structure chemistry Chapter 4 Lecture3 ver3

合集下载

Chemistry Lecture 4

Chemistry Lecture 4

19
Two Classes of Bonding
Ionic Bonding Result when electrons are completely transferred from the atoms of one element to those of another element.
Covalent Bonding Result from the sharing of electrons between atoms of different elements.
(American Chemis ago, Linus Pauling developed the most common scale of Electronegativity (EN) values for the elements.
6
Electronegativity Values
7
Electronegativity Values
• Non-metals are more electronegative than metals. • The most electronegative element is Fluorine, with Oxygen a close second. • When Oxygen bonds with elements, other than Fluorine, it always pulls electrons towards itself. To denote the electropositive and electronegative aspect of a molecule, we can use the following notation. E.g. for HF, or

College Chemistry Chapter 04

College Chemistry Chapter 04

Lead box Gold foil
Tro's "Introductory Chemistry", Chapter 4
Fluorescent screen
15
Rutherford’s Results
• Over 98% of the a particles went straight through. • About 2% of the a particles went through, but were deflected by large angles. • About 0.01% of the a particles bounced off the gold foil.
―...As if you fired a 15‖-canon shell at a piece of tissue paper and it came back and hit you.‖
Tro's "Introductory Chemistry", Chapter 4 16
Rutherford’s Conclusions
Tro's "Introductory Chemistry", Chapter 4 9
The Atom Is Divisible
• Work done by J. J. Thomson and others proved that the atom had pieces called electrons. • Thomson found that electrons are much smaller than atoms and carry a negative charge.
1. Each Element is composed of tiny, indestructible particles called atoms.

lecture3

lecture3
n-BuLi, then MeI (61%)
Me
Wojtkowski, JOC 1971, 1790.
Shanghai, China
• Base-induced Reactions
Aldol-type reactions:
O R N2
LDA is the optimal base for lithiation
Shanghai, China
§ 4-1 Some Reactions of Nitro Compounds
Stabilized carbanion Transformation of the -NO2 group
NO2 R
Other reactions
-NO2 as a Leaving Group
Me O
Me O
Me
Smith, JACS, 1981, 2009.
Me
Rearrangement:
OO N2
BF3 OEt 2
O N2
N2
O
R
Mander, Aust. J. Chem. 1979, 1975.
OBF 3 R
R
O
Shanghai, China
• Ring Expansion Reactions:
Shanghai, China
• Nucleophilic Addition
OH O R NO 2 + H R R3N EtOH NO 2 R
+ n
R R
O
R NO 2
H2N(CH 2)2NMe 2 Benzene, 80oC
NO 2
n NO 2
+ H2N(CH 2)2NMe 2 Benzene, 80oC

3basic Structural Chemistry-第三章

3basic Structural Chemistry-第三章

( H aa ESaa )ca ( H ab ESab )cb 0 ( H ab ESab )ca ( H bb ESbb )cb 0
H2+的久期方程 关于ca、cb的线性齐次方程组,
得到非零解的条件:系数行列式为0。 H aa ESaa H ab ESab 0 H ab ESab H bb ESbb 二阶久期行列式
= 1
;
R = ∞,
S
a b
0
S的大小与R有关: Sab =(1+R+R2/3)e-R
最 小 的 Sab 最大的Sab
一 般 的 Sab
把Haa ,Hab , S
J+K E1=EH + 1+S
a b关系代入得
J -K E2 = EH + 1-S E1<EH < E2 E1=(α+β)/ 1+S E2=(α-β)/ 1-S
3.1.化学键概 述
3.1.1 化学键的定义和类型 广义化学键的定义:化学键是将原子结合成物质世界的作 用力。与泛分子相对应的是泛化学键。
化学键定义:在分子或晶体中两个或多个原子间的强烈相 互作用,导致形成相对稳定的分子和晶体。
泛化学键:共价键、离子键、金属键和次级键 。 基本理论:分子轨道理论、价键理论和密度泛函理论。
Y X c E c 0 a a X Y E 0 cb cb
求极值,即为体系的能量E
Y X c E c 0 a a X Y E 0 cb cb
2 2 X ca H aa 2ca cb H ab cb H bb
Fundamentals of Structural Chemistry

《结构化学》教学大纲(英文版)

《结构化学》教学大纲(英文版)

‘Structural Chemistry ’Course SyllabusCourse Code:09040001Course Category:Major BasicMajors:ChemistrySemester:SpringTotal Hours:54 Hours Credit:3Lecture Hours:54 HoursTextbooks:《Structural Chemistry》孙墨珑编著,东北林业大学出版社。

