分式不等式地解法讲义

合集下载

分式讲义(一))

分式讲义(一))

分式讲义(一)一、知识点: 1.分式的概念:(1)分式的定义:一般地A ,B 是两个_______,且_____中含有字母,那么BA 叫分式(2)分式有意义的条件是___________不等于0 (3)分式无意义的条件是___________等于0(4)分式为零的条件是________不等于0,且_________等于0 2.分式的基本性质:(1)分式的分子分母同乘(或除以)一个__________________,分式的值_________ (2)分子,分母的公因式,系数的_________与各______因式的_________的积(3)各分式的最简公分母,各分母系数的___________与_______因式___________的积 3.分式的运算法则:(1)乘法法则________________________________________ (2)除法法则________________________________________ 二、范例讲解:题型一:考查分式的定义【例1】下列代数式中:yx y x yx yxba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+xx (3)122-x(4)3||6--x x (5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--xx (3)653222----x xx x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义:(1)3||61-x (2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x (2)562522+--x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A MB M A B A ÷÷=⨯⨯=2.分式的变号法则:ba ba ba ba =--=+--=--题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)yx yx 41313221+-(2)ba b a +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx y x --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x y xy x +++-2232的值.【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx y x 5.008.02.003.0+- (2)ba ba 10141534.0-+2.已知:31=+xx ,求1242++x xx 的值. 3.已知:311=-ba,求aab b b ab a ---+232的值.4.若0106222=+-++b b a a ,求ba b a 532+-的值.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:约分【例2】约分: (1)322016xyy x -; (3)nm mn--22; (3)6222---+x xx x题型二:通分【例1】将下列各式分别通分. (1)cb ac a bab c225,3,2--; (2)ab bb a a22,--;(3)22,21,1222--+--x xx x xx x ; (4)aa -+21,2三、作业:⒈当x 时,分式1223+-x x 有意义;当x 时,分式xx --112的值等于零.⒉分式ab c32、bc a3、acb25的最简公分母是 ;化简:242--x x = .⒊xx 231--=32(_____)-x =-32____)-x (⒋当x 、y 满足关系式________时,)(2)(5y x x y --=-255.若使下列各分式值为零,x 的值分别为:(1)2213xx +-,则x = ;(2)1233--x x ,则x = ;(3))2)(3(2+--x x x ,则x = ;(4))1)(3(1+--x x x ,则x = .6、分式xx ---112的结果是________.7、2241ba 与cab x36的最简公分母是__________.8、b a 1,1,31通分后,它们分别是_________, _________,________. 9、acb b ac c b a 107,23,5422的最简公分母是______,通分时,这三个分式的分子分母依次乘以______, , 。

分式及分式方程解法讲义

分式及分式方程解法讲义

分式及分式方程一、知识讲解 1.分式用A ,B 表示两个整式,A ÷B 可以表示成A B 的形式,若B 中含有字母,式子AB就叫做分式.2,当x____时,分式无意义;当x_____时,分式的值为0. 3.分式的基本性质A B =,A M A A MB M B B M⨯÷=⨯÷(其中M 是不等于零的整式) 4.分式的符号法则a b =a a a b b b--=-=---. 5.分式的运算(1)加减法:,a b a b a c ad bcc c c bd bd ±±±=±=. (2)乘除法:a b ·,c ac a c a d add bd b d b c bc=÷==(3)乘方(a b)n =nn a b (n 为正整数)6.约分根据分式的基本性质,把分式的分子和分母中公因式约分,叫做约分. 7.通分根据分式的基本性质,•把异分母的分式化成和原来的分式分别相等的同分母的分式,叫做通分.易混,易错点分析:1,在分式通分时最简公分母的确定方法(1)系数取各个分母系数的最小公倍数作为最简公分母的系数.2,取各个公因式的最高次幂作为最简公分母的因式.(3)如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.2,在分式约分时分子分母公因式的判断方法(1)系数取分子,分母系数的最大公约数作为公因式的系数.(2)取各个公因式的最低次幂作为公因式的因式.(3)如果分子,分母是多项式,则应先把分子,分母分解因式,然后判断公因式.3,分式计算的最后结果必须是最简形式.重点,难点:1,繁杂形式的分式通分及整式与分式结合形式的通分.2,约分化简. 二、例题解析 例1 填空题:(1)若分式2242x x x ---的值为零,则x 的值为________;(2)若a ,b 都是正数,且1a -1b =222,ab a b a b+-则,则=______. 【解答】解题要点:分式的分子为零,且分母不为0.(1)由x 2=4,得x=±2,把x=2代入分母,得x 2-x -2=4-2-2=0,把x=-2•代入分母,得x 2-x -2=4+2-2=4≠0,故答案为-2. (2)由整体代换法:把1a -1b =22b a a b ab a b-=++化为,b 2-a 2=2ab , 即a 2-b 2=-2ab ,代入22222abab aba ba b ab =---中得=12,故答案为12.例2 选择题:(1)已知两个分式:A=2411,422B x x x=+-+-,其中x ≠±2, 那么A 与B 的关系是( )A .相等B .互为倒数C .互为相反数D .A 大于B (2)已知23,2343a b c a b c a b c+-==-+则的值为( )A .-57 B .57 C .97 D .-97【解答】(1)B=22112(2)42244x x x x x x --+-==-+---, ∴A+B=0,A ,B 互为相反数,选C . (2)设234a b c===k ,则a=2k ,b=3k ,c=4k , 代入232399,3377a b c a b c k a b ca b ck +-+-==-+-+中可得,选C .例3先化简再求值:2221412211a a a a a a --÷+-+-,其中a 满足a 2-a=0. 【解答】原式=21(2)(2)(1)(1)2(1)1a a a a a a a -+--++-=(a -2)(a+1)=a 2-a -2由a 2-a=0得原式=-2(2011四川南充市,15,6分)先化简,再求值:21x x -(xx 1--2),其中x =2. 【答案】解:方法一:21(2)1x x x x ---=221211x x xx x x -⋅-⋅--=12(1)(1)(1)(1)x x x x x x x x -⋅-+-+- =121(1)(1)x x x x -++-=12(1)(1)(1)(1)x x x x x x --+-+-=12(1)(1)x x x x --+-=121(1)(1)(1)(1)x x xx x x x ----=+-+- =(1)(1)(1)x x x -++-=11x --当x =2时,11x --=121--=-1 方法二:21(2)1x x x x ---=212()1x x x x x x ---=2121x x x x x --⋅-=1(1)(1)x x x x x --⋅+- =(1)(1)(1)x x x x x -+⋅+-=11x -- 当x =2时,11x --=121--=-1. 分式方程一、知识点.1.分式方程的概念分母中含有未知数的有理方程叫做分式方程. 2.解分式方程的基本思想方法 分式方程−−−→去分母换元整式方程. 3.解分式方程时可能产生增根,因此,求得的结果必须检验 4.列分式方程解应用题的步骤和注意事项 列分式方程解应用题的一般步骤为:①设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;②列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;③列出方程:根据题目中明显的或者隐含的相等关系列出方程; ④解方程并检验; ⑤写出答案.注意:由于列方程解应用题是对实际问题的解答,所以检验时除从数学方面进行检验外,还应考虑题目中的实际情况,凡不符合条件的一律舍去. 二、例题解析 例1 解方程:2x x ++22x x +-=284x -. 【分析】由分式方程的概念可知,此方程是分式方程,因此根据其特点应选择其方法是──去分母法,并且在解此方程时必须验根. 【解答】去分母,得x (x -2)+(x+2)=8. x 2-2x+x 2+4x+4=8 整理,得x 2+x -2=0. 解得x 1=-2,x 2=1.经检验,x 1=1为原方程的根,x 2=-2是增根. ∴原方程的根是x=1.【点评】去分母法解分式方程的具体做法是:把方程的分母分解因式后,找出分母的最简公分母;然后将方程两边同乘以最简公分母,将分式方程化成整式方程.注意去分母时,不要漏乘;最后还要注意解分式方程必须验根,并掌握验根的方法. 例2 已知关于x 的方程2x 2-kx+1=0的一个解与方程211x x+-=4的解相同. (1)求k 的值;(2)求方程2x 2-kx+1=0的另一个解. 【分析】解分式方程必验根. 【解答】(1)∵211x x+-=4, ∴2x+1=4-4x ,∴x=12. 经检验x=12是原方程的解.把x=12代入方程2x 2-kx+1=0,解得k=3.(2)解2x 2-3x+1=0,得x 1=12,x 2=1.∴方程2x 2-kx+1=0的另一个解为x=1.【点评】分式方程与一元二次方程“珠联壁合”,旨在通过分式方程的解来确定一元二次方程的待定系数,起到通过一题考查多个知识点的目的.课后作业一 选择(36分)1 下列运算正确的是( ) A -40=1 B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zyx xy z x x z y -+-的最简公分母是( ) A 72xyz 2B 108xyzC 72xyzD 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -36000 4 如果把分式yx x232-中的x,y 都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍 5 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或3 6 计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 Cx x 1+ D 11-x 7 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x③x+3x=72 ④372=-x x 上述所列方程,正确的有( )个A 1B 2C 3D 48 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 5 9 若分式方程xa xa x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 2 10 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -311 把分式方程12121=----xxx ,的两边同时乘以x-2,约去分母,得( ) A 1-(1-x)=1 B 1+(1-x)=1 c 1-(1-x)=x-2 D 1+(1-x)=x-2 12 已知k ba cc a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限 二 填空(21分)1 写出一个分母至少含有两项且能够约分的分式2 ()a bab ab a 2332222=++ 3 7m=3,7n=5,则72m-n=4 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是5 ()231200841-+⎪⎭⎫⎝⎛--+-=6 方程04142=----xx x 的解是 7 若2222,2ba b ab a b a ++-=则= 三 化简(12分)1 ()d cd b a cab 234322222-∙-÷2 111122----÷-a a a a a a3 ⎪⎭⎫⎝⎛---÷--225262x x x x四 解下列各题(8分)1 已知bab a b ab a b a ---+=-2232,311求的值 2 若0<x<1,且x x x x 1,61-=+求 的值五 (5)先化简代数式()()n m n m mnn m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程(12分) 1 12332-=-x x 2 1412112-=-++x x x七 (7)2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款 4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?参考答案一 CACBB CCBCA DB二 1 如112-+x x ,2 3b , 3 59 , 4 -()nn n a ba b 137201,--, 5 2, 6 3,7 53 三 1ac 1 , 2 1-a a , 3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。

