复旦大学 大学物理 电磁学 chapter7.4_2015

合集下载

大学物理 电磁学

大学物理 电磁学

大学物理电磁学《大学物理》是一门综合学科,其中电磁学是其中重要的一部分。

从宏观上讲,电磁学研究了电磁场和电磁力,以及它们作用于电荷的现象。

从微观上来看,电磁学通过研究电磁场和电磁力的构成,以及电磁场和电磁力交互作用的机理,以及它们对电荷的作用,来对它们进行研究。

电磁学的历史电磁学是一门极具挑战性的科学,自古以来,人们一直在探索这门科学的奥秘,从中研究探索有关电磁现象的机理。

19世纪末,美国物理学家迈克尔福特(Michael Faraday)发现了电磁感应,标志着电磁学研究迈出了重大的一步,自此,伽利略、穆勒、萨维尔等物理学家为电磁学的研究作出了重要的贡献。

定义和概念电磁学是物理学的一门分支,它用来研究电磁场、电磁力和电磁场的构成以及交互作用,以及它们对电荷的作用。

电磁场是一种独立于物体的抽象物理量,在空间中以向量的形式表示;电磁力是由电磁场产生的作用在电荷上的力;电荷是保存电磁力的物理现象。

定律电磁学研究中最重要的定律是磁电现象定律,有三种形式,分别是:(1)伽利略定律;(2)穆勒-安培定律;(3)萨维尔定律。

伽利略定律伽利略定律(Gauss Law)(也称有关电荷分布的伽利略定律)又称为“电荷守恒定律”,即“物体的外壳表面上的电荷总量不变”,这是自然界中电荷守恒的定律。

伽利略定律用来计算外壳上的电荷总量,也可以用来计算电位场、流动电流和电容量。

穆勒-安培定律穆勒-安培定律是德国物理学家穆勒(Heinrich Hertz)和英国物理学家安培(James Clerk Maxwell)在研究电磁学的基础上推出的一种定律。

该定律于1873年提出,主要描述了电磁场中电荷运动和磁场产生之间的相互关系。

具体而言,它认为电磁场是由交叉的电流和磁场相互作用而产生的,也就是说,电荷的运动会产生磁场,磁场的变化也会产生电场。

萨维尔定律萨维尔定律(Maxwell Equations)是英国物理学家詹姆斯克拉克麦克斯韦所提出的电磁场的最基本方程式。

大学物理电磁学部分07电介质的极化和介质中的高斯定理

大学物理电磁学部分07电介质的极化和介质中的高斯定理

10
总度结矢:量在P和外电电介场质E的0作形用状下决,定电了介极质化发电生荷极的化面;密极度化强,
而场各物E理又,量激而的发总关附电加场E电0又场决E定,着pE极又化影强响度电矢介量质内P部。Pn的总电
系如下:
EE0E' E'
在电介质中,电位移矢量、极化电荷、附加电场 和总场强这此量是彼此依赖、互相制约的。
计规律。
在外电场中,在有极分子电介
质表面出现极化电荷,
E 0 F
E0
这种由分子极矩的转向而引起的极化现象称为取向极化
6
外场越大,电矩趋于外场方向一致性越好,电矩 的矢量和也越大。
说明:电子位移极化效应在任何电介质中都存在,而 分子转向极化只是由有极分子构成的电介质所特有的, 只不过在有极分子构成的电介持中,转向极化效应比 位移极化强得多,因而是主要的。
代替电介质对电 场的影响。
在外电场
E
中,介质极化产生的束
0
缚部电都荷产, 生在 附其 加周 电围 场无E论',介称质为内退部极还化是场外。
' '
退极化场
任一点的总场强为: EE0E'
注意:决定介质极化的不是原来的场
际的 场 E。
E
而是介质内实
0
E'又总是起着减弱总场 E的作用,即起着减弱极化
的作用,故称为退极化场。
为了计算它们当中的任何一个量,都需要和其它量 一起综合加以考虑。
这种连环套的关系太复杂,在实际计算中比较繁 琐。物理学追求“和谐、对称、简洁!
11
四、介质中的高斯定理 电位移矢量
1.介质中的高斯定理
真空中的高斯定理 SE0dS
q0

大学物理电磁学

大学物理电磁学

大学物理电磁学是物理学的一个重要分支,主要研究电磁现象的规律和本质。

电磁学在科学技术、工业生产和日常生活中都有着广泛的应用。

本文将从电磁学的基本概念、基本定律和电磁波的传播等方面对大学物理电磁学进行介绍。

一、基本概念1.电荷:电荷是物质的一种属性,分为正电荷和负电荷。

电荷间的相互作用规律是:同种电荷相互排斥,异种电荷相互吸引。

2.电场:电场是电荷及变化磁场周围空间里存在的一种特殊物质,它对放入其中的电荷有作用力。

电场的强度用电场强度E表示,单位是牛/库仑。

3.磁场:磁场是磁体周围空间里存在的一种特殊物质,它对放入其中的磁体有作用力。

磁场的强度用磁感应强度B表示,单位是特斯拉。

4.电磁波:电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量。

电磁波在真空传播速度与光速一样,速度为30万千米/秒。

二、基本定律1.库仑定律:库仑定律是描述电荷之间相互作用的定律,其内容为:真空中两点电荷间的作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力在它们的连线上。

