﹣1﹣1﹣=3﹣2=1;(2)原式=÷=•=﹣=﹣.【点评】本题考查了特殊角的三角函数值,二次根式的混合运算以及分式的混合运算,通分、因式分解和约分是解答分式混合运算的关键.20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了200名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由无所谓的人数除以所占的百分比即可求出学生家长的总数;(2)求出赞成的人数,补全统计图即可;(3)求出反对的人数占得百分比,乘以80000即可得到结果.【解答】解:(1)根据题意得:40÷20%=200(人),则共调查了200名中学生的家长;(2)赞成家长数为200﹣(40+120)=40(人),补全统计图,如图所示:(3)根据题意得:80000×=48000(人),则市区80000名中学生家长中有48000名家长持反对态度.【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题意是解本题的关键.21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)求出C的坐标,代入反比例函数的解析式,即可求出反比例函数的解析式,设直线AC的解析式是y=ax+b,把A、C的坐标代入即可求出直线AC的解析式;(2)设P的坐标是(x,y),根据三角形面积求出x的值,代入反比例函数的解析式,求出y即可.【解答】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣2),∴AB=4,∵BC的长是3,∴C点的坐标是(3,﹣2),∵反比例函数y=的图象经过点C,∴k=3×(﹣2)=﹣6,∴反比例函数的解析式是y=﹣;设直线AC的解析式是y=ax+b,把A(0,2),C(3,﹣2)代入得:,解得:b=2,k=﹣,即直线AC的解析式是y=﹣x+2;(2)设P的坐标是(x,y),∵△OAP的面积恰好等于△ABC的面积,∴×OA•|x|=×3×4,解得:x=±6,∵P点在反比例函数y=﹣上,∴当x=6时,y=﹣1;当x=﹣6时,y=1;即P点的坐标为(6,﹣1)或(﹣6,1).【点评】本题考查了三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每次降价的百分率为x,根据商家经过两次连续降价(两次降价百分率相等)后,该商品的利润为20%,列出方程,求解即可;(2)若每件商品定价为x(x为整数)元,根据物价局限定每件商品的利润不得超过20%和剩余170件商品全部卖出,商店预期至少盈利340元,列出不等式组,求解即可.【解答】解:(1)设每次降价的百分率为x,根据题意得:30(1﹣x)2=16(1+20%),解得:x1=0.2=20%,x2=1.8(不合题意,舍去),答:每次降价的百分率为20%.(2)若每件商品定价为x(x为整数)元,根据题意得:,解得:18≤x≤,∵x为整数,∴x=18,19,∴共有2种方案,方案①:每件商品定价为18元,方案②:每件商品定价为19元.【点评】此题考查了一元二次方程和一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程和不等式组,再求解;注意把不合题意的解舍去.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】切线的判定与性质;扇形面积的计算.【专题】综合题.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC 于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,利用垂径定理得到F为BD中点,连接AD,由EA=AO可得:AD是Rt△ODE 斜边的中线,利用直角三角形斜边上的中线等于斜边的一半得到AD=AE=AO,即三角形AOD为等边三角形,确定出∠DAB=60°,即∠OBD=30°,在直角三角形BOF中,利用30°所对的直角边等于斜边的一半求出OF的长,利用勾股定理求出BFO的长,得到BD的长,得出∠DOB为120°,由扇形BDO面积减去三角形BOD面积求出阴影部分面积即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD ⊥EC 于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE ;(3)解:作OF ⊥DB 于点F,连接AD,由EA=AO 可得:AD 是Rt △ODE 斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF ⊥BD,∴OF=1,BF=, ∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S 阴影=S 扇形OBD ﹣S △BOD =﹣×2×1=﹣.【点评】此题考查了切线的判定与性质,以及扇形面积的计算,熟练掌握切线的判定与性质是解本题的关键.24.如图,抛物线y=﹣x 2+bx+c 与x 轴交于A 、B 两点(A 在B 点左侧),与y 轴交于点C,对称轴为直线x=,OA=2,OD 平分∠BOC 交抛物线于点D (点D 在第一象限);(1)求抛物线的解析式和点D 的坐标;(2)点M 是抛物线上的动点,在x 轴上存在一点N,使得A 、D 、M 、N 四个点为顶点的四边形是平行四边形,求出点M 的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.。

2023年山东省泰安市中考数学模拟试卷(三)及答案解析

2023年山东省泰安市中考数学模拟试卷(三)及答案解析

2023年山东省泰安市中考数学模拟试卷(三)一.选择题(每题4分,本大题共12小题,共48分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)下列实数中,最大的数是()A.﹣|﹣4|B.0C.1D.﹣(﹣3)2.(4分)2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为()A.1.32×109B.1.32×108C.1.32×107D.1.32×106 3.(4分)下列运算正确的是()A.a3•a4=a12B.a5÷a﹣3=a2C.(3a4)2=6a8D.(﹣a)5•a=﹣a64.(4分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,直线a∥b,直线c分别交a、b于点A、C,∠BAC的平分线交直线b于点D,若∠2=50°,则∠1的度数是()A.50°B.60°C.80°D.100°6.(4分)某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄1212141516人数12231则这些学生年龄的众数和中位数分别是()A.15,14B.15,13C.14,14D.13,147.(4分)如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD的度数是()A.40°B.50°C.80°D.90°8.(4分)已知关于x的一元二次方程x2﹣2kx+6=0有两个相等的实数根,则k的值为()A.±2B.±C.2或3D.或9.(4分)函数y=和一次函数y=﹣ax+1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(4分)如图,⊙O中,AB=AC,∠ACB=75°,BC=1,则阴影部分的面积是()A.1+πB.+πC.+πD.1+π11.(4分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10C.2D.212.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD 于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①BE=2AE;②△DFP∽△BPH;③;④DP2=PH•PC;其中正确的是()A.①②③④B.①③④C.②③D.①②④二、填空题(每题4分,本大题共6小题,满分24分只要求填写最后结果,每小题填对得4分)13.(4分)不等式组的解集是.14.(4分)关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是.15.(4分)如图是某圆锥的主视图和左视图,则该圆锥的表面积是.16.(4分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔400海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时B处与灯塔P的距离为海里.17.(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB 的延长线于点E,若AB=3,BC=4,则的值为.18.(4分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是.三、解答题(本大题共7小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19.(8分)先化简,再求值:,其中a=2+.20.(10分)民俗村的开发和建设带动了旅游业的发展,某市有A、B、C、D、E五个民俗旅游村及“其它”景点,该市旅游部门绘制了2018年“五•一”长假期间民俗村旅游情况统计图如下:根据以上信息解答:(1)2018年“五•一”期间,该市五个旅游村及“其它”景点共接待游客万人,扇形统计图中D民俗村所对应的圆心角的度数是,并补全条形统计图;(2)根据近几年到该市旅游人数增长趋势,预计2019年“五•一”节将有70万游客选择该市旅游,请估计有多少万人会选择去E民俗村旅游?(3)甲、乙两个旅行团在A、C、D三个民俗村中,同时选择去同一个民俗村的概率是多少?请用画树状图或列表法加以说明.21.(11分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)过点B作BC⊥x轴,垂足为C,连接AC,求△ABC的面积.22.(11分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.23.(12分)红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对:物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?24.(12分)如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.25.(14分)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.2023年山东省泰安市中考数学模拟试卷(三)参考答案与试题解析一.选择题(每题4分,本大题共12小题,共48分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:﹣|﹣4|=﹣4,﹣(﹣3)=3,3>1>0>﹣4,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握比较大小的法则.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:132000000=1.32×108;故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a3•a4=a7,故A错误;B、a5÷a﹣3=a8,故B错误;C、(3a4)2=9a8,故C错误;D、(﹣a)5•a=﹣a6,故D正确;故选:D.【点评】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方和幂的乘方,掌握运算法则是解题的关键.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】利用平行线的性质求出∠BAD,再根据角平分线的定义,求出∠DAC即可解决问题.【解答】解:∵AB∥CD,∴∠BAD=∠2=50°,∵AD平分∠BAC,∴∠DAC=50°,∴∠1=180°﹣∠BDA﹣∠DAC=80°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【分析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【解答】解:15出现的次数最多,15是众数.一共9个学生,按照顺序排列第5个学生年龄是14,所以中位数为14.故选:A.【点评】本题考查了众数及中位数的知识,掌握各部分的概念是解题关键.7.【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=140°,∴∠BAD=40°,∴∠BOD=80°,故选:C.【点评】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.8.【分析】利用判别式的意义得到Δ=(﹣2k)2﹣4×6=0,然后解关于k的方程即可.【解答】解:根据题意得Δ=(﹣2k)2﹣4×6=0,解得k=±.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.9.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断各个选项中的函数图象是否正确,从而可以解答本题.【解答】解:∵函数y=和一次函数y=﹣ax+1(a≠0),∴当a>0时,函数y=在第一、三象限,一次函数y=﹣ax+1经过一、二、四象限,故选项A、B错误,选项C正确;当a<0时,函数y=在第二、四象限,一次函数y=﹣ax+1经过一、二、三象限,故选项D错误;故选:C.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的方法解答.10.【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长1,利用三角形和扇形的面积公式即可求解;【解答】解:作OD⊥BC,则BD=CD,连接OA,OB,OC,∴OD是BC的垂直平分线∴,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∴OA =OB =OC =BC =1,∵AD ⊥BC ,AB =AC ,∴BD =CD ,∴OD =OB =,∴AD =1+,∴S △ABC =BC •AD =,S △BOC =BC •OD =,∴S 阴影=S △ABC +S 扇形BOC ﹣S △BOC =+﹣=,故选:B .【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S 阴影=S △ABC +S 扇形BOC ﹣S △BOC 是解题的关键.11.【分析】由正方形OABC 的边长是6,得到点M 的横坐标和点N 的纵坐标为6,求得M (6,),N (,6),根据三角形的面积列方程得到M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,根据勾股定理即可得到结论.【解答】解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,),N (,6),∴BN =6﹣,BM =6﹣,∵△OMN 的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k =24或﹣24(舍去),∴M (6,4),N (4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.【点评】本题考查了反比例函数的系数k的几何意义,轴对称﹣最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.12.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠DCF=90°﹣60°=30°,∴tan∠DCF==,∵△DFP∽△BPH,∴==,∵BP=CP=CD,∴==;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴=,∴DP2=PH•PC,故④正确;故选:D.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(每题4分,本大题共6小题,满分24分只要求填写最后结果,每小题填对得4分)13.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x<3,由②得,x≥1,所以不等式组的解集为1≤x<3,故答案为:1≤x<3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.【分析】利用一元二次方程的定义和判别式的意义得到m﹣1≠0且Δ=(﹣2)2﹣4(m ﹣1)×(﹣1)≥0,然后解不等式求出它们的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=(﹣2)2﹣4(m﹣1)×(﹣1)≥0.解得m≥0且m≠1.故答案为m≥0且m≠1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.15.【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积和底面积,从而求得表面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,底面积为42π=16π,∴表面积为20π+16π=36π故答案为:36π.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【分析】如图作PE⊥AB于E.在Rt△PAE中,求出PE,在Rt△PBE中,根据PB=2PE 即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=400海里,∴PE=AE=×400=200海里,在Rt△PBE中,∵∠B=30°,∴PB=2PE=400海里,故答案为:400.【点评】本题考查的是解直角三角形﹣方向角问题,掌握锐角三角函数的定义、方向角的概念是解题的关键.17.【分析】分析题目,作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC =90°,则根据勾股定理可计算出AC=5,AO=OB=;接下来利用三角形的等面积法,可计算出BH的值,进而利用勾股定理可计算出OH的值;接下来根据相似三角形的判定定理可证明△OBH∽△OEA,最后利用相似三角形的性质可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴∠ABC=90°,OA=OC=OB,在Rt△ABC中,AC===5,∴OB=AO=.∵AB•BC=BH•AC,∴BH==,在Rt△OBH中,OH===.∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为:.【点评】此题考查的是相似三角形的判定与性质、矩形的性质、线段垂直平分线的性质,正确作出辅助线是解决此题的关键.18.【分析】先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B=,A2B2=()2,找出规律A2016B2016=()2016,即可.【解答】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,BC=AB=AD=∵正方形ABCD,正方形A1B1C1C,∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,∴∠A1AB=∠ADO,∵∠AOD=∠A1BA=90°,∴△AOD∽△A1BA,∴,∴,∴A1B=,∴A1B1=A1C=A1B+BC=,同理可得,A2B2==()2,同理可得,A3B3=()3,同理可得,A2016B2016=()2016,==[()2016]2=5×()4032,∴S第2016个正方形的面积故答案为5×()4032【点评】此题是正方形的性质题,主要考查正方形的性质,勾股定理,相似三角形的性质和判定,解本题的关键是求出几个正方形的边长,找出规律.三、解答题(本大题共7小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19.【分析】先化简分式,然后将a的值代入即可.【解答】解:原式=[]•=•==,当a=2+时,原式===.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.【分析】(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数,用360°乘以D对应的百分比可得其圆心角度数,总人数乘以B对应百分比求得其人数即可补全条形图;(2)根据样本估计总体的思想解决问题即可;(3)根据甲、乙两个旅行团在A、C、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【解答】解:(1)该市五个旅游村及“其它”景点共接待游客15÷30%=50(万人),扇形统计图中D民俗村所对应的圆心角的度数是18%×360°=64.8°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,64.8°;(2)估计选择去E民俗村旅游的人数约为70×=8.4(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个民俗村的概率是.【点评】本题考查的是条形统计图、扇形统计图、用样本估计总体以及概率的计算的综合应用,读懂统计图、从中获取正确的信息是解题的关键.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.21.【分析】(1)把A的坐标代入反比例函数的解析式,求出其解析式,把B的坐标代入反比例函数的解析式,求出B的坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解即可;(2)求出BC=|﹣2|=2,BC边上的高是|﹣3|+2,代入三角形的面积公式求出即可.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为y=,∴n==﹣2,∵点A(2,3),B(﹣3,﹣2)在y=kx+b的图象上,∴∴∴一次函数的解析式为y=x+1.(2)以BC为底,则BC边上的高为3+2=5,S△ABC=×2×5=5,答:△ABC的面积是5.【点评】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数、反比例函数的解析式,三角形的面积的应用,主要培养学生分析问题和解决问题的能力,题型较好,难度适中.22.【分析】(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.【解答】(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,∠EBN=∠ABN.∵AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.【点评】本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.23.【分析】(1)设甲种灯笼单价为x元/对,则乙种灯笼的单价为(x+9)元/对,根据用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,列分式方程可解;(2)①利用总利润等于每对灯笼的利润乘以卖出的灯笼的实际数量,可以列出函数的解析式;②由函数为开口向下的二次函数,可知有最大值,结合问题的实际意义,可得答案.【解答】解:(1)设甲种灯笼单价为x元/对,则乙种灯笼的单价为(x+9)元/对,由题意得:=,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对.(2)①y=(50+x﹣35)(98﹣2x)=﹣2x2+68x+1470,答:y与x之间的函数解析式为:y=﹣2x2+68x+1470.②∵a=﹣2<0,∴函数y有最大值,该二次函数的对称轴为:x=﹣=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,=2040.∴当x=15时,y最大15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.【点评】本题属于分式方程和二次函数的应用题综合.由于前后步骤有联系,第一问解对,后面才能做对.本题还需要根据问题的实际意义来确定销售单价的取值,本题中等难度.24.【分析】(1)根据待定系数法直接确定出抛物线解析式;(2)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出;(3)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.【解答】解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,∴,解得,∴抛物线的表达式为y=x2﹣4x﹣5,(2)设H(t,t2﹣4t﹣5),∵CE∥x轴,∴点E的纵坐标为﹣5,∵E在抛物线上,∴x2﹣4x﹣5=﹣5,∴x=0(舍)或x=4,∴E(4,﹣5),∴CE=4,∵B(5,0),C(0,﹣5),∴直线BC的解析式为y=x﹣5,∴F(t,t﹣5),∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,∵CE∥x轴,HF∥y轴,∴CE⊥HF,=CE•HF=﹣2(t﹣)2+,∴S四边形CHEF∴H(,﹣);(3)如图2,∵K为抛物线的顶点,∴K(2,﹣9),∴K关于y轴的对称点K'(﹣2,﹣9),∵M(4,m)在抛物线上,∴M(4,﹣5),∴点M关于x轴的对称点M'(4,5),∴直线K'M'的解析式为y=x﹣,∴P(,0),Q(0,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,四边形的面积的计算方法,对称性,解的关键是利用对称性找出点P,Q的位置,是一道中等难度的题目.25.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA 再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF ≌△ECA,再证明△AEF是等腰直角三角形即可.【解答】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.故答案为AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.【点评】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型。