第13讲 拓展一 一元二次(分式)不等式解法(学生版)-(人教A版数学必修一讲义)

第13讲 拓展一 一元二次(分式)不等式解法(学生版)-(人教A版数学必修一讲义)
有两个相等的实数根
没有实数根
( )的解集
( )的解集
知识点03:一元二次不等式的解法
1:先看二次项系数是否为正,若为负,则将二次项系数化为正数;
2:写出相应的方程 ,计算判别式 :
① 时,求出两根 ,且 (注意灵活运用十字相乘法);
② 时,求根 ;
③ 时,方程无解
3:根据不等式,写出解集.
知识点04:解分式不等式
2次函数与一元二次方程的根、一元二次不等式的解集的对应关系
对于一元二次方程 的两根为 且 ,设 ,它的解按照 , , 可分三种情况,相应地,二次函数 的图象与 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式 或 的解集.
判别式
二次函数 ( 的图象
一元二次方程
( )的根
有两个不相等的实数根 , ( )
(1)求实数a,b的值;
(2)解关于x的不等式 .
【变式2】(2023春·辽宁沈阳·高二新民市高级中学校考阶段练习)已知不等式 的解集为 .
(1)求实数a,b的值;
(2)解不等式 .
题型05一元二次不等式(含参)的求解
(首项系数含参从0开始讨论)
【典例1】(2023春·四川泸州·高二校考阶段练习)已知函数 ,解不等式 .
1、分式不等式定义:
与分式方程类似,分母中含有未知数的不等式称为分式不等式,如:形如 或 (其中 , 为整式且 的不等式称为分式不等式。
2、分式不等式的解法
①移项化零:将分式不等式右边化为0:




二、题型精讲
题型01一元二次不等式(不含参)的求解(首项系数为正)
【典例1】(2023·上海金山·统考二模)若实数 满足不等式 ,则 的取值范围是__________.

初高中数学衔接课程(5)——一元二次不等式与分式不等式讲义

初高中数学衔接课程(5)——一元二次不等式与分式不等式讲义

初高中数学衔接课程第五讲 方程与不等式5.1 二元二次方程组解法方程 22260x xy y x y +++++=是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程。

其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项。

我们看下面的两个方程组:224310,210;x y x y x y ⎧-++-=⎨--=⎩ 222220,560.x y x xy y ⎧+=⎪⎨-+=⎪⎩ 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组。

下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法。

一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解。

例1 解方程组22440,220.x y x y ⎧+-=⎨--=⎩解:由②,得x =2y +2, ③把③代入①,整理,得8y 2+8y =0,即y (y +1)=0。

解得y 1=0,y 2=-1。

把y 1=0代入③,得x 1=2;把y 2=-1代入③,得x 2=0。

所以原方程组的解是112,0x y =⎧⎨=⎩,;220,1.x y =⎧⎨=-⎩说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解。

例2解方程组7,12.x y xy +=⎧⎨=⎩解:由①,得7.x y =- ③把③代入②,整理,得27120y y -+= 解这个方程,得123,4y y ==。

把13y =代入③,得14x =;把24y =代入③,得23x =。

所以原方程的解是114,3x y =⎧⎨=⎩,;223,4.x y =⎧⎨=⎩【例3】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩分析:本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解。

分式不等式和高次不等式的解法(课堂PPT)

分式不等式和高次不等式的解法(课堂PPT)

x>1} 0<x<1}
≤0,2.解⇒下-列2≤不∴x等<23式3<.x:<34.
(1)3x- +x2≥∴0;原不等(2式)23x-的-4解1x>集1为. {x|23<x<34}.
解集为{x|-2≤x<3}. 6
思考题: (1 )x ( 1 )x ( 2 )x ( 3 ) 0 (2 )x ( 1 )x (2 )2(x3 )0 (3 )x ( 1 )3(x2 )2(x 3 )0
此不等式等价于
( x
5)(x 2) x20
0
解得 x 5或x 2
不等式的解集为 {x | x 5或x 2}
4
解分式不等式的步骤:
(1)化简为简单分式不等式的形式
(2)利用公式把分式不等式转化为整式不等式
ቤተ መጻሕፍቲ ባይዱ
f(x)0f(x)g(x)0 f(x)0f(x)g(x)0
g(x)
g(x)
gf((xx))0 f(gx()xg)(x)00
7
一元高次不等式的解法:数轴表根法 基本思路:降次变成一次求解 (1)整理:必须把边 不 变等 为 0, 式左 右边
必须化 (x为 x1)(xx2)(xxn) (2)标根:(x令 x1)(xx2)(xxn)0 得n个根,把这些根 轴标 上在数 (3)穿线:从右向左, 往从 下奇上 ,穿偶不穿,
依次经n过 个根对应的点,画 曲一 线条
f(x)
f(x)g(x)0
g(x)0 g(x)0
5
跟踪训练P47、1、2、
1.不等式 x<1x(的2)原解不集是等式可化为23x--41x-1>0,即34(xxD- -23)<0.
等价于AC. .3x-{{+xx||x-x2≤≠1- <等30x1-,<价}1}x于≥(3x0-,2BD).(.4x{{xx-||xx3<<)--<011.或或

分式讲义

分式讲义

分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。

新课标数学预习讲义---分式不等式

新课标数学预习讲义---分式不等式

2.4 分式不等式预习讲义【知识梳理】一、分式不等式的概念:分母中含有未知数的不等式称为分式不等式. 二、分式不等式的标准形式:()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0()f x g x ≤). 三、分式不等式的解法:(1)0)()(0)()(>⇔>x g x f x g x f ;0)()(0)()(≥⇔≥x g x f x g x f ,且0)(≠x g ;(2)0)()(0)()(<⇔<x g x f x g x f ;0)()(0)()(≤⇔≤x g x f x g x f ,且0)(≠x g . 【考点分类精讲】考点1 简单分式不等式的解法【考题1】解下列不等式(1)0132<+-x x (2)321≤+-x x(3)0112≥-+x x (4)11223<-+x x【举一反三】1.若不等式的解集为,则关于x 的不等式053>-+x a bx 解集为( ) A .(-5,3)B .C .(-3,5)D .2.关于x 的不等式0>-b ax 的解集是(1,+∞),则不等式02≤-+x b ax 的解集是________. 考题2 含两个分式的分式不等式的解法【考题2】解下列不等式:(1)x x x -≤-4512 (2)2334212-+≤-+x x x x【举一反三】解下列不等式:(1)1111+>+x x (2)2312312-+>-+x x x x考点3含高次的分式不等式的解法【考题3】解下列不等式:(1)063222<++--+x x x x (2)451820422+-+-x x x x ≥3;(3)1122---x x x ≥0 (4)03)44)(32(22≤-++-+x x x x x【归纳总结】方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点.②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“>”成立,下方曲线对应区域使“<”成立.考点4 解含参数的分式不等式的解法【考题4】解关于x 的不等式032<--ax x ,其中a 为非零常数.【举一反三】不等式的解集为{x|x <1或x >2},则a 的值为( ) A .2B .-2C .D .【题型优化测训】1.不等式x -1x +2<0的解集为( ) A .(1,+∞) B .(-∞,-2) C .(-2,1) D .(-∞,-2)∪(1,+∞)2.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4) D .(-∞,2]∪(4,+∞)3.不等式的解集为( ) A . B .或 C . D .或4.若不等式k -3x -3>1的解集为{x|1<x <3},则实数k = . 5.解下列分式不等式(1)0413353222≥+---x x x x (2)12731422≥+-+-x x x x6.已知关于x 的不等式0)2)(())(2(≥----d x c x b x a x )(c d a b ≤≤≤的解集为2|{-≤x x 或11<≤-x 或}3>x ,求关于x 的不等式0))(())((≤----d x c x b x a x 的解集.。

不等式的基本性质和解法

不等式的基本性质和解法

精锐教育学科教师辅导讲义讲义编号:学员编号: 年 级:高一 课时数:3 学员姓名: 辅导科目:数学 学科教师: 课 题 不等式的基本性质和解法 授课时间教学目标 1.不等式的基本性质能够灵活应用2.不等式的解法,包括一元二次不等式,分式不等式,绝对值不等式 重点、难点 一元二次不等式的解法考点及考试 要求一元二次不等式,绝对值不等式和分式不等式的解法教学内容一、知识要点:1.不等式的性质是证明不等式和解不等式的基础。

不等式的基本性质有: (1)对称性或反身性:a>b ⇔b<a ; (2)传递性:若a>b ,b>c ,则a>c ;(3)可加性:a>b ⇒a+c>b+c ,此法则又称为移项法则; (4)可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。

不等式运算性质:(1)同向相加:若a>b ,c>d ,则a+c>b+d ; (2)正数同向相乘:若a>b>0,c>d>0,则ac>bd 。

特例:(3)乘方法则:若a>b>0,n ∈N +,则n n b a >; (4)开方法则:若a>b>0,n ∈N +,则n1n1b a >;(5)倒数法则:若ab>0,a>b ,则b 1a 1<。

