常用信号完整性的测试手段和在设计的应用
信号完整性常用的三种测试方法
信号完整性常用的三种测试方法信号完整性是指在传输过程中信号能够保持原始形态和准确性的程度。
在现代高速通信和数字系统中,信号完整性测试是非常重要的工作,它能够帮助工程师评估信号的稳定性、确定系统的极限速率并发现信号失真的原因。
下面将介绍三种常用的信号完整性测试方法。
一、时域方法时域方法是信号完整性测试中最常见和最直观的方法之一、它通过观察信号在时间轴上的波形变化来评估信号的完整性。
时域方法可以检测和分析许多类型的信号失真,如峰值抖动、时钟漂移、时钟分布、幅度失真等。
时域方法的测试设备通常包括示波器和时域反射仪。
示波器可以显示信号的波形和振幅,通过观察波形的形状和幅度变化来判断信号完整性。
时域反射仪可以测量信号在传输线上的反射程度,从而评估传输线的特性阻抗和匹配度。
二、频域方法频域方法是另一种常用的信号完整性测试方法。
它通过将信号转换为频域表示,分析信号的频谱分布和频率响应来评估信号完整性。
频域方法可以检测和分析信号的频谱泄漏、频谱扩展、频率失真等。
频域方法的测试设备通常包括频谱分析仪和网络分析仪。
频谱分析仪可以显示信号的频谱图和功率谱密度,通过观察频谱的形状和峰值来评估信号完整性。
网络分析仪可以测量信号在不同频率下的响应和传输损耗,从而评估传输线的频率响应和衰减特性。
三、眼图方法眼图方法是一种特殊的信号完整性测试方法,它通过综合时域和频域信息来评估信号的完整性。
眼图是一种二维显示,用于观察信号在传输过程中的失真情况。
眼图可以提供信号的时钟抖动、峰值抖动、眼宽、眼深、眼高等指标。
眼图方法的测试设备通常包括高速数字示波器和信号发生器。
高速数字示波器可以捕捉信号的多个周期,并将其叠加在一起形成眼图。
通过观察眼图的形状和特征,工程师可以评估信号的稳定性和传输质量。
总结起来,时域方法、频域方法和眼图方法是常用的信号完整性测试方法。
它们各自具有独特的优势和适用范围,可以互相协作来全面评估信号的完整性。
在实际应用中,根据具体需求和测试对象的特点,选择合适的测试方法是非常重要的。
信号完整性测试报告
信号完整性测试报告1. 引言信号完整性测试是电子设备设计和制造过程中的关键步骤之一。
它旨在评估信号传输路径中的数据完整性,以确保信号在各个环节中没有失真或丢失。
本报告将介绍信号完整性测试的目的、测试方法、测试结果及建议。
2. 测试目的信号完整性测试的主要目的是验证信号在传输过程中的质量。
通过测试,可以确定信号是否满足设计要求,并找出潜在的问题。
这些问题可能包括信号失真、时钟抖动、串扰干扰等。
通过测试,可以提前发现并解决这些问题,确保信号的可靠传输。
3. 测试方法3.1 测试设备在进行信号完整性测试之前,需要准备以下测试设备:•示波器:用于观察信号波形和测量信号参数。
•信号发生器:用于产生测试信号。
•矢量网络分析仪:用于测量信号的频率响应和传输损耗。
3.2 测试流程信号完整性测试的基本流程如下:1.设置测试设备:连接示波器、信号发生器和矢量网络分析仪,并确保其正常工作。
2.准备测试样品:将待测试的电子设备或电路板连接到测试设备上。
3.产生测试信号:使用信号发生器产生测试信号,并将其输入到待测试的设备或电路板上。
4.观察信号波形:使用示波器观察信号波形,检查是否存在任何失真或干扰。
5.测量信号参数:使用示波器测量信号的幅度、频率、上升时间等参数。
6.使用矢量网络分析仪:如果需要更详细的信号特性分析,可以使用矢量网络分析仪进行频率响应和传输损耗的测量。
3.3 数据记录与分析在进行信号完整性测试期间,需要记录所有测试数据,并进行分析。
这些数据包括信号波形、信号参数测量结果以及任何异常情况的记录。
通过对测试数据的分析,可以确定信号的质量是否符合设计要求,并找出潜在的问题。
4. 测试结果与建议根据信号完整性测试的结果,可以得出以下结论和建议:•如果信号波形正常且符合设计要求,说明待测试的设备或电路板的信号传输路径基本上没有失真或干扰。
建议进行进一步的功能测试和验证。
•如果信号波形存在失真或干扰,需要进一步分析问题的原因。
PCB设计中的信号完整性分析方法
PCB设计中的信号完整性分析方法PCB设计是现代电子产品开发中不可或缺的一环。
而信号完整性是保证电子产品性能和可靠性的重要因素之一。
本文将介绍PCB设计中常用的信号完整性分析方法。
一、信号完整性的重要性信号完整性是指信号在电路板上的传输过程中,能够保持其原有的波形、速度和幅度,没有失真、噪声或者延迟。
信号完整性的不良会导致各种问题,如时钟偏移、串扰、干扰等,从而影响整个系统的性能和稳定性。
二、信号完整性分析方法1. 布线规则设计在PCB设计过程中,通过合理的布线规则设计可以减少信号的串扰和耦合。
比如,避免信号线之间的交叉、保持适当的距离、分层布线等。
2. 传输线理论传输线理论是用于分析高速信号传输的一种方法。
通过建立传输线模型,可以预测信号在传输过程中的行为。
在信号完整性分析中,可以使用传输线理论对信号的波形、传播时间和幅度进行分析。
3. 电磁仿真电磁仿真是一种基于数值计算的信号完整性分析方法。
通过建立PCB的电磁场模型,可以确定信号在电路板上的传播路径和互连耦合情况。
常用的电磁仿真软件包括HFSS、ADS等。
4. 时域分析时域分析是一种基于时间的信号完整性分析方法。
通过观察信号的波形和过渡边沿,可以判断信号是否出现失真、震荡或者反射等问题。
常用的时域分析工具包括示波器、逻辑分析仪等。
5. 频域分析频域分析是一种基于频率的信号完整性分析方法。
通过对信号的频谱进行分析,可以判断信号是否出现带宽限制、谐振或者频率响应不平坦等问题。
常用的频域分析工具包括频谱分析仪、网络分析仪等。
6. 时序分析时序分析是一种基于时钟的信号完整性分析方法。
通过分析信号在时钟边沿触发的时间关系,可以判断信号的稳定性和时钟偏移情况。
常用的时序分析工具包括时序分析仪、时钟提取软件等。
三、信号完整性验证流程针对PCB设计中的信号完整性问题,通常可以采用以下的验证流程:1. 设计规则检查(DRC):通过软件工具检查布线是否符合设计规则,是否存在潜在的信号完整性问题。
电子电路CAD设计中的信号完整性验证
电子电路CAD设计中的信号完整性验证在现代电子工程领域中,信号完整性验证是非常重要的一环。
它用于确保电子电路设计在实际运行中能够稳定地传输和接收信号,以避免任何信号失真或干扰。
为了实现信号完整性验证,工程师们使用了许多先进的计算机辅助设计 (CAD) 软件。