2.安培定律:安培定律是描述电流和电流激发磁场的定律,其内容为:电流I1通过一条无限长直导线时,在距离导线r处产生的磁场强度H1与I1成正比,与r成反比,即H1与I1r成反比。

磁场方向垂直于电流方向和通过点的平面。

3.法拉第电磁感应定律:法拉第电磁感应定律是描述磁场变化引起电场变化的定律,其内容为:穿过电路的磁通量发生变化时,产生感应电动势。

感应电动势的大小与磁通量变化率成正比,与电路的匝数成正比。

4.麦克斯韦方程组:麦克斯韦方程组是描述电磁场分布和电磁波传播的四个偏微分方程,包括库仑定律、法拉第电磁感应定律、安培定律和位移电流定律。

三、电磁波的传播1.电磁波的发射:电磁波的产生通常是通过振荡电路实现的。

当振荡电路中的电场和磁场相互垂直且同相振荡时,电磁波便会产生并向外传播。

大学物理电磁学习题

大学物理电磁学习题

大学物理电磁学习题1、动圈式扬声器利用了电磁感应的原理[判断题] *对错(正确答案)答案解析:动圈式扬声器利用了通电导体在磁场中受力的原理,动圈式话筒利用了电磁感应的原理2、25.一种A4打印纸,包装袋上标有“80g/m2”的字样,一包有500张,小丽用刻度尺测出50张纸的厚度是50cm,则下列说法正确的是()[单选题] *A.一张这种规格的打印纸的厚度为01mmB.这种规格打印纸的密度为8g/cm3(正确答案)C.80g/m2的含义是每立方米的A4纸的质量为80gD.小丽测50张纸厚度,而不是测1张纸厚度,是为了改正测量错误3、地面上的木箱必须持续用力推才能不停地向前运动,说明力是维持物体运动的原因[判断题] *对错(正确答案)答案解析:木箱受摩擦力4、下列关于声音的说法正确的是()[单选题]A.调节电视机音量改变了声音的音调B.房间的窗户安装双层中空玻璃是在传播过程中减弱噪声(正确答案)C.能从不同乐器中分辨出小提琴的声音主要是因为响度不同D.用大小不同的力先后敲击同一音叉,音叉发声的音色不同5、32.下列涉及的物态变化现象解释正确的是()[单选题] *A.清晨河面上出现的薄雾是汽化形成的B.冰冻的衣服变干是熔化现象C.烧水时,壶嘴附近出现的“白气”是液化形成的(正确答案)D.浓雾逐渐散去是升华现象6、D.环形电流的电流强度跟m成反比(正确答案)下列说法不符合分子动理论观点的是()*A.用气筒打气需外力做功,是因为分子间的后斥力作用(正确答案)B.温度升高,布朗运动显著,说明悬浮颗粒的分子运动剧烈C.相距较远的两个分子相互靠近的过程中,分子势能先减小后增大D.相距较远的两个分子相互靠近的过程中,分子间引力先增大后减小(正确答案)7、司机驾车时必须系安全带,这是为了防止向前加速时惯性带来的危害[判断题] *对错(正确答案)答案解析:防止刹车时惯性带来的危害8、下列情形中,矿泉水瓶中水的质量会发生变化的是()[单选题] *A. 打开瓶盖,喝掉几口(正确答案)B. 将这瓶水放入冰箱,水温度变低C. 水结成冰,体积变大D. 宇航员将这瓶水带到太空9、3.物体的平均速度为零,则物体一定处于静止状态.[判断题] *对错(正确答案)10、1.民乐团演奏中国名曲《茉莉花》时,其中的声现象,下列说法错误的是()[单选题] *A.竹笛声是由空气柱振动产生的B.胡琴、琵琶发出的声音音色不同C.敲击鼓面的节奏越快,鼓声传播得就越快(正确答案)D.听众关闭手机,是从声源处控制噪声11、水平桌面上的文具盒在水平方向的拉力作用下,沿拉力的方向移动一段距离,则下列判断正确的是()[单选题]A.文具盒所受拉力做了功(正确答案)B.文具盒所受支持力做了功C.文具盒所受重力做了功D.没有力对文具盒做功12、考虑空气阻力,在空气中竖直向上抛出的小球,上升时受到的合力大于下降时受到的合力[判断题] *对(正确答案)错答案解析:上升时合力等于重力加上空气阻力,下降时合力等于重力减去空气阻力13、3.实验前要平衡小车受到的阻力.[判断题] *对错(正确答案)14、4.这一秒末的速度比前一秒末的速度小5 m/s. [判断题] *对(正确答案)错15、88.如图为甲、乙两种物质的m﹣V图像,下列说法中正确的是()[单选题] *A.体积为15cm3的乙物质的质量为30g(正确答案)B.甲的质量一定比乙的质量大C.甲、乙体积相同时,乙的质量是甲的2倍D.甲、乙质量相同时,甲的体积是乙的2倍16、2.这一秒末的速度比前一秒初的速度小10 m/s. [判断题] *对(正确答案)错17、77.小明研究液体密度时,用两个完全相同的容器分别装入甲、乙两种液体,并绘制出总质量m与液体体积V的关系图象如图所示,由图象可知()[单选题] *A.容器的质量是40kgB.甲液体的密度是5g/cm3C.乙液体的密度是0g/cm3(正确答案)D.密度是0g/cm3 的液体的m﹣V图象应位于Ⅲ区域18、19.学校楼道内贴有“请勿大声喧哗”的标语,这是提醒同学们要控制声音的([单选题] *A.响度(正确答案)B.音调C.音色D.频率19、C.分子间存在着间隙(正确答案)D.分子在永不停息地做无规则运动(正确答案)答案解析:扩散现象是一种物质的分子进入另一种物质内部的现象,因而说明分子间有间隙,且分子在永不停息地做无规则运动下列关于布朗运动的叙述,正确的有()*A.悬浮小颗粒的运动是杂乱无章的(正确答案)20、63.下列说法中正确的是()[单选题] *A.空气中细小的灰尘就是分子B.弹簧能够被压缩,说明分子间有间隙C.由于分子非常小,人们无法直接用肉眼进行观察(正确答案)D.把一块铜锉成极细的铜屑就是铜分子21、56.在没有任何其他光照的情况下,舞台追光灯发出的紫光照在穿白上衣、红裙子的演员身上,观众看到她()[单选题] *A.全身呈紫色B.上衣呈紫色,裙子不变色C.上衣呈黑色,裙子呈紫色D.上衣呈紫色,裙子呈黑色(正确答案)22、24.雪天为了使积雪尽快熔化,环卫工人在路面上撒盐,这是因为()[单选题] * A.盐使积雪的熔点降低(正确答案)B.盐使积雪的温度升高到0℃而熔化C.盐使积雪的熔点升高D.撒盐后的雪不再属于晶体,不需要达到熔点就可以熔化23、39.下列关于热现象的解释正确的是()[单选题] *A.从冰箱中拿出的雪糕冒“白气”是雪糕升华后的水蒸气液化而成的B.汽车必须熄火加油,是因为汽油在常温下易升华成蒸气,遇明火容易爆炸C.被水蒸气烫伤比沸水烫伤更严重是因为水蒸气液化时要放出热量(正确答案)D.衣柜中的樟脑丸过一段时间会变小甚至没有了,这是汽化现象24、51.下列关于物质结构和运动的说法中正确的是()[单选题] *A.原子核带正电,也是运动的(正确答案)B.组成固体的分子或原子是静止不动的C.组成液体的分子可以是运动的也可以是静止的D.原子核是单一粒子不可再分25、人耳听不到次声波,是因为响度太小[判断题] *对答案解析:次声波和超声波的频率超过了人耳的听觉范围26、做匀速直线运动的物体,其机械能保持不变[判断题] *对错(正确答案)答案解析:匀速直线运动的物体,动能保持不变,重力势能无法判断,机械能无法判断。