(中考数学)中考热身模拟试卷数学(三)

(中考数学)中考热身模拟试卷数学(三)

2022年中考热身模拟试卷数学(三)(满分150分时间120分钟)考生注意:1.本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分。

考试时间 120分钟。

2.请将各题答案填在答题卡上,答在试卷上无效。

3.本试卷考查范围:中考范围。

一、选择题:本题共12个小题,每小题3分,共36 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列运算正确的是()A. a2+2a2=3a4B. a6÷a3=a2C. a3+a3=2a6D. (a2)3=a62.下列不等式3-x的非负整数解是()+(2<)33A. 0B. 1C. 2D. 33.下图中的几何体是由六个完全相同的小正方体组成的,它的俯视图是()A. B. C. D.4.某市图书馆和山区小学建立帮扶关系,一年五次向该小学赠送书籍的数量分别如下(单位:本):300,200,300,300,400这组数据的众数、中位数、平均数分别是()A. 300,150,300B. 300,200,200C. 600,300,200D. 300,300,3005.高度每增加1 km,气温大约下降5 ℃,现在地面温度是20 ℃,某飞机在该地上空5 km处,则此时飞机所在高度的气温为( )A. -9 ℃B. -6℃C. -5 ℃D. 5℃6.如果a<b,那么下列结论不正确的是()A. a+3<b+3B. a﹣3<b﹣3C. ma>mbD. B. −2a>−2b7.数轴上一动点A 向左移动3个单位长度到达点B ,再向右移动7个单位长度到达点C ,若点 C 表示的数是2,则点 A 表示的数为()A. -1B. 3C. -3D. -28.如图所示,在△ABC中,D为AB上一点,E为BC上一点,且AC = CD = BD = BE,∠A = 50°,则∠BDE的度数为()A. 50°B. 77.5°C. 60°D.第8题第9题第12题9.小芳将贵州健康码打印在面积为16dm2的正方形纸上,为了估计图中健康码部分的面积,在纸内随机掷点,经过大量重复试验,发现点落入健康码外部分的频率稳定在0.4左右,据此可以估计健康码部分的面积约为()A. 2.4dm2B. 4dm2C. 6.4dm2D. 9.6dm210.关于x的一元二次方程x2-4x+a=0的两实数根分别为x1、x2,且x1+2x2=3,则a的值为()A. 4B. 5C. -5D. 011.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问买5只羊总共是多少?()A. 800钱B. 775钱C. 750钱D. 725钱12.如图,在四边形ABCD中,AB//CD,AB=CD,∠B=60°,AD=83,分别以B和C为圆心,以大于1BC的长为半径作弧,两弧相交于点P和Q,直线PQ与BA2延长线交于点E,连接CE,则ΔBCE的内切圆圆心到B点距离是()A. 4B. 43C. 8D. 23一、填空题(每小题5分,共20分)13.若分式2x+2有意义,则x的取值范围为________.x2−114.关于x的方程(m+2)x|m|+2mx+2=0是一元一次方程,则m的值为________.15.已知实数a在数轴上的位置如图所示,则化简|1-a|﹣a2的结果为________.16.如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF 是腰AC的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为 .第15题第16题三、解答题(本大题共9小题,共94分)17.(本题满分6分)已知=3,3a+b﹣1的平方根是±2,c是的整数部分,求2a+b+6c的算术平方根.18.(本题满分10分)九年级将要参加体育中考,某校领导非常重视,决定对九年级年级学生体育体育达标测试,来了解学生的中考体育成绩,在九年级各班随机抽取了部分学生的体育测试成绩,按A、B、C、D四个等级进行统计(A级:45分~50分;B级:40分~45分;C级:35分~40分;D级:35分以下).并将统计结果绘制成两个如图所示的不完整的统计图,请你结合统计图中所给信息解答下列问题:第18题(1)学校在九年级各班共随机调查了 名学生;(2)在扇形统计图中,A级所在的扇形圆心角是 ;(3)请把条形统计图补充完整;(4)若该校九年级有1000名学生,请根据统计结果估计全校九年级体育测试中B 级和C 级学生各约有多少名.19.(本题满分10分)如图,AB 是⊙O 的弦,点D 是⊙O 内一点,连接AD ,圆心O 在AD 上,AD ⊥BC ,垂足为D ,BD 交⊙O 于点C 若AD =6cm ,AD =2BD .(1)求弦BC 的长;(2)求⊙O 半径的长.第19题20.(本题满分10分)如图:某地打算建立一个信号站在居民房A 和居民房B 之间的C 处,信号站C 在居民房A 的北偏东60°方向上,居民房A 距离信号站C 有20米,信号站C 处在居民房B 处西北方向上。

河南省信阳市息县2024届九年级下学期中考三模数学试卷(含答案)

河南省信阳市息县2024届九年级下学期中考三模数学试卷(含答案)

2024年信阳市息县中考第三次模拟考试数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.的倒数是()A.B.C.2 D.2.2024年1月,国家统计局公布了2023年全年出生人口数约为9020000,其中数字9020000用科学记数法表示为()A.B.C.D.3.下列图形中,是中心对称图形的是()A.B.C.D.4.下列计算正确的是()A.B.C.D.5.物理实验中,小明研究一个小木块在斜坡上滑下时的运动状态,如图,斜被为,,,小木块在斜坡上,且,,则的度数为()A.B.C.D.6.对于实数a,b定义运算“⊗”为,例如,则关于x的方程的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图所示,某同学自制了一个测角仪:等腰直角三角板的底边和量角器直径平行.若重锤线与的夹角为,那么被测物体表面的倾斜角的度数为()A.B.C.D.8.《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.小亮调查了全班同学一周学会炒的菜品数量,结果如图所示,则全班同学一周学会炒的菜品数量的平均数是()A.2B.2.6C.3D.3.19.一个不透明的口袋里有1个红色小球,1个黄色小球,1个蓝色小球,这3个球除颜色外都相同,从口袋中随机摸出一个小球,记下颜色后放回口袋,摇匀后再从中随机摸出一个小球,则两次都摸到黄色小球的概率是()A.B.C.D.10.如图,抛物线与x轴交于点A,B,对称轴为直线,若点A的坐标为,则下列结论:①点B的坐标为;②;③;④点在抛物线上,当时,则,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共15分)11.使有意义的x的取值范围是.12.不等式组的解集是.13.请你写出一个图像经过点的函数解析式:.14.如图,矩形中,,,点、分别是、上的动点,,则的最小值是.15.如图,在矩形中,,点E是的中点,将沿折叠后得到,延长交射线于点F,若,则的长为.三、解答题(本大题共8个小题,共75 分)16.(10分)(1)计算:.(2)解方程:17.(9分)为了解甲、乙两所学校八年级学生综合素质整体情况,对两校八年级学生进行了综合素质测评,并对成绩作出如下统计分析.【收集整理数据】分别从两所学校各随机抽取了a名学生的综合素质测试成绩(百分制,成绩都是整数且不低于分).将抽取的两所学校的成绩分别进行整理,分成A,B,C,D,E,F六组,用x表示成绩,A 组:,B组:,C组:,D组:,E组:,F组:,其中乙校E组成绩如下:,,,,,,,,,,,,,,.【描述数据】根据统计数据,绘制出了如下统计图.【分析数据】两所学校样本数据的平均数、中位数、众数、方差如下表:学校平均数中位数众数方差甲校乙校b79根据以上信息,解答下列问题:(1),;(2)补全条形统计图;(3)甲校共有人参加测试,若测试成绩不低于80分的为优秀,估计甲校测试成绩优秀的约有人;(4)从平均数、中位数、众数、方差中,任选一个统计量,解释其在本题中的意义.18.(9分)如图,在中,.(1)实践与操作:按照下列要求完成尺规作图,并标出相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线交于点,交于点;②在线段的延长线上截取线段,使,连接,,.(2)猜想与证明:试猜想四边形的形状,并进行证明.19.(9分)如图,已知正比例函数的图象与反比例函数的图象相交于点和点B.(1)求反比例函数的解析式;(2)请结合函数图象,直接写出不等式的解集;(3)如图,以为边作菱形,使点C在x轴正半轴上,点D在第一象限,双曲线交于点E,连接,求的面积.20.(9分)在郑州之林公园内有一座如意雕塑(图1),它挺拔矗立在前端,展现出了郑东新区的美好蓝图与如意和谐的愿望.综合实践小组想按如图2 所示的方案测量如意雕塑的高度EF:①在如意雕塑前的空地上确定测量点A,当测量器高度为时,测得如意雕塑最高点E的仰角;②保持测量器位置不变,调整测量器高度为时,测得点E的仰角,已知点A,B,C,D,E,F,G在同一竖直平面内,请根据该小组的测量数据计算如意雕塑的高度.(结果精确到1m .参考数据:21.(9分)2024 年郑州市中招体育考试抽号流程为:第一次抽号确定素质类项目(从1 分钟跳绳、50米跑、掷实心球、立定跳远四项素质类项目中抽考1 项);第二次抽号确定运动健康技能类统考项目(从篮球运球投篮、足球运球射门、排球垫球三项运动健康技能类中抽考1项).某班为了备战中考体育,统一采购了一批跳绳和足球,已知跳绳与足球的总数量为50个(每种都购买),下面是经过调查,甲、乙两个商店的跳绳和足球售价信息及优惠方案:商店足球单价跳绳单价优惠方式甲所购商品按原价打八折乙足球原价,跳绳五折(1)在调查过程中,由于粗心,将足球与跳绳的单价遗失了,只知道甲、乙两个商店的足球和跳绳的单价相同,如果按原价买根跳绳与个足球需要花元,花同样的钱还能按原价买根跳绳与个足球,求跳绳与足球的单价;(2)已知跳绳的数量不超过足球数量的一半,若跳绳与足球只能在同一家店购买,则在哪家店购买,该班所需总费用最低?求出这个最低总费用.22.(9分)一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?23.(10分)(1)【发现】如图1,正方形的边长为4,点E为中点.连接.将绕点A顺时针旋转至连接交于点G.爱思考的小明做了这样的辅助线,过点E作,交于点H……请沿着小明的思路思考下去,则(2)【应用】如图2,菱形的边长为3,且,连接,点E为上一点,连接.将绕点A顺时针旋转至,连接交于点G,若,求的值;(3)【拓展】如图3,在四边形中,,且.点E为上一点,连接.将绕点A顺时针旋转至,连接交于点C,,请直接写出的长.2024年息县中考第三次模拟考试数学参考答案一、选择题(每小题3分,共30分)1.D2.C3.C4.B5.B6.A7.B8.B9.B10.B二、填空题(每小题3分,共15分)11.12.13.,,(答案不唯一).14.1015.2或三、解答题(本大题共8个小题,共75 分)16.(10分)解:(1).(5分)(2)原方程可化为.方程两边同乘,得.解得.检验:当时,.∴原方程的解是(5分)17.(9分)(1),(2分)(2)(2分)(3)解:(人)(3分)故答案为:;(4)解:平均数表示两个学校抽取的人成绩的平均成绩;(2分)众数表示两个学校抽取的人中得分在某个分数的人数最多;中位数表示两个学校抽取的人中,将成绩从小到大排列后,位于中间位置的成绩;方差表示两个学校抽取的人的成绩稳定性.18.(9分)(1)解:按照要求,如图所示,即为所求作的图形.(5分).(2)猜想:四边形为菱形.证明:为的垂直平分线,,,∴四边形为平行四边形,又,∴四边形为菱形.(4分)19.(9分)(1)解:把点代入正比例函数可得:,∴点,把点代入反比例函数,可得:,∴反比例函数的解析式为;(3分)(2)解:∵点A与点B是关于原点对称的,∴点,∴根据图象可得,不等式的解集为:或;(2分)(3)解:如图所示,过点A作轴,垂足为G,∵,∴在中,,∵四边形是菱形,∴,,∴.(4分)20.(9分)延长交于,延长交于,则米,米,,∴米,设米,在中,,∴,在中,,∴,∵,∴,∴(米),∴(米),答:如意雕塑的高度约为米.21.(9分)(1)解:设跳绳的单价为元根,足球的单价为元个,依题意,得:,解得:.(3分)答:跳绳的单价为元根,足球的单价为元个.(2)设购买跳绳条,则购买足球()个,∵跳绳的数量不超过足球数量的一半,∴∴设总费用为元,依题意,得:.(2分),∵∴随的增大而减小,∴当时,最小,为(元),,∵∴随的增大而减小,∴当时,最小,为(元)∵,(4分)∴在甲家店购买,该班所需总费用最低,这个最低总费用为元.22.(9分)(1)(5分)解:由题意得:抛物线的顶点坐标为,设抛物线解析式为,把点代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;(2)(4分)设小明带球向正后方移动米,则移动后的抛物线为,把点代入得,解得(舍去),,∴当时他应该带球向正后方移动1米射门.23.(10分)(1)(3分)过点E作,交于点H,∵正方形的边长为4,∴四边形是矩形,四边形是矩形,∴,∵点E为中点,∴,∵将绕点A顺时针旋转至∴∵,∴,∴,∴,∴,∴;(2)(4分)过点E 作,作,∵菱形的边长为3,且,∴是等边三角形,,∵∴,,,∴,∴,∵,∴,∴是等边三角形,∴,∵将绕点A顺时针旋转至,∴,,即是等边三角形,∴,∵,∴,∴,∴,∴;(3)(4分)过点E作,作,交延长线于点R,交于点Q,∵,∴∴,,∵,∴,∵,∴,设,则,∵将绕点A顺时针旋转至,∴,∵,∴,即,过点B作,过点A作,则,∴,∴,∴,解得:(负值舍去),经检验:是方程的解,∴。