掌握不等式的性质,应注意:(1)条件与结论间的对应关系,如是“⇒”符号还是“⇔”符号; (2)不等式性质的重点是不等号方向,条件与不等号方向是紧密相连的例1:1)、5768--与的大小关系为 .2)、设1->n ,且,1≠n 则13+n 与n n +2的大小关系是 .3)已知,αβ满足11123αβαβ-+⎧⎨+⎩≤≤≤≤, 试求3αβ+的取值范围.例2.比较()21+a 与12+-a a 的大小。

例3.解关于x 的不等式m x x m +>+)2(。

高考数学一轮复习讲义 第23课时 二次高次及分式不等式及其解法 理

高考数学一轮复习讲义 第23课时 二次高次及分式不等式及其解法 理

课题:二次、高次及分式不等式的解法考纲要求:①通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.②分式不等式的基本解法、要注意大于等于或小于等于的情况中,分母要不为零; ③高次不等式的基本解法、要注重对重因式的处理. 教材复习1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间;或者利用二次函数的图象来写出一元二次不等式的解集.2.分式不等式主要是转化为()()()()()()12120m n x a x a x a x b x b x b --->---(或0<),再用数轴标根法求解,注意对“奇穿偶不穿”实质的理解及应用.3.高次不等式主要是利用“数轴轴标根法”解.4.几点注意:①含参数的不等式要善于针对参数的取值进行讨论;②要善于运用“数形结合”法解决有关不等式问题;③要深刻理解不等式的解集与对应方程的解之间的关系,会由解集确定参数的值. 典例分析:考点一:简单不等式的解法 问题1.解下列不等式: ()1260x x --<;()223100x x -++<()323100x x --≤;()432260x x x -++>()52(1)(1)(2)0x x x -+-<;()6(1)(2)0(2)(1)x x x x x +-≥+- ()72222132x x x x +-<+-考点二:含参数不等式的解法问题2.①二次不等式220ax bx ++>的解集是{}11x x -<<,则a b +的值是.A 10 .B 10- .C 14 .D 14-②已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为③(09湖北)已知关于x 的不等式101ax x -<+的解集是()1,1,2⎛⎫-∞--+∞ ⎪⎝⎭,求a 值.问题3.()1解关于x 的不等式:22ax -≥2x ax -()a R ∈()2已知三次函数32()f x ax bx cx d =+++如图所示,则.A (),0b ∈-∞ .B ()0,1b ∈.C ()1,2b ∈ .D ()2,b ∈+∞考点三:不等式恒成立问题的解法 问题4. 已知2()2(2)4f x x a x =+-+,()1如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围;()2如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.问题5:(2012浙江)设a R ∈,若0x >时均有()()2111a x x ax ----⎡⎤⎣⎦≥0, 则a =___.课后作业:1.解不等式: ()12690x x -+> ()2221x x +>+ ()3231||1x x -<-2.若20x px q ++<的解集为{}12x x <<,则不等式22056x px qx x ++>--的解集为.A ()1,2 .B ()()(),11,26,-∞-+∞ .C ()()1,12,6-.D ()(),16,-∞-+∞3.不等式2(1)(2)(4)x x x x +-+≥0的解集为4.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的范围是5.若关于x 的方程2210x ax a ++-=有一正根和一负根,则a 的范围是6.关于x 的方程()233m x m x -+=的解为不大于2的实数,则m 的范围为7.若2054x ax ≤++≤有且只有一解,则实数a 的值为8.已知()()230a b x a b ++-<的解集为13x x ⎧⎫<-⎨⎬⎩⎭,则不等式()320a b x b a -+->的解集为9.已知关于x 的不等式232x ax x --+≥0的解集为{1x x <≤a 或2}x >,求a 的范围.10.若不等式6163922<+--+<-x x mx x 对一切x 恒成立,求实数m 的范围走向高考1.(05福建)不等式01312>+-x x 的解集是.A }2131|{>-<x x x 或 .B }2131|{<<-x x .C }21|{>x x.D }31|{->x x 2.(04天津)不等式1x x-≥2的解集为.A [1,0)-.B [1,)-+∞ .C (,1]-∞- .D (,1](0,)-∞-+∞3.(06江西)若不等式210x ax ++≥对于一切x ∈(]120,恒成立, 则a 的最小值是 .A 0 .B 2- .C 52- .D 3-4.(08山东)不等式252(1)x x +-≥的解集是 .A 132⎡⎤-⎢⎥⎣⎦, .B 132⎡⎤-⎢⎥⎣⎦, .C (]11132⎡⎫⎪⎢⎣⎭,,.D (]11132⎡⎫-⎪⎢⎣⎭,,5.(01天津理)解关于x 的不等式20x ax a-<-()a R ∈6.(2012江苏)已知函数()2(),f x x ax b a b R =++∈的值域为[)0,+∞,若关于x 的 不等式()f x c <的解集为(),6m m +,则实数c 的值为7.(07山东文)当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的范围是8.(06全国Ⅱ文21,满分14分)设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13B x x =<<, 若A B ≠∅,求实数a 的取值范围。

艺术生高考数学专题讲义:考点22 一元二次不等式与简单的分式不等式的解法

艺术生高考数学专题讲义:考点22 一元二次不等式与简单的分式不等式的解法

A. ( -∞,32 ) ∪ (2,+∞)
B. R
C.
(
3 2
,2)
D. ∅
【题型练1-2】(2015 江苏 ) 不等式 2x2 - x < 4 的解集为 ________.
【题型练1-3】不等式 -3 < 4x - 4x2 ≤ 0 的解集为 ________.


【题型练1-4】(2015 广东文 ) 不等式 -x2 - 3x + 4 > 0 的解集为 ________( 用区间表示 ).
【题型练3-6】若不等式 ax2 + bx + c > 0 的解集是 ( -4,1),则不等式 b(x2 - 1) + a(x + 3) + c > 0 的解集为 .
题型四 一元二次不等式恒成立问题 角度 1 形如 f(x) ≥ 0( f(x) ≤ 0),x ∈ R 确定参数的范围 例4. 若不等式 mx2 - 2x - 1 < 0 恒成立,则 m 的取值范围是 ________.
题型三 一元二次不等式与一元二次方程根之间关系问题 例3. 关于 x 的不等式 x2 + (a + 1)x + ab > 0 的解集是 {x|x <-1 或 x > 4},则 a + b = ________.
方法总结 解决这类习题关键是理解三个二次之间的关系,一元二次函数与 x 轴交点的横坐标即为对应一 元二次方程的根,利用一元二次方程的根,结合函数图象就可以求出对应一元二次不等式.因此反过
f (x) g(x)

0⇔
fg((xx))·≠g(x0),≥ 0,,
f (x) g(x)