大学物理电磁学知识点

大学物理电磁学知识点

大学物理电磁学知识点物理学是关于大自然规律的学问;更广义地说,物理学探究分析大自然所发生的现象,以了解其规则。

接下来我在这里给大家共享一些关于大学物理电磁学学问点,供大家学习和参考,希望对大家有所关怀。

大学物理电磁学学问点【一】感应电流产生的磁场,总是在阻碍引起感应电流的原磁场的磁通量的转变。

楞次定律的核心,也是最需要大家记住的是“阻碍”二字。

在高中物理利用楞次定律解题,我们可以用十二个字来形象记忆:“增反减同,来拒去留,增缩减扩”。

楞次定律(Lenzlaw)是一条电磁学的定律,从电磁感应得出感应电动势的方向。

其可确定由电磁感应而产生之电动势的方向。

它是由_理学家海因里希·楞次(HeinrichFriedrichLenz)在1834年觉察的。

楞次定律是能量守恒定律在电磁感应现象中的具体表达。

楞次定律还可表述为:感应电流的效果总是抵抗引起感应电流的缘由。

对楞次定律的正确理解与使用分析:第一,电磁感应楞次定律的核心内容是“阻碍”二字,这恰恰说明楞次定律实质上就是能的转化和守恒定律在电磁感应现象中的特殊表达形式;第二,这里的“阻碍”,并非是阻碍引起感应电流的原磁场,而是阻碍(更精确来描述应当是“减缓”)原磁场磁通量的转变;第三,正因阻碍是的是“转变”,所以,当原磁场的磁通量增加(或削减)而引起感应电流时,则感应电流的磁场必与原磁场反向(或同向)而阻碍其磁通量的增加(或削减),概括起来就是,增加则反向,削减则同向。

这就是老师总结的做题应用定律“增反减同”四字要领的由来。

楞次定律阻碍的表现有哪些方式?(1)产生一个反转变的磁场。

(2)导致物体运动。

(3)导致围成闭合电路的边框发生形变。

楞次定律的应用步骤具体应用包括以下四步:第一,明确引起感应电流的原磁场在被感应的回路上的方向;第二,搞清原磁场穿过被感应的回路中的磁通量增减状况;第三,根据楞次定律确定感应电流的磁场的方向;第四,运用安培定则推断出感生电流的方向。