2023年湖北省随州市广水市中考数学模拟试卷(三)

2023年湖北省随州市广水市中考数学模拟试卷(三)

广水市九年级中考模拟考试数 学 试 题(测试时间120分钟 满分120分)一、选择题(本题有10个小题,每小题3分,共30分. 每小题给出的四个选项中,只有一个是正确的) 1.计算(﹣2018)0 + 9 ÷(﹣3)的结果是A .﹣1B .﹣2C .﹣3D .﹣42.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是ABCD3.下列运算正确的是A .a 3·a 2=a 6B .(a ﹣3)2=a 2+9C .532=+D .2a +3a =5a4.如图所示的物体由两个紧靠在一起的圆柱体组成,它的左视图是5.如图,直线a ∥b ,直角三角形BCD 按如图放置,∠DCB =90°.若∠1+∠B =70°,则∠2的度数为A .20°B .40°C .30°D .25°6、下列调查中,最适合采用全面调查(普查)方式的是A .对广水市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查7.如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .过一点有且只有一条直线和已知直线平行8. 为了节约用水,某市从今年1月1日起调整居民用水价格,每吨水费上涨31。

小慧家去年12月份的水费是15元,而今年5月的水费则是30元。

已知小慧家今年5月的用水量比去年12月的用水量多5吨,求该市今年居民用水的价格。

设去年居民用水价格为x 元/吨,根据题意列方程,正确的是A .515)311(30=-+xxB .515)311(30=--xx C .5)311(1530=+-xxD .5)311(1530=--xx 9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,则第2018个图案中有白色纸片的个数为A .6055B .6058C .6061D .606410.抛物线y 1=ax 2+bx +c (a ≠0)的图象的一部分如图所示,抛物线的顶点坐标是A (1,3),与x 轴的一个交点是B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点,下列结论:①4a -2b +3c >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2<y 1;⑤x (ax +b )-b ≤ a .其中正确的结论有A .5个B .4个C .3个D .2个二、填空题(本大题共6小题,每小题3分,共18分)11. 随州风电、光伏发电产业迅速崛起,已累计投产这两类新能源装机169.6万千瓦。

2023年中考数学第三次模拟考试卷及解析(山西卷)

2023年中考数学第三次模拟考试卷及解析(山西卷)

2023年中考数学第三次模拟考试卷及解析(山西卷)第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.)A .B .6C D .【答案】C【分析】根据负数的绝对值等于它的相反数解答.【详解】解:故选C .2.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()A .105.810⨯B .115.810⨯C .95810⨯D .100.5810⨯【答案】A【分析】科学记数法的形式是:10n a ⨯,其中1a ≤<10,n 为整数.所以 5.8a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。