分式不等式的解法讲义

分式不等式的解法讲义

分式不等式的解法讲义 This manuscript was revised on November 28, 2020不等式的解法1.一元二次不等式的解法(1)含有未知数的最高次数是二次的一元不等式叫做一元二次不等式.(2)一元二次不等式的解法(如下表所示)设a>0,x1,x2是一元二次方程ax2+bx+c=0的两实根,且x1<x2 (3)对于一元二次不等式的解法需注意:①x-ax-b≥0(a<b)的解集为:{x|x≤a或x>b};x-ax-b≤0(a<b)的解集为:{x|a≤x<b}.②从函数观点来看,一元二次不等式ax2+bx+c>0(a>0)的解集是一元二次函数y=ax2+bx+c(a>0)在x轴上方的点的横坐标的集合.③三个“二次”的关系常说的三个“二次”即指二次函数、一元二次方程和一元二次不等式,这三者之间有着密切的联系,这种联系点可以成为高考中的命题点.处理其中某类问题时,要善于产生对于另外两个“二次”的联想,或进行转化,或帮助分析.具体到解一元二次不等式时,就是要善于利用相应的二次函数的图象进行解题分析,要能抓住一元二次方程的根与一元二次不等式的解集区间的端点值的联系.2.解一元二次不等式的方法:(1)图象法:先求不等式对应方程的根,再根据图象写出解集.(2)公式法步骤:①先化成标准型:ax2+bx+c>0(或<0),且a>0;②计算对应方程的判别式Δ;③求对应方程的根;④利用口诀“大于零在两边,小于零在中间”写出解集.3.解绝对值不等式的基本思想1)解绝对值不等式的基本思想是去掉绝对值符号,把带有绝对值号的不等式等价转化为不含绝对值号的不等式求解,常采用的方法是讨论符号和平方,例如:(1)若a>0,则│x│<a-a<x<ax2<a2;(2)若a>0,则│x│>ax<-a,或x>ax2>a2;(3) |f(x)|<g(x)-g(x)<f(x)<g(x);(4)|f(x)|>g(x)f(x)>g(x)或f(x)<-g(x)(无论g(x)是否为正).常用的方法有:(1)由定义分段讨论;(2)利用绝对值不等式的性质;(3)平方.2)常见绝对值不等式及解法:(1)|f(x)|>a(a>0)f(x)>a或f(x)<-a;(2)|f(x)|<a(a>0)-a<f(x)<a;(3)|x-a1|+|x-a2|>(<)b,用零点分区间法.4.一般分式不等式的解法:(1)整理成标准型fx gx >0(或<0)或fxgx≥0(或≤0). (2)化成整式不等式来解:①fxgx >0f (x )·g (x )>0 ②fxgx<0f (x )·g (x )<0 ③fx gx ≥0⎩⎨⎧ fx ·gx ≥0gx ≠0 ④fx gx ≤0⎩⎨⎧fx ·gx ≤0gx ≠0(3)再讨论各因子的符号或按数轴标根法写出解集.★ 热 点 考 点 题 型 探 析★考点1 一元二次不等式的解法 题型1.解一元二次不等式[例1] 不等式2x x >的解集是( )A .(),0-∞ B. ()0,1 C. ()1,+∞ D. ()(),01,-∞+∞【解题思路】严格按解题步骤进行[解析]由2x x >得(1)0x x ->,所以解集为()(),01,-∞+∞,故选D;别解:抓住选择题的特点,显然当2x =±时满足不等式,故选D.【名师指引】解一元二次不等式的关键在于求出相应的一元二次方程的根 题型2.已知一元二次不等式的解集求系数.[例2]已知关于x 的不等式220ax x c ++>的解集为11(,)32-,求220cx x a -+->的解集.【解题思路】由韦达定理求系数[解析] 由220ax x c ++>的解集为11(,)32-知0a <,11,32-为方程220ax x c ++=的两个根,由韦达定理得11211,3232ca a-+=--⨯=,解得12,2a c =-=,∴220cx x a -+->即222120x x --<,其解集为(2,3)-.【名师指引】已知一元二次不等式的解集求系数的基本思路是,由不等式的解集求出根,再由韦达定理求系数 【新题导练】1.不等式(a -2)x 2+2(a -2) -4<0,对一切x ∈R 恒成立,则a 的取值范围是( ) A.(-∞,2] B.(-2,2] C.(-2,2) D.(-∞,2)解析:∵可推知-2<a <2,另a=2时,原式化为-4<0,恒成立,∴-2<a≤2. 选B2. 关于x 的不等式(m x -1)( x -2)>0,若此不等式的解集为{x |<x <2},则m 的取值范围是A. m >0 <m <2 C. m >D. m <0解析:由不等式的解集形式知m <0. 答案:D考点2 含参数不等式的解法 题型1:解含参数有理不等式例1:解关于x 的一元二次不等式2(3)30x a x a -++> 【解题思路】比较根的大小确定解集解析:∵2(3)30x a x a -++>,∴()()30x x a -->⑴当3,3a x a x <<>时或,不等式解集为{}3x x a x <>或; ⑵当3a =时,不等式为()230x ->,解集为{}3x x R x ∈≠且;⑶当3,3a x x a ><>时或,不等式解集为{}3x x x a <>或【名师指引】解含参数的有理不等式时分以下几种情况讨论:①根据二次项系数(大于0,小于0,等于0);②根据根的判别式讨论(0,0,0∆>∆=∆<).③根据根的大小讨论(121212,,x x x x x x >=<).题型2:解简单的指数不等式和对数不等式例2. 解不等式log a (1-x1)>1 (0,1)a a >≠ 【解题思路】借助于单调性进行分类讨论解析(1)当a >1时,原不等式等价于不等式组⎪⎪⎩⎪⎪⎨⎧>->-a xx11011由此得1-a >x1.因为1-a <0,所以x <0,∴a -11<x <0. (2)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-a xx 11011 ① ②由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a -11. 综上,当a >1时,不等式的解集是{x |a-11<x <0},当0<a <1时,不等式的解集为{x |1<x <a-11}.【名师指引】解指数不等式与对数不等式通常是由指数函数和对数函数的单调性转化为一般的不等式(组)来求解,当底数含参数时要进行分类讨论.【新题导练】3.关于x 的不等式226320x mx m --<的解集为( )A.(,)97m m -B.(,)79m m -C.(,)(,)97m m-∞-+∞ D.以上答案都不对解析:原不等式可化为()()097m mx x +-<,需对m 分三种情况讨论,即不等式的解集与m 有关.4.解关于x 的不等式:04)1(22<++-x a ax 解析:0)2)(2(<--x ax 当⇒>⇒>aa 221⎭⎬⎫⎩⎨⎧<<22|x a x ; 当a a 2210<⇒<<∴⎭⎬⎫⎩⎨⎧<<a x x 22|,当0<a ⇒>-+-⇒0)2)(2(x ax 2|2x x x a ⎧⎫<>⎨⎬⎩⎭或5.考点3 分式不等式及高次不等式的解法 [例5] 解不等式:22(1)(68)0x x x --+≥ 【解题思路】先分解因式,再标根求解[解析]原不等式(1)(1)(2)(4)0x x x x ⇔-+--≥,各因式根依次为-1,1,2,4,在数轴上标根如下:【名师指引】求解高次不等式或分式不等式一般用根轴法等式对应的方程的根的关系. 【新题导练】5.若关于x 的不等式0(3)(1)x ax x +>++的解集是(3,1)(2,)--+∞,则a 的值为_______ 解析:原不等式()(3)(1)0x a x x ⇔+++>,结合题意画出图可知2a =-.6. 解关于)0(11)1(2>>+-+a x ax x a x 的不等式解:①若)251()2511(2150∞++--+<<,,,则原不等式的解集为 aa ;②若)251(215∞+++=,,则原不等式的解集为a ;③若)251()1251(215∞++--+>,,,则原不等式的解集为 a a 7.( 广东省深圳中学2008—2009学年度高三第一学段考试)解不等式.2)21(242>⋅-+x x x.解析:2)21(2242>⋅-+x x即212322>-x 得65>x 所以原不等式的解集为}65|{>x x 考点4 简单的恒成立问题题型1:由二次函数的性质求参数的取值范围例1.若关于x 的不等式2220ax x ++>在R 上恒成立,求实数a 的取值范围. 【解题思路】结合二次函数的图象求解[解析]当0a =时,不等式220x +>解集不为R ,故0a =不满足题意;当0a ≠时,要使原不等式解集为R ,只需202420a a >⎧⎨-⨯<⎩,解得12a >综上,所求实数a 的取值范围为1(,)2+∞【名师指引】不等式20ax bx c ++>对一切x R ∈恒成立000a b c =⎧⎪⇔=⎨⎪>⎩或2040a b ac >⎧⎨∆=-<⎩ 不等式20ax bx c ++<对任意x R ∈恒成立000a b c =⎧⎪⇔=⎨⎪<⎩或2040a b ac <⎧⎨∆=-<⎩ 题型2.转化为二次函数的最值求参数的取值范围【解题思路】先分离系数,再由二次函数最值确定取值范围.[解析] (1)设2()(0)f x ax bx c a =++≠.由(0)1f =得1c =,故2()1f x ax bx =++.∵(1)()2f x f x x +-= ∴22(1)(1)1(1)2a x b x ax bx x ++++-++=即22ax a b x ++=,所以22,0a a b =+=,解得1,1a b ==- ∴2()1f x x x =-+ (2)由(1)知212x x x m -+>+在[1,1]-恒成立,即231m x x <-+在[1,1]-恒成立.令2235()31()24g x x x x =-+=--,则()g x 在[1,1]-上单调递减.所以()g x 在[1,1]-上的最大值为(1)1g =-.所以m 的取值范围是(,1)-∞-.【名师指引】()m f x ≤对一切x R ∈恒成立,则min [()]m f x ≤;()m f x ≥对一切x R ∈恒成立,则max [()]m f x ≥; 【新题导练】8.不等式22214x a x ax ->++对一切∈x R 恒成立,则实数a 的取值范围是_______. [解析]:不等式22214x a x ax ->++对一切∈x R 恒成立,即 014)2(2>-+++a x x a 对一切∈x R 恒成立 若2+a =0,显然不成立若2+a ≠0,则⎩⎨⎧<∆>+002a ∴2>a9.若不等式x 2+ax +10对于一切x (0,12)成立,则a 的取值范围是 ( )A .0B . –2C .-52D .-3解析:设f (x )=x 2+ax +1,则对称轴为x =a 2-,若a 2-12,即a -1时,则f (x )在〔0,12〕上是减函数,应有f (12)0-52x -1若a 2-0,即a0时,则f (x )在〔0,12〕上是增函数,应有f (0)=10恒成立,故a0若0a 2-12,即-1a0,则应有f (a2-)=222a a a 110424≥-+=-恒成立,故-1a0. 综上,有-52a,故选C . ★ 抢 分 频 道 ★基础巩固训练1. 不等式2560x x -++>的解集是__________解析:将不等式转化成2560x x --<,即()()160x x +-<.]2. 若不等式20x ax b --<的解集为{|23}x x <<,则不等式210bx ax -->的解集为 __________..解析:先由方程20x ax b --=的两根为2和3求得,a b 后再解不等式210bx ax -->.得11,23⎛⎫-- ⎪⎝⎭3. (广东省五校2008年高三上期末联考) 若关于x 的不等式2()1()g x a a x R ≥++∈的解集为空集,则实数a 的取值范围是 .解析: 2()1()g x a a x R ≥++∈的解集为空集,就是1= [()g x ]max <21a a ++ 所以(,1)(0,)a ∈-∞-⋃+∞4(08梅州)设命题P :函数)161lg()(2a x ax x f +-=的定义域为R ;命题q :不等式ax x +<+121对一切正实数均成立。

分式不等式的解法

分式不等式的解法

一 不等式的解法1 含绝对值不等式的解法(关键是去掉绝对值)利用绝对值的定义:(零点分段法)利用绝对值的几何意义:||x 表示x 到原点的距离||(0){|}x a a x x a =>=±的解集为}|{)0(||a x a x a a x <<-><的解集为}|{)0(||a x a x x a a x -<>>>或的解集为 公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.2 整式不等式的解法根轴法(零点分段法)1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正);2) 分解因式;3) 标根(令每个因式为0,求出相应的根,并将此根标在数轴上。