I.Introduction to Structural ChemistryThe major targets this course includes the followings: (1) to introduce the material structure of the basic concepts, basic theory, and basic methods for learning “Structural Chemistry”; (2) to explore the relationship between the microstructures and properties of atoms, molecules, and crystals; (3) to systematically clarify the essence of the periodic law of elements; (4) to deeply and qualitatively clarify the essence of the chemical bonds. This course introduces the basic principles of quantum mechanics and their applications in simple systems, structure of atoms, molecules, and crystals, symmetry of molecular orbitals, molecular orbital theory, and ligand field theory, etc. After learning this course, the students should be able to analyze and solve the basic chemistry problems from the point of view of quantum mechanics.II.Table of contentsSection I (Chapter 1) Basic knowledge of quantum mechanics1.1 Failures of classical mechanics1)Black-body radiation & Planck’s solution;2)Ph otoelectric effect & Einstein’s theory;3)Hydrogen spectrum & Bohr’s model.1.2Characteristics of the motion of microscopic particles1)Wave-particle duality;2)Uncertainty principle.1.3The basic postulates of quantum mechanics1)Postulate 1: wavefunction;2)Postulate 2: Hermitian operators;3)Postulate 3: Schrödinger equation;4)Postulate 4: linearity and superposition;5)Postulate 5: Pauli exclusion principle.1.4Applications of quantum mechanics in simple cases1)Free particle in one-dimensional (1D) box;2)Applications of the 1D-box model in simple chemical systems;3)Free particle in two-dimensional (2D) & three-dimensional (3D) box;4)Tunneling & scanning tunneling microscopy (STM).Section II (Chapter 2) Structures and properties of atoms2.1 One-electron atom: H atom1)The Schrödinger equation of H atoms;2)Solution of the Schrödinger equation of H atom.2.2Quantum numbers1)Principle quantum number, n;2)Angular momentum quantum number, l;3)Magnetic quantum number, m;4)Zeeman effect.2.3Wavefunction and electron cloud1)Radial distribution;2)Angular distribution;3)Spatial distribution.2.4 Structure of multi-electron atoms1)The Schrödinger equation of multi-electron atoms•Self-consistent field method;•Central field approximation.2)The building-up principles and electron configuration of multi-electron atoms•Pauli exclusion principle;•Principle of minimum energy;Hund’s rule.2.5Electron spin and Pauli exclusion principle2.6Atomic spectroscopy1)Orbital-spin coupling;2)Spectroscopic terms & term symbol;3)Derivation of atomic term.4)Hund’s rule on the spectroscopic terms;2.7Atomic properties1)Energy of ionization;2)Electron affinity;3)Electronegativity.Section III (Chapters 3-6) Structures and properties of molecules Chapter 3 Geometric structure of molecules─Molecular symmetry & symmetry point group3.1Symmetry elements and symmetry operations1)Symmetry elements and symmetry operations;2)Combination rules of symmetry elements;3.2Point groups & symmetry classification of molecules3.3Point groups & groups multiplication3.4Applications of molecular symmetry1)Chirality & optical activity;2)Polarity & dipole moment.Chapter 4 S tructure of biatomic molecules (X2 & XY)4.1 Linear variation method and structure of H2+ ion1) Shrödinger equation of H2+ ion;2) Linear variation method;3) Treatment of H2+ ion using linear variation method;4) Solutions of H2+ ion.4.2 Molecular orbital theory and diatomic molecules1) Molecular orbital theory;2) Structure of homonuclear diatomic molecules (X2);3) Structure of heteronuclear diatomic molecules (XY).4.3 Valence bond (VB) theory and H2 moleculeChapter 5 Structure of polyatomic molecules (A)5.1 Structure of Methane (CH4)1) Delocalized molecular orbitals of methane (CH4);2) Localized molecular orbitals of methane (CH4).5.2 Molecular orbital hybridization1) Theory of molecular orbital hybridization;2) Construction of hybrid orbitals;3) Structure of AB n molecules;4) Molecular stereochemistry: valence shell electron-pair repulsion (VSEPR)model.5.3 Delocalized molecular orbital theory─Hückel molecular orbital (HMO) theory1) HMO method & conjugated systems;2) HMO treatment for butadiene;3) HMO treatment for cyclic conjugated polyene (C n H n);4) Molecular diagrams;5) Delocalized π bonds.5.4 Structure of electron deficient molecules5.5 Symmetry of molecular orbitals and symmetry rules for molecular reactions5.6 Molecular spectroscopy1)Infrared absorption spectroscopy: molecular vibrations;2)Raman scattering spectroscopy: molecular vibrations;3)Fluorescence spectroscopy: electronic transitions;4)NMR spectroscopy: nuclear magnetic resonances.Chapter 6 Structure of polyatomic molecules (B), coordination compounds 6.1 Crystal field theory6.2 CO and N2 coordination complexes6.3 Organic metal complexes1) Zeise’s salts;2) Sandwich complexes.6.4 Clusters1) Transition-metal cluster compounds2) Carbon clusters and nanotubesSection IV (Chapters 7-9) Structure of crystalsChapter 7 Basics of crystallography7.1 Periodicity and lattices of crystal structure1) Characteristics of crystal structure;2) Lattices and unit cells;3) Bravais lattices and unit cells of crystals;4) Real crystals & crystal defects.7.2 Symmetry in crystal structure1) Symmetry elements and symmetry operations;2) Point groups (32) and space groups (230).7.3 X-Ray diffraction of crystals1) X-ray diffraction of crystals•Laue equation;•Bragg’s law;•Reciprocal lattice.2) Instrumentation of X-ray diffraction;3) Applications of X-Ray diffraction•Single crystal diffraction: crystal structure determination;•Powder diffraction: qualitative & quantitative analysis of crystalline materialsChapter 8 Crystalline solids, I: metals and alloys8.1 Close Packing of Spheres1) Close packing of identical spheres;2) Packing density;3) Interstices.8.2 Structures and Properties of Pure Metals8.3 Structures and Properties of AlloyChapter 9 Crystalline solids, II: ionic crystals9.1 Packing of Ions;9.2 Crystal Structure of Some Typical Ionic Compounds9.3 Trend of Variation of Ionic Radii9.4 Pauling Rule of Ionic Crystal Structure9.5 Crystals of Functional Materials1) Nonlinear optical materials;2) Magnetic materials;3) Conductive polymers;4) Semiconductors: band gap and photocatalysisIII.Table of ScheduleReferences[1] 王荣顺主编,东北师范大学等,《结构化学》,高等教育出版社,2003年。