本题小数点往左移动到5的后面,所以10.n =【详解】解:1058000000000 5.810.=⨯故选A .3.将不等式组23xx>⎧⎨≥⎩的解集表示在数轴上,正确的是().A.B.C.D.【答案】A【分析】根据数轴的性质“实心圆点包括该点用“≥”,“≤”表示,空心圆圈不包括该点用“<”,“>”表示,大于向右小于向左.”画出数轴即可.【详解】解:将不等式组23xx>⎧⎨≥⎩的解集表示在数轴上,如图,故选A.4.如图,一个正方体骰子的六个面上分别标有1至6共六个数字,且相对面数M 处,则停止后骰子朝上面的数字为()A.3B.4C.5D.6【答案】D【分析】根据题意可知,1的对面是6,3的对面是4,2的对面是5,翻转后停止在M处时1在底面,据此即可求解.【详解】解:由题意可知,1的对面是6,3的对面是4,2的对面是5,按图所示方式翻转后停止在M处,1在底面,则6朝上时.故选:D.5.“疫情就是命令,防控就是黄任”,面对疫情,学校积极普及科学防控知识.下面是科学防控知识图片,其中图案是轴对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.6.小李广花荣是《水浒传》中的108将之一,有着高超的箭术.如图,一枚圆形古钱币的中间是正方形孔,已知圆的直径与正方形的对角线之比为3:1.将一枝箭射到古钱币的圆形区域内,箭穿过正方形孔的概率为()A.19B.29πC.49D.49π【答案】B【分析】计算正方形与圆的面积比即可.【详解】解:设圆的直径为R ,则正方形的对角线长为3R ,∴圆的面积为2224R R ππ⎛⎫⨯= ⎪⎝⎭,正方形的面积为221=2318R R ⎛⎫⨯ ⎪⎝⎭,∴箭穿过正方形孔的概率为22218=94R R ππ,故选:B .7.如图是某芯片公司的图标示意图,其设计灵感源于传统照相机快门的机械结构,圆O 中的阴影部分是一个正六边形,其中心与圆心O 重合,且AB BC =,则阴影部分面积与圆的面积之比为()A.8πBCD.9π【答案】B【分析】根据题意,设正六边形的边长为1,进而求出圆的面积以及圆的内接正六边形面积,进一步计算可得答案.【详解】解:如图所示,连接OA ,OB ,OC设正六边形的边长为1,则1OA =,60AOB ∠=︒,OA OB=∴AOB 为等边三角形,则60BOA OBA ∠=∠=︒,1OA OB AB ===,2AC =,∴BCO BOC ∠=∠,又∵ABO BCO BOC ∠=∠+∠,∴30BCO BOC ∠=∠=︒,则=90AOC ∠︒,∴OC ==所以圆的面积为3π,正六边形的面积为1166sin 6061122AOB S AB OA =⨯⋅⋅︒=⨯⨯⨯⨯△232ππ=,故选:B .8.已知点()11,x y ,()()2212,x y x x <在22y x x m =-++的图象上,下列说法错误的是()A .当0m >时,二次函数22y x x m =-++与x 轴总有两个交点B .若22x =,且12y y >,则102x <<C .若122x x +>,则12y y >D .当12x -≤≤时,y 的取值范围为3m y m-≤≤【答案】D【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【详解】解:由222211y x x m x x m =-++=-+-++2(1)1x m =--++,∴抛物线的对称轴为直线1x =,顶点坐标为(1,1)m +;A.当0m >时,()2Δ241440m m =-⨯-⨯=+>,所以,二次函数22y x x m =-++与x 轴总有两个交点,说法正确,故选项A 不符合题意;B.当22x =时,对应点为(2,)m ,关于对称轴对称的点为(0,)m ,即2y m =;当12y y >时,图象在(0,)m 和(2,)m 之间,所以,102x <<,故选项B 说法正确,不符合题意;C.若122x x +=,则1212x x +=,当122x x +>时,则两点连线的中点在对称轴右侧,所以,12y y >,故选项C 说法正确,不符合题意;D.当=1x -时,123y m m =--+=-+,当2m =时,最高点为(1,1)m +,所以,3+1m y m -≤≤,故选项D 说法错误,符合题意,故选:D9.如图,一副三角板中两个直角顶点C 叠放在一起,其中30A ∠=︒,=60B ∠︒,45D E ∠=∠=︒,保持三角板ABC 不动,三角板DCE 可绕点C 旋转,则下列结论:①ACE BCD ∠=∠;②BCE ACD ∠∠+随着ACD ∠的交化而变化;③当AB CE ∥时,则60ACD ∠=︒或150︒;④当3BCE ACD ∠=∠时,DE 一定垂直于AC .其中正确的个数是()A .1个B .2个C .3个D .4个【答案】A 【分析】①依据90BCD ACD ∠+∠=︒,90ACE ACD ∠+∠=︒,可得BCD ACE ∠=∠;②依据90BCE ACB ACE ACE ∠=∠+∠=︒+∠,即可得到180BCE ACD ∠+∠=︒;③画出图形,根据平行线的判定,即可得到当ACD ∠等于60︒或120︒时,CE AB ∥;④画出图形,根据3BCE ACD ∠=∠,180BCE ACD ∠+∠=︒,即可求出ACD ∠的度数,根据平行线的判定以及垂直的定义得到此时DE 与AC 的位置关系.【详解】解:①90BCD ACD ∠+∠=︒ ,90ACE ACD ∠+∠=︒,BCD ACE ∴∠=∠;故①正确.②90BCE ACB ACE ACE ∠=∠+∠=︒+∠ ,BCE ACD∴∠+∠90ACE ACD=︒+∠+∠9090180=︒+︒=︒,180BCE ACD ∴∠+∠=︒,是定值;故②错误.③如图1所示,当CE AB ∥时,30ACE A ∠=∠=︒,ACD DCE ACE∴∠=∠-∠903060=︒-︒=︒,如图2所示,当CE AB ∥时,60BCE B ∠=∠=︒,360ACD ACB BCE DCE∴∠=︒-∠-∠-∠360906090=︒-︒-︒-︒120=︒,当AB CE ∥时,则60ACD ∠=︒或120︒;故③错误.④设ACD α∠=,则3BCE α∠=.如图3由(1)可知,180BCE ACD ∠+∠=︒,3180αα∴+=︒,解得:45α=︒,即45ACD ∠=︒,ACD D ∴∠=∠,AC DE ∴∥;如图4由(1)得:BCD ACE ∠=∠,BCD ACE BCE ACD ∴∠+∠=∠-∠,32BCD ACE ααα∴∠+∠=-=,BCD ACE ACD α∴∠=∠=∠=,45ACD D ∴∠=∠=︒,DE AC ∴⊥.此时DE AC ⊥或DE AC ∥;故④错误.综上所述:只有①正确,所以正确的个数有1个.故选:A .10.如图,在平面直角坐标系中,矩形ABCD 的顶点A 在第一象限,B ,D 分别在y 轴上,AB 交x 轴于点E ,AF x ⊥轴,垂足为F .若3OE =,1EF =.以下结论正确的个数是()①3OA AF =;②AE 平分OAF ∠;③点C 的坐标为(4,-;④BD =;⑤矩形ABCD 的面积为A .2个B .3个C .4个D .5个【答案】C 【分析】根据相似三角形的判定得出EOB EFA ∽△△,利用相似三角形的性质及已知OE ,EF 的值即可判断结论①;由①分析得出的条件,结合相似三角形、矩形的性质(对角线)即可判断结论②;根据直角坐标系上点的表示及结论①3OA AF =,利用勾股定理建立等式求解可得点A 坐标,再根据关于原点对称的点的坐标得出点D 坐标,即可判断结论③;由③可知AF =,进而得出OA 的值,根据矩形的性质即可判断结论④;根据矩形的性质及④可知BD =利用三角形的面积公式求解即可判断结论⑤.【详解】解:∵矩形ABCD 的顶点A 在第一象限,AF x ⊥轴,垂足为F ,90EOB EFA ∴∠=∠=︒,AC BD =,OD OA OB OC ===.AEF BEO ∠=∠ ,EOB EFA ∴∽△△.3OE = ,1EF =,13EF AF AF EO OB OA ∴===,即3OA AF =.(①符合题意)OA OB = ,EOB EFA ∽△△,OAB OBA ∴∠=∠,EAF EBO ∠=.OAB EAF∴∠=∠.∴AE 平分OAF ∠.(②符合题意)314OF OE EF =+=+= ,∴点A 的横坐标为4.3OA AF= ,2229AF AF OF ∴-=,即2816AF =.AF ∴=A .A ∴.点A 与点C 关于原点对称,(4,C ∴-.(③符合题意)3OA AF ==2BD OD OB OA ∴=+==.(④不符合题意)=2BCD BAD BAD ABCD S S S S =+ 矩形△△△,1=22ABCD S ∴⨯矩形(⑤符合题意)∴结论正确的共有4个符合题意.故选:C .第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11__________.【答案】5【分析】根据二次根式的性质解答.5=.故答案为:512.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的12.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是2 cm ,若铁钉总长度为a cm ,则a 的取值范围是_______________.【答案】3 3.5a <≤【分析】求钉子的总长度只需要分别求出每次钉入木板的长度,相加即可.【详解】解:第一次是2cm,第二次是1cm,第三次不会超过0.5cm,故铁钉总长度为3a 3.5<≤.13.由电源、开关、滑动变阻器及若干导线组成的串联电路中,已知电源电压为定值,闭合开关后,改变滑动变阻器的阻值R(始终保持0R>),发现通过滑动变阻器的电流I与滑动变阻器的电阻R成反比例函数关系,它的图象如图所示,若使得通过滑动变阻器的电流不超过4A,则滑动变阻器阻值的范围是__________.【答案】2R≥【分析】根据反比例函数的性质,进行求解即可.【详解】解:由图象可知,I随着R的增大而减小,当2I=,R=时,4R≥;4A,则滑动变阻器阻值的范围是2故答案为:2R≥.14.2023年亚洲杯足球联赛将在中国举行,掀起学校足球运动热潮,某校足球队计划吸收一名新球员,组织了4轮技能考试,其中小文和小俊的成绩(百分制)较为突出,具体如下:姓名第1轮第2轮第3轮第4轮小文90889290小俊89928693若教练要从中选出一名技术稳定的球员,则被选中的是_______.【答案】小文【分析】分别计算两人的平均成绩与成绩的方差,再作比较即可.【详解】解:小文的平均成绩为:1(90889290)904⨯+++=;小俊的平均成绩为:1(89928693)904⨯+++=;小文成绩的方差为:22212(9090)(8890)(9290)24⎡⎤⨯⨯-+-+-=⎣⎦;小俊成绩的方差为:22221(8990)(9290)(8690)(9390)7.54⎡⎤⨯-+-+-+-=⎣⎦;∵27.5<,∴小文的成绩更为稳定;故答案为:小文.15的正方形ABCD 中,点E 为对角线AC 上的一个动点,将线段BE 绕点B 逆时针旋转90︒,得到线段BF ,连接DF ,点G 为DF 的中点,则点E 从点C 运动到点A 的过程中,点G 的运动路径长为__________.【答案】1【分析】取AD 中点H ,连接AF ,GH ,证明ABF CBE △≌△,得出45BAF BCE ∠=∠=︒,90FAC ∠=︒,从而确定F 在过点A ,且垂直与AC 的直线上运动,当E 和C 重合时,F 和A 重合,G 和H 重合,当E 和A 重合时,F 为M 重合(M 为AF 与BC 的交点),此时G 在AB 中点N 处,然后根据三角形中位线定理可12NH AF =,利用勾股定理求出AC AF =,即可解答.【详解】解:取AD 中点H ,连接AF ,GH ,∵正方形ABCD ,∴90ABC ∠=︒,45BAC BCA ∠=∠=︒,AB BC ==∴2AC =,∵旋转,∴90EBF ∠=︒,BE BF =,∴90ABF ABE CBE ∠=︒-∠=∠,∴()SAS ABF CBE △≌△,∴45BAF BCE ∠=∠=︒,AF CE =,∴90FAC ∠=︒,∴点F 在过点A ,且垂直与AC 的直线上运动,当E 和C 重合时,F 和A 重合,G 和H 重合,当E 和A 重合时,F 为M 重合(M 为AF 与BC 的交点),此时G 在AB 中点N 处,如图,∴G 的运动轨迹是线段NH ,∵H 为AD 中点,G 为DF 中点,∴12NH AF =,∵45BAF BAC ∠=︒=∠,AF AC =,AB AB =,∴ABF ABC ≌,∴2AF AC ==,∴1NH =,即点G 的运动路径长为1.故答案为:1.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算1020161()3tan 30(1)3--++-;(2)解方程:2220x x +-=.【答案】(1)2--(2)11x =-21x =-+【分析】(1)根据负指数幂,特殊角三角函数,二次根式的性质直接计算即可得到答案;(2)移项,配方,直接开平方即可得到答案.【详解】(1)解:原式3313=-+⨯-31=--+2=--;(2)解:移项得,222x x +=,配方得,2(1)3x +=,两边开平方得,1x +=∴方程的解为:11x =-21x =-【点睛】本题考查了负指数幂,特殊角三角函数,二次根式的性质及解一元二次方程,解题的关键是熟练掌握1p pa a -=及一元二次方程的解法、特殊三角函数值.17.以下是圆圆同学化简22142a a a ---的解答过程:解:原式21222(2)(2)2a a a a a a a =-=-+=++--,圆圆的解答是否有错误?如果有错误,请写出正确的解答过程.【答案】解答有错误;正确过程见解析【分析】先利用异分母分式的加减法法则计算,再根据计算结果判断解答是否有错误.【详解】解:解答有错误.正解:原式21(2)(2)2a a a a =-+--22(2)(2)(2)(2)a a a a a a +=-+-+-22(2)(2)a a a a --=+-2(2)(2)a a a -=+-12a =+.【点睛】本题考查了分式的加减,掌握异分母分式的加减法法则是解决本题的关键.18.第31届世界大学生夏季运动会将于2023年7月28日至8月8日在成都举行,成都将以年轻的笑脸、奔放的热情、周到的服务、完善的设施迎接大运会.某校数学兴趣小组以“爱成都,迎大运”为主题,从全校学生中随机抽取部分学生进行调查问卷,了解学生参加A (羽毛球)、B (乒乓球)、C (篮球)、D (排球)四类球运动的情况(参加调查学生必选且只能选择其中一项),根据统计结果绘制了如下统计图表.请根据统计图表信息,解答下列问题:经常参加的球类运动A B C D 人数(单位:人)9186所占百分比45%10%(1)求参与调查的学生中,经常参加乒乓球运动的学生人数;(2)若从参与调查的2名男生和2名女生中随机抽取2名学生进行访谈,请用列表或画树状图的方法求抽取到的两名学生恰好是相同性别的概率.【答案】(1)参与调查的学生中,经常参加乒乓球运动的学生人数为27人;(2)13【分析】(1)利用D类球运动的人数除以其所占百分比,得出参与调查的学生总人数,再乘以B类球运动的人数所占百分比即可;(2)根据题意列出表格表示出所有等可能得情况,再找出符合两名学生恰好是相同性别的情况,最后根据概率公式计算即可.【详解】(1)解:参与调查的学生总人数为610%60÷=人,∴参与调查的学生中,经常参加乒乓球运动的学生人数为6045%27⨯=人;(2)解:根据题意,可列表格如下,的情况有4种,∴抽取到的两名学生恰好是相同性别的概率为41 123=.【点睛】本题考查扇形统计图,列表法或树状图法求概率.读懂题意,根据表格和扇形统计图得出必要的信息和数据以及正确的列出表格或画出树状图是解题关键.19.某校组织学生参与劳动实践活动,休息时小明发现,坡角为α的斜坡上有一棵垂直于水平地面的树AB (如图),当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC 长为m ,于是就提出一个数学问题:如何求树AB 的高?若18.34α=︒,10m =,请你解决这个问题.(参考数据:sin18.340.31︒≈,cos18.340.95︒≈)【答案】6.4【分析】过点C 作水平地面的平行线,交AB 的延长线于D ,根据正弦的定义求出BD ,根据余弦的定义求出CD ,根据等腰直角三角形的性质求出AD ,计算即可.【详解】解:过点C 作水平地面的平行线,交AB 的延长线于D ,则BCD α∠=,在Rt BCD △中,BC m =,BCD α∠=,则·sin sin BD BC BCD m α=∠=,·cos cos CD BC BCD m α=∠=,在Rt ACD 中,45ACD ∠=︒,则cos AD CD m α==,∴()cos sin cos sin AB AD BD m m m αααα=-=-=-,∵18.34α=︒,10m =,∴()100.950.31 6.4AB ≈⨯-=,答:树AB 的高为6.4.【点睛】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.20.山西老陈醋是中国四大名醋之一,已有3000余年的历史,素有“天下第一醋”的盛誉,以色、香、醇、浓、酸五大特征著称于世.某商家购进A ,B 两种品牌的老陈醋,每斤A 品牌老陈醋比每斤B 品牌老陈醋贵0.5元,花90元购进A 品牌老陈醋的质量与花80元购进B 品牌老陈醋的质量相同.(1)分别求A ,B 品牌老陈醋的单价.(2)该商户计划用不超过3350元购进A ,B 两种品牌老陈醋共800斤,求至少应购进B 品牌老陈醋多少斤.【答案】(1)A ,B 两种品牌老陈醋的单价分别为4.5元/斤、4元/斤(2)500斤【分析】(1)设B 品牌老陈醋的单价为x 元/斤,则A 品牌老陈醋的单价为()0.5x +元/斤.根据题意列出分式方程求解即可;(2)设购进B 品牌老陈醋a 斤,则购进A 品牌老陈醋()800a -斤,根据题意列出一元一次不等式求解即可.【详解】(1)设B 品牌老陈醋的单价为x 元/斤,则A 品牌老陈醋的单价为()0.5x +元/斤.根据题意,得90800.5x x=+.解得4x =.经检验,4x =是原方程的解,且符合题意.∴0.5 4.5x +=(元/斤)答:A ,B 两种品牌老陈醋的单价分别为4.5元/斤、4元/斤.(2)设购进B 品牌老陈醋a A 品牌老陈醋()800a -斤.根据题意,得()4 4.58003350a a +-≤.解得500a ≥.答:至少应购进B 品牌老陈醋500斤.【点睛】此题考查了分式方程和一元一次不等式的应用,解题的关键是正确分析题目中的等量关系.21.如图,在ABC 中,70,60,BAC ACB ACB ︒︒∠=∠=∠的平分线交AB 于点D .(1)尺规作图:作ABC ∠的平分线BO 交CD 于点O .(保留作图痕迹,不写作法)(2)求BOD ∠的度数.【答案】(1)见解析(2)55︒【分析】(1)根据角平分线的作法即可作ABC ∠的平分线BO 交CD 于点O ;(2)根据内角和定理求出ABC ∠,再根据角平分线定义求出OCB ∠,OBC ∠,再利用外角的性质求解.【详解】(1)解:如图,BO 即为所求;(2)70BAC ∠=︒ ,60ACB ∠=︒,180706050ABC ∴∠=︒-︒-︒=︒,CD 平分ACB ∠,BO 平分ABC ∠,1302OCB ACB ∴∠=∠=︒,1252OBC ABC ∠==︒,302555BOD OCB OBC ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了作图-基本作图,三角形内角和定理和外角的性质,解决本题的关键是掌握角平分线的作法.22.综合与实践:图形的几何变换复习课上,老师对一张平行四边形纸片()ABCD AD AB >进行如下操作:(1)如图1,折叠该纸片,使边AB 恰好落在边AD 上,边CD 恰好落在边CB 上,得到折痕AE 和CF ,判断四边形AECF 的形状,并说明理由;(2)老师沿折痕将ABE 和CDF 剪下,得到两个全等的等腰三角形,已知等腰三角形的腰长为5,底边长为6,底角度数为a ,通过不同的摆放方式,三个学习小组利用几何变换设置了几个问题,请一一解答.①善思小组:将两个三角形摆放成如图2的位置,使边CF 与边EA 重合,然后固定ABE ,将CDF 沿着射线EA 的方向平移(如图3),当四边形FBED 为矩形时,求平移的距离.②勤学小组:将两个三角形摆成如图4的位置,使BAE 与DFC △重合,取AE 的中点O ,固定ABE ,将CDF 绕着点O 按逆时针方向旋转(0︒<旋转角360<︒),如图5,在旋转过程中,四边形ACEF 的形状是______.③奋进小组:在②勤学小组的旋转过程中,利用图6进行探究,当BAE 与DFC △的重叠部分为等腰三角形时,旋转角为______(用含α的代数式表示),此时重叠部分的面积为_____.【答案】(1)平行四边形,理由见解析(2)①73;②矩形;③2α或3602α︒-;10825【分析】(1)根据折叠的性质可得12DAE BAD ∠=∠,12BCF BCD ∠=∠,从而得出AE CF ∥,即可得出结论;(2)①作BG 垂直EF 于点G ,由三线合一性质可得132EG AE ==,求出EF 的长度,最后根据AF EF AE =-即可求解;②通过证明()SAS AOF COE ≌V V ,()SAS AOE COF ≌ ,即可得出结论;③分两种情况进行讨论:当点C 在AB 边上时,当点F 在BE 边上时.【详解】(1)解:四边形AECF 为平行四边形.理由如下:在平行四边形ABCD 中,AD BC ∥,BAD BCD ∠=∠,由折叠可知,12DAE BAD ∠=∠,12BCF BCD ∠=∠,∴DAE BCF ∠=∠,∴AD BC ∥,∴DAE BEA ∠=∠,∴BCF BEA ∠=∠,∴AE CF ∥,由AD BC ∥,得AF CE ∥,∴四边形AECF 为平行四边形.(2)①如图,作BG 垂直EF 于点G ,∵AB BE =,由三线合一性质可得132EG AE ==,∴5c s 3o G B GEB E E =∠=,当四边形FBED 为矩形时,90FBE ∠=︒,则5c s 53o BE E B E E F F F ==∠=,解得:253EF =,∴257633AF EF AE =-=-=即平移的距离为73.②∵BAE 与DFC △重合,∴AE CF=∵点O 为AE 中点,∴AO CO EO FO ===,在AOF 和COE 中,AO CO AOF COE EO FO =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AOF COE ≌V V ,∴AF CE =,同理可得:()SAS AOE COF ≌ ,∴AC EF =,∴四边形ACEF 为平行四边形,∴四边形ACEF 为矩形.故答案为:矩形.③如图:连接BO ,过点E 作EN AB ⊥于点M ,∵点O 为AE 中点,6AE =,∴132AO AE ==,BO AE ⊥,根据勾股定理可得:4BO =,∵1122ABE S AE BO AB ME =⋅=⋅V ,∴AE BO AB ME ⋅=⋅,即645ME ⨯=,解得:245ME =,∴4sin 5ME BAE AE ∠==,当点C 在AB 边上时,∵OAC E OCA ∠=∠=∠,∴ACO △为等腰三角形,此时旋转角为2COE α∠=,过点O作OG BD⊥与点G,∵4 sin5OGBAEAO∠==,∴125= OG,根据勾股定理得:95 AG=,∴1825 AC AG==,∴重叠部分面积1108 225AC OG=⋅=,当点F在BE边上时,∵OEF A OFE∠=∠=∠,∴OEF为等腰三角形,∵2COEα∠=,此时旋转角为3603602COEα︒-∠=︒-,过点O作OH BE⊥于点H,∵4 sin sin5OHBAE BEAOE∠=∠==,∴125 OH=,根据勾股定理得:95 EH=,∴1825EF EH ==,∴重叠部分面积1108225EF OH =⋅=,综上:旋转角为2α或3602α︒-;重叠部分面积为10825;故答案为:2α或3602α︒-,10825.【点睛】本题主要考查了平行四边形的判定和性质,矩形的判定,等腰三角形的判定和性质,旋转的性质,解题的关键是熟练掌握相关内容并灵活运用.23.如图,二次函数2y x bx c =-++经过点()()4002A B ,、,,点P 是x 轴正半轴上一个动点,过点P 作垂直于x 轴的直线分别交抛物线和直线AB 于点E 和点F .设点P 的横坐标为m .(1)求二次函数的表达式;(2)若E 、F 、P 三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求m 的值.(3)点P 在线段OA 上时,①连接AE 、BE ,当ABE 的面积最大时,求点E 的坐标;②若以B 、E 、F 为顶点的三角形与FPA 相似,求m 的值;【答案】(1)2722y x x =-++(2)12m =(3)①E (2,5);②m 的值是72或32.【分析】(1)利用待定系数法即可得解;(2)先求得直线AB 的解析式为122y x =-+,从而有27,22E m m m ⎛⎫-++ ⎪⎝⎭,1,22F m m ⎛⎫-+ ⎪⎝⎭,根据F为线段PE 的中点时,得方程21722222m m m ⎛⎫-+=-++ ⎪⎝⎭,解方程即可;(3)①设出27,22E m m ⎛⎫-++ ⎪⎝⎭,1,22F m m ⎛⎫-+⎪⎝⎭,列出ABE S 与m 的函数关系式即可得解;②由BFE AFP ∠∠=,分当EBF ∠为直角时与BEF ∠为直角时两种情况讨论求解即可.【详解】(1)解:把A (4,0)、B (0,2)代入2y x bx c=-++得16402b c c -++=⎧⎨=⎩,解得722b c ⎧=⎪⎨⎪=⎩∴2722y x x =-++(2)解:∵A (4,0)、B (0,2)∴直线AB 的解析式为122y x =-+∵()(),004P m m ≤≤,则27,22E m m m ⎛⎫-++ ⎪⎝⎭,1,22F m m ⎛⎫-+⎪⎝⎭∴122PF m =-+,2722PE m m =-++当F 为线段PE 的中点时,则有2PF PE=即:21722222m m m ⎛⎫-+=-++ ⎪⎝⎭解得14m =(三点重合,舍去)或212m =∴17,24F ⎛⎫ ⎪⎝⎭(3)解:①∵A (4,0),∴4OA =∵27,22E m m ⎛⎫-++ ⎪⎝⎭,1,22F m m ⎛⎫-+ ⎪⎝⎭∴24E F EF y y m m =-=-+∴()()22114422822ABE S OA EF m m m =⋅=⨯⨯-+=--+△∴当2m =时,ABE S 的最大值为8,此时E (2,5)②∵2OB =,4OA =,∴1tan 2OB OAB OA ∠==由(2)可知:B (0,2)、27,22E m m m ⎛⎫-++ ⎪⎝⎭、1,22F m m ⎛⎫-+ ⎪⎝⎭∵BFE AFP∠∠=∴以B 、E 、F 为顶点的三角形与FPA 相似,分两种情况讨论:①当EBF ∠为直角时,则BEF OAB∠∠=∴tan tan BEF OAB ∠=∠,即:12=BF BE ∴224BE BF =,即:22222712242222m m m m m ⎡⎤⎛⎫⎛⎫+-++-=++-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦解得:1112m =(舍去),232m =②当BEF ∠为直角时,则EBF OAB∠∠=∴tan tan EBF OAB ∠=∠,即:12EF BE =∴12EF BE =,即:271122222m m m m-+++-=解得172m =,20m =(舍去)综上所述,m 的值是72或32.【点睛】本题主要考查了待定系数法求解二次函数与一次函数,二次函数的图像及性质,相似三角形的判定及性质,解直角三角形以及解一元二次方程,熟练掌握二次函数的图像及性质是解题的关键。