大学物理电磁学

大学物理电磁学

大学物理电磁学
第一章:静止电荷的电场
讲授内容:电荷、库仑定律、电场和电场强度以及场强叠加原理、电场线和电通量、高斯定律、利用高斯定律求静电场的分布基本要求:掌握静电场场强的概念及其叠加原理、能求解连续带电体的场强分布;理解用高斯定理律计算电场的条件和方法本章重点:电场强度的矢量叠加性、高斯定律
本章难点:微积分的应用
1.库仑定律
注意:矢量符号的印刷体以黑体加粗表示,手写书写体时必须带上标箭头。

2. 叠加原理:两个以上的点电荷对一个点电荷的作用力等于各个点电荷。

单独存在时对该点电荷的作用的矢量和。

3.电场:是电荷周围空间里存在的一种特殊物质。

4.电场强度:是用来表示电场的强弱和方向的物理量,下面是定义式。

5.电场线:是为了直观形象地描述电场分布而在电场中引入的一些假想的曲线。

电场线的特性:
a.始于由正电荷,止于负电荷;
b.电场线不相交;
c.静电场线不闭合;
(曲线上每一点的切线方向为电场方向;电场线的疏密程度代表场强大小)
6.电通量:通过电场中某一个面的电场线数叫做通过这个面的电场强度通量。

注:一般规定由内向外的方向为各处面元法向的正方向。

7.高斯定律:
8.电偶极子:电偶极子由等量异号电荷构成,电偶极矩方向由负电荷指向正电荷。

大学物理普通物理学chapter-7

大学物理普通物理学chapter-7

e r 12
k
q1q2 r3
r12
k 1 9109 N m2/C2 4πε0
0 = 8.8510-12 C2 ·N-1·m-2
真空介电常量
F1 2
F21
1
4π 0
q1q 2 r2
er12
1
4π 0
q1q 2 r3
r1 2
返回 退出
F1 2
F21
1
4π 0
q1q 2 r2
er12
• 电场中各处的力学性质不同。
2. 在电场中的同一点上放不同的
试验 电荷。

F q0
与q0无关。
电场强度(intensity
of electric field):
F
E
q0
返回 退出
F
E
q0
场强的大小: F/q0 场强的方向:正电荷在该处所受 电场力的方向。
讨论
1.
矢量场
E
E
r
E
x,y ,z
返回 退出
使用Matlab求解得到的两个 超越方程 F=0的位置x =0.94m 排斥力最大的位置x =1.25m
返回 退出
补充例7-1 设原子核中的两个质子相距4.0×10-15 m, 求此两个质子之间的静电力。
解:两个质子之间的静电力是斥力:
Fe
1
4π 0
q1q 2 r2
9.0 109
按库仑定律,电子和质子之间的静电力为
Fe
1 4πε 0
e2 r2
8.89
109
(1.60 1019 )2 (0.529 1010 )2
8.22108 (N)
返回 退出

大学物理《电磁学》

大学物理《电磁学》
电磁波
以波动形式传播的电磁场,包括无线电波、可见光、不可 见光(紫外线和红外线)、X射线和伽马射线等。
电磁学的发展历程
17世纪
牛顿的力学体系建立,为电磁学的发展奠定了基 础。
18世纪
库仑定律和安培定律的发现,揭示了电荷和电流 之间的相互作用规律。
19世纪
法拉第和麦克斯韦的贡献,提出了电磁感应理论 和麦克斯韦方程组,统一了电学和磁学的规律。
掌握常用的数据处理方法,如平均值、 中位数、标准差等统计量的计算,以 及数据的线性回归分析、曲线拟合等。
06 电磁学的应用案例分析
高压输电线路的设计与优化
高压输电线路的设计
在高压输电线路的设计过程中,需要考虑电磁场的分布、线路的电阻、电感等参数,以及线路的机械强度和稳定 性。
优化设计
通过优化设计,可以降低线路的损耗、提高输电效率,同时减少对周围环境的电磁干扰。
电磁学在生活和科技中的应用
01ห้องสมุดไป่ตู้
02
03
04
无线通信
无线电波用于长距离通信,包 括广播、电视和移动通信等。
电力传输
利用磁场和电场的相互作用, 实现电能的远距离传输。
医疗成像
如X射线和磁共振成像技术, 利用电磁波探测人体内部结构

新能源
太阳能电池利用光电效应将光 能转化为电能,风力发电利用 风能驱动发电机产生电能。
法拉第电磁感应定律
感应电动势的大小与磁通量变化率成正比。
楞次定律
感应电流产生的磁场总是阻碍原磁场的变化。
麦克斯韦方程组的推导与解释
推导过程
基于安培环路定律、法拉第电磁感应 定律等基本原理,通过数学推导得到 麦克斯韦方程组。
解释