4basic Structural Chemistry-第四章

4basic Structural Chemistry-第四章

d
ˆ )和反轴( I ) 四、旋转反演操作(I n n
1.旋转反演操作( Iˆn )
ˆ , 这是一个联合操作,先依据某一直线旋转 C n
ˆ 然后按照轴上的中心点进行反演,Iˆn iˆC n
。 2.反轴( I n ) 旋转反演操作依据的轴和对称中心称为反轴, In的n决定于转轴的轴次。
Attention:
对称操作: 旋转
O
H H
对称元素
点 线
对称操作所依据的几何要素。 面
对称面
组合
反轴或 象转轴
对称中心
对称轴
对称操作和对称元素是两个相互联系的不同概 念,对称操作是借助于对称元素来实现,而一个对 称元素可以对应着一个或多个对称操作。
一、旋转操作(
ˆ 1. 旋转操作( C n
)
ˆ )和旋转轴( Cn C n
将图形各点垂直移到某一平面的另一侧等距点上。
y
(x, y) (x’, y’)
x

x' x 1 y' ˆ yz y 0 z ' z 0
0 1 0
0 x y 0 1 z
4.3 分子点群
每个分子所具有的全部对称元素构成一个完整的对称 元素系,与对称元素系对应的全部对称操作的集合构成一 个对称操作群。群元素的数目称为群的阶.
一、单轴或无轴群
只具有1个n次轴的点群 ⒈ Ci 群
对称元素:i
ˆ ˆE Ci i

h2
⒉ C n群
Cn 对称元素:
ˆ1 C ˆ 2 C ˆ n1E ˆ hn Cn C n n n


分子中常见的Cn点群有:C1, C2, C3 。

新编文档-有机化学英文课件chapter4-精品文档

新编文档-有机化学英文课件chapter4-精品文档
the positive charge is delocalized over three atoms with the greater share on the two equivalent oxygens
4-9
Conjugate Acids & Bases
for protonation on the hydroxyl oxygen, we can write two contributing structures
M a c in to s h P IC T im a g e fo rm a t
is n o t s u p p o rte d
4-8
Conjugate Acids & Bases
for protonation on the carbonyl oxygen, we can write three contributing structures
in these molecules, the favored site of protonation is the one in which the charge is more delocalized
question: which oxygen of a carboxylic acid is protonated?
two place the positive charge on oxygen, one places it on carbon
M a c in to s h P IC T im a g e fo rm a t
is n o t s u p p o rte d
A-1 and A-3 make the greater contribution because all atoms have complete octets

有机立体化学chapter 4

有机立体化学chapter 4

4.2 Axial Chirality
Axial Chirality It is exemplified by allenes abC=C=Ccd (or abC=C=Cab) and by the atropisomerism of ortho-substituted biphenyls and binaphthyls.
rotation about single bonds.
4.2 Axial Chirality
How to decide the configuration of a compound with axial chirality?
4.2 Axial Chirality
Axial Chirality The procedure for assigning stereodescriptors for allenes, biphenyls and binaphthyls: Keywords: an elongated tetrahedron; view along the axis; the closer, the prior. a>b>c>d Descriptor: Ra and Sa
a c b
a
b c d
d
4.2 Axial Chirality
(Ra)-1,3-dichloroallene
4.2 Axial Chirality
H(d)
F(c)
S
R
Br(a)
F(b)
4.2 Axial Chirality
OH( c) H(d)
Hale Waihona Puke OH(a)H(b)
(Sa)-2,2'-binaphthol

organic chemistry4

organic chemistry4

Representing Conformations





Sawhorse representations show molecules at an angle, showing a molecular model C-C bonds are at an angle to the edge of the page and all C-H bonds are shown Newman projections show how the C-C bond would project end-on onto the paper Bonds to front carbon are lines going to the center Bonds to rear carbon are lines going to the edge of the circle
Summary: Types of Strain



Angle strain - expansion or compression of bond angles away from most stable Torsional strain - eclipsing of bonds on neighboring atoms Steric strain - repulsive interactions between nonbonded atoms in close proximity
4.3 Conformations of Butane


anti conformation has two methyl groups 180° away from each other Rotation around the C2–C3 gives eclipsed conformation Staggered conformation with methyl groups 60° apart is gauche conformation