2023年河南省中考数学模拟试卷(经典三)及答案解析

2023年河南省中考数学模拟试卷(经典三)及答案解析

2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

九年级数学中考模拟试卷(三)

九年级数学中考模拟试卷(三)

九年级数学中考模拟试卷(三)一.选择题(共12小题,满分36分,每小题3分)1.(3分)给出下列数:,其中无理数有()A.1个B.2个C.3个D.4个2.(3分)如图是由5个相同的小正方体组合而成的立体图形,其主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b24.(3分)下列算式中,正确的是()A.3=3B.C.D.=35.(3分)如图,在四边形ABCD中,AD∥BC,AB=5,以A为圆心,以适当的长为半径作圆弧,分别交AB、AD于M、N;分别以M、N为圆心,以大于MN长为半径作圆弧,两弧相交于点G;作射线AG交BC于E;作EF∥AB交AD于F.若AE=6,则四边形ABEF的面积等于()A.48B.24C.30D.156.(3分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了一次测试,两人在相同的条件下各射靶10次,命中的环数进行了如下统计.平均数方差中位数甲747乙7 5.47.5某同学据此表分析得出如下结论:①两名选手的平均成绩相同;②从射击水平稳定发挥的角度考虑应选甲去参加射击比赛;③如果规定7环及7环以上为优秀则乙的优秀率比甲的优秀率高.上述结论中,一定正确的有()个A.①②B.①③C.②③D.①②③7.(3分)如图,在矩形ABCD中,AB=,AD=3,连接AC,点E为AC上一个动点,点F为BC上一个动点,连接BE、EF,且始终满足∠ABE=∠BFE,则线段BF的最小值为()A.1B.C.D.28.(3分)如图,在平面直角坐标系中,点B的坐标为(3,0),AB⊥x轴,OA=4,将△OAB绕点O按顺时针方向旋转90°得到△OA′B′,则点A′的坐标是()A.(﹣,3)B.(,﹣3)C.(﹣5,3)D.(5,﹣3)9.(3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作AF⊥BE,垂足为点F,若AF=5,BE=24,则CD的长为()A.8B.13C.16D.1810.(3分)如图,D1931次西安至成都东动车匀速穿越秦岭隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.11.(3分)关于x的方程+=1的解是正数,则a的取值范围是()A.a>5B.a<5且a≠﹣3C.a<5D.a<5且a≠3 12.(3分)如图①,在长方形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,那么下列说法错误的是()A.MN=5B.长方形MNPQ的周长是18C.当x=6时,y=10D.当y=8时,x=10二.填空题(共5小题,满分15分,每小题3分)13.(3分)一元二次方程x2﹣8x+a=0,配方后为(x﹣4)2=1,则a=.14.(3分)已知圆锥的高为7.6米,底面积半径为2.7米,则圆锥的体积为立方米(π取3.14,结果精确到0.01,圆锥的体积=×底面积×高).15.(3分)两个不透明的口袋里各有一黑一白两个球,分别从两个口袋里随机摸出一个球,摸出的两个球颜色相同的概率是.16.(3分)如图,已知Rt△ABC≌Rt△DEC,∠ECD=∠BCA=90°,∠E=30°,D为AB的中点,BC=,若△DEC绕点D顺时针旋转得到△DE′C′,若DE′,DC′分别与Rt△ABC的直角边BC相交于M,N,则当△DMN为等边三角形时,BN的长为.17.(3分)如图,正方形ABCB,中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4……,依此规律,则线段A2021A2022=.三.解答题(共9小题,满分69分)18.(3分)计算:.19.(4分)先化简再求值:,其中x=﹣2,y=+2.20.(8分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)补全条形统计图,并在扇形统计图中计算D类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3000名学生中“家长和学生都未参与”的人数.21.(8分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.(1)求证:四边形AECD是菱形;(2)过点E作EF⊥CD于点F,若AB=6,BC=10,求EF的长.22.(8分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x辆,七年级共有学生y人,则y=(用含x的式子表示);若租用60座客车,则y=(用含x的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?23.(8分)如图,某海防哨所(O)发现在它的北偏西30°,距离哨所500m的A处有一艘船,该船向正东方向航行,经过3分钟到达哨所东北方向的B处,求该船的航速.(精确到1km/h)24.(8分)如图,一次函数y=﹣x+b与反比例函数y=的图象相交于A(1,4)、B两点,延长AO交反比例函数图象于点C,连接OB.(1)求出一次函数与反比例函数的解析式;(2)写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△P AC=S△AOB?若存在,请求出点P坐标,若不存在,请说明理由.25.(10分)如图,⊙O与△ABC的AB边相切于点B,与AC、BC边分别交于点D、E,DE∥OA,BE是⊙O的直径.(1)求证:AC是⊙O的切线;(2)若∠C=30°,AB=3,求DE的长.26.(12分)综合与探究:如图,抛物线y=﹣x2+x+6与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点.(1)求A,B两点的坐标及直线l的函数表达式.(2)点D是直线l上方抛物线上一点,其横坐标为m,过点D作直线DE⊥x轴于点E,交直线l于点F.当DF=2EF时,求点D的坐标.(3)在(2)的条件下,在y轴上是否存在点P,使得∠P AB=2∠DAB?若存在,请直接写出点P的坐标;若不存在,请说明理由.。

2024年河南省新乡市河南师范大学附属中学九年级中考第三次模拟考试数学试题(含答案)

2024年河南省新乡市河南师范大学附属中学九年级中考第三次模拟考试数学试题(含答案)

2023-2024学年第二学期九年级第三次模拟测试数学试卷(满分120分,时间100分仲)一、选择题(每小题3分,共30分)1.在0,,1,这四个数中,最小的数是( )A .B .1C .D .02.生物学指出,在生物链中大约只有10%的能量能够流动到下一营养级,在某条生物链中(表示第n 个营养级).要使获得785千焦的能量,那么需要提供的能量约为( )A .千焦B .千焦C .千集D .千焦3.米斗是我国古代粮仓、粮栈、米行等必备的用具,是称量粮食的量器,如图(1)是一种无盈米斗,其示图(不计厚度)如图所示(2),则其俯视图是()A .B .C .D .4.下列计算正确的是( )A .B .C .D .5.一副三角板如图所示摆放,若,则的度数是()A .80°B .95°C .100°D .110°6.定义新运算.例如:,则方程的根的情况为( )A .有两个相等的实数股B.有两个不相等的实数根2-3-3-2-123456H H H H H H →→→→→n H 6H 1H 37.8510-⨯47.8510-⨯77.8510⨯87.8510⨯3332b b b⋅=()257aa =()2224a a -=()()235ab ab ab +=185∠=︒2∠11a b ab ab ⊗=--23434341⊗=⨯-⨯-10x ⊗=C .没有实数根D .无法判断7.如图,在平行四边形ABCD 中,点E 在AD 上,BE 平分∠ABC ,交AC 于点O 。

若,,则的值为( )A.B .C .D .8.二次的函数的图象如图所示,则一次函数的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限9.如图,在平面直角坐标系中,Rt △ABC 的顶点A 在x 轴上,顶点B 在y 轴上,,轴,点C 的坐标为,作△ABC 关于直线AB 的对称困形,其中点C 的对称点为M ,且AM 交y 轴于点N 。

2023年中考数学第三次模拟考试卷及解析(天津卷)

2023年中考数学第三次模拟考试卷及解析(天津卷)