大学物理 电磁学

大学物理 电磁学

大学物理:电磁学电磁学是物理学的一个分支,主要研究电磁现象、电磁辐射、电磁场以及它们与物质之间的相互作用。

在本文中,我们将探讨电磁学的基本概念、历史背景、研究领域以及在现实生活中的应用。

一、基本概念1、电荷与电荷密度电荷是物质的一种属性,它可以产生电场。

电荷分为正电荷和负电荷。

电荷的分布可以用电荷密度来描述,它表示单位体积内所包含的电荷数量。

2、电场与电场强度电场是空间中由电荷产生的力线所形成的场。

电场强度是描述电场强弱的物理量,它与电荷密度有关。

3、磁场与磁感应强度磁场是由电流或磁体产生的场。

磁感应强度是描述磁场强弱的物理量,它与电流密度和磁场中的电荷有关。

4、电磁波电磁波是由电磁场产生的波动现象,它包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。

二、历史背景电磁学的研究可以追溯到17世纪和18世纪,当时科学家们开始研究静电和静磁现象。

19世纪初,英国物理学家迈克尔·法拉第发现了电磁感应定律,即变化的磁场可以产生电流。

1864年,英国物理学家詹姆斯·克拉克·麦克斯韦将法拉第的发现与自己的研究结合起来,提出了著名的麦克斯韦方程组,预言了电磁波的存在。

三、研究领域1、静电学:研究静止电荷所产生的电场、电势、电容、电导等性质。

2、静磁学:研究静止磁场以及磁体和电流所产生的磁场和磁场分布。

3、电磁感应:研究变化的磁场和电场以及它们之间的相互作用和变化规律。

4、电磁波:研究电磁波的产生、传播、散射、反射和吸收等性质以及在各种介质中的行为。

四、应用电磁学在现实生活中有着广泛的应用,如:1、电力工业:利用电磁感应原理发电、输电和用电。

2、通信工程:利用电磁波传递信息,包括无线电通信、微波通信、光纤通信等。

3、电子技术:利用电磁学原理制造电子设备,如电视机、计算机、雷达等。

4、磁悬浮技术:利用磁力使物体悬浮,减少摩擦和能耗。

5、医学成像:利用电磁波和磁场进行医学诊断和治疗。

大学物理电磁学

大学物理电磁学
交流电路的功率
有功功率、无功功率和视在功率 的概念及其计算。
04
磁场性质及其描述
Chapter
磁感线及磁通量概念
磁感线
描述磁场分布的曲线,其切线方向表示 磁场方向,疏密程度表示磁场强度。
VS
磁通量
通过某一面积的磁感线条数,反映磁场在 该区域的分布情况。
安培环路定理及应用
安培环路定理
磁场中沿任意闭合路径的线积分等于穿过该 路径所包围面积的电流代数和的常数倍。
大学物理电磁学
目录
• 电磁学基本概念与原理 • 静电场性质及其描述 • 稳恒电流与电路分析 • 磁场性质及其描述 • 电磁感应与暂态过程分析 • 麦克斯韦方程组与电磁波传播
01
电磁学基本概念与原理
Chapter
电场与磁场定义
电场
由电荷产生的特殊物理场,描述 电荷间的相互作用。
磁场
由电流或磁体产生的特殊物理场 ,描述磁极间的相互作用。
光子概念
光子是量子力学中的基本粒子,构成光和其 他电磁辐射的量子。光子的能量与电磁波的
频率成正比。
黑体辐射和普朗克公式
黑体辐射
黑体是一个理想化的物体,能完全吸收外来的电磁辐射 ,不会有任何的反射与透射。黑体辐射是指黑体发出的 电磁辐射。
普朗克公式
描述黑体辐射的强度和频率的关系,是量子力学的基石 之一。普朗克公式揭示了黑体辐射的能量是不连续的, 以一份份的能量子(即光子)的形式发射或吸收。
感应电动势的大小与磁通量的变化率成正比,即e=dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
法拉第电磁感应定律是电磁感应现象的基础,也是电机 、变压器等电气设备的工作原理。
自感和互感现象
自感现象是指一个线圈中的电流发生变化时, 在线圈自身中产生感应电动势的现象。

电磁学课后答案第七章

电磁学课后答案第七章

Im =
Vm = Z
Vm R2 + ( L 1 2 ) C
Im
1 - L2 ) 2 C = 3 1 2 2 [ R2 + ( L ) ] C Vm (
4

0
=
1 = 745rad / s 时 LC
Im
= 0 ,达极大值,
<
0
时,
Im
0
所以电流先上升,再下降 (3)
= arctan
(4)
LR
1 C = -61.4
7-13 (1)
1 j L L j C =R + j z = R+ 1 1 - 2 LC +j L j C
电路中总阻抗
z = R2 + (
L 12
LC
) 2 = 8.94W
(2)
Ic =
(3)
U z LC 220 1 × = ´ = 2.73 A z zC 5 ( 1 ´ 530 ´ 10 -6 ) 2 100p
N=
1´104 = 4.69 4.44 ´ 50 ´1.2 ´ 8
取N =5 得初级线圈,次级线圈匝数分别为
N1 = 5 ´ 220 = 1100匝 N 2 = 5 ´ 40 = 200匝 N 3 = 5 ´ 6 = 30匝
变压器结构如图
题解 7-20 图
2 0
2 2 2R 2 0 C +1 = R2 2 2 2 2 + R 0C
C2
R2
0
2 0
C2 = 1
=
1 RC
0时
(3)
=
z=
3 R(1 - j ) 2 1 R(1 - j ) , 2