注意:能取的根打实心点,不能去的打空心);4) 穿线写解集(从右到左,从上到下依次穿线。

注意:偶次重根不能穿过);一元二次不等式解法步骤:1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正);2) 首先考虑分解因式;不易分解则判断∆,当0∆≥时解方程(利用求根公式)3) 画图写解集(能取的根打实心点,不能去的打空心)3 分式不等式的解法1)标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0()f xg x ≤)的形式, 2)转化为整式不等式(组)()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩; 4 指数、对数不等式的解法①当1a >时()()()()f x g x a a f x g x >⇔> log ()log ()()()0a a f x g x f x g x >⇔>> ②当01a <<时()()()()f x g x a a f x g x >⇔< log ()log ()0()()a a f x g x f x g x >⇔<<x =0x x ≥ 0x x -<二.练习1. 不等式222310372x x x x ++>-+的解集是2. 不等式3113x x+>--的解集是 3. 不等式2223712x x x x +-≥--的解集是 4. 不等式1111x x x x -+<+-的解集是 5. 不等式229152x x x --<+的解集是 6. 不等式22320712x x x x -+>-+的解集是 7. 不等式2121x x x +≤+的解集是 8. 不等式2112x x ->-+的解集是 9. 不等式23234x x -≤-的解集是 10. 不等式2212(1)(1)x x x -<+-的解集是 11. 不等式2206x x x x +<+-的解集是 12. 不等式2121x x x +<-的解集是 13. 不等式2321x x x x +>++的解集是 14. 不等式211(3)x >-的解集是 15. 不等式(23)(34)0(2)(21)x x x x -->--的解集是 16. 不等式2311x x +≥+的解集是 17. 不等式1230123x x x +->---的解集是 18. 不等式25214x x+≤--的解集是 19. 不等式221421x x x ≥--的解集是 20. 不等式221(1)(2)x x x -<+-的解集是答案1. 2. (-2,3)3. 4.5. 6.7. 8. (1,2)9. 10.11. 12.13. 14.15. 16. [-1,2]17. 18.19. 20.。

(寒假班内部讲义)第十六章----分式(后面为提高部分)

(寒假班内部讲义)第十六章----分式(后面为提高部分)

第十六章分式第一部分:知识点及重难点一、学习目标1、切实掌握分式的概念,分式的基本性质,能熟练地进行分式变形及约分通分。

2、能准确、顺畅地进行分式的乘除、加减以及混合运算。

3、会用科学记数法表示绝对值小于1的数,并能进行有关负整数指数幂的运算。

4、明确分式方程的步骤,并能列出可化为一元一次方程的分式方程解简单的应用题。

二知识结构网络三重点难点1、分式重点:(1)正确理解分式的概念,分式的值为零和分式有无意义的条件:分式是两整式相除的商式,分数线有除号和括号的作用,比如表示;分式的分子可以含字母,也可以不含字母,但分母中必须含有字母,这是区分一个代数式是整式还是分式的依据,分式的分母不能为0,如分式中是该分式的一个隐含条件当时分式无意义。

(2)准确理解分式的基本性质:要特别注意分式的分子与分母都乘以(或除以)同一个不等于零的整式,其值不变。

例如由分式一定可以变形为但由分式就不一定变形为,这是因为分式的分母,一定有而a是分子,有可能等于0。

(3)分式的约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

如果一个分式的分子或分母没有公因式,则该分式叫做最简分式。

(4)分式的通分:把几个异分母的分式化为与原来相等的同分母的分式的过程称为分式的通分。

分式通分的关键是确定几个分式的最简公分母,找最简公分母要注意以下几点:①各分母所有因式的最高次幂指凡出现的字母或含字母的式子为底数的幂的因式选取指数最大②如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数。

难点:正确理解分式的概念,在分式的分子与分母同时乘以或除以整式A时,应首先判断A是否为0,分子、分母中的系数都是分数(或小数)时,要把分式化简,都是分数时,应把分子、分母都乘以分子、分母中各系数分母的最小公倍数如,分子、分母中的系数都是小数时,应把分子、分母都乘以可使系数互质的整数。

如2、分式的乘除法重点:分式的乘除运算,其中约分是关键。

不等式解法

不等式解法

不等式解法补充讲义第一课时:分式与高次不等式解法分式不等式的解法:(1) 化分式不等式为标准型:方法:移项,通分,右边化为0,左边化为)()(x g x f 的形式 (2) 将分式不等式转化为整式不等式求解如:()0()f x g x >⇔ 0)()(>x g x f ()0()f x g x <⇔0)()(<x g x f ()0()f xg x ≥⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ()0()f x g x ≤⇔⎩⎨⎧≠≤0)(0)()(x g x g x f 例1 解不等式:073<+-x x . 解法1:化为两个不等式组来解: ∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或⇔x ∈φ或37<<-x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x . 解法2:化为二次不等式来解: ∵073<+-x x ⇔0)7)(3(<+-x x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x 例2:解不等式073≤+-x x 解:073≤+-x x ⇔70)7)(3(-≠≤+-x x x 且⇔37≤<-x 原不等式∴的解集是{x| -7<x ≤3}例3:解不等式173<+-x x 解:}7{707100173173->∴->∴<+-⇔<-+-⇔<+-x x x x x x x x 原不等式的解集是练习:1. 解不等式01122≥---x x x 解: 原不等式等价于(Ⅰ)⎩⎨⎧>-≥--,01,0122x x x (Ⅱ)⎩⎨⎧<-≤--,01,0122x x x解(Ⅰ)得: x≥1+2, 解(Ⅱ)得: 1-2≤x<1.∴ 原不等式的解集为 {x ∣x≥1+2 或1-2≤x<1 }. 2.解不等式-1<2213<+-x x 原不等式的解集为 {x ∣-41<x<5}. 高次不等式的解法:数轴标根法(零点分段法)或者(穿针引线法)的步骤①将不等式化为)0(0)())()((321<>----n x x x x x x x x 形式,并将各因式x 的系数化“+”; ②求方程0)())()((321=----n x x x x x x x x 各根,并在数轴上表示出来(从小根到大根按从左至右方向表示)。

第三讲整式、分式、函数,方程和不等式讲义

第三讲整式、分式、函数,方程和不等式讲义

第二部分 初等代数第三讲 整式、分式和函数一、整式与分式1、⎧⎨⎩单项式:若干字母与数字之积整式多项式:若干单项式之和2、乘法运算(1)单项式×单项式 2x ·32x =63x (2)单项式×多项式 x (2x-3)=22x -3x (3)多项式×多项式(2x+3)(3x-4)=62x +x-12 3、乘法公式(重点) (1)222()2a b a ab b ±=±+(2)2222()222a b c a b c ab bc ac ++=+++++ 2222()222a b c a b c ab bc ac --=++-+-(3)33322()33a b a b a b ab +=+++33322()33a b a b a b ab -=--+(4)22()()ab a b a b -=+-(5)3322()()a b a b a ab b +=+-+ 3322()()a b a b a ab b -=-++(6)2222221()()()2ab c ab bc ac a b b c a c ⎡⎤++±±±=±+±+±⎣⎦ 4、分式:用A,B 表示两个整式,A ÷B 就可以表示成A B 的形式,如果B 中还有字母,式子AB就叫分式,其中A 叫做分式的分子,B 叫做分式的分母。

在解分式方程的时候要注意检验是否有増根.5、有理式:整式和分式统称有理式.6、分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于0的整式,分式的值不变.7、分式的约分:其目的是化简,前提是分解因式.8、分式通分:目的是化零为整,前提是找到公分母,也就是最小公倍式.9、分式的运算:加减法:a c a cb b b ±±= bdbc ad d c b a ±=±乘法:bdacd c b a =⋅除法:bcad c d b a d c b a =⋅=÷乘方:nnn ba b a =)(10、余式的定义(重点):被除式=除式×商+余式F(x)=f (x )g(x)+r(x)当r (x )=0时,称为整除 11、()()()f x x a f x x a -⇔-含有()因式能被整除. 12.因式定理(重点):f(x)含有(ax-b )因式⇔f(x)可以被(ax-b )整除⇔f(ba)=0 f(x)含有(x-a )因式⇔f(a)=0 13、余式定理(重点): f(x )除以ax-b 的余式为f(b a)二、因式分解常用的因式分解的方法 1、提公因式法 例 222224223)3(2)96(218122y x x y xy x x xy y x x -=+-=+-2、公式法))(()(33))(()(222333322322222b ab a b a b a b a b ab b a a b a b a b a b a b ab a +±=±±=±+±-+=-±=+±3、十字相乘因式分解,适用于2ax bx c ++.三、函数:指数和对数的性质(一)指数(,01)xa a a >≠指数函数且 1、n m n ma a a+=⋅ 2、n m n m a a a -=÷ 3、mn nm a a=)( 4、m m m b a ab =)(5、m m mb a b a =⎪⎭⎫ ⎝⎛ 6、)(0.......1≠=-a a a n n 7、100=≠a a时,当(二)对数(log ,01)a x a a >≠对数函数且 1、对数恒等式 N N e N a N a ln log ==,更常用 2、N M MN a a a log log )(log += 3、N M NMa a a log log )(log -= 4、M n M a na log )(log =5、M nM a na log 1log =6、换底公式aMM b b a log log log =7、1log 01log ==a a a ,四、经典例题: 例1322()11f x x a x ax x a =++-+=能被整除,则( ).(A )2或-1 (B )2 (C )-1 (D )2± (E )1±例2()f x 除以213x x ++余,除以余-1,则()f x 除以()()23x x ++的余式为( ).(A )25x - (B )25x + (C )1x - (D )2x + (E )21x -例3 22223(ac )(),,b a b c a b c ++=++则的关系为 ( ).(A )a b b c +=+ (B )1a b c ++= (C )a b c ==(D )1ab bc ac === (E )1abc =例4 2222,22,,236A x yB y zC z x A B C πππ=-+=-+=-+,,则( ).(A )至少有一个大于0 (B )都大于0 (C )至少有一个小于0 (D )都小于0 (E )至少有两个大于0例5 已知22(2000)(1998)1999(2000)(1998)a a a a --=-+-=,则( ).(A )4002 (B )4012 (C )4020 (D )4022 (E )4000例6 2214,28x xy y y xy x x y ++=++=+=,则( ).(A )6或-7 (B )6或7 (C )-6或-7 (D )-6或7 (E )6例7 22213102xx x x-+=+-=,则( ). (A )2 (B )3 (C )1 (D )2 (E )5例8(252)(472)(692)(8112)(201420172)(142)(362)(582)(7102)(201320162)⨯+⨯+⨯+⨯+⨯+=⨯+⨯+⨯+⨯+⨯+( ).(A )1002 (B )1008 (C )1028 (D )988 (E )968例9 3322015220152013201520152016-⨯-=+-( ).例10 已知11252000,802000x yx y==+=,则( ). (A )12(B )32(C )1 (D )2 (E )3例11 已知0.30,log 33,,a b c a b c ππ===,,则关系为( ).(A )a b c >> (B )b c a >> (C )b a c >> (D )a c b >> (E )c b a >>例12 已知log 2log 20,a b a b <<,则关系为( ).(A )01a b <<< (B )01b a <<< (C )1a b >> (D )1b a >> (E )1b a >>例13 已知3342727xx x x --+=+=,则( ).(A )64 (B )60 (C )52 (D )48 (E )36方程 不等式一、基本定义1、元:方程中未知数的个数; 次:方程中未知数的最高次方数.2、一元一次方程 ()0ax b a =≠ 得b x a=3、一元二次方程 )0(02≠=++a c bx ax⇔一元二次方程02=++c bx ax ,因为一元二次方程就意味着0≠a。