2023年中考数学第三次模拟考试卷及解析(天津卷)第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2-的倒数是()A.2B.2-C.0.5D.0.5-【答案】D【分析】直接利用倒数的定义分析得出答案.【详解】解:2-的倒数是:12-.故选:D.【点睛】此题主要考查了倒数的定义,正确把握相关定义是解题关键.2.2sin60︒的值等于()A.12B.1C D.【答案】C【分析】根据特殊角的三角函数值直接解答即可.【详解】解:2sin602︒==故选C.【点睛】本题主要考查了特殊角三角函数值,熟知60度角的正弦值为2是解题的关键.3.我国新能源汽车发展迅猛,下列新能源汽车标志既是轴对称图形又是中心对称图形的是()A .B .C .D .【答案】C【分析】根据中心对称与轴对称的定义进行判断即可.【详解】解:A 中图形不是中心对称图形,是轴对称图形,故此选项不合题意;B 中图形不是中心对称图形,也不是轴对称图形,故此选项不合题意;C 中图形既是中心对称图形,也是轴对称图形,故此选项符合题意;D 中图形不是中心对称图形,是轴对称图形,故此选项不合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的识别.解题的关键在于熟练掌握:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形.4.2023年春节假日期间,合肥市共接待游客458.6万人,全市旅游综合收入27.23亿元,其中数据458.6万用科学记数法可表示为()A .4458.610⨯B .545.8610⨯C .64.58610⨯D .74.58610⨯【答案】C【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数.【详解】解:数据458.6万用科学记数法可表示为64.58610⨯.故选:C .【点睛】本题考查了科学记数法,掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数是关键.5.下图是一个由5个相同的正方体组成的立体图形,它的左视图是()A .B .C .D .【答案】D【分析】左视图是从左边看到的图形,据此即可求解;【详解】立体图形的左视图是,故选:D .【点睛】本题考查三视图;熟练掌握三视图的观察方法是解题的关键.6.估算的值应在()A .3和4之间B .4和5之间C .5和6之间D .6和7之间【答案】B=∴45<<,的值应在4和5之间.故答案为:B .【点睛】本题考查估算无理数的大小,注意在估算乘以2是解本题的关键.7.计算y x x y x y ---的结果是()A .1-B .1C .y x -D .1x y -【答案】A 【分析】根据同分母分式减法计算法则求解即可.【详解】解:1y x y x x y x y x y--==----,故选A .【点睛】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.8.已知方程2310x x -+=的两个根分别为1x 、2x ,则1212x x x x +-⋅的值为()A .7B .5C .3D .2【答案】D【分析】根据一元二次方程根与系数的关系得出121231x x x x +=⋅=,,进而即可求解.【详解】解:∵方程2310x x -+=的两个根分别为1x 、2x ,∴121231x x x x +=⋅=,,∴1212312x x x x +-⋅=-=,故选:D .【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=≠的两根,12b x x a +=-,12c x x a =,掌握一元二次方程根与系数的关系是解题的关键.9.如图,以平行四边形ABCD 对角线的交点O 为原点.平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若D 点坐标为()5,3.则B 点坐标为()A .()4,3--B .()3,5--C .()5,3--D .()3,4--【答案】C【分析】根据平行四边形是中心对称图形,即可得到点B 的坐标.【详解】解:∵四边形ABCD 为平行四边形,∴点B 和D 关于对角线的交点O 对称,又∵O 为原点,D 点坐标为()5,3,∴点B 的坐标为()5,3--,故选:C .【点睛】本题考查平行四边形的性质、坐标与图形性质,解答本题的关键是明确题意,利用平行四边形的中心对称性解答.10.已知反比例函数21a y x+=(a 为常数)图象上三个点的坐标分别是()11A x y ,,()22B x y ,,()33C x y ,,其中1230x x x <<<,则1y ,2y ,3y 的大小关系是()A .123y y y <<B .231y y y <<C .132y y y <<D .321y y y <<【答案】C 【分析】证明210a +>得到反比例函数21a y x +=的图象经过第一、三象限,且在每个象限内y 随x 增大而增大,据此求解即可.【详解】解:∵20a ≥,∴210a +>,∴反比例函数21a y x+=的图象经过第一、三象限,且在每个象限内y 随x 增大而增大,∵1230x x x <<<,∴1320y y y <<<,故选C .【点睛】本题主要考查了比较反比例函数函数值的大小,正确得到反比例函数21a y x+=的图象经过第一、三象限,且在每个象限内y 随x 增大而增大是解题的关键.11.如图,已知直线l AB ∥,l 与AB 之间的距离为3.C 、D 是直线l 上两个动点(点C 在D 点的左侧),且5AB CD ==.连接AC 、BC 、BD ,将ABC 沿BC 折叠得到A BC ' .下列说法:①四边形ABDC 的面积始终为15;②当A '与D 重合时,四边形ABDC 是菱形;③当A '与D 不重合时,连接A '、D ,则180CA D BCA ''∠+∠=︒;④若以A '、C 、B 、D 为顶点的四边形为矩形,则此矩形相邻两边之和为或8.其中正确的是()A .①②③B .①③④C .①②④D .①②③④【答案】A【分析】①根据平行四边形的判定方法可得到四边形ABCD 为平行四边形,然后根据平行四边形的面积公式计算;②根据折叠的性质得到AC CD =,然后根据菱形的判定方法可判断四边形ABDC 是菱形;③连接A 'D ,根据折叠性质和平行四边形的性质得到C A 'CA BD ==,AB CD A B '==,12CBA ∠=∠=∠,可证明A CD '△≌DBA '△,则3=4∠∠,然后利用三角形内角和定理得到得到14∠=∠,则根据平行线的判定得到A 'D ∥BC ;④分类讨论:当90CBD ∠=︒,则90BCA ∠=︒,由于152A CB ABC S S '== ,则15A CBD S '=矩形,根据勾股定理和完全平方公式进行计算;当90BCD ∠=︒,则90CBA ∠=︒,易得3BC =,而5CD =,于是得到结论.【详解】①5AB CD == ,AB ∥CD ,∴四边形ABCD 为平行四边形,∴四边形ABDC 的面积3515=⨯=;故①正确;② 四边形ABDC 是平行四边形,A '与D 重合时,AC CD ∴=,四边形ABDC 是平行四边形,∴四边形ABDC 是菱形;故②正确;③连接A 'D ,如图,ABC 沿BC 折叠得到A BC ' ,∴CA CA BD '==,AB CD A B '==,在A CD '△和DBA '△中CA BD CD BA A D A D '⎧⎪'⎨⎪''⎩===,∴A CD '△≌DBA '△(SSS )34∴∠=∠,又12CBA ∠=∠=∠ ,1234∴∠+∠=∠+∠,14∴∠=∠,∴∥A D BC ','CA D BC ∴∠+∠A '180=︒;故③正确;④设矩形的边长分别为a ,b ,当90CBD ∠=︒,l AB∥90BCA ∴∠=︒,∴1153522A CB ABC S S '==⨯= ,∴15A CBD S '=矩形,即15ab =,而5BA BA '==,2222BC BD CD AB +==∴2225a b +=,∴()2222253055a b a b ab +=++=+=,∴a b +=,当90BCD ∠=︒时,l AB∥90CBA ∴∠=︒,3BC ∴=,而5CD =,∴8a b +=,∴8.故④不正确.故选:A .【点睛】本题考查了平行四边形的性质,菱形的判定,勾股定理,全等三角形的性质与判定,折叠的性质,熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.12.二次函数()20y ax bx c a =++≠的部分图象如图所示,图象过点()1,0-,对称轴为直线2x =,下列结论:(1)0a b +=.(2)93a c b +>-.(3)7320a b c -+>.(4)若点()13,A y -、点()22,B y -,点()38,C y 在该函数图象上,则132y y y <<.(5)方程()()()1530a x x a +-=-≠有两个不相等的实数根,其中正确的结论有()A .5个B .4个C .3个D .2个【答案】C【分析】(1)由对称轴为直线2x =,根据对称轴公式进行求解即可;(2)可求图象与x 轴的另一个交点是()5,0,可判断当3x =时,0y >,进而可以判断;(3)可求0a b c -+=,4b a =-,从而可求5c a =-,进而可以判断;(4)可求()38,C y 关于直线2x =的对称点是()34,y -,用增减性即可判断;(5)可以化成直线=3y -与抛物线()()15y a x x =+-交点个数,即可判断.【详解】解:(1) 对称轴为直线2x =,22b a∴-=,40a b ∴+=正确;(2) 图象过点()1,0-,对称轴为直线2x =,∴图象与x 轴的另一个交点是()5,0,∴当3x =时,0y >,930a b c ∴++>,93a c b ∴+>-正确;(3) 图象过点()1,0-0a b c ∴-+=,40a b += ,4b a ∴=-,40a a c ∴++=,5c a ∴=-,732a b c∴-+71210a a a =+-9a =,0a < 90a ∴<7320abc ∴-+>错误;(4)()38,C y 关于直线2x =的对称点是()34,y -,4322-<-<-< ,312y y y ∴<<,132y y y ∴<<错误;(5)方程()()()1530a x x a +-=-≠有两个不相等的实数根,由(1)(2)得:2y ax bx c=++()()15a x x =+- 直线=3y -与抛物线()()15y a x x =+-有两个交点,∴方程()()()1530a x x a +-=-≠有两个不相等的实数根,正确;综上所述:(1)(2)(5)正确.故选:C .【点睛】本题考查了二次函数的基本性质,掌握基本性质是解题的关键.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算27x x ⋅=________.【答案】9x 【分析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】279x x x ⋅=,故答案为:9x .【点睛】本题考查了同底数幂相乘,熟练掌握底数不变,指数相加是解题的关键.14.计算(22+-的结果等于_________.【答案】14-【分析】根据平方差公式进行计算即可求解.【详解】解:(22+-418=-14=-.故答案为:14-.【点睛】本题考查了二次根式的乘法,熟练掌握平方差公式是解题的关键.15.一个不透明的袋中装有除颜色外大小形状都相同的三种球,其中红球、黄球、黑球的个数之比为5:3:2.从袋子中任意摸出1个球,结果是红球的概率为________.【答案】12【分析】根据概率公式计算即可.【详解】∵红球、黄球、黑球的个数之比为5:3:2.∴结果是红球的概率为515322=++.故答案为:12.【点睛】本题考查了根据概率公式计算,熟练掌握公式是解题的关键.16.如果一次函数y kx b =+(0k ≠)的图象经过(0,1)-,且与直线2y x =-平行,那么这个一次函数的解析式是________.【答案】21y x =--【分析】本题通过已知与直线2y x =-平行,可知要求的函数解析式为2y x b =-+,将点(0,1)-代入表达式,求出b 值,就求出了函数解析式.【详解】解:设这个一次函数的解析式为y kx b =+,∵该一次函数的图象与直线2y x =-平行,∴2k =-,即函数表达式为2y x b =-+,将点(0,1)-代入表达式得,120b -=-⨯+,1b =-,函数表达式为:21y x =--,故答案为:21y x =--.【点睛】本题考查一次函数图象平行时,k 值相等,通过代入经过的点来求出函数表达式.17.如图,已知ABCD Y 中,5AD BC ==,CD =tan 2C =,则ABCD Y 的面积为______,若E 为对角线BD 上点(不与B 、D 重合),EF BC ∥交CD 于点F ,G 为AF 中点,则EG 的最小值为______.【答案】20【分析】①过D 点作DM BC ⊥于点M ,根据tan 2C =,结合勾股定理求出24DM CM ==,平行四边形面积可求;②以B 为原点,BC 所在直线为x 轴,建立直角坐标系,即可得()0,0B ,()5,0C ,()3,4D ,()2,4A -,采用待定系数法求出直线CD 、直线BD 的解析式,设点E 的横坐标为m ()03m <≤,可得4,3E m m ⎛⎫⎪⎝⎭,根据EF BC ∥,可得245,33F m m ⎛⎫- ⎪⎝⎭,根据()2,4A -,G 为AF 中点,可得312,2233G m m ⎛⎫-+ ⎪⎝⎭,即有EG =,令2202025934y m m =-+,根据二次函数的图像与性质即可作答.【详解】解:①过D 点作DM BC ⊥于点M ,如图,∵在Rt DMC 中,tan 2C =,∴tan 2DMC CM∠==,即2DM CM =,∵CD =222CD MC DM =+,∴(2224MC MC =+,∴2MC =,即24DM CM ==,∵5AD BC ==,∴5420ABCD S BC DM =⨯=⨯=Y ;②如图,以B 为原点,BC 所在直线为x 轴,建立直角坐标系,∵5AD BC ==,2MC =,4DM =,即3BMBC CM =-=,根据对称性可知2AH MC ==,∴()0,0B ,()5,0C ,()3,4D ,()2,4A -,设直线CD 的解析式为:y kx b =+,即有:5034k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩,∴直线CD 的解析式为:210y x =-+,同理可得直线BD 的解析式为:43y x =,设点E 的横坐标为m ()03m <≤,则其纵坐标为:43m ,∴4,3E m m ⎛⎫⎪⎝⎭,∵EF BC ∥,∴点F 的纵坐标为:43m ,∴42103m x =-+,解得:253x m =-,∴245,33F m m ⎛⎫- ⎪⎝⎭,∵()2,4A -,G 为AF 中点,∴312,2233G m m ⎛⎫-+ ⎪⎝⎭,∵4,3E m m ⎛⎫ ⎪⎝⎭,∴EG =,整理,得:EG =令2202025934y m m =-+,且03m <≤,即:22035924y m ⎛⎫=-+ ⎪⎝⎭,∵2009>,当32m =时,函数有最小值,即最小值为54y =,∴最小的EG ===故答案为:20.【点睛】本题考查了二次函数的图像与性质,勾股定理,待定系数法求解一次函数解析式,解直角三角形以及平行四边形的性质等知识,构造直角坐标系,灵活运用二次函数的图像与性质,是解答本题的关键.18.如图,在每个小正方形的边长为1的网格中.ABC 是圆的内接三角形,点A 在格点上.点B ,C 在网格线上,且点C 是小正方形边的中点.(Ⅰ)线段AC 的长度等于_________;(Ⅱ)请用无刻度的直尺,在圆上找一点P ,使得90BAP BCA ∠+∠=︒,并简要说明点P 是如何找到的(不要求证明)_________.【答案】延长AC至E,作EF=则90∠=︒,同理作出FH=E找到小正方形边的中点G,连接CG交 于点P,点P即为所求.【分析】(1)根据网格和勾股定理即可求解;(2)延长AC至E,作EF=90∠=︒,同理作出FH=,找到小正方E形边的中点G,连接CG交圆于点P,点P即为所求.