一个常见的CAD软件是AE软件,它提供了许多功能和工具,可帮助工程师们设计和验证信号完整性。
下面我们将介绍一些使用AE软件进行信号完整性验证的技巧和步骤。
首先,工程师需要创建电子电路的原理图。
在AE软件中,可以使用各种预定义的元件符号和线缆连接来构建电路原理图。
通过将各个元件拖放到画布上并将它们连接起来,可以快速而准确地创建电路原理图。
接下来,工程师需要添加信号源和信号线。
信号源是产生信号的元件,例如时钟、数据源或电压源。
信号线是连接信号源和其他元件的导线或导体。
在AE软件中,可以选择合适的信号源并将其连接到电路中的适当位置。
完成信号源和信号线的添加后,工程师可以使用AE软件提供的信号完整性验证工具来检查电路内的信号传输。
这些工具通常包括时域分析、频域分析、传输线建模等功能。
通过使用这些工具,工程师可以模拟电路中的信号传输过程,并识别潜在的信号失真或干扰问题。
在进行信号完整性验证时,工程师通常会关注一些关键指标,如上升时间、下降时间、峰值电压、噪声电平等。
通过分析这些指标,工程师可以判断电路中是否存在信号传输方面的问题,并进行相应的优化和修正。
为了更好地进行信号完整性验证,工程师还可以使用AE软件提供的仿真功能。
通过进行仿真,工程师可以在计算机上模拟电路工作的情况,并观察信号的传输和接收过程。
这可以大大减少工程师在实际电路上进行试验和调整的时间和成本。
除了信号完整性验证工具和仿真功能,AE软件还提供了许多其他有用的功能,如电路优化、电路布局、特性提取等。
这些功能可以帮助工程师更好地设计和验证电子电路。
总的来说,信号完整性验证在电子电路CAD设计中扮演着重要的角色。
信号完整性分析与测试
信号完整性分析与测试信号完整性问题涉及的知识面比较广,我通过这个短期的学习,对信号完整性有了一个初步的认识,本文只是简单介绍和总结了几种常见现象,并对一些常用的测试手段做了相应总结。
本文还有很多不足,欢迎各位帮助补充,谢谢!梁全贵2011年9月16日目录第1章什么是信号完整性 ----------------------------------------------------------------------------------- 3第2章轨道塌陷------------------------------------------------------------------------------------------------ 5第3章信号上升时间与带宽 -------------------------------------------------------------------------------- 6第4章地弹 ------------------------------------------------------------------------------------------------------ 8第5章阻抗与特性阻抗 -------------------------------------------------------------------------------------- 95.1 阻抗 ---------------------------------------------------------------------------------------------------- 95.2 特性阻抗 ---------------------------------------------------------------------------------------------- 9第6章反射 ----------------------------------------------------------------------------------------------------- 116.1 反射的定义------------------------------------------------------------------------------------------- 116.2 反射的测试方法 ------------------------------------------------------------------------------------ 126.3 TDR曲线映射着传输线的各点----------------------------------------------------------------- 126.4 TDR探头选择--------------------------------------------------------------------------------------- 13第7章振铃 ----------------------------------------------------------------------------------------------------- 14第8章串扰 ----------------------------------------------------------------------------------------------------- 168.1 串扰的定义------------------------------------------------------------------------------------------- 168.2 观测串扰---------------------------------------------------------------------------------------------- 16第9章信号质量----------------------------------------------------------------------------------------------- 189.1 常见的信号质量问题 ------------------------------------------------------------------------------ 18第10章信号完整性测试 ------------------------------------------------------------------------------------- 2110.1 波形测试 -------------------------------------------------------------------------------------------- 2110.2 眼图测试 -------------------------------------------------------------------------------------------- 2110.3 抖动测试 -------------------------------------------------------------------------------------------- 2310.3.1 抖动的定义 --------------------------------------------------------------------------------- 2310.3.2 抖动的成因 --------------------------------------------------------------------------------- 2310.3.3 抖动测试 ------------------------------------------------------------------------------------ 2310.3.4 典型的抖动测试工具:------------------------------------------------------------------ 2410.4 TDR测试 ------------------------------------------------------------------------------------------- 2410.5 频谱测试 -------------------------------------------------------------------------------------------- 2510.6 频域阻抗测试-------------------------------------------------------------------------------------- 2510.7 误码测试 -------------------------------------------------------------------------------------------- 2510.8 示波器选择与使用要求: ---------------------------------------------------------------------- 2610.9 探头选择与使用要求 ---------------------------------------------------------------------------- 2610.10 测试点的选择 ------------------------------------------------------------------------------------ 2710.11 数据、地址信号质量测试--------------------------------------------------------------------- 2710.11.1 简述 ----------------------------------------------------------------------------------------- 2710.11.2 测试方法 ----------------------------------------------------------------------------------- 27第1章什么是信号完整性如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。
信号完整性分析在电路设计中的应用
信号完整性分析在电路设计中的应用引言:随着IC设计生产工艺的进步和数字电路性能要求的提高,信号完整性分析,串扰分析和EMC分析在数字电路设计中占有越来越重要的地位。
很多EDA公司纷纷也推出了先进的信号完整性分析工具以及高速电路规则驱动的布线器;而设计师也需要将这些工具溶入到现有的设计流程中,有效提高设计质量。
本文将探讨信号完整性前仿真,设计规则空间探测,和后仿真验证在实际电路设计中的应用,并以Motorola MPC8240 CPU单板设计为例,介绍如何将信号完整性分析应用在电路设计中。
关键词:信号完整性,串扰,EMC,拓朴,设计空间探测虚拟样机验证、前仿真分析,对于还习惯于原理图设计→硬件实现→样机调试的传统设计流程的工程师来讲,不仅能够有效提高一次设计的成功率,而且,通过扫描分析、设计空间探测,可以有效发现实现信号完整性的有效布线策略,加快设计进度。
在某CPU单板的设计当中,采用的核心芯片为Motorola MPC8240,系统的时钟和信号速率最高能够达到133MHz;而且,该设计中,由于部分数据,地址信号同时用于系统上电时的数据下载,信号拓朴结构比较复杂;由于要求存储空间大,CPU外围SDRAM需要多个器件,以满足数据总线宽度要求,这样,多个SDRAM数据读写同步就十分关键;MPC8240为1mm间距的BGA封装,I/0信号和内核采用不同电压,因此布线以及电源去耦也很困难。
基于拓朴结构的前仿真分析在原理图即将设计完成之际,原理图作者与PCB设计和信号完整性分析工程师进行充分的沟通:一方面,使PCB设计和信号完整性分析工程师能够充分理解该设计的工作原理,主要信号的流向,以及所担心的高速设计问题;另一方面,PCB设计和信号完整性分析工程师预见设计中可能的困难,与原理图设计工程师协商,以便采取合适的解决方案。
由于这个阶段,原理图尚未完成,所有的预见和推断都是通过拓朴结构来实现。
具体工作包括以下几个方面。
通信接口设计中的信号完整性分析技术
通信接口设计中的信号完整性分析技术在现代科技发展日新月异的今天,通信接口设计已经成为了各种电子设备中不可或缺的一部分。
而在通信接口设计中,信号完整性分析技术则显得尤为重要。