复旦大学大学物理A电磁学期末试卷及标准答案

复旦大学大学物理A电磁学期末试卷及标准答案

复旦大学大学物理A电磁学期末试卷及答案———————————————————————————————————————————————————————————————— 作者:作者: ———————————————————————————————————————————————————————————————— 日期:日期:复旦大学 大学物理A 电磁学一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。

(B)如果高斯面内无电荷,则高斯面上E处处为零。

(C)如果高斯面上E处处不为零,则该面内必有电荷。

处处不为零,则该面内必有电荷。

(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。

高斯定理仅适用于具有高度对称性的电场。

[ ] 2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:之间的电势差决定于:(A)1P 和2P 两点的位置。

两点的位置。

(B)1P 和2P 两点处的电场强度的大小和方向。

两点处的电场强度的大小和方向。

(C)试验电荷所带电荷的正负。

(C)试验电荷所带电荷的正负。

(D)试验电荷的电荷量。

(D)试验电荷的电荷量。

[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [] 4. 如图,如图,平行板电容器带电,平行板电容器带电,平行板电容器带电,左、右分别充满相对介电常数为左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:则两种介质内:(A)场强不等,电位移相等。

大学物理电磁学

大学物理电磁学

Fg
m2 G r2
1.16 1035
N
两者相比:
Fe Fg
1.20 1036
思考:虽然万有引力和库仑力相差悬殊,但在日常 生活中引力的效应却更易于被人感知,为什么呢?
★库仑定律的成立条件
条件?: 静止 真空 点电荷
●静止条件原指点电荷相对静止,且点电荷相对于观 察者也静止
▲可适当放宽到静源电荷——动电荷 ▲不能推广至动源电荷——静电荷 因为作为运动源,有一个推迟效应,此时运动电荷产 生的电场不仅与两者距离有关,还与运动点电荷的速 度有关
r
q1
rˆ12
q2 f12
当q1 当q1
、、qqr22ˆ1同 异2 为号 号q时 时1指,,向ff11q222与与的单rrˆˆ1122位同反矢向向量,,。表表现现为为斥 引力 力; 。
●讨论:
▲ f r-2 ?
f
=k
q1q2 r2

k是选取单位制后引入的常数
f
=k
q1q2 r2

f r -2
★但实验证实:氢分子和氦原子都精确地是电中性的! 故质子的电量与它的运动状态无关。而电荷的运动状 态又与所取参考系相联系,所以电荷的电量与运动状 态无关也就是,同一带电
粒子在不同参考系看来电
量不变,这称为电荷的
相对论不变性。
H2
He
★物体因带电而彼此吸引或排斥是一个重要的发现! 表明:在非接触物体之间,除了已知的万有引力和 磁力外,又有了电力。
▲究竟带电体的线度比距离小多少才可看成是点电荷, 却没有一个绝对的标准,它取决于讨论问题时所要求 的精度
★库仑定律的适用范围和精度
▲原子核尺度——地球物理尺度

电磁学(第二版)___习题解答

电磁学(第二版)___习题解答

电磁学(第二版)___习题解答本文档旨在概述《大学物理通用教程_电磁学(第二版)___题解答》的内容和目的。

章节结构本教程共包含以下章节:第一章:电磁学基础概念第二章:库仑定律和电场第三章:电场的高斯定理第四章:静电场的电势第五章:电场中的运动带电粒子第六章:稳恒电流第七章:磁场的基本特性第八章:安培定律和磁场的高斯定理第九章:磁场的矢量势与法拉第电磁感应定律第十章:电磁感应中的动生电动势第十一章:电磁感应中的感生电流第十二章:电磁场的能量与动量第十三章:交变电路理论第十四章:交变电磁场中的能流与坡印廷矢量第十五章:电磁波概论第十六章:辐射和天线每一章节都提供了对应题的解答,帮助读者更好地理解和应用所学的电磁学知识。