美国化学会综合项目普通化学教材Chemistry

美国化学会综合项目普通化学教材Chemistry

美国化学会项目-普通化学教材Chemistry一,章本教材,分11个主题章。

Chapter 1. Water:A Natural Wonder水:自然奇迹Chapter 2. Aqueous Solutions and Solubility水溶液与溶解性Chapter 3. Origin of Atoms 原子来源Chapter 4. Structure of Atoms原子构造Chapter 5. Structure of molecules分子子构造Chapter 6. Chemical Reactions化学反映Chapter 7. Chemical Energetics:Enthalpy 化学能:焓Chapter 8. Entropy and Molecular Organization 熵与分子构成Chapter 9. Chemical Equilibrium化学平衡Chapter 10:Reduction and Oxidation:Electrochemistry 氧化与还原:电化学Chapter 11. Reaction Pathways 反映途径二,各章内容Chapter 1. Water:A Natural WonderSection 1.1. Phases of Matter物质相Section 1.2. Atomic Models 原子模型Section 1.3. Molecular Models分子模型Section 1.4. Valence Electrons in Molecular Models:Lewis Structures 分子模型中价电子:路易斯构造Reflection and projection 反思与延伸Section 1.5. Arranging Electron Pairs in Three Dimensions 三维排列电子对Section 1.6. Polarity of the Water Molecule水分子极性Reflection and projection 反思与延伸Section 1.7. Why Is Water Liquid at Room Temperature? 室温下水为什么是液体Section 1.8. Further Structural Effects of Hydrogen Bonding in Water水中氢键构造效果Section 1.9. Hydrogen Bonds in Biomolecules生物分子氢键Reflection and projection 反思与延伸Section 1.10. Phase Changes:Liquid to Gas 相变:液体到气体Section 1.11. Counting Molecules:The Mole 数分子:摩尔Reflection and projection 反思与延伸Section 1.12. Specific Heat of Water:Keeping the Earth's Temperature Stable 水热:保持大气温度稳定Section 1.13. Outcomes Review复习Section 1.14. EXTENSION -- Liquid Viscosity扩展-液体粘度Chapter 2. Aqueous Solutions and SolubilitySection 2.1. Substances in Solution溶液中物质Section 2.2. Solutions of Polar Molecules in Water极性分子在水中溶液Reflection and projection 反思与延伸Section 2.3. Characteristics of Solutions of Ionic Compounds in Water离子化合物在水中溶液特点Section 2.4. Formation of Ionic Compounds离子化合物生成Section 2.5. Aqueous Solutions of Ionic Compounds离子化合物水溶液Reflection and projection 反思与延伸Section 2.6. Precipitation Reactions of Ions in Solution溶液中离子沉淀反映Section 2.7. Solubility Rules for Ionic Compounds离子化合物溶度积规则Reflection and projection 反思与延伸Section 2.8. Concentrations and Moles浓度和摩尔Section 2.9. Mass-Mole-Volume Calculations质量-摩尔-体积计算Reflection and projection 反思与延伸Section 2.10. Reaction Stoichiometry in Solutions溶液反映定量关系Reflection and projection 反思与延伸Section 2.11. Solutions of Gases in Water气体溶于水溶液Section 2.12. The Acid-Base Reaction of Water with ItselfSection 2.13. Acids and Bases in Aqueous Solutions酸碱在水溶液中Section 2.14. Stoichiometry of Acid-Base Reactions酸碱反映定量关系Section 2.15. Chemical Reactions of Dissolved Carbon Dioxide溶解二氧化碳化学反映Section 2.16. Outcomes Review复习Section 2.17. EXTENSION -- La Chatelier's PrincipleChapter 3. Origin of AtomsSection 3.1. The Nuclear Atom原子核Section 3.2. Spectroscopy and Stellar Composition光谱和恒星成分Section 3.3. Evolution of the Universe:Stars宇宙进化:恒星Reflection and projection 反思与延伸Section 3.4. Nuclear Reactions核反映Section 3.5. Nuclear Reaction Energies核反映能Reflection and projection 反思与延伸Section 3.6. Cosmic Elemental Abundance and Nuclear Stability宇宙中元素分布量与核稳定性Section 3.7. Formation of Planets:The Earth行星形成:地球Reflection and projection 反思与延伸Section 3.8. Outcomes Review复习Section 3.9. EXTENSION:Isotopes:Age of the Universe and a Taste of Honey扩展-宇宙年龄与蜂蜜味道Chapter 4. Structure of AtomsSection 4.1. Periodicity and the Periodic Table周期性与周期表Section 4.2. Light as a Wave光被看作波Reflection and projection 反思与延伸Section 4.3. Photoelectric Effect:Light as a Particle光电效应:光被看作粒子Reflection and projection 反思与延伸Section 4.4. Why Atomic Spectra Look the Way They Do:Quantum Model of Atoms原子量子模型Section 4.5. If a Wave Can Be a Particle,Can a Particle Be a Wave?如果波能是粒子,粒子可以是波吗?Reflection and projection 反思与延伸Section 4.6. The Wave Model of Electrons in Atoms原子中电子波模型Section 4.7. Energies of Electrons in Atoms:Why Atoms Don't Collapse原子中电子能量:为什么原子不坍陷Reflection and projection 反思与延伸Section 4.8. Multi-electron Atoms:Electron Spin多电子原子:电子自旋Section 4.9. Electron Shells and Periodicity电子壳层和周期性Reflection and projection 反思与延伸Section 4.10. Wave Equations and Atomic Orbitals波方程与原子轨道Section 4.11. Outcomes Review复习Section 4.12. EXTENSION -- Energies of a Spherical Electron Wave扩展-球面电子波能量Chapter 5. Structure of moleculesSection 5.1. Isomers同分异构体Section 5.2. Lewis Structures and Molecular Models of Isomers路易斯构造与同分异构体分子模型Reflection and projection 反思与延伸Section 5.3. Sigma molecular orbitals西格马分子轨道Section 5.4. Sigma Molecular Orbitals and Molecular Geometry西格马分子轨道和分子几何形状Reflection and projection 反思与延伸Section 5.5. Multiple Bonds多重键Section 5.6. Pi Molecular Orbitals派分子轨道Reflection and projection 反思与延伸Section 5.7. Delocalized pi orbitals离域派分子轨道Section 5.8. Representations of Molecular Geometry描绘分子几何形状Reflection and projection 反思与延伸Section 5.9. Stereoisomerism立体异构现象Reflection and projection 反思与延伸Section 5.10. Functional Groups -- Making Life Interesting功能团—使生命有趣Reflection and projection 反思与延伸Section 5.11. Molecular Recognition分子辨认Section 5.12. Outcomes Review复习Section 5.13. EXTENSION -- Antibonding Orbitals:The Oxygen Story扩展-反键轨道:氧故事Chapter 6. Chemical ReactionsSection 6.1. Classifying Chemical Reactions化学反映分类Section 6.2. Ionic Precipitation Reactions离子沉淀反映Reflection and projection 反思与延伸Section 6.3. Lewis Acids and Bases:Definition路易斯酸碱:定义Section 6.4. Lewis