信号完整性分析技术是指通过对信号在传输过程中的衰减、时延等参数进行分析,来保证信号在传输过程中的稳定性和准确性的技术手段。
首先,信号完整性分析技术在通信接口设计中的重要性不言而喻。
在通信过程中,信号的传输往往会受到各种干扰和损耗,如果没有进行充分的信号完整性分析,就会导致数据传输的错误和不稳定。
因此,通过对信号完整性进行分析,可以及时发现并解决信号传输过程中的问题,保证通信数据的准确性和可靠性。
其次,信号完整性分析技术可以帮助设计人员更好地优化通信接口设计。
通过对信号的衰减、时延等参数进行分析,设计人员可以根据分析结果来选择合适的信号传输线路、调整阻抗匹配等设计参数,从而提高通信接口的性能和稳定性。
这有助于降低通信系统的成本,提高通信系统的性能指标。
另外,信号完整性分析技术还可以为未来的通信接口设计提供参考。
随着通信技术的不断发展,业界对通信接口的设计要求也在不断提高,传统的设计方法可能无法满足现代通信系统的需求。
因此,通过对信号完整性的分析研究,可以为未来通信接口的设计提供新的思路和方法,推动通信技术的进步和发展。
总的来说,信号完整性分析技术在通信接口设计中扮演着非常重要的角色。
通过对信号的衰减、时延等参数进行分析,可以保证通信数据的准确性和稳定性,优化通信接口设计,为未来通信技术的发展提供参考。
因此,在进行通信接口设计时,设计人员应该充分利用信号完整性分析技术,确保通信数据的可靠传输和通信系统的高性能。
电子电路CAD设计中的信号完整性分析
电子电路CAD设计中的信号完整性分析在电子电路设计中,信号完整性分析是一个关键的步骤。
它是通过使用AE软件来评估和优化信号传输的过程。
在这篇文章中,我们将探讨一些常见的信号完整性问题以及如何使用AE软件解决它们。
首先,让我们了解一下什么是信号完整性。
信号完整性是指在电子电路中信号的传输过程中,信号的质量是否能够达到预期的要求。
在现代高速电子系统中,信号的频率变得越来越高,因此信号的完整性问题也变得越来越重要。
一种常见的信号完整性问题是信号的时延问题。
高速信号在传输过程中会受到时延的影响,这可能导致信号的延时不稳定或者失真。
为了解决这个问题,我们可以使用AE软件来模拟信号的传输过程,并分析电路中潜在的时延问题。
通过调整电路的布局或优化信号的传输路径,我们可以减少时延问题并提高信号的完整性。
另一个常见的信号完整性问题是信号的反射和串扰。
当信号到达电路的边缘时,会发生反射,从而导致信号的失真。
并且在高密度电路中,信号之间的互相干扰也会引起信号的失真。
为了解决这些问题,我们可以使用AE软件来模拟信号的传输路径,并分析反射和串扰的潜在问题。
通过调整电路的布局或添加衰减器等元件,我们可以减少信号的反射和串扰,从而提高信号的完整性。
此外,电源噪声也是一个重要的信号完整性问题。
电子系统中的电源噪声可能会对信号的传输和接收产生干扰,从而降低信号的质量。
为了解决这个问题,我们可以使用AE软件来模拟电源噪声的传播路径,并分析噪声的来源和传播机制。
通过合理设计电源滤波器和优化电源布局,我们可以减少电源噪声对信号的影响,从而提高信号的完整性。
除了上述提到的问题,还有许多其他的信号完整性问题需要我们关注。
例如,电磁辐射、信号失真、传输线特性等。
在实际应用中,我们需要根据具体的电子电路设计来选择和使用不同的AE软件工具来解决这些问题。
综上所述,信号完整性是电子电路设计中一个重要的问题。
通过使用AE软件进行分析和优化,我们可以解决信号的时延、反射和串扰、电源噪声等问题,并提高信号的传输质量和可靠性。
信号完整性测试规范和工作流程
信号完整性测试规范和工作流程一、信号完整性测试规范1.测试范围:信号完整性测试应涵盖全部重要信号线,包括时钟信号、数据信号、控制信号、电源供应线等。
2.测试参数:测试参数包括但不限于信号功率、上升时间、下降时间、峰值电压、峰峰值电压、幅度稳定性、时序稳定性等。
3.测试方法:根据具体测试需求和设备条件,选择合适的信号完整性测试方法,如步进响应测试、脉冲响应测试、频率响应测试、时钟提前测试等。
4.测试设备:测试设备需要具备高精度、高速度、高带宽等特点,如示波器、信号发生器、信号注入器、信号线探针、信号整形器等。
5.测试环境:测试环境应符合实际应用场景,包括温度、湿度、电磁干扰等因素的考虑。
6.数据分析:对测试数据进行详细的分析和处理,包括波形展示、数据比对、波形参数提取、异常识别等。
7.测试标准:根据不同行业和应用领域,制定相应的信号完整性测试标准,如IEEE、IPC、JEDEC等,以确保测试结果的准确性和可靠性。
8.测试报告:根据测试结果生成详细的测试报告,包括测试方法、测试步骤、测试数据、异常情况分析、改进建议等。
二、信号完整性测试工作流程1.确定测试目标:根据设计需求和系统规格,确定需要测试的信号线和测试参数。
2.设计测试方案:根据测试目标和测试需求,设计相应的测试方案,包括测试方法、测试设备、测试环境等。
3.准备测试设备:根据测试方案,准备好所需的测试设备,确保其良好状态和准确性能。
4.连接测试回路:将被测试的电路板、电线、接插件等与测试设备连接起来,确保信号传输通畅。
5.设置测试参数:根据测试目标和测试方案,设置测试设备的相应参数,如示波器的触发电平、采样率、带宽等。
6.执行信号完整性测试:根据测试方案,执行信号完整性测试,记录测试数据和波形。
7.数据分析和处理:对测试数据进行详细分析和处理,包括波形展示、参数提取、异常识别等。
8.测试结果评估:根据测试数据和标准要求,对测试结果进行评估,确定是否合格。
电子设计中的信号完整性分析
电子设计中的信号完整性分析在电子设计过程中,信号完整性分析是非常重要的一部分。
信号完整性是指在信号传输过程中保持信号的准确性、稳定性和可靠性,确保信号不会失真或受到干扰。
在现代高速电子设备和系统中,信号完整性分析变得尤为关键,因为高速信号传输会受到许多因素的影响,如信号衰减、延迟、串扰和反射等问题。
信号完整性分析最常见的方法之一是使用传输线理论。
在高速信号传输中,信号被视为在传输线上传输的电磁波,传输线上的阻抗、衰减、延迟等参数都会影响信号的传输质量。
因此,通过对传输线的参数进行建模和仿真,可以帮助设计工程师分析和优化信号的传输性能。
另外,时域分析和频域分析也是信号完整性分析的重要工具。
时域分析可以用来研究信号在时间轴上的波形变化,包括上升时间、下降时间、峰值电压等参数;而频域分析则可以用来研究信号在频率域上的频谱信息,包括频率响应、谐波失真等参数。