【详解】解:(1)依题意AC=(2)如图所示延长AC至E,作EF=90∠=︒,同理作出FH=E找到小正方形边的中点G,连接CG交圆于点P∴四边形CEFG是矩形,∴90ACP ∠=︒,∴AP 是直径,∴90ACP ∠=︒∵ BPBP =,∴BAP BCP∠=∠∴90BAP BCA BCP BCA ACP ∠+∠=∠++∠=∠=︒,∴点P 即为所求.【点睛】本题考查了勾股定理,直角所对的弦是直径,同弧所对的圆周角相等,找到直径是解题的关键.三、解答题(本大题共7小题,19、20题每题8分,21-25题每题10分满分66分)19.解不等式组211213x x +≥-⎧⎨+≤⎩,①,②请结合题意填空,完成本题的解答:(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.【答案】(1)1x ≥-(2)1x ≤(3)见解析(4)11x -≤≤【分析】(1)根据不等式的性质解不等式①;(2)根据不等式的性质解不等式②;(3)将①②的解集表示在数轴上;(4)根据数轴上的解集的公共部分即可求解.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握求一元一次不等式组解集的方法是解题的关键.20.为了解某校九年级男生在体能测试的引体向上项目的情况,随机抽取了部分男生引体向上项目的测试成绩,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的男生人数为______,图①中m 的值为______;(2)求本次调查获取的样本数据的平均数、众数和中位数;【答案】(1)40;25(2)平均数5.8,众数5,中位数6【分析】(1)求和得到本次接受随机抽样调查的男生人数,然后用6次的人数除以总人数计算求出m ;(2)根据平均数的计算公式求出平均数,根据众数和中位数的概念求出众数和中位数.【详解】(1)接受随机抽样调查的男生人数612108440=++++=(人),10%100%25%40m =⨯=,则25m =,故答案为:40;25;(2)平均数()1465126108784 5.840=⨯⨯+⨯+⨯+⨯+⨯=,出现次数最多的是5次,故众数是5,将数据从小到大排列,在中间的是6和6,故中位数是6662+=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,AB 是O 的直径,点C 在O 上,CD 平分ACB ∠交O 于点D ,30ABC ∠=︒.(1)如图①,若点E 是 BD的中点,求BAE ∠的大小;(2)如图②,过点D 作O 的切线,交CA 的延长线于点F ,若DG CF 交AB 于点G ,8AB =,求AF 的长.【答案】(1)22.5︒【分析】(1)根据AB 是O 的直径,CD 平分ACB ∠,可得1452BCD ACB Ð=Ð=°,再根据点E 是 BD的中点,122.52BAE BCD ∠=∠=︒,问题得解;(2)连接OD ,先证明AB OD ⊥,再根据FD 为O 的切线,可得FD OD ⊥,即有FD AB ∥,即可得四边形AFDG 为平行四边形,则有AF DG =,由30ABC ∠=︒,可得60DGA CAB ∠=∠=︒,即有sin OD DG DGO ==∠【详解】(1)∵AB 是O 的直径,∴90ACB ∠=︒,∵CD 平分ACB ∠,∴1452BCD ACB Ð==°,∵点E 是 BD的中点,∴ 12BE BD =,∴122.52BAE BCD ∠=∠=︒;(2)连接OD ,如图,∵AB 是O 的直径,∴90ACB ∠=︒,∵CD 平分ACB ∠,∴1452BCD ACB Ð==°,∴290BOD BCD ∠=∠=︒,∴AB OD ⊥,∵FD 为O 的切线,∴FD OD ⊥,∴FD AB ∥,∵DG CF ,∴四边形AFDG 为平行四边形,∴AF DG =,∵30ABC ∠=︒,∴60CAB ∠=︒,∵DG CF ,∴60DGA CAB ∠=∠=︒,∵8AB =,OD AB ⊥,∴4OD =,∴sin OD DG DGO ==∠∴AF DG ==.【点睛】本题考查了圆周角定理,切线的性质,解直角三角形以及平行四边形的判定与性质等知识,掌握圆周角定理是解答本题的关键.22.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD 的A ,C 两点处测得该塔顶端E 的仰角分别为48︒和63︒,矩形建筑物宽度20m AD =,高度33m DC =.计算该信号发射塔顶端到地面的高度EF (结果精确到1m ).参考数据:sin 480.7,cos480.7,tan 48 1.1,sin 630.9,cos630.5,tan 63 2.0︒≈︒≈︒≈︒≈︒≈︒≈.【答案】信号发射塔顶端到地面的高度EF 约为122m【分析】延长AD 交EF 于点G ,根据题意可得:AG EF ⊥,33m,DC FG DG CF ===,然后设m DG CF x ==,在Rt CEF 中,利用锐角三角函数的定义求出EF 的长,从而求出EG 的长,再在Rt AGE 中,利用锐角三角函数的定义列出关于x 的方程,进行计算即可解答.【详解】解:延长AD 交EF 于点G ,由题意得:AG EF ⊥,33m DC FG ==,DG CF =,设m,DG CF x ==在t R CEF 中,63ECF ∠=︒,()tan632m EF CF x ∴=⋅︒≈,()233m,EG EF FG x ∴=-=-20m,AD = ()20m,AG AD DG x ∴=+=+在Rt AGE 中,48EAG ∠=︒,233tan 48 1.120EG x AG x-==≈+︒∴,解得:61.1x ≈,经检验:61.1x =是原方程的根,()2122m EF x ∴=≈,∴信号发射塔顶端到地面的高度EF 约为122m .【点睛】本题考查了解直角三角形的应用-仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.23.快递站、药店和客户家依次在同一直线上,快递站距药店、客户家的距离分别为600m 和1800m ,快递员小李从快递站出发去往客户家送快递,他先匀速骑行了10min 后,接到该客户电话,又用相同的速度骑行了6min 返回刚才路过的药店帮该客户买药,小李在药店停留了4min 后,继续去往客户家,为了赶时间他加快速度,匀速骑行了6min 到达客户家准时投递.下面的图像反映了这个过程中小李离快递站的距离()m y 与离开快递站的时间()min x 之间的对应关系.请解答下列问题:(1)填表:小李离开快递站的时间/()min x 28161826小李离快递站的距离/m300600(2)填空:①药店到客户家的距离是_________m ;②小李从快递站出发时的速度为_________m/min ;③小李从药店取完药到客户家的骑行速度为_________m/min ;④小李离快递站的距离为1200m 时,他离开快递站的时间为_________min ;(3)当1026x ≤≤时,请直接写出y 关于x 的函数解析式.【答案】(1)1200,600,1800(2)①1200;②150;③200;④8或12或23(3)()()()15030001016600162020034002026x x y x x x ⎧-+≤≤⎪=<≤⎨⎪-<≤⎩【分析】(1)由图像可求出小李在16分钟之前的速度,从而可以求出8x =时小李离快递站的距离,然后从图像中直接得出18x =,26时y 的值;(2)①由图可得;②由(1)中结论可得;③根据速度、路程、时间的关系可得;④由图可知,在3个时间点时,小李距快递站1200m ,分别计算即可;(3)先分段,再由待定系数法分段求函数解析式.【详解】(1)解:由图可知,小李离开快递站匀速骑行了10min ,骑行了1500m ,速度为:()150010150m /min ÷=,当8x =时,小李离快递站的距离为:()15081200m ⨯=,当18x =时,小李在药店买药,离快递站的距离为600m ,当26x =时,小李到达客户家,离快递站的距离为1800m ,故答案为:1200,600,1800;(2)解:①由图可知,药店到客户家的距离是()180********m -=;②由(1)知,小李从快递站出发时的速度为150m /min ;③小李从药店取完药到客户家的骑行速度为()1800600200m /min 2620-=-;④小李第一次离快递站的距离为1200m 时,所需时间为()12008min 150=,第二次离快递站的距离为1200m 时,所需时间为()150012001012min 150-+=,第三次离快递站的距离为1200m 时,所需时间为()12006002023min 200-+=,故答案为:①1200;②150;③200;④8或12或23;(3)解:当1016x ≤≤时,设y 关于x 的函数解析式为y kx b =+,将()10,1500,()16,600代入,可得:10150016600k b k b +=⎧⎨+=⎩,解得1503000k b =-⎧⎨=⎩,∴1503000y x =-+;当1620x <≤时,600y =;当2026x <≤时,设y 关于x 的函数解析式为y mx n =+,将()20,600,()26,1800代入,可得:20600261800m n m n +=⎧⎨+=⎩,解得2003400m n =⎧⎨=-⎩,∴2003400y x =-;综上所述,y 关于x 的函数解析式为:()()()15030001016600162020034002026x x y x x x ⎧-+≤≤⎪=<≤⎨⎪-<≤⎩.【点睛】本题考查一次函数的实际应用,解题的关键是理解题意,能够从图中获取关键信息.24.在一次数学兴趣小组活动中,小明将两个形状相同,大小不同的三角板AOB 和三角板DEB 放置在平面直角坐标系中,点()0,0O ,()0,3A ,30ABO ∠=︒,3BE =.(1)如图①,求点D 的坐标;(2)如图②,小明同学将三角板DEB 绕点B 按顺时针方向旋转一周.①若点O ,E ,D 在同一条直线上,求点D 到x 轴的距离;②连接DO ,取DO 的中点G ,在旋转过程中,点G 到直线AB 的距离的最大值_____________(直接写出结果即可).【答案】(1)3,3)(2)11;②4【分析】(1)由直角三角形的性质求出6,AB =根据勾股定理求出OB =,得到3,OE =再运用勾股定理求出DE =D 的坐标;(2)①分点E 在OB 上方和下方,利用面积法求解即可;②取OB 的中点M ,连接MG ,过点M 作MN AB ⊥于点N ,可得MG 为OBD 的中位线,可判断点G 在以MG 到直线AB 的距离的最大值.【详解】(1)(0,3)A 3,OA \=在Rt AOB △中,30,ABO ∠=︒2236,AB OA ∴==⨯=OB ∴===在Rt DEB △中,30,DBC ∠=︒ 2,BD DE ∴=又222DE BE BD +=,2223(2),DE DE ∴+=解得,DE =又 3.BE =,3OE ∴=-∴点D 的坐标为3,3);(2)①分两种情况:当点E 在OB 上方时,如图,过点D 作DF x ⊥轴于点F ,90;BED ︒∠= 90,BFO ρ∴∠=OE ∴=DO OE DE ∴=+=+11,22OBD OD BE OB DF S ∆=⋅=⋅ 11322DF ∴⨯=⨯⨯,1DF ∴=;当点E 在OB 下方时,如图,过点D 作DG x ⊥轴于点G ,在Rt DEB△中,3,OB BE==∴DE===∴3,OD DE DE=-=∵11,22OBDS OB OG OD BE ∆=⋅=⋅∴113, 22DG⨯=⨯∴1,DG=综上,点D到x11;②如图,取OB的中点M,连接MG,过点M作MN AB⊥于点N,∵M为OB的中点,G为BD的中点,∴MG为OBD的中位线,∴点G在以M∵M为OB的中点,∴122OM BM OB ===,在Rt MNB △中,,30MBN ∠=︒1122MN BM ∴===当点G 运动到点G '时,此时,,G M N '三点共线,点G 到AB 的距离最大,最大值为,NG 'NG MG MN ''∴=+==∴点G 到AB 的中大距离为4,【点睛】本题主要考查了坐标与图形,勾股定理,面积法,三角形中位线定理以及圆的有关知识,正确作出辅助线构造直角三角形是解答本题的关键.25.已知抛物线2y x bx c =++(b ,c 是常数)的顶点为P ,经过点()0,3C ,与x 轴相交于A ,B 两点(点A 在点B 的左侧).(1)当2b =时,求抛物线的顶点坐标;(2)若将该抛物线向右平移2个单位后的顶点坐标为(,)m n ,求42n m -的最大值;(3)若抛物线的对称轴为直线2x =,M ,N 为抛物线对称轴上的两个动点(M 在N 上方),1MN =,()4,0D ,连接CM ,ND ,当CM MN ND ++取得最小值时,将抛物线沿对称轴向上平移后所得的新抛物线经过点N ,求新抛物线的函数解析式.【答案】(1)()1,2-(2)184(3)245y x x =-+【分析】(1)当0x =时,3y c ==,即可得抛物线解析式为:223y x x =++,问题得解;(2)由(1)可知3c =,即有抛物线解析式为:23y x bx =++,配成顶点式为:22324b b y x ⎛⎫=++- ⎪⎝⎭,可得新抛物线的顶点坐标(,)m n 为:22,324b b ⎛⎫-- ⎪⎝⎭,即22b m =-,234b n =-,则有2428n m b b -=-++,问题随之得解;(3)在OC 上取一点E ,使得CE MN =,连接DE ,EN ,DE 与抛物线对称轴交于点F ,四边形CENM 是平行四边形,即有CM EN =,1CE NM ==,结合图形可知:EN ND ED +≥,当且仅当E 、N 、D 三点共线时取等号,即当E 、N 、D 三点共线时,EN ND +有最小值,最小值为ED ,即点N 与点F 重合,利用待定系数法求出直线ED 的解析式为:122y x =-+,即()2,1F ,则有()2,1N ,问题随之得解.【详解】(1)根据题意:当0x =时,3y c ==,∵2b =,∴抛物线解析式为:223y x x =++,配成顶点式为:()212y x =++,∴抛物线的顶点坐标为:()1,2-;(2)由(1)可知3c =,∴抛物线解析式为:23y x bx =++,配成顶点式为:22324b b y x ⎛⎫=++- ⎪⎝⎭,∴抛物线的顶点坐标为:2,324b b ⎛⎫-- ⎪⎝⎭,∵抛物线向右平移2个单位,∴抛物线的顶点也向右平移2个单位,∴新抛物线的顶点坐标(,)m n 为:22,324b b ⎛⎫-- ⎪⎝⎭,即22b m =-,234b n =-,∴2428n m b b -=-++,∴21114288244n m b ⎛⎫-=--+≤ ⎪⎝⎭,∴42n m -的最大值为184;(3)如图,在OC 上取一点E ,使得CE MN =,连接DE ,EN ,DE 与抛物线对称轴交于点F ,∵M ,N 为抛物线对称轴上的两个动点,∴MN y ∥轴,即CE MN ∥,∵CE MN =,∴四边形CENM 是平行四边形,∴CM EN =,1CE NM ==,∵1MN =,∴1CM MN ND EN ND ++=++,∵结合图形可知:EN ND ED +≥,当且仅当E 、N 、D 三点共线时取等号,∴当E 、N 、D 三点共线时,EN ND +有最小值,最小值为ED ,即点N 与点F 重合,∵()0,3C ,∴3OC =,∴2=-=OE OC CE ,∴()0,2E ,∵()4,0D ,∴设直线ED 的解析式为:y kx t =+,∴240t k t =⎧⎨+=⎩,解得:212t k =⎧⎪⎨=-⎪⎩,∴直线ED 的解析式为:122y x =-+,∵抛物线的对称轴为直线2x =,∴F 点横坐标为2,∴当2x =时,1y =,即()2,1F ,∵点N 与点F 重合,∴()2,1N ,∵抛物线沿对称轴向上平移后所得的新抛物线经过点N ,∴点()2,1N 为新抛物线的顶点,∴新抛物线解析式为:()222145y x x x =-+=-+.【点睛】本题主要考查了二次函数的图象与性质,二次函数的平移,平行四边形的判定与性质等知识,构造辅助线,得出当E 、N 、D 三点共线时,EN ND +有最小值,最小值为ED ,进而求出()2,1N ,是解答本题的关键.。