Acids and Bases:Bronsted-Lowry Acid-Base Reactions路易斯酸碱:Bronsted-Lowry酸碱反映Reflection and projection 反思与延伸Section 6.5. Predicting Strengths of Lewis/Bronsted-Lowry Bases and Acids测Lewis/Bronsted-Lowry酸碱强度Reflection and projection 反思与延伸Section 6.6. Lewis Acids and Bases:Metal Ion Complexes路易斯酸碱:金属离子络合物Reflection and projection 反思与延伸Section 6.7. Lewis Acids and Bases:Electrophiles and Nucleophiles路易斯酸碱:亲电与亲核Section 6.8. Formal Charge形式电荷Reflection and projection 反思与延伸Section 6.9. Oxidation-Reduction Reactions:Electron Transfer氧化还原反映:电子转移Reflection and projection 反思与延伸Section 6.10. Balancing Oxidation-Reduction Reaction Equations氧化还原反映方程式配平Section 6.11. Oxidation-Reduction Reactions of Carbon-containing Molecules含碳分子氧化还原反映Section 6.12. Outcomes Review复习Section 6.13. EXTENSION -- Titration扩展-滴定Chapter 7. Chemical Energetics:EnthalpySection 7.1. Energy and Change能量和变化Section 7.2. Thermal Energy (Heat) and Mechanical Energy (Work)热能(热)和机械能(功)Section 7.3. Thermal Energy (Heat) Transfer热能(热)传递Reflection and projection 反思与延伸Section 7.4. State Functions and Path Functions状态函数和途径(过程)函数Section 7.5. System and Surroundings体系与环境Reflection and projection 反思与延伸Section 7.6. Calorimetry and Introduction to Enthalpy热量测定和焓简介Reflection and projection 反思与延伸Section 7.7. Bond Enthalpies键焓Reflection and projection 反思与延伸Section 7.8. Standard Enthalpies of Formation原则生成焓Section 7.9. Harnessing Energy in Living Systems生命体系能量运用Reflection and projection 反思与延伸Section 7.10. Enthalpy Revisited再访焓Reflection and projection 反思与延伸Section 7.11. What Enthalpy Doesn't Tell Us焓没告诉咱们Section 7.12. Outcomes Review复习Section 7.13 EXTENSION -- Gases:Pressure-Volume Work扩展-气体:压力体积功Chapter 8. Entropy and Molecular OrganizationSection 8.1. Mixing and Osmosis混合与渗入Section 8.2. Probability and Change也许性与变化Section 8.3. Counting Molecular Arrangements in Mixtures计算混合物分子排列Section 8.4. Implications for Mixing and Osmosis in Macroscopic Systems宏观世界里混合与渗入本质Reflection and projection 反思与延伸Section 8.5. Energy Arrangements Among Molecules分子中能量排布Section 8.6. Entropy熵Reflection and projection 反思与延伸Section 8.7. Phase Changes and Net Entropy相变与净熵Section 8.8. Gibbs Free Energy吉布斯自由能Reflection and projection 反思与延伸Section 8.9. Thermodynamics of Rubber橡胶热力学Section 8.10. Colligative Properties of Solutions溶液依数性Section 8.11. Osmotic Pressure Calculations渗入压计算Reflection and projection 反思与延伸Section 8.12. Thermodynamic Calculations for Chemical Reactions化学反映热力学计算Reflection and projection 反思与延伸Section 8.13. Why Oil and Water Don't Mix为什么油水不混合?Section 8.14. Ambiphilic Molecules:Micelles and Bilayer Membranes两亲分子:胶束和双分子膜Section 8.15. The Cost of Molecular Organization分子堆积代价Section 8.16. Outcomes Review复习Section 8.17. Osmosis and Cell Membranes渗入压与细胞膜Chapter 9. Chemical EquilibriumSection 9.1. The Nature of Equilibrium平衡本质Reflection and projection 反思与延伸Section 9.2. Mathematical Expression for the Equilibrium Condition平衡条件数学表达Section 9.3. Acid-Base Reactions and Equilibria酸碱反映和平衡Reflection and projection 反思与延伸ReSection 9.4. Solutions of Conjugate Acid-Base Pairs:Buffer Solutions共轭酸碱对溶液:缓冲溶液Section 9.5. Acid-Base Properties of Proteins蛋白质酸碱性质Reflection and projection 反思与延伸Section 9.6. Solubility Equilibria for Ionic Salts离子盐溶解平衡Reflection and projection 反思与延伸Section 9.7. Thermodynamics and the Equilibrium Constant热力学与平衡常数Section 9.8. Temperature Dependence of the Equilibrium Constant平衡常数与温度关系Reflection and projection 反思与延伸Section 9.9. Thermodynamics in Living Systems生命体系热力学Section 9.10. Outcomes Review复习Section 9.11. EXTENSION -- Competing Equilibria扩展-平衡竞争Chapter 10:Reduction and Oxidation:ElectrochemistrySection 10.1. Electrolysis 电解Reflection and projection 反思与延伸Section 10.2. Electric Current from Chemical Reactions化学反映电流Section 10.3. Work From Electrochemical Cells电池做功Reflection and projection 反思与延伸Section 10.4. Concentration Dependence of Cell Potentials浓度对电池电势影响Section 10.5. Free Energy and Electrochemical Cells:The Nernst Equation自由能和电化学电池:能斯特方程式Section 10.6. Combining Cell Potentials for ReactionsReflection and projection 反思与延伸Section 10.7. Half-Cell Potentials:Reduction Potentials半电池电势:还原电势Section 10.8. Reduction Potentials and the Nernst Equation还原电势和能斯特方程式Reflection and projection 反思与延伸Section 10.9. Carbon-Containing Reducing Agents:Glucose含碳还原剂:葡萄糖Section 10.10. Coupled Redox Reactions偶联还原反映Reflection and projection 反思与延伸Section 10.11. Outcomes Review复习Section 10.12. EXTENSION -- Cell Potentials and Non-Redox Equilibria扩展-电池电势与非还原平衡Chapter 11. Reaction PathwaysSection 11.1. Pathways of Change途径变化Section 11.2. Measuring and Expressing Rates of Chemical Change测量和表达化学变化速率Reflection and projection 反思与延伸Section 11.3. Reaction Rate Laws反映速率定律Section 11.4. Reaction Pathways or Mechanisms反映途径与机理Reflection and projection 反思与延伸Section 11.5. More Ways to Analyze Rate Data分析速率数据更多方式Reflection and projection 反思与延伸Section 11.6. Temperature and Reaction Rates温度与反映速率Section 11.7. Light:Another Way to Activate a Reaction光:另一种方式活化反映Reflection and projection 反思与延伸Section 11.8 Outcomes Review复习Section 11.9. EXTENSION -- Enzymatic Catalysis扩展-酶催化美国化学会项目-普通化学教材简介周伟红(吉林大学化学学院,长春 130022,)摘要:W.H.Freeman and Company 出版Chemistry,是美国化学会一种项目。