分式不等式的解法讲义

分式不等式的解法讲义

不等式得解法1.一元二次不等式得解法(1)含有未知数得最高次数就是二次得一元不等式叫做一元二次不等式.(2)一元二次不等式得解法(如下表所示)设a>0,x1,x2就是一元二次方程ax2+bx+c=0得两实根,且x1<x2(3)对于一元二次不等式得解法需注意:①x-ax-b≥0(a<b)得解集为:{x|x≤a或x>b};x-ax-b≤0(a<b)得解集为:{x|a≤x<b}.②从函数观点来瞧,一元二次不等式ax2+bx+c>0(a>0)得解集就是一元二次函数y =ax2+bx+c(a>0)在x轴上方得点得横坐标得集合.③三个“二次”得关系常说得三个“二次”即指二次函数、一元二次方程与一元二次不等式,这三者之间有着密切得联系,这种联系点可以成为高考中得命题点.处理其中某类问题时,要善于产生对于另外两个“二次”得联想,或进行转化,或帮助分析.具体到解一元二次不等式时,就就是要善于利用相应得二次函数得图象进行解题分析,要能抓住一元二次方程得根与一元二次不等式得解集区间得端点值得联系.2.解一元二次不等式得方法:(1)图象法:先求不等式对应方程得根,再根据图象写出解集.(2)公式法步骤:①先化成标准型:ax2+bx+c>0(或<0),且a>0;②计算对应方程得判别式Δ;③求对应方程得根;④利用口诀“大于零在两边,小于零在中间”写出解集.3.解绝对值不等式得基本思想1)解绝对值不等式得基本思想就是去掉绝对值符号,把带有绝对值号得不等式等价转化为不含绝对值号得不等式求解,常采用得方法就是讨论符号与平方,例如:(1)若a >0,则│x │<a ⇔-a <x <a ⇔x 2<a 2;(2)若a >0,则│x │>a ⇔x <-a ,或x >a ⇔x 2>a 2; (3) |f (x )|<g (x )⇔-g (x )<f (x )<g (x );(4)|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x )(无论g (x )就是否为正). 常用得方法有:(1)由定义分段讨论;(2)利用绝对值不等式得性质;(3)平方. 2)常见绝对值不等式及解法:(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)|x -a 1|+|x -a 2|>(<)b ,用零点分区间法. 4.一般分式不等式得解法:(1)整理成标准型f (x )g (x )>0(或<0)或f (x )g (x )≥0(或≤0).(2)化成整式不等式来解: ①f (x )g (x )>0⇔f (x )·g (x )>0 ②f (x )g (x )<0⇔f (x )·g (x )<0 ③f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0g (x )≠0 ④f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0g (x )≠0 (3)再讨论各因子得符号或按数轴标根法写出解集.★ 热 点 考 点 题 型 探 析★考点1 一元二次不等式得解法 题型1、解一元二次不等式[例1] 不等式2x x >得解集就是( )A .(),0-∞B 、 ()0,1C 、 ()1,+∞D 、 ()(),01,-∞+∞U 【解题思路】严格按解题步骤进行[解析]由2x x >得(1)0x x ->,所以解集为()(),01,-∞+∞U ,故选D;别解:抓住选择题得特点,显然当2x =±时满足不等式,故选D 、【名师指引】解一元二次不等式得关键在于求出相应得一元二次方程得根 题型2、已知一元二次不等式得解集求系数、[例2]已知关于x 得不等式220ax x c ++>得解集为11(,)32-,求220cx x a -+->得解集、 【解题思路】由韦达定理求系数[解析] 由220ax x c ++>得解集为11(,)32-知0a <,11,32-为方程220ax x c ++=得两个根,由韦达定理得11211,3232c a a-+=--⨯=,解得12,2a c =-=,∴220cx x a -+->即222120x x --<,其解集为(2,3)-、【名师指引】已知一元二次不等式得解集求系数得基本思路就是,由不等式得解集求出根,再由韦达定理求系数 【新题导练】1、不等式(a -2)x 2+2(a -2) -4<0,对一切x ∈R 恒成立,则a 得取值范围就是( )A 、(-∞,2]B 、(-2,2]C 、(-2,2)D 、(-∞,2)解析:∵可推知-2<a <2,另a=2时,原式化为-4<0,恒成立,∴-2<a≤2、 选B2、 关于x 得不等式(m x -1)( x -2)>0,若此不等式得解集为{x |<x <2},则m 得取值范围就是A 、 m >0B 、0<m <2C 、 m >D 、 m <0解析:由不等式得解集形式知m <0、 答案:D 考点2 含参数不等式得解法 题型1:解含参数有理不等式例1:解关于x 得一元二次不等式2(3)30x a x a -++> 【解题思路】比较根得大小确定解集解析:∵2(3)30x a x a -++>,∴()()30x x a -->⑴当3,3a x a x <<>时或,不等式解集为{}3x x a x <>或; ⑵当3a =时,不等式为()230x ->,解集为{}3x x R x ∈≠且; ⑶当3,3a x x a ><>时或,不等式解集为{}3x x x a <>或【名师指引】解含参数得有理不等式时分以下几种情况讨论:①根据二次项系数(大于0,小于0,等于0);②根据根得判别式讨论(0,0,0∆>∆=∆<)、③根据根得大小讨论(121212,,x x x x x x >=<)、题型2:解简单得指数不等式与对数不等式 例2、 解不等式log a (1-x1)>1 (0,1)a a >≠ 【解题思路】借助于单调性进行分类讨论解析(1)当a >1时,原不等式等价于不等式组⎪⎪⎩⎪⎪⎨⎧>->-a xx11011由此得1-a >x 1、因为1-a <0,所以x <0,∴a-11<x <0、 ①②(2)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-a xx11011由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a -11、 综上,当a >1时,不等式得解集就是{x |a-11<x <0},当0<a <1时,不等式得解集为{x |1<x <a-11}、【名师指引】解指数不等式与对数不等式通常就是由指数函数与对数函数得单调性转化为一般得不等式(组)来求解,当底数含参数时要进行分类讨论、 【新题导练】3、关于x 得不等式226320x mx m --<得解集为( ) A 、(,)97m m - B 、(,)79m m - C 、(,)(,)97m m-∞-+∞U D 、以上答案都不对解析:原不等式可化为()()097mm x x +-<,需对m 分三种情况讨论,即不等式得解集与m 有关、4、解关于x 得不等式:04)1(22<++-x a ax 解析:0)2)(2(<--x axaa a )1(222-=-当⇒>⇒>aa 221⎭⎬⎫⎩⎨⎧<<22|x a x ; 当a a 2210<⇒<<∴⎭⎬⎫⎩⎨⎧<<a x x 22|,当0<a ⇒>-+-⇒0)2)(2(x ax 2|2x x x a ⎧⎫<>⎨⎬⎩⎭或 Φ∈⇒=>⇒=x a x a 1;205、考点3 分式不等式及高次不等式得解法[例5] 解不等式:22(1)(68)0x x x --+≥ 【解题思路】先分解因式,再标根求解[解析]原不等式(1)(1)(2)(4)0x x x x ⇔-+--≥,各因式根依次为-1,1,2,4,在数轴上标根如下:对应得方程得根得关系、【新题导练】5、若关于x 得不等式0(3)(1)x ax x +>++得解集就是(3,1)(2,)--+∞U ,则a 得值为_______解析:原不等式()(3)(1)0x a x x ⇔+++>,结合题意画出图可知2a =-、6、 解关于)0(11)1(2>>+-+a x ax x a x 的不等式解:①若)251()2511(2150∞++--+<<,,,则原不等式的解集为Y a a ; ②若)251(215∞+++=,,则原不等式的解集为a ; ③若)251()1251(215∞++--+>,,,则原不等式的解集为Y a a 7、( 广东省深圳中学2008—2009学年度高三第一学段考试)解不等式.2)21(242>⋅-+x x x.解析:2)21(2242>⋅-+x x Θ21422222>⋅∴-+x x即212322>-x 得65>x 所以原不等式得解集为}65|{>x x 考点4 简单得恒成立问题题型1:由二次函数得性质求参数得取值范围例1、若关于x 得不等式2220ax x ++>在R 上恒成立,求实数a 得取值范围、 【解题思路】结合二次函数得图象求解[解析]当0a =时,不等式220x +>解集不为R ,故0a =不满足题意; 当0a ≠时,要使原不等式解集为R ,只需22420a a >⎧⎨-⨯<⎩,解得12a >综上,所求实数a 得取值范围为1(,)2+∞【名师指引】不等式20ax bx c ++>对一切x R ∈恒成立000a b c =⎧⎪⇔=⎨⎪>⎩或2040a b ac >⎧⎨∆=-<⎩ 不等式20ax bx c ++<对任意x R ∈恒成立000a b c =⎧⎪⇔=⎨⎪<⎩或2040a b ac <⎧⎨∆=-<⎩ 题型2、转化为二次函数得最值求参数得取值范围【解题思路】先分离系数,再由二次函数最值确定取值范围、[解析] (1)设2()(0)f x ax bx c a =++≠、由(0)1f =得1c =,故2()1f x ax bx =++、 ∵(1)()2f x f x x +-= ∴22(1)(1)1(1)2a x b x ax bx x ++++-++=即22ax a b x ++=,所以22,0a a b =+=,解得1,1a b ==- ∴2()1f x x x =-+(2)由(1)知212x x x m -+>+在[1,1]-恒成立,即231m x x <-+在[1,1]-恒成立、令2235()31()24g x x x x =-+=--,则()g x 在[1,1]-上单调递减、所以()g x 在[1,1]-上得最大值为(1)1g =-、所以m 得取值范围就是(,1)-∞-、 【名师指引】()m f x ≤对一切x R ∈恒成立,则min [()]m f x ≤;()m f x ≥对一切x R ∈恒成立,则max [()]m f x ≥;【新题导练】8、不等式22214x a x ax ->++对一切∈x R 恒成立,则实数a 得取值范围就是_______. [解析]:不等式22214x a x ax ->++对一切∈x R 恒成立,即 014)2(2>-+++a x x a 对一切∈x R 恒成立 若2+a =0,显然不成立若2+a ≠0,则⎩⎨⎧<∆>+002a ∴2>a9、若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 得取值范围就是 ( )A .0B . –2C .-52 D .-3解析:设f (x )=x 2+ax +1,则对称轴为x =a 2-,若a 2-≥12,即a ≤-1时,则f (x )在〔0,12〕上就是减函数,应有f (12)≥0⇒-52≤x ≤-1若a 2-≤0,即a ≥0时,则f (x )在〔0,12〕上就是增函数,应有f (0)=1>0恒成立,故a ≥0若0≤a 2-≤12,即-1≤a ≤0,则应有f (a2-)=222a a a 110424≥-+=-恒成立,故-1≤a ≤0. 综上,有-52≤a,故选C . ★ 抢 分 频 道 ★基础巩固训练1、 不等式2560x x -++>得解集就是__________解析:将不等式转化成2560x x --<,即()()160x x +-<、]2、 若不等式20x ax b --<得解集为{|23}x x <<,则不等式210bx ax -->得解集为__________、、解析:先由方程20x ax b --=得两根为2与3求得,a b 后再解不等式210bx ax -->、得11,23⎛⎫-- ⎪⎝⎭3、 (广东省五校2008年高三上期末联考) 若关于x 得不等式2()1()g x a a x R ≥++∈得解集为空集,则实数a 得取值范围就是 .解析: 2()1()g x a a x R ≥++∈得解集为空集,就就是1= [()g x ]max <21a a ++ 所以(,1)(0,)a ∈-∞-⋃+∞4(08梅州)设命题P :函数)161lg()(2a x ax x f +-=得定义域为R ;命题q :不等式ax x +<+121对一切正实数均成立。