人教版九年级中考冲刺数学模拟卷3(附答案)

人教版九年级中考冲刺数学模拟卷3(附答案)

中考数学试卷一、单选题。

(共10题;共30分。

)1、如图.将四根长度相等的细木条首尾相连.用钉子钉成四边形.转动这个四边形.使它形状改变.当. 时. 等于()。

A. B. C. D.2、某种药品原价为元/盒.经过连续两次降价后售价为元/盒.设平均每次降价的百分率为.根据题意.所列方程正确的是()。

A. B.C. D.3、一个盒子装有除颜色外其它均相同的2个红球和1个白球.现从中任取2个球.则取到的是一个红球.一个白球的概率为()。

A.14B.12C.23D.344、下列各组线段单位: cm 中.成比例的是()。

A. 1.2.3.4B. 6.5.10.15C. 3.2.6.4D. 15.3.4.105、对于函数y=4x.下列说法错误的是()。

A.点(23.6)在这个函数图象上B.这个函数的图象位于第一、三象限C.这个函数的图象既是轴对称轴图形又是中心对称图形D.当x>0时.y随x的增大而增大6、计算sin30°·tan45°的结果是()。

A. 12B. √32C. √36D. √247、如图所示.⊙O的半径为10.弦AB的长度是16.ON垂直AB.垂足为N.则ON的长度为()。

A.5B.6C.8D.108、抛物线y=﹣2(x+6)2+5的顶点坐标()。

A.(﹣6.5)B.(6.5)C.(6.﹣5)D.(﹣2.5)9、sin45°+cos45°的值等于()。

A.√2B.√3+12C.√3D.110、已知抛物线y=ax2+bx+c中.4a﹣b=0.a﹣b+c>0.抛物线与x轴有两个不同的交点.且这两个交点之间的距离小于2.则下列结论:①abc<0.②c>0.③a+b+c >0.④4a>c.其中.正确结论的个数是()。

A.4B.3C.2D.1二、填空题。

(共8题;共24分。

)11、正方形、菱形、矩形的对角线都具有的共同特征是______.12、关于的方程有两个不相等的实数根.则的取值范围为________.13、甲、乙、丙、丁4名同学进行一次乒乓球单打比赛.要从中随机选出2名同学打第一场比赛.其中有乙同学参加的概率是_____________ .14、如图.已知DE∥BC.AD=3.AB=9.AE=2.5.则EC=.15、若y=是反比例函数.则m=________.16、已知Rt△ABC中.∠C=90°.AB=15.tanA=.则AC=____.17、如图.△ABC内接于⊙O.∠ABC=70°.∠CAB=50°.点D在⊙O上.则∠ADB的大小为.18、如图.抛物线y=ax 2+bx+c(a≠0)的对称轴为直线x=﹣1.下列结论中:①abc <0;②9a﹣3b+c<0;③b 2﹣4ac>0;④a>b.正确的结论是_____。

湖北省孝感市2024届九年级下学期中考三模数学试卷(含答案)

湖北省孝感市2024届九年级下学期中考三模数学试卷(含答案)

数学试卷(本试卷共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区城均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔。

4.考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10题,每小题3分,共30分。

在每题给出的四个选项中,只有一项符合题目要求)1.实数的相反数是()A.B.5 C.D.2.下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.3.函数中,自变量x的取值范围是()A.B.C.D.4.下列运算正确的是()A.B.C.D.5.下表记录了甲、乙、丙、丁四个科技创新小组最近几次选拔赛成绩的平均数和方差,如果要选出一个成绩较好且状态稳定的小组去参赛,那么应选的小组是()甲乙丙丁平均数88929288方差0.9 1.51 1.8A.甲B.乙C.丙D.丁6.一元二次方程的两根为,,则的值为()A.2 B.C.3 D.7.如图,用直尺和圆规作的角平分线,根据作图痕迹,下列结论不一定正确的是()A.B.C.D.8.半径为的圆内接正五边形一边所对的劣弧的长为()A.B.C.D.9.图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.测得,阳光垂直照射地面时雕塑的影长,则雕塑的高BC的长约为()(参考数据:,,,结果保留两位小数)A.B.C.D.10.已知抛物线(a,b,c是常数,)经过点(,)和(0,1),当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③;④若方程的两根为,,则.其中,正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5题,每小题3分,共15分)11.请写出使不等式成立的一个x的值为________.12.如图,平面镜MN放置在水平地面CD上,墙面于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在ED上,若,则的度数为________.13.为了解某地区九年级学生的视力情况,从该地区九年级学生中随机抽取了部分学生进行调查,根据调查结果,绘制了如下两幅不完整的统计图.该地区九年级学生共有4000人,根据以上统计分析,估计该地区九年级学生中视力正常的人数约有________人.14.元朝朱世杰所著的《算学启蒙》中,记载有这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,则可列方程为为________.15.如图1,在中,,,,点D是AC的中点,点E是AB的中点,连接DE.如图2,将绕A点顺时针旋转到点C,D,E首次在同一条直线上,连接BE.则BE的长为________.三、解答题(共9题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学中考模拟试卷三
一、填空题:(每题3分 共36分)
1、下列各式 ①x
y 2=
②732+-=x y ③ x y -=1 ④x y 43=
⑤ 221x y -= ⑥()312
1
--=x y 其中是一次函数的有( ),是正比例函数
的有( ) (填序号)
2、x x y -++=
23
1中,自变量的取值范围是( )
3、已知点()b a M ,其中b a ,是一元二次方程0322
=--x x 的两根,则点M 的坐标为( )
4、若一次函数()()32++-=n x m y 的图象经过原点且y 随x 的增大而减小,则n m , 应满足的条件是( )
5、函数b kx y +=如果0>k ,0<b 则它的图象经过( )象限,y 随x 的增大而( )
6、在⊙O 中,已知∠AOB=︒100 则弦AB 所对的圆周角是( )
7、已知α是锐角,且2
1sin x
-=α 则x 的取值范围是( )
8、已知32+是方程01tan 42
=+⋅-x x θ的一根,则=θcos ( )(θ为锐角)
9、如图:∠BAC=︒50 ADBCE 为⊙O 内接五边形,则∠D+∠E 的度数为( )
10、如图,在⊙
O 中,
直径AB=10 弦AD=8 E P 是弦AD 上一个动点, 那么OP 的取值范围是 ( )
(第9题) (第10题)
二、选择题(每题3分,共30分)
11、四边形ABCD 是⊙O 的内接四边形,则∠A ∠B ∠C ∠D 的度数比依次是( ) (A )1:2:3:4 (B )6:7:8:9 (C )4:1:3:2 (D )14:3:1:12
12、已知∠A 是锐角,且4
3
cos =
A 则有( ) (A )︒<<︒300A (
B )︒<<︒4530A (
C )︒<<︒6045A (
D )
︒<<︒9060A 13、判断下列数量关系中,①正方形周长与它的一边长 ②圆周长和它的半径 ③圆的面积
和它的周长 ④矩形面积一定时,长y 与宽x ⑤买15斤梨售价25元,买x 斤梨的售价y(元)与斤数x ⑥某人年龄与体重,其中是正比例函数关系的有( ) (A )①②④ (B )①②⑤ (C )①④⑤ (D )①③⑤
14、已知方程0cot 6222
2
=∂+-x x 有两个相等的实数根,则锐角∂等于( ) (A )︒30 (B )︒60 (C )︒45 (D )以上都不对
15、若()
21
22
-+=--m m
x m m y 为一次函数,则m 的值为( )
(A )m=2或1-=m (B )2=m 且0≠m (C )2=m (D )1-=m
16、点N 在y 轴左侧,且到x 轴的距离为4,到y 轴距离为3的点N 的坐标是( ) (A )()3,4- (B )()4,3- (C )()3,4-或()3,4-- (D )()4,3-或()4,3-- 17、下列各命题中不是..
真命题的有( ) (A )相等的弧所对的弦相等 (B )相等的弦所对的弧相等 (C ) 圆内接平行四边形是矩形(D ) 圆内接梯形是等腰梯形
18、已知平面直角坐标系中,有三点()0,0A ()2,2B ()0,4C 则△ABC 的形状是( ) (A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )等腰直角三角形 19、星期天晚饭后,小红从家里出去散步,右图描述了她散步过程中离家的距离s(m)与所
用时间t(min)的函数关系,依据图象,下面的描述符合小红散步情景的是( ) (A) 从家出发到了一个公共阅报栏看了一会报就回家了
(B) 从家出发到了公共阅报栏,看了一会报后继续向前走了一段,然后回家了 (C) 从家出发一直散步(没有停留)然后回家了
(D) 从家出发散了一会步就找同学去了,18分钟后开始返回
20、⊙O 的弦AB 、CD 的延长线相交于P ,若∠P ︒=40∠AMC ︒=100则∠ABC=( ) (A )︒75 (D )80
(第19题) (第20题
三、解答题:(21、22、23各6分,24、25各8分)
21、国庆期间,几名教师包租一辆车前往合肥游览,面包车的租价为180元,出发时又增加两名教师,结果每一位教师比原来少分摊了3元车费,求参加旅游的教师共多少人?
22、已知一次函数的图象与x y 2-=平行且过点()1,3--
(1)求这个函数的解析式
(2)设此函数图象与x 轴、y 轴交点为A 、B 求△AOB 的面积
23、已知AB 是⊙O 的直径,弦CD 与AB 相交于E ,∠ADC=︒50 ∠ACD=︒60求∠AEC
的度数
C
24、已知:C 为⊙O 外一点过点C 的两条直线分别交⊙O 于E 、D
直径AB ⊥DE 于H 求证:(1)∠CFE=∠DFB (2)BF CF ⋅
25、某移动通讯公司开设了两种通讯业务“全球通”使用者先缴50元月租费,然后每通话1分钟再付话费0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元(均指市内通话)若一个月内通话x 分钟,两种方式的话费分别为1y 元与2y 元 (1) 写出1y 与2y 与x 之间的函数关系式
(2)一月内通话多少分钟,两种话费一样多?
(3)某人估计一个月内通话300分钟,选哪一种方式更合算些?
四、思考题:(10分)
26、已知:函数)0(4≠+=k kx y 当1=x 时6=y ,此函数图象与x 轴、y 轴交点分别为A 、B
(1)求k 值,并求出点A 与点B 的坐标
(2)试问分别过△ABO 的三个顶点中的一点,且把该三角形面积分成1:3两部分的直线l 共有几条?并求出其中任意一条直线l 的解析式(每多写出一条直线的解析式可以加5分)(附加题总分不超过20分)
答案
一、填空题:(每空3分,共计36分)
1、②④⑥ ④
2、-3<x ≤2
3、(3,-1)或(-1,3)
4、m>2且n=-3
5、一、三、四 增大
6、︒50或︒130
7、11<<-x
8、2
2 9、︒230 10、3≤OP ≤5
二、选择题(每题3分,共计30分) DBBAC DBDBB 三、解答题:
21、解:设参加旅游的教师共x 人 依题意得:
3180
2180=--x
x 3分
解这个方程 ()()232180180-=--x x x x
整理,得 012022
=--x x
解得: 121=x 102-=x
5分
经检验:121=x 102-=x 是原方程的解,
但102-=x 不合题意,舍去∴12=x
答:参加旅游的教师共12人。

6分
22、解:(1)设所求的解析式为b kx y +=
由已知得2-=k ∴b x y +-=2
1分
把()1,3--代入得()b +-⨯-=-321∴7-=b 这个函数解析式为72--=x y
3分
(2)∵0=x 时7-=y 0=y 时2
7-
=x ∴图象与x 轴、y 轴的交点为⎪⎭

⎝⎛-
0,27A ()7,0-B 5分
∴4
49
72721021=
-⨯-⨯=⋅=
B OA S
6分
23、解:连结BD 、BC
∵AB 为⊙O 直径∴∠ADB=∠ACB=︒90 1分 ∵∠ABC=∠ADC=︒50 ∠ABD=∠ACD=︒60 3分 ∴∠BAD=︒30=∠BCD ∴∠AEC=∠ ABC +∠BCD=︒=︒+︒803050 6分 24、证明:(1)连结DB ∵BDEF 为⊙O 内接四边形 ∴∠CFE=∠EDB 1分
又∵直径AB ⊥弦ED ∴弧BE=弧BD ∴∠EDB=∠DFB 3分 ∴∠CFE=∠DFB 4分 (2)∵∠CFE=∠DFB ∠CEF=∠DBF
∴△CEF ∽△DBF 6分

DF EF BF CF BF
EF
DF CF ⋅=⋅⇒= 8分 25、解(1)依题意x y 4.0501+= x y 6.02=
2分 (2)依题意21y y = 即 x x 6.04.050=+ 解得250=x
4分 ∴通话250分钟话费一样多
5分
(3)当300=x 时,1703004.0501=⨯+=y (元)
1803006.02=⨯=y (元)
7分 ∴选择全球通更合算些
8分
四、思考题
解(1)把1=x 6=y 代入4+=kx y 中得 64=+k ∴2=k
2分
∴42+=x y 当0=x 时4=y 当0=y 时2-=x
即与x 轴、y 轴交点()0,2-A ()4,0B
4分
(2)直线l 共有六条(如图)
7分
① 设直线1l 交OB 于点D ,且OD:DB=1:3
∵OB=4 ∴OD=1∴D(0,1) 设l 的解析式为b kx y +=
把()0,2-A D(0,1)代入得⎩⎨⎧==+-102b b k 解得⎪⎩⎪
⎨⎧==1
21b k
∴直线l 的解析式为12
1
1+=
x y 10分
②设直线2l 交OB 于D ,则点D(0,3)
把()0,2-A D(0,3) 代入b kx y +=中⎩⎨⎧==+-302b b k 解得⎪⎩⎪
⎨⎧==3
23b k
∴直线l 的解析式为32
3
2+=
x y 15分
同法可求过点B 交OA 于点D 两条直线l 的解析式为 3l : 43
8
3+=x y 4l : 484+=x y 20分
以上任写一条直线解析式均可。

相关文档
最新文档