iGCSE chemistry Section 4 lesson 4

iGCSE chemistry Section 4    lesson 4
reaction
Reversible Reactions
A reversible reaction is one which can go in both
directions.
Reversible Reactions
This means that in a chemical reaction the products of the reaction can be turned back into the
Water in and out
1. When heated. Ammonium chloride splits up into ammonia gas and hydrogen chloride gas.
Solid ammonium chloride
Ammonia and HCl gases
Solid ammonium chloride
CuSO4.5H2O
Blue hydrated
copper sulphate
CuSO4 + 5H2O
Add a few drops of
water
White anhydrous
copper sulphate
Reversible Reactions
Let’s look at another example –
Reversible Reacan example
Reversible Reactions
Heating blue copper sulphate
Water vapour
Heat
Reversible Reactions
Heating blue copper sulphate
IGCSE CHEMISTRY SECTION 4 LESSON 4

chemistry-chapter4

chemistry-chapter4

A Picture of Health
Examples of Stoichiometry in Nutritional Intake
• Calculate the formula mass of a compound. • Define the mole. • Use the mole as a unit-conversion factor for converting mass into moles and moles into mass. • State the magnitude of Avogadro’s number and what is implies about the size of atoms and f them in a weighable sample. • Calculate the empirical and molecules formulas of a compound. • Write a chemical reaction as an equation. • Balance a chemical equation. • Use a balanced chemical equation to predict the masses of compounds produced and used in chemical processes.
Table 4.1
Calculate the number of moles in 270.0g of glucose.
1molglucose mol gluocse 270.0g glucose 180.2g glucose 1.498mol glucose
0.6760 m ol K 1.000 , which round to 1 0.6760 m ol K

大学化学专业英语PPT课件 第4章 chapter4

大学化学专业英语PPT课件 第4章 chapter4

• 4.4 Behavior of Gas Molecules • 1. Effusion and Diffusion: Graham’s Laws
• the rates of Effusion and Diffusion are inversely proportional to the square roots of the densities of gases.
4.3 Mass, Molecular, and Molar Relationships
• 1. Gay-Lussac’s Law :equal volumes of gases, measured at the same temperature and pressure, contain equal numbers of molecules. • 2. Molar Volume : the volume of one mole of a substance at STP. • molar volume for any real gases: equal to 22.4L • 3. Ideal Gas Law (Mass and Density) pV nRT where R is the ideal gas constant: 8.314 J/(K· mol)
4.2 kinetic-molecular theory of gases a) the average kinetic energy: proportional only to the absolute
temperature of the gas. At given temperature, the different molecules of gas has the same average b) elastic collisions: the collisions of gas with others are perfectly elastic, with no loss of energy ideal gas: having all of above properties real gas:

Chapter 04 Structure and Stereochemistry of Alkanes

Chapter 04 Structure and Stereochemistry of Alkanes

Chapter 4 Structure and Stereochemistry of Alkanes
Yunfeng Chen School of Chemical Engineering & Pharmacy chyfch@
Boiling Points of Alkanes
Branched alkanes have less surface area contact, so weaker intermolecular forces.
• Combustion data shows it’s unstrained. • Angles would be 120°, if planar. • The chair conformer has 109 5° bond The chair conformer has 109.5 bond angles and all hydrogens are staggered. • No angle strain and no torsional strain.
Higher Alkanes
• Anti conformation is lowest in energy. • “Straight chain” actually is zigzag.
CH3CH2CH2CH2CH3
H H H H H C C C C H H H H H H H C
Cycloalkanes
5
2013-9-16
3. If there are more than two substituents,
Cis‐Trans Isomerism
CH3 CH3 CH3 1,1,2-trimethylcyclopentane not 1,2,2-trimethylcyclopentane because1<2 not 1,1,5-trimethylcyclopentane because 2<5

Structure chemistry Chapter 4 Lecture3revisted

Structure chemistry Chapter 4  Lecture3revisted

h,
hCn ,
hCn2,

C n1
hn
C2h E,C2,h,i
11
③ Cnv群
C2 σv
C3 σv σv
σv
σv
12
C4v群 :BrF5
σv
C4
σv
σv
σv
C5v群:Ti(C5H5)
13
C∞v群:不具有对称中心的线型分子
CO
HCN
N2O
全部对称元素:C∞,
14
Cnv群的判据、特点、阶次
结构化学
第四章 对称性与群论
主讲教师:左春山
1
主要内容
§4.1 前言 §4.2 对称操作与对称元素 §4.3 对称操作群与对称元素组合 §4.4 分子点群 §4.5 分子极性与旋光性 §4.6 群表示
2
3
思考: 1. 分子对称性群具有什么特征,有哪几种 2. 如何判别一个分子属于何种对称性群
4
乙炔
24
⑦Dnd群 判据:Cn+ nC2⊥Cn+σd
在 Dn 群的基础上加上一个通过主轴且又平分两个C2 轴
夹角的镜面 d ,群的阶为 4n,属于此类点群的分子也较
少。例如,累积式丙二烯为 D2d 点群。
25
D2d : 丙二烯
D3d : 乙烷交错型
26
D4d :单质硫
27
俯视图
D5d : 交错型二茂铁
19
C2 x
C2 z
y
C2
D3:[Co(NH2CH2CH2NH2)3]3+
20
部分交错式乙烷对称元素: C3 和3C2 属D3群
C2轴在两C原子中点与两H原子的中点连线方向

computational_chemistry-4 基组总结 计算化学理论和应用 教学课件

computational_chemistry-4 基组总结   计算化学理论和应用 教学课件
1973,Liu和McLean将此误差命名为BSSE 〔Basis Set Superposition Error〕
HFR方程的自洽场法求解
Fock矩阵
重叠矩阵
ei 组成的对角阵
系数列矩阵
需要将广义本征方程转化为标准方程,以方便求解
关键:将重叠矩阵转化为单位矩阵
因为重叠矩阵为厄米矩阵,因此总可以找到一个酉阵将它对角化

在此根底上,构造矩阵
1
2
可以得到
† ( 1 2 ) † 1 2 1 2†
1 1 1
2 22 1
因此可以通过如下方式对广义本征方程进行转换

1
1
† 1
SCF 计算实例: HeH+
一、指定分子几何构型和基组
几何构型:
He-H键长:R=1.4632a.u.; 核电荷:He 2, H 1; 电子总数:2
基组:STO-3G
STO
(He,1S)(z131)221
2
= †
2 0
=
0
4
=
0
1.0 .450
8
1
2
1 2
0.4508 1.0
1.4508
=
0
0
0.5
4
9
2
1
2
1
1 0.5871 0.9541
=
τ
2
0.5871
0.9541
2