该题解答本是《大学物理通用教程_电磁学(第二版)___》的附属部分,旨在补充教材内容,提供题的详细解答,便于读者巩固所学知识。

本文档总结了《大学物理通用教程_电磁学(第二版)___题解答》中的题解答内容特点和方法。

本解答提供了《大学物理通用教程_电磁学(第二版)___题解答》中的题解答方式和思路的例子。

问题:如何计算两个点电荷间的电势差?答案:根据库仑定律可以计算出两个点电荷间的力,将该力乘以电荷间的距离即可得到电势差。

问题:如何确定一个圆环上的电场强度大小与方向?答案:根据环上各点的电荷之间的静电力作用,可以确定该点的电场强度大小和方向。

可以施用库仑定律以及数学公式来计算。

问题:如何计算一个球体内的电势分布?答案:根据球内各点的电荷密度以及球内各处的距离关系,利用电场的定义公式,可以计算出球体内各点的电势。

以上是一些《大学物理通用教程_电磁学(第二版)___题解答》的题目解答示例,希望对你的研究有所帮助。

本文档是《大学物理通用教程_电磁学(第二版)___题解答》的一部分,旨在为读者提供对电磁研究题的解答。

以下是总结本文档的重要性和帮助的几点观点:方便研究:本文档提供了电磁研究题的解答,可以帮助读者更好地理解和掌握这门学科。

电磁学-chapter-7

电磁学-chapter-7

电场强度通量,高斯定理
28
迈克尔·法拉第(Michael Faraday,1791-1867)
英国著名物理学家、化学家。在化学、电化学、电磁学等领域 都做出过杰出贡献。他家境贫寒,未受过系统的正规教育,但却在 众多领域中作出惊人成就,堪称刻苦勤奋、探索真理、不计个人名 利的典范。
1、希望你们年青的一代,也能象蜡烛为人照明那样, 有一分热,发一分光,忠诚而脚踏实地地为人类伟大的事
2、一旦科学插上幻想的翅膀,它就能赢得胜利。
3、我不能说我不珍视这些荣誉,并且我承认它很有价值, 不过我却从来不曾为追求这些荣誉而工作。
4、拼命去争取成功,但不要期望一定会成功。
5、科学家不应是个人的崇拜者,而应当是事物的崇拜者。 真理的探求应是他唯一的目标。
29
一 电场线
1 规定
E
R 2 )3
2
q E 4 πε0 x2
o 2R 2
x
Eo 0
(3) dE 0
R
P
dx
xo x
x
x 2R
2
23
例2 有一半径为R,电荷均匀分布的薄圆
盘,其电荷面密度为 . 求通过盘心且垂直
盘面的轴线上任意一点处的电场强度.
R
o xPx
24
解 σ q / πR2 dq 2 π rdr
dEx
E
dE
1 4πε0
er r2
dq
电荷面密度 dq σdS
E
S
1 4πε0
σer r2
dS
dq
+
r
dE
P
15
电荷连续分布的电场
1 dq dE 4 πε0 r 2 er
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.6 交流电的功率
• 瞬时功率
P(t ) = u (t )i (t )
电压与电流的相位差是 ϕ
设: i ( t ) = I o cos ωt
u (t ) = U o cos(ωt + ϕ )
P (t ) = U o I o cos ωt ⋅ cos(ωt + ϕ )
有效值
1 1 = U o I o cos ϕ + U o I o cos(2ωt + ϕ ) 2 2
基尔霍夫方程组复数形式 ~ 电路的节点处瞬时 = 0 电流的代数和为零。 (± I ) 符号规定:在节点电流方程中,电流正方向 是从节点流出,在其前写正号,反之为负。

~ ~~ ~ ( ± I Z) + ∑ (±ε ) = 0 ∑U = ∑
沿任一闭合回路绕行一周,瞬时电压的代数和为零。 在回路电压方程中,电流正方向和电动势正方向 与回路绕行方向一致时,在电流前为正号,而在 电动势前为负号,否则反之。 总之,公式的形式,符号的取法与直流电路相同。
定义品质因数:
U L ωo L Q≡ = U R
def
IV. 共振电路的通频带宽度(选择性) 共振峰两边 I = (1 / 2 ) I m 处的 频率宽度定义为通频带宽度
I max
∆f = f 2 − f1
Im I ( f1 ) = I ( f 2 ) = 2
2 / 2I max
f1 f 0 f 2 f
uC
ϕ
UR
2
电感与电容上的相位差为π
2
1 2 U = U + (U L − U C ) = I R + (ωL − ) ωC
* RLC串联电路的矢量图解
UL
总电压与总电流的相位差
U
U L −UC
UC
ϕ
I
∴ϕ = arctan
ωL − 1 / ωC
R
UR
总阻抗的模
U 1 2 2 ∴ Z = = R + (ωL − ) ωC I
fo 可以证明: ∆f = Q
Q值越大,通频带宽度就越小, 共振电路的频率选择性能就越好。
* 共振电路的储能与耗能
(I = Io / 2)
在一个周期内,电阻上的耗能 WR = RI 2T
电感和电容中,任意时刻 t 储存的总能量
∴ uC (t ) = ( I o / ωC ) cos(ωt − π ) = ( I o / ωC ) sin ωt 2
标志着共振电路性能的好坏的物理量。 •Q值的一种定义:描述谐振时的电压分配。
1 2 U = U + (U L − U C ) = I R + (ωL − ) ωC 共振时 U R = ImR = U
2 R 2 2
U U =UL U L = I m Z L = ω o L, U C = I m Z C = Rω o C R
∴ P (t ) = UI cos ϕ + UI cos(2ωt + ϕ )
1 P = T