通过时域分析和频域分析,设计工程师可以更全面地了解信号的特性和传输过程中可能出现的问题。
除了传输线建模和时频域分析,设计工程师还可以通过仿真软件进行信号完整性分析。
仿真软件可以模拟不同信号在设计电路中的传输过程,帮助工程师快速找出潜在的问题并优化设计方案。
通过仿真软件,设计工程师可以对不同参数进行调整,如传输线长度、阻抗匹配、信号的波形和频谱,以达到最佳的信号完整性。
此外,设计工程师在进行信号完整性分析时还需要考虑一些其他因素,如接地设计、功率分配、EMI(电磁干扰)和ESD(静电放电)等。
这些因素都可能会对信号的传输过程造成影响,设计工程师需要综合考虑这些因素,以保证信号的可靠传输和稳定性。
总的来说,在电子设计中的信号完整性分析是保证高速电子系统可靠性和稳定性的关键步骤。
通过传输线建模、时频域分析、仿真软件以及综合考虑其他因素,设计工程师可以找出潜在的问题并优化设计方案,确保信号的准确传输和稳定性,从而提高电子系统的性能和可靠性。
通过不断学习和应用信号完整性分析的方法,设计工程师可以更好地应对日益复杂的电子系统设计挑战,推动电子科技的发展。
常用信号完整性的测试手段【华为--莫道春大牛之作】
常用信号完整性的测试手段作者:莫道春(Moore Mo)华为技术有限公司高速实验室主任信号完整性设计在产品开发中越来越受到重视,而信号完整性的测试手段种类繁多,有频域,也有时域的,还有一些综合性的手段,比如误码测试。
这些手段并非任何情况下都适合使用,都存在这样那样的局限性,合适选用,可以做到事半功倍,避免走弯路。
本文对各种测试手段进行介绍,并结合实际硬件开发活动说明如何选用,最后给出了一个测试实例。
信号完整性的测试手段很多,涉及的仪器也很多,因此熟悉各种测试手段的特点,以及根据测试对象的特性和要求,选用适当的测试手段,对于选择方案、验证效果、解决问题等硬件开发活动,都能够大大提高效率,起到事半功倍的作用。
信号完整性的测试手段信号完整性的测试手段主要可以分为三大类,如表1所示。
表中列出了大部分信号完整性测试手段,这些手段既有优点,但是也存在局限性,实际上不可能全部都使用,下面对这些手段进行一些说明。
1. 波形测试波形测试是信号完整性测试中最常用的手段,一般是使用示波器进行,主要测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。
由于示波器是极为通用的仪器,几乎所有的硬件工程师都会使用,但并不表示大家都使用得好。
波形测试也要遵循一些要求,才能够得到准确的信号。
首先是要求主机和探头一起组成的带宽要足够。
基本上测试系统的带宽是测试信号带宽的3倍以上就可以了。
实际使用中,有一些工程师随便找一些探头就去测试,甚至是A公司的探头插到B公司的示波器去,这种测试很难得到准确的结果。
其次要注重细节。
比如测试点通常选择放在接收器件的管脚,如果条件限制放不到上面去的,比如BGA封装的器件,可以放到最靠近管脚的PCB走线上或者过孔上面。
距离接收器件管脚过远,因为信号反射,可能会导致测试结果和实际信号差异比较大;探头的地线尽量选择短地线等。
最后,需要注意一下匹配。
信号完整性分析
信号完整性分析信号完整性分析是一项重要的工程学领域,它涉及到信号传输的可靠性和准确性。
在信息传递的过程中,信号会受到各种干扰和衰减,因此确保信号的完整性对于正确地接收和解读信息至关重要。
本文将介绍信号完整性分析的基本概念、方法和应用。
信号完整性分析是一种通过模拟和仿真来评估信号传输过程中所遇到的问题和挑战的方法。
在进行信号完整性分析时,通常需要考虑传输线路的特性、干扰源、噪声和电磁兼容性等因素。
通过对这些因素进行建模和分析,可以预测信号的衰减、失真和延迟,进而优化信号传输系统的设计。
信号完整性分析的基本方法之一是建立传输线路的数学模型。
传输线路可以是电线、导线、电缆或光纤等,而其特性包括传输速度、电阻、电感和电容等。
通过将这些特性纳入传输线路模型,可以计算得到信号在传输过程中的衰减和失真情况。
另一种常用的信号完整性分析方法是时域和频域分析。
时域分析关注信号在时间轴上的变化情况,可用于研究信号的波形、幅度和时延等特性。
频域分析将信号转换为频率域,利用傅里叶变换等工具可以获取信号的频谱分布和频率响应等信息。
通过时域和频域分析,可以全面了解信号的特性,从而优化信号传输系统的设计和调整。
信号完整性分析在通信、电子、计算机和电路设计等领域都有广泛的应用。
在高速传输系统中,如高速网络、数据中心和处理器之间的连接,信号完整性分析能够帮助设计人员解决信号衰减、串扰和时钟抖动等问题,确保高频信号的准确传输。
在电子设备设计中,信号完整性分析可以评估电路板布局和信号线路的设计,提前发现信号干扰和时延问题,并进行相应的优化。
随着智能电子产品的发展和应用场景的增多,对于信号完整性分析的需求也越来越高。
例如,手机和平板电脑等移动设备需要在有限的传输资源下实现高速数据传输,而车载电子系统需要能够稳定传输大量的音视频数据。
在这些应用中,信号完整性分析为保证数据传输的稳定性和准确性提供了必要的技术支持。
总之,信号完整性分析在现代通信和电子领域中具有重要的地位和作用。
电子设计中的信号完整性分析与优化
电子设计中的信号完整性分析与优化在电子设计中,信号完整性分析与优化是非常重要的一个环节。
信号完整性指的是在信号传输过程中,保持信号波形的稳定性和准确性,避免信号失真、误差和干扰,确保电路系统能够正常工作。
在电子设备中,尤其是高速数字系统中,信号完整性的分析与优化至关重要,可以有效提高系统的性能和可靠性。
首先,信号完整性分析包括对信号传输线路、布局、串扰、反射等因素的分析。
在高速数字系统中,信号传输线路的长度、阻抗匹配、传输速度等因素会对信号完整性产生影响。
通过传输线路模型、电磁场仿真等手段,可以准确地分析信号在传输过程中的波形变化、延时、抖动等参数。
同时,布局不良、串扰、反射等因素也会导致信号失真和干扰,需要进行综合分析和优化。
其次,信号完整性优化的方法包括调整信号传输线路的特性阻抗匹配、降低串扰、减小反射等措施。
针对信号传输线路的特性阻抗匹配问题,可以采用调整线路宽度、间距、层堆叠等方法来优化传输线路的特性阻抗。
对于串扰问题,可以通过合理的布局规划、屏蔽技术、差分信号传输等手段来降低串扰的影响。
而对于反射问题,可以通过添加阻抗匹配元件、减小传输线路的长度等方法来降低反射的干扰。
此外,信号完整性分析与优化需要综合考虑电路设计、PCB布局、信号传输线路、信号源和负载等因素。