高考数学讲义:分式不等式(原卷版)

高考数学讲义:分式不等式(原卷版)

第19讲:分式不等式【学习目标】1.掌握通过分式不等式转化为一元二次不等式求解,分母不为零;2.掌握分式不等式含参的分类讨论.【基础知识】分式不等式的解法【考点剖析】考点一:分式不等式(一)例1.若集合201x A xx,220B x x x ,则 R A B ∩ð()A.(1,2)B.[1,2)C.(1,2) D.[1,2)变式训练1:不等式101x x 的解集是()A.(,1]B.(]1,1 C.[1,1)D.(,1](1,)变式训练2:不等式02xx 的解集为()A.[0,2]B.(0,2)C.(,0)[2,) D.[0,2)变式训练3:已知集合2260A x x x ,301x B xx,则A B ∩()A. 21x x B.21x x C.42x x D.322xx考点二:分式不等式(二)例2.不等式3112x x的解集()A.324xx∣B.324xx∣C.34x x∣或2}x D.34xx∣或2}x 变式训练1:不等式2112x x 的解集为()A.[3,2]B.[3,2)C.(,3][2,)D.(,3](2,)U 变式训练2:已知集合2230A x x x ,11B xx,则A B ∩()A.B.1,3C. 1,0D.1,01,3 变式训练3:设x R ,则31x 是1123x x 的()A.充分不必要条件B.必要不充分条件C.充要条件D.不充分也不必要条件考点三:含参分式不等式求解例3.已知不等式210ax bx 解集为34x x ,解关于x 的不等式101bx ax ;变式训练1:已知关于x 的不等式()()0x a x b x c的解集是{|12x x 或3}x ,则不等式0()()x cx a x b 的解集是________________.变式训练2:若关于x 的不等式2032x ax x 的解集是 1x x a 或 2x ,则实数a 的取值范围是___________.变式训练3:已知不等式101ax a R x .(1)当2a 时,解这个不等式;(2)若111ax x x 对 ,0x 恒成立,求实数a 的最大值.【过关检测】1、设集合103x A xx, 240B x x 则A B ()A.12x x B.23x x C.13x x D.1x x 2、已知集合01A x x ,1021x B xx,则A B ∩()A.102x xB.112xxC.102x xD.11x x 3、设集合3A x x ,205x B xx,则 A B R I ð()A.,2 B.3,5C.2,3D.3,54、已知集合104x A xx,2230B x x x ,则A B ∩等于()A.(1,1] B. ,11, C.[3,4)D.,13, 5、已知集合02xA xx,集合 0B x x ,则A B ()A.2x x B.2x x C. 0x x D.x x 6、已知集合02x A x x, 0 2.5B x N x ,则A B ∩()A.02x x B.02x x C. 0,1D.0,1,27、已知全集U N ,集合30,1x A xx N x,则U A =ð()A.2B.1,2C.2,3D.0,1,28、不等式102xx 的解集为()A. 2,1 B.2,1 C.,21, D.,21, 9、不等式2062x x的解集是()A.{|23}x x B.{|2x x 或3}x C.{|23}x x D.{|2x x 或3}x 10、已知集合2M x x ,集合21xN xx,则N M ∩()A.1,2B.1,2C.1,2D.1,211、关于x 的不等式11x的解集为()A.1x x B.1x x C.0x x 或>1x D.0x x 或01x 12、不等式2(2)(3)01x x x 的解集为()A.12x x 或23x B.13x x C.23x x D.12 x x13、不等式3112x x 的解集是()A.3|24x xB.3|24x xC.{|2x x 或3}4x D.3|4x x14、不等式2232403x x x x 的解集为()A.31x x 或2x B.3x x 或 12x C.4x x 或31 x 或2x D.4x x 或3x 或12x 15、不等式2131x x 的解集是()A.1,23B.1,23C.1,11,23U D.1,11,2316、关于x 的不等式0ax b 的解集是 1, ,则关于x 的不等式02ax bx 的解集是__________.17、已知全集24120,0,11x U xx x A x B x x x∣∣.(1)求U A ð;(2)求()U A B ð;18、解下列不等式:(1)2210x x ;(2)1032x x .19、解下列不等式:(1)2210x x ;(2)2133x x :20、解下列分式不等式:(1)23221x x x ;(2)22520(32)(11)x x x x ;(3)22560 34x xx x;(4)222232x x xx x.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的解法1.一元二次不等式的解法(1)含有未知数的最高次数是二次的一元不等式叫做一元二次不等式.(2)一元二次不等式的解法(如下表所示)设a >0,x 1,x 2是一元二次方程ax 2+bx +c =0的两实根,且x 1<x 2(3)对于一元二次不等式的解法需注意: ①x -a x -b ≥0(a <b )的解集为:{x |x ≤a 或x >b };x -a x -b≤0(a <b )的解集为:{x |a ≤x <b }. ②从函数观点来看,一元二次不等式ax 2+bx +c >0(a >0)的解集是一元二次函数y =ax 2+bx +c (a >0)在x 轴上方的点的横坐标的集合.③三个“二次”的关系常说的三个“二次”即指二次函数、一元二次方程和一元二次不等式,这三者之间有着密切的联系,这种联系点可以成为高考中的命题点.处理其中某类问题时,要善于产生对于另外两个“二次”的联想,或进行转化,或帮助分析.具体到解一元二次不等式时,就是要善于利用相应的二次函数的图象进行解题分析,要能抓住一元二次方程的根与一元二次不等式的解集区间的端点值的联系.2.解一元二次不等式的方法:(1)图象法:先求不等式对应方程的根,再根据图象写出解集. (2)公式法步骤:①先化成标准型:ax 2+bx +c >0(或<0),且a >0; ②计算对应方程的判别式Δ; ③求对应方程的根;④利用口诀“大于零在两边,小于零在中间”写出解集. 3.解绝对值不等式的基本思想1)解绝对值不等式的基本思想是去掉绝对值符号,把带有绝对值号的不等式等价转化为不含绝对值号的不等式求解,常采用的方法是讨论符号和平方,例如:(1)若a >0,则│x │<a ⇔-a <x <a ⇔x 2<a 2;(2)若a >0,则│x │>a ⇔x <-a ,或x >a ⇔x 2>a 2; (3) |f (x )|<g (x )⇔-g (x )<f (x )<g (x );(4)|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x )(无论g (x )是否为正).常用的方法有:(1)由定义分段讨论;(2)利用绝对值不等式的性质;(3)平方. 2)常见绝对值不等式及解法:(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)|x -a 1|+|x -a 2|>(<)b ,用零点分区间法.4.一般分式不等式的解法:(1)整理成标准型f xg x >0(或<0)或f xg x≥0(或≤0). (2)化成整式不等式来解:①fxg x >0⇔f (x )·g (x )>0 ②f xgx<0⇔f (x )·g (x )<0③f xg x ≥0⇔⎩⎪⎨⎪⎧ f x g x 0g x 0④f xg x ≤0⇔⎩⎪⎨⎪⎧f xg xg x(3)再讨论各因子的符号或按数轴标根法写出解集.★ 热 点 考 点 题 型 探 析★考点1 一元二次不等式的解法 题型1.解一元二次不等式[例1] 不等式2x x >的解集是( )A .(),0-∞ B. ()0,1 C. ()1,+∞ D. ()(),01,-∞+∞【解题思路】严格按解题步骤进行[解析]由2x x >得(1)0x x ->,所以解集为()(),01,-∞+∞,故选D;别解:抓住选择题的特点,显然当2x =±时满足不等式,故选D.【名师指引】解一元二次不等式的关键在于求出相应的一元二次方程的根 题型2.已知一元二次不等式的解集求系数.[例2]已知关于x 的不等式220ax x c ++>的解集为11(,)32-,求220cx x a -+->的解集.【解题思路】由韦达定理求系数[解析] 由220ax x c ++>的解集为11(,)32-知0a <,11,32-为方程220ax x c ++=的两个根,由韦达定理得11211,3232c a a-+=--⨯=,解得12,2a c =-=,∴220cx x a -+->即222120x x --<,其解集为(2,3)-.