T
o
u (t )i (t ) ⋅dt = UI cos ϕ
U Z = I
根椐阻抗的定义
它是复阻抗的模
~ Z = Z cos ϕ + jZ sin ϕ = R + jX
电压与电流的相位差是 ϕ
∴ P = I Z cos ϕ = I R
cos(2ωt + ϕ ) = cos 2ωt. cos ϕ − sin 2ωt ⋅ sin ϕ
= (2 cos 2 ωt − 1). cos ϕ − 2 sin ωt cos ωt ⋅ sin ϕ
= − cos ϕ + 2 cos ωt (cos ωt. cos ϕ − sin ωt ⋅ sin ϕ ) ) = − cos ϕ + 2 cos ωt ⋅ cos(ωt + ϕ)
~' 1 U ~ = 2 − + 3 jωCR 1 ( ) ω CR U
~ 附 A = 1 a − jb = 2 a + jb a + b 2
~ I1
~ U 1
R
~ I2
R
~ I3
C
2
C
~' U
~ ~ 再由复数比 U ' / U ,可 同时得到输入、输出电 压的大小之比和相位差:
'
~ I1
~ I2
~ jπ 2 Z L = ωLe = jωL
1 − jπ 2 1 ~ ZC = e = ωC j ωC
ZR = R
***交流电路复阻抗的串、并联公式与 直流电路电阻串、并联公式相同.
II. 交流电路的复数求解
**R、L、C串联电路 由串联电路中电压、电流瞬时值的关系, 可得出复电压、复电流的关系: R C
i (t ) = I o cos(ω ⋅ t + ϕ i )
u (t ) = U o cos(ω ⋅ t + ϕ u )
Uo
ωt + ϕ u 实轴
定义
~ j (ω ⋅ t + ϕ i ) *复电流 I (t ) = I o e = I o cos(ω ⋅ t + ϕ i ) + jI o sin(ω ⋅ t + ϕ i )
RC = 0
计算功率不能用复电压和复电流的乘积来代替。
• 功率因数 λ(power factor)
定义:λ = cos ϕ
I⊥
ϕ
I
P = UI cos ϕ = UI //
U , I 为电压、电流的有效值。 I // , I ⊥ 称为有功电流和无功电流
I //
U
应尽量设法消除无功电流在输电线上的消耗,提高功率因数。
视在功率 (apparent power)(设备上所示的容量, 即最大的输出功率) S = UI
额定电压、电流值
实际的输出功率与用电器的功率因数密切相关。
如电动机、日光灯都是感性的,可用并联电容的方法 来提高其功率因数。
例题二 测量一个有磁芯损耗 的电感元件的自感和有功电阻 如图所示电路,R1=40Ω ,U1=50V U2=50V ,总电压为 U = 50 3V已 知频率 f=50Hz 求该电感元件的L和有功电阻R 解: 串联电路电流相等 R1纯 电阻,U1与电流 I同方向 又已知 U1 、U2 大小相等,且 知总电压大小,根据三角形 2 余弦定理 U 2 − U12 − U 2 1 = cos ϕ = 2U1U 2 2
III. 交流电路的基尔霍夫方程组及其复数形式
当电磁波从电源传播到电路最远处所需的时间 远小于交流电的周期时,交流电路的各物理量 的瞬时值之间的关系与直流电路类似,称之为 似稳条件:
c f << l
例 l=3m, f<<10 8 Hz
对集中元件组成的线性电路,在引入复数法 后,交流电路中仍保留与直流电路相同的定 理和公式。
∴I = U R + (ωL − 1 / ωC )
2 2
II. 共振现象 由上述知串联共 ∴ I = 振电路的电流为
U R + (ωL − 1 / ωC )
2 2
1 当电压一定时,若电源频率满足 ω o L = ω oC 1 或 fo = 时,总阻抗达到极小 Z o = R
2π LC
U U = 电流达到极大值 I m = Zo R
7.4 交流电路的复数解法
交流电路的复数解法,就是利用交流电 的复数表示,按复数运算规则进行各种 运算,最后取其实部就是实际的交流电 压和电流。
I. 交流电的复数表示法:
简谐量的峰值对应于复数的模; 简谐量的相位相应于复数的辐角。 虚轴
~ *复电压 U (t ) = U o e j (ω ⋅t +ϕ u ) = U o cos(ω ⋅ t + ϕ u ) + jU o sin(ω ⋅ t + ϕ u )
~' 1 U U =| ~ |= U U (ωCR ) 4 + 7(ωCR ) 2 + 1
3ωCR ∆ϕ = ϕ u ' − ϕ u = − arctan 1 − (ωCR ) 2
7.5 谐振电路
I. RLC串联谐振电路
* RLC串联电路的矢量图解
UL
u
R
uR
L
C
uL
U
i
I
U L −UC
UC
2 R
称为共振现象,发生共振的频率 f0 称为共振频率。
1 2 ∴ Z = R + (ωL − ) ωC
2
I
Im 2
Z
Im
U I= Z
R
fo
f
ϕ π
串联共振电路的 共振曲线相位随 频率的变化曲线
f1 f o f 2
f
2
电感性
电容性
ϕ = arctan
ωL − 1 / ωC
R
fo
f
−π
2
III. 共振电路的品质因数 Q
~ ~ ~ ~ U = UC +U L +U R
~ ~ ~ ~ I = IC = I L = I R
~ ~ ~ ~ Z = ZC + Z L + Z R
~ UR
L
~ U
~ UL
~ UC
**R、L、C并联电路
由并联电路中电压、电流瞬时值的关系, 可得出复电压、复电流的关系:
~ ~ ~ ~ U = UC = U L = U R
说明在共振状态下,电感和电容中的能量WLC 不随时间变化,它不再与外界交换能量,而是 稳定地储存在电路中。电阻上的消耗应由外电 路不断地输入有功功率来补偿。
相关文档
最新文档