在电子设计中,尤其是高速数字系统中,信号完整性的分析与优化是一个复杂的工程,需要综合考虑各种因素和相互影响。
通过不断优化和调整,可以有效提高系统的性能和可靠性,确保信号的准确传输和稳定运行。
总的来说,信号完整性分析与优化是电子设计中至关重要的一个环节,可以帮助优化系统性能,提高信号传输的可靠性和稳定性。
通过合理的分析与优化手段,可以有效解决电子设备中的信号失真、干扰问题,确保系统能够正常工作。
因此,在电子设计中,务必重视信号完整性的分析与优化工作,以提高系统的性能和可靠性。
信号完整性的常用的三种测试
信号完整性的常用的三种测试
信号完整性的测试手段主要可以分为三大类,下面对这些手段进行一些说明。
抖动测试
抖动测试现在越来越受到重视,因为专用的抖动测试仪器,比如TIA(时间间隔分析仪)、SIA3000,价格非常昂贵,使用得比较少。
使用得最多是示波器加上软件处理,如TEK的TDSJIT3软件。
通过软件处理,分离出各个分量,比如RJ和DJ,以及DJ中的各个分量。
对于这种测试,选择的示波器,长存储和高速采样是必要条件,比如2M以上的存储器,20GSa/s的采样速率。
不过目前抖动测试,各个公司的解决方案得到结果还有相当差异,还没有哪个是权威或者行业标准。
波形测试。
PCB设计中的信号完整性分析方法
PCB设计中的信号完整性分析方法在PCB设计过程中,信号完整性是一个至关重要的考虑因素。
信号完整性分析可以帮助设计工程师确保信号在PCB板上传输时能够保持其质量和稳定性,避免出现信号失真或干扰的问题。
在实际的PCB设计中,有多种信号完整性分析方法可以帮助工程师评估并优化设计。
首先,时域分析是一种常用的信号完整性分析方法。
时域分析可以帮助工程师评估信号在信号线上的传输速度和波形变化情况,以及检测信号是否存在回波和反射等问题。
通过时域分析,工程师可以了解信号在PCB板上传输时的时序关系,及时发现潜在的信号完整性问题并做出相应的调整。
另外,频域分析也是一种常用的信号完整性分析方法。
频域分析可以帮助工程师评估信号在频率域上的特性和响应情况,检测信号的频谱分布是否符合设计要求。
通过频域分析,工程师可以发现信号线上的谐波、瞬态等不稳定因素,优化设计以确保信号传输的稳定性。
差分信号分析是另一种常用的信号完整性分析方法。
差分信号由一对相等但反向的信号组成,通过比较这两个信号之间的差异,可以帮助工程师检测信号线上的噪声和干扰情况。
差分信号分析可以有效地提高信号传输的抗干扰能力,保证信号的准确传输。
此外,传输线模型分析也是一种重要的信号完整性分析方法。
通过建立传输线模型,工程师可以模拟信号在线上传输时的电磁特性,评估信号的传输速度、波形变化等参数。
传输线模型分析可以帮助工程师预测信号在PCB板上传输时可能出现的问题,有针对性地进行设计优化。
总的来说,信号完整性分析是PCB设计过程中不可或缺的一部分。
通过时域分析、频域分析、差分信号分析和传输线模型分析等多种方法的结合应用,工程师可以全面、准确地评估设计中信号的传输质量,确保PCB板的稳定性和可靠性。
在实际的PCB设计中,工程师应根据具体的设计要求和条件选择适合的信号完整性分析方法,并不断优化设计以保证信号的稳定传输。
信号完整性 常用的三种测试方法
信号完整性常用的三种测试方法信号完整性测试的手段有很多,主要的一些手段有波形测试、眼图测试、抖动测试等,目前应用比较广泛的信号完整性测试手段应该是波形测试,即使用示波器测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。
信号完整性的测试手段主要可以分为三大类,下面对这些手段进行一些说明。
1. 抖动测试抖动测试现在越来越受到重视,因为专用的抖动测试仪器,比如TIA(时间间隔分析仪)、SIA3000,价格非常昂贵,使用得比较少。
使用得最多是示波器加上软件处理,如TEK的TDSJIT3软件。
通过软件处理,分离出各个分量,比如RJ和DJ,以及DJ中的各个分量。
对于这种测试,选择的示波器,长存储和高速采样是必要条件,比如2M以上的存储器,20GSa/s的采样速率。
不过目前抖动测试,各个公司的解决方案得到结果还有相当差异,还没有哪个是权威或者行业标准。
2. 波形测试首先是要求主机和探头一起组成的带宽要足够。
基本上测试系统的带宽是测试信号带宽的3倍以上就可以了。
实际使用中,有一些工程师随便找一些探头就去测试,甚至是A公司的探头插到B公司的示波器去,这种测试很难得到准确的结果。
波形测试是信号完整性测试中最常用的手段,一般是使用示波器进行,主要测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。
由于示波器是极为通用的仪器,几乎所有的硬件工程师都会使用,但并不表示大家都使用得好。
波形测试也要遵循一些要求,才能够得到准确的信号。
其次要注重细节。
比如测试点通常选择放在接收器件的管脚,如果条件限制放不到上面去的,比如BGA封装的器件,可以放到最靠近管脚的PCB走线上或者过孔上面。
距离接收器件管脚过远,因为信号反射,可能会导致测试结果和实际信号差异比较大;探头的地线尽量选择短地线等。
最后,需要注意一下匹配。
信号完整性测试介绍
信号完整性测试介绍目录CONTENTS 1•信号完整性SI2•信号完整性测试内容3•信号完整性测试条件•信号完整性测试标准45•信号完整性问题总结一、信号完整性SI信号完整性SI(Signal Integrity):是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。
如果电路系统中信号能够以要求的时序,持续时间和电压幅度到达IC,则该电路系统具有较好的信号完整性。
反之,当传输的信号不能被IC正常响应时,就出现了信号完整性问题。
SI解决的是信号传输过程中的质量问题,尤其是在高速领域,数字信号的传输不能只考虑逻辑上的实现,物理实现中数字器件开关行为的模拟效果往往成为设计成败的关键。
理想数字信号波形实际数字信号波形(模拟量)SI 解决的问题 反射串扰过冲振铃地弹 时序 EMC在数字电路系统中,信号以逻辑“0”或“1”的方式从一个器件传输到另外一个器件,信号到底是“0”还是“1”,一般来说它们都是有一个参考电平。
在接收端的输入门里面,如果信号的电压超过高电平参考电压Vih,则该信号被识别为高逻辑;如果信号的电压低于低电平的参考电压Vil,则该信号就被识别为低逻辑。