【名师指引】已知一元二次不等式的解集求系数的基本思路是,由不等式的解集求出根,再由 韦达定理求系数【新题导练】1.不等式(a -2)x 2+2(a -2) -4<0,对一切x ∈R 恒成立,则a 的取值范围是( ) A.(-∞,2] B.(-2,2] C.(-2,2) D.(-∞,2)解析:∵可推知-2<a <2,另a=2时,原式化为-4<0,恒成立,∴-2<a ≤2. 选B2. 关于x 的不等式(m x -1)( x -2)>0,若此不等式的解集为{x |<x <2},则m 的取值范围是A. m >0B.0<m <2C. m >D. m <0解析:由不等式的解集形式知m <0. 答案:D 考点2 含参数不等式的解法 题型1:解含参数有理不等式例1:解关于x 的一元二次不等式2(3)30x a x a -++> 【解题思路】比较根的大小确定解集解析:∵2(3)30x a x a -++>,∴()()30x x a -->⑴当3,3a x a x <<>时或,不等式解集为{}3x x a x <>或; ⑵当3a =时,不等式为()230x ->,解集为{}3x x R x ∈≠且; ⑶当3,3a x x a ><>时或,不等式解集为{}3x x x a <>或【名师指引】解含参数的有理不等式时分以下几种情况讨论:①根据二次项系数(大于0,小于0,等于0);②根据根的判别式讨论(0,0,0∆>∆=∆<).③根据根的大小讨论(121212,,x x x x x x >=<).题型2:解简单的指数不等式和对数不等式 例2. 解不等式log a (1-x1)>1 (0,1)a a >≠【解题思路】借助于单调性进行分类讨论解析(1)当a >1时,原不等式等价于不等式组⎪⎪⎩⎪⎪⎨⎧>->-a xx11011由此得1-a >x 1.因为1-a <0,所以x <0,∴a-11<x <0. (2)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-a xx 11011 由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a -11. 综上,当a >1时,不等式的解集是{x |a-11<x <0},当0<a <1时,不等式的解集为{x |1<x <a-11}.【名师指引】解指数不等式与对数不等式通常是由指数函数和对数函数的单调性转化为一般的不等式(组)来求解,当底数含参数时要进行分类讨论.【新题导练】3.关于x 的不等式226320x mx m --<的解集为( )A.(,)97m m -B.(,)79m m -C.(,)(,)97m m-∞-+∞ D.以上答案都不对 解析:原不等式可化为()()097m mx x +-<,需对m 分三种情况讨论,即不等式的解集与m 有关.4.解关于x 的不等式:04)1(22<++-x a ax 解析:0)2)(2(<--x axaa a )1(222-=-当⇒>⇒>aa 221⎭⎬⎫⎩⎨⎧<<22|x a x ; 当a a 2210<⇒<<∴⎭⎬⎫⎩⎨⎧<<a x x 22|,当0<a ⇒>-+-⇒0)2)(2(x ax 2|2x x x a ⎧⎫<>⎨⎬⎩⎭或 Φ∈⇒=>⇒=x a x a 1;205.① ②考点3 分式不等式及高次不等式的解法[例5] 解不等式:22(1)(68)0x x x --+≥ 【解题思路】先分解因式,再标根求解[解析]原不等式(1)(1)(2)(4)0x x x x ⇔-+--≥,各因式根依次为-1,1,2,4,在数轴上标根如下:所以不等式的解集为(,1][1,2][4,)-∞-+∞.【名师指引】求解高次不等式或分式不等式一般用根轴法,要注意不等式的解集与不等式对应的方程的根的关系. 【新题导练】5.若关于x 的不等式0(3)(1)x ax x +>++的解集是(3,1)(2,)--+∞,则a 的值为_______解析:原不等式()(3)(1)0x a x x ⇔+++>,结合题意画出图可知2a =-.6. 解关于)0(11)1(2>>+-+a x ax x a x 的不等式解:①若)251()2511(2150∞++--+<<,,,则原不等式的解集为 a a ; ②若)251(215∞+++=,,则原不等式的解集为a ; ③若)251()1251(215∞++--+>,,,则原不等式的解集为 a a 7.( 广东省深圳中学2008—2009学年度高三第一学段考试)解不等式.2)21(242>⋅-+x x x.解析:2)21(2242>⋅-+x x21422222>⋅∴-+x x即212322>-x 得65>x 所以原不等式的解集为}65|{>x x考点4 简单的恒成立问题题型1:由二次函数的性质求参数的取值范围例1.若关于x 的不等式2220ax x ++>在R 上恒成立,求实数a 的取值范围. 【解题思路】结合二次函数的图象求解[解析]当0a =时,不等式220x +>解集不为R ,故0a =不满足题意;当0a ≠时,要使原不等式解集为R ,只需202420a a >⎧⎨-⨯<⎩,解得12a >综上,所求实数a 的取值范围为1(,)2+∞【名师指引】不等式20ax bx c ++>对一切x R ∈恒成立000a b c =⎧⎪⇔=⎨⎪>⎩或2040a b ac >⎧⎨∆=-<⎩ 不等式20ax bx c ++<对任意x R ∈恒成立000a b c =⎧⎪⇔=⎨⎪<⎩或2040a b ac <⎧⎨∆=-<⎩ 题型2.转化为二次函数的最值求参数的取值范围【解题思路】先分离系数,再由二次函数最值确定取值范围.[解析] (1)设2()(0)f x ax bx c a =++≠.由(0)1f =得1c =,故2()1f x ax bx =++. ∵(1)()2f x f x x +-= ∴22(1)(1)1(1)2a x b x ax bx x ++++-++=即22ax a b x ++=,所以22,0a a b =+=,解得1,1a b ==- ∴2()1f x x x =-+ (2)由(1)知212x x x m -+>+在[1,1]-恒成立,即231m x x <-+在[1,1]-恒成立.令2235()31()24g x x x x =-+=--,则()g x 在[1,1]-上单调递减.所以()g x 在[1,1]-上的最大值为(1)1g =-.所以m 的取值范围是(,1)-∞-. 【名师指引】()m f x ≤对一切x R ∈恒成立,则min [()]m f x ≤;()m f x ≥对一切x R ∈恒成立,则max [()]m f x ≥;【新题导练】8.不等式22214x a x ax ->++对一切∈x R 恒成立,则实数a 的取值范围是_______. [解析]:不等式22214x a x ax ->++对一切∈x R 恒成立,即 014)2(2>-+++a x x a 对一切∈x R 恒成立 若2+a =0,显然不成立若2+a ≠0,则⎩⎨⎧<∆>+002a ∴2>a9.若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的取值范围是 ( )A .0B . –2C .-52 D .-3解析:设f (x )=x 2+ax +1,则对称轴为x =a 2-,若a 2-≥12,即a ≤-1时,则f (x )在〔0,12〕上是减函数,应有f (12)≥0⇒-52≤x ≤-1若a 2-≤0,即a ≥0时,则f (x )在〔0,12〕上是增函数,应有f (0)=1>0恒成立,故a ≥0若0≤a 2-≤12,即-1≤a ≤0,则应有f (a2-)=222a a a 110424≥-+=-恒成立,故-1≤a ≤0. 综上,有-52≤a,故选C .★ 抢 分 频 道 ★基础巩固训练1. 不等式2560x x -++>的解集是__________解析:将不等式转化成2560x x --<,即()()160x x +-<.]2. 若不等式20x ax b --<的解集为{|23}x x <<,则不等式210bx ax -->的解集为 __________..解析:先由方程20x ax b --=的两根为2和3求得,a b 后再解不等式210bx ax -->.得11,23⎛⎫-- ⎪⎝⎭3. (广东省五校2008年高三上期末联考) 若关于x 的不等式2()1()g x a a x R ≥++∈的解集为空集,则实数a 的取值范围是 .解析: 2()1()g x a a x R ≥++∈的解集为空集,就是1= [()g x ]max <21a a ++ 所以(,1)(0,)a ∈-∞-⋃+∞4(08梅州)设命题P :函数)161lg()(2a x ax x f +-=的定义域为R ;命题q :不等式ax x +<+121对一切正实数均成立。

相关文档
最新文档