=
2 0
.4 .5
3 1
9 5
7 8
0.5158
1
.5
3
8
7
四、求解得到新的密度矩阵
C GTO p p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E, C31,C32
C4
杯[4]芳烃
E,C41,C42=C21,C42
② Cnh群 C2h C3h
E, C2, h, hC21 = i
E, C31, C32, h, hC31, hC32
③ Cnv群 C2v
σv’ σv σv C2
C3v
C3 σv’ σv”
E, C2, v, v’
结构化学
第四章 对称性与群论
主要内容
§4.1 前言 §4.2 对称操作与对称元素 §4.3 对称操作群与对称元素组合 §4.4 分子点群 §4.5 分子极性与旋光性 §4.6 群表示
化学反应性质与对称性关系
O
Om Om R3 R2 R3 R R1
A
R2
R3
A
R2 R
+
A R1
R2 = R3
A
RR1
对称元素包括 6 个 C5, 10 个 C3 , 15个 C2 , 15
个 和 I 等,Ih 群的阶次120。如B12H122-, B12, C60
等属于 Ih 点群。
4.4.2. 分子所属点群的判别
分子
线形分子:
Cv , Dh
有多条高阶轴分子(正四面体、正八面体…)
只有镜面或对称中心, 或无对称性的分子:
29 Cn+nC2⊥Cn +nd E,Cnx,C2(x) ,d(x) (x=1,..n-1)
多面体群特点
Td群
对称元素:4个C3轴,3个C2轴,6个d ,3个S4 (与 3个C2重合);为24阶群。如:CH4,PO43-,SO42-
Oh群
对称元素有:4个 C3 ,3个 C4 ,6个 C2,6个 d,3个 h,i,3个 S4,6个 S6;阶次为 48 I h群
穿过每两个相对棱心有一条C2 ; 这
样的方向共有6个(图中只画出一 个) ; 此外还有对称中心i.
对称中心i在正方体中心
z
每一条体对角线方向上都有一条S6 (其中含C3); 这样的方向共有4个
y
x
(图中只画出一个);
z
处于坐标平面上的镜面是σh
y
x
σh
. 这样的镜面共有3个(图中 只画出一个);
σd
Td , Th , Oh , I h ...
C1 , Ci , Cs
只有S2n(n为正整数)分子:
S4 , S6 , S8 ,...
C n , C nh , C n v
Dn , Dnh , Dnd
Cn轴(但不是S2n 的简单结果)
无C2副轴:
有n条C2副轴垂直于主轴:
CO2H
Cl
H
CH3
H
OC
[B6H6]2-
闭合式[B12H12]2-
作业: 1. 课后习题4.8-4.12 2. 预习《分子的手性与偶极矩》
参考资料(含参考书、文献等):
1. Cotton F. A. Chemical Applications of Group Theory[M]. New York,John Wiley & Sons, 1990 2. Altmann S. L. Point-Group Theory Tables[M]. John Wiley & Sons, 2011 3. 高松,陈志达,黎乐民,分子对称性群[M].北京:高等教育出 版社,1996 4. Atkins P. W. Physical Chemistry(8th Ed.)[M]. Oxfrod, Oxford University Press, 2006 5. Levine I. N. Quantum Chemistry(5th Ed.)[M]. New Jersey: Prentice Hall, 2000 6. 徐光宪、王祥云,物质结构[M].北京:高等教育出版社,1987
包含正方体每两条相对棱的 镜面是σd . 这样的镜面共有6 个(图中只画出一个).
⑩ Ih群(十二面体群)
• 对称操作:
E
12C5 12C52 20C3 15C2 C60 h=120
i
12S10 12S103 20S6 15σ
非多面体群的判据、特点、阶次
点群 判据 群元素 E或i或 E,Cnx(x=1,..n-1) E, Cnx,h, (h)xCnx(x=1,..n-1) E, Cnx,h, (h)xCnx(x=1,..n-1) 无轴 无对称轴 Cn Cn Cnh Cnv Cn + h (Sn) Cn + v (Sn) 阶次 1 or 2 n 2n 2n
⑦ Dnd群 D2d : 丙二烯
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁
四、多面体群 ⑧ Td群(四面体群)
CH4
P4 (白磷)
从正四面体的每两条相对的棱中点有一条S4穿过, 6 条棱对应着3条S4. 每个S4可作出S41 、S42 、S43 三个 对称操作,共有9个对称操作. 但每条S4必然也是C2, S42与C2对称操作等价,所以将3个S42划归C2, 穿过正四面体每条棱
Z
并将四面体分为两半
的是一个σd , 共有6个 σd 。
Y
X
从正四面体的每个顶点到对 面的正三角形中点有一条C3 穿过, 所以共有4条C3,可作出 8个C3对称操作。
⑨ Oh群(正八面体群,立方体群)
SF6
立方烷
每一个坐标轴方向上都有一条S4
(其中含C2)与C4共线. 这样的方向
共有3个(图中只画出一个);
O C
Fe
C O
Fe
CO
四螺烯
环三肽
杯[4]芳烃
反式二氯乙烯
R R
R
反式二氯乙烯
N2F2
臭氧

NF3
CHCl3
PtCl42-
蔻 (coronene)
二茂铁
四星烷
五棱烷
沿着每一条C3去看, 看到的是这样:
沿着每一条C2去看,
金刚烷 (隐氢图)
看到的是这样:
Li CH3C2
x y
C2
[Co(NH2CH2CH2NH2)3]3+
D3
部分交错式乙烷
⑥ Dnh群 D2h
σ σ C2 C2 C2 σ
D3h
D4h
D6h
重叠型乙烷
XeF4

Dh
CO2
Cl2
乙炔
同核双原子分子或具有对称中心的线型分子
全部对称元素: C∞,∞C2, ∞σ (σh+∞σv), i
O
A
R2
R3
Om
A
R2 R R1
R3 A
x
RR1
R1 > R2 > R3
光谱性质与对称性关系
1 v 2
k


a
b d 0
4.4.1. 分子点群的类型与特征 一、无轴群
F
Cl I
Br
N
C1
E
E,i
Ci
E,
Cs
二、单轴群(轴向群) ① Cn群 C2 C3
H2O2
E, C21
H3C—CCl3
E, C31, C32, v, v’, v”
C4v
v
C4
C5v
v
v v
BrF5
Ti(C5H5)
C∞v
CO
HCN
N2O
全部对称元素:C∞, v
④ S n群
S4
1,3,5,7-四甲基环辛四烯 E, C41, C42= C21, C43
三、 双轴群(二面群)
⑤Dn群
D2
Sn ,In Sn或In
Cni, n为奇数 C2h/2, n为偶数但不为4倍数 Sn或In, n为4倍数
E,Cnx,C2(x) (x=1,..n-1)
2n
Dn Dnh Dnh
Cn+ nC2⊥Cn
2n 4n 4n
Cn+nC2⊥Cn +nh E,Cnx,C2(x) ,h&v(x) (x=1,..n-1)
相关文档
最新文档