如下图所示为一个理想信号经传输线后的接收端实际接收的信号理想数字信号接收端实际数字信号问题图形原因分析备注电平没有到达逻辑电平负载过重传输线过长电平不匹配驱动速度慢上冲/下冲高速、大电流驱动阻抗未匹配电感量过大其它相邻信号串扰典型的信号完整性问题及其产生的原因分析问题图形原因分析备注振铃(不单调)电感量过大阻抗不匹配延时错误负载过重传输线过长驱动速度慢二、信号完整性测试内容1 信号(SI)测试内容2 电源(SI)测试内容三、信号完整性测试条件1 单板/系统工作条件单板/系统工作在室温条件(20℃~27℃)单板/系统要可靠接地单板/系统上电正常工作,各模块工作均正常,30分钟后再开始测试单板/系统在轻载及满载情况下均应测试单板/系统电源稳定在额定电压±3%范围内2 测试人员要求<1>.熟悉逻辑电平及信号时序的基本知识,熟练掌握示波器及万用表的使用方法;<2>对单板/系统电路原理有深刻的认识,对信号分类及信号的流向有清楚认识,了解单板/系统上器件的工作原理、工作速度及工作电平;<3>.测试人员在测试操作仪器时必须穿戴防静电服、静电鞋和防静电帽;<4>.在用手持握被测电路板时必须戴防静电手套;<5>.测试人员在不同仪器时必须要按照仪器的具体要求来操作。
常用信号完整性的测试手段
常用信号完整性的测试手段信号完整性设计在产品开发中越来越受到重视,而信号完整性的测试手段种类繁多,有频域,也有时域的,还有一些综合性的手段,比如误码测试。
这些手段并非任何情况下都适合使用,都存在这样那样的局限性,合适选用,可以做到事半功倍,避免走弯路。
本文对各种测试手段进行介绍,并结合实际硬件开发活动说明如何选用,最后给出了一个测试实例。
信号完整性的测试手段很多,涉及的仪器也很多,因此熟悉各种测试手段的特点,以及根据测试对象的特性和要求,选用适当的测试手段,对于选择方案、验证效果、解决问题等硬件开发活动,都能够大大提高效率,起到事半功倍的作用。
信号完整性的测试手段信号完整性的测试手段主要可以分为三大类,如表1所示。
表中列出了大部分信号完整性测试手段,这些手段既有优点,但是也存在局限性,实际上不可能全部都使用,下面对这些手段进行一些说明。
1. 波形测试波形测试是信号完整性测试中最常用的手段,一般是使用示波器进行,主要测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。
由于示波器是极为通用的仪器,几乎所有的硬件工程师都会使用,但并不表示大家都使用得好。
波形测试也要遵循一些要求,才能够得到准确的信号。
首先是要求主机和探头一起组成的带宽要足够。
基本上测试系统的带宽是测试信号带宽的3倍以上就可以了。
实际使用中,有一些工程师随便找一些探头就去测试,甚至是A公司的探头插到B公司的示波器去,这种测试很难得到准确的结果。
其次要注重细节。
比如测试点通常选择放在接收器件的管脚,如果条件限制放不到上面去的,比如BGA封装的器件,可以放到最靠近管脚的PCB走线上或者过孔上面。
距离接收器件管脚过远,因为信号反射,可能会导致测试结果和实际信号差异比较大;探头的地线尽量选择短地线等。
最后,需要注意一下匹配。
这个主要是针对使用同轴电缆去测试的情况,同轴直接接到示波器上去,负载通常是50欧姆,并且是直流耦合,而对于某些电路,需要直流偏置,直接将测试系统接入时会影响电路工作状态,从而测试不到正常的波形。
PCB信号完整性设计和测试应用
PCB信号完整性设计和测试应用摘要:高频高速电子产品的快速发展需要PCB具有高性能的系统结构,而不仅是有支撑作用的电子元器件。
目前的电子系统设计普遍信号频率高于100MHz,用来进行信号传输的高频高速印刷电路板也越来越容易受到信号完整性问题的影响。
因此,本文就PCB信号完整性设计和测试应用进行分析与探讨。
关键词:PCB;信号完整性;设计;测试一、PCB设计概述PCB设计环节中,整体能分成2个部分。
其一,完成原理图的绘制,构建起模型环境,这是一种逻辑设计。
在该步骤中,设计工程师需完成PCB模型逻辑,合理设置各项约束技术参数。
其二,完成PCB的物理实体,基于原型的各种物理状况,实施合理化布局与布线部分的设计。
而在该设计阶段,为确保电器特性满足使用需求,应当给IC或是网络图等内容配备约束条件,如此才能生成最后的设计方案。
IC技术逐渐成熟,不仅推动PCB设计的稳定进步,还给此项设计工作提出其他要求,例如快速接口、低压元器件等,再加上元器件配备数目增多,引起新的紧密容差电路限制条件,这些变化给PCB设计也带来很多的不确定。
二、PCB设计流程分(一)绘制原理图原理图是制作线路板的基础依据。
设计人员需先确定图纸规格、公制等,并选择合适的库元件。
根据要求的电路功能模块,形成具体图样。
原理图要保持美观、清楚,在元件管脚之间进行走线,表明此处无电器连接,并且尽可能不让两处元件管脚直接连接。
在线条绘制完成后,通常能自动编号,随即添加相应的标称值,同时要注意图纸画面上编号与标称值的显示位置,通常在设计中会选择在左侧显示编号,标称值则放在右侧,也可以根据图纸内容,改成上下标注的方法,保证清晰、遵循统一规则即可。
在绘制原理图中,要求设计师保障图中内容准确,通过电器规则检查确定无误后,进行打印核对。
除此之外,设计工程师还要进一步细化电路原理,包括高低压、电流、信号、功率等,为后期布局创建便利的条件。
(二)叠层设计PCB设计早期需结合具体项目的电源、信号数目、元器件管脚部署密度等条件,规划PCB板层数与布局顺序。
【信号完整性测试】—频域测试(频谱、频域阻抗、传输线损耗)、误码测试 及 设备仪器
【信号完整性测试】—频域测试(频谱、频域阻抗、传输线损耗)、误码测试及设备仪器概述信号完整性设计,在电路板设计过程中备受重视。
熟悉各类测试方法的特性,按照测试对象的特征和需求,选用合适些测试方法,对于选择方案,验证效果能够大大提高效率。
上篇,我们介绍了时域测试,其中涵盖波形测试、眼图测试、抖动测试、TDR测试、时序测试。
频域测试本篇,我们进一步介绍频域测试(频谱测试、频域阻抗测试、传输线损耗测试)、误码测试。
01频谱测试在开发前期,产品的测试应用较少。
然而在后期的系统测试,许多产品必须经历测试过程(如EMC的试验)。
通过测试发现一些超标的频点,再使用近场扫描仪(核心仪器频谱仪)。
egEMC Scanner分析电路板上具体的区域频谱超标,从而排查超标的原因。
这类设备通常较昂贵,一遍机构都不具备条件。
因此常规情况下都是在设计前期考虑做好匹配和屏蔽,规避后期测试的结果不达标。
02频域阻抗测试目前有许多标准接口如E1(欧洲)/T1(北美)等,目的在于避免太多的能力反射;需要进行较好的匹配,同时在微波或者射频,互相对接,阻抗都有所要求。
通常情况下,需要进行频域的阻抗测试,阻抗测试常用网络分析仪(Network Analyzer),单端输入端口简单,差分输入端口,较为复杂,需要巴伦进行差分和单端转换。
03传输线损耗测试⏹主要针对长的电路板走线、线缆等,传输距离较远,⏹进行高速信号传输、频域的串扰等,均可以通过网络分析仪来测试。
因此,对于PCB的差分信号或者双绞线,可以使用巴伦进行差分转换单端,或者使用4端口网络分析仪来测试。
误码测试误码测试通常是系统测试,使用误码仪、部分软件都可以完成测试。
或通过两台PC,使用软件,测试连接两台PC间的网络误码情况。
误码测试能够对数据的每一位进行测试,相比其它仪器(如示波器)只是部分时间开展采样,剩下大部分时间都在等待。
容易遗漏细节。
尤其是低误码率的设备,误码测试需要耗费大量时间,有时耗时一整天,或者几天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用信号完整性的测试手段和在设计的应用信号完整性设计在产品开发中越来越受到重视,而信号完整性的测试手段种类繁多,有频域,也有时域的,还有一些综合性的手段,比如误码测试。
这些手段并非任何情况下都适合使用,都存在这样那样的局限性,合适选用,可以做到事半功倍,避免走弯路。
本文对各种测试手段进行介绍,并结合实际硬件开发活动说明如何选用,最后给出了一个测试实例。
信号完整性的测试手段很多,涉及的仪器也很多,因此熟悉各种测试手段的特点,以及根据测试对象的特性和要求,选用适当的测试手段,对于选择方案、验证效果、解决问题等硬件开发活动,都能够大大提高效率,起到事半功倍的作用。
信号完整性的测试手段信号完整性的测试手段主要可以分为三大类,如表1所示。
表中列出了大部分信号完整性测试手段,这些手段既有优点,但是也存在局限性,实际上不可能全部都使用,下面对这些手段进行一些说明。
1. 波形测试波形测试是信号完整性测试中最常用的手段,一般是使用示波器进行主要测试波形幅度、边沿和毛刺等,通过测试波形的参数,可以看出幅度、边沿时间等是否满足器件接口电平的要求,有没有存在信号毛刺等。
由于示波器是极为通用的仪器,几乎所有的硬件工程师都会使用,但并不表示大家都使用得好。
波形测试也要遵循一些要求,才能够得到准确的信号。
首先是要求主机和探头一起组成的带宽要足够。
基本上测试系统的带宽是测试信号带宽的3倍以上就可以了。
实际使用中,有一些工程师随便找一些探头就去测试,甚至是A公司的探头插到B公司的示波器去,这种测试很难得到准确的结果。
其次要注重细节。
比如测试点通常选择放在接收器件的管脚,如果条件限制放不到上面去的,比如BGA封装的器件,可以放到最靠近管脚的PCB走线上或者过孔上面。
距离接收器件管脚过远,因为信号反射,可能会导致测试结果和实际信号差异比较大;探头的地线尽量选择短地线等。
最后,需要注意一下匹配。
这个主要是针对使用同轴电缆去测试的情况,同轴直接接到示波器上去,负载通常是50欧姆,并且是直流耦合,而对于某些电路,需要直流偏置,直接将测试系统接入时会影响电路工作状态,从而测试不到正常的波形。
2. 眼图测试眼图测试是常用的测试手段,特别是对于有规范要求的接口,比如E1/T1、USB、10/100BASE-T,还有光接口等。
这些标准接口信号的眼图测试,主要是用带MASK(模板)的示波器,包括通用示波器,采样示波器或者信号分析仪,这些示波器内置的时钟提取功能,可以显示眼图,对于没有MASK的示波器,可以使用外接时钟进行触发。
使用眼图测试功能,需要注意测试波形的数量,特别是对于判断接口眼图是否符合规范时,数量过少,波形的抖动比较小,也许有一下违规的情况,比如波形进入MASK的某部表1:信号完整性测试手段分类。
图1:常见的硬件设计流程。
部分,就可能采集不到,出现误判为通过,数量太多,会导致整个测试时间过长,效率不高,通常情况下,测试波形数量不少于2000,在3000左右为适宜。
目前有一些仪器,利用分析软件,可以对眼图中的违规详细情况进行查看,比如在MASK中落入了一些采样点,在以前是不知道哪些情况下落入的,因为所有的采样点是累加进去的,总的效果看起来就象是长余晖显示。
而新的仪器,利用了其长存储的优势,将波形采集进来后进行处理显示,因此波形的每一个细节都可以保留,因此它可以查看波形的违规情况,比如波形是000010还是101010,这个功能可以帮助硬件工程师查找问题的根源所在。
3. 抖动测试抖动测试现在越来越受到重视,因为专用的抖动测试仪器,比如TIA(时间间隔分析仪)、SIA3000,价格非常昂贵,使用得比较少。
使用得最多是示波器加上软件处理,如TEK的TDSJIT3软件。
通过软件处理,分离出各个分量,比如RJ和DJ,以及DJ中的各个分量。
对于这种测试,选择的示波器,长存储和高速采样是必要条件,比如2M以上的存储器,20GSa/s的采样速率。
不过目前抖动测试,各个公司的解决方案得到结果还有相当差异,还没有哪个是权威或者行业标准。
4. TDR测试TDR测试目前主要使用于PCB(印制电路板)信号线、以及器件阻抗的测试,比如单端信号线,差分信号线,连接器等。
这种测试有一个要求,就是和实际应用的条件相结合,比如实际该信号线的信号上升沿在300ps左右,那么TDR 的输出脉冲信号的上升沿也要相应设置在300ps附近,而不使用30ps左右的上升沿,否则测试结果可能和实际应用有比较大的差别。
影响TDR测试精度有很多的原因,主要有反射、校准、读数选择等,反射会导致较短的PCB信号线测试值出现严重偏差,特别是在使用TIP(探针)去测试的情况下更为明显,因为TIP和信号线接触点会导致很大的阻抗不连续,导致反射发生,并导致附近三、四英寸左右范围的PCB 信号线的阻抗曲线起伏。
5. 时序测试现在器件的工作速率越来越快,时序容限越来越小,时序问题导致产品不稳定是非常常见的,因此时序测试是非常必要的。
测试时序通常需要多通道的示波器和多个探头,示波器的逻辑触发或者码型和状态触发功能,对于快速捕获到需要的波形,很有帮助,不过多个探头在实际操作中,并不容易,又要拿探头,又要操作示波器,那个时候感觉有孙悟空的三头六臂就方便多了。
逻辑分析仪用做时序测试并不多,因为它主要作用是分析码型,也就是分析信号线上跑的是什么码,和代码联系在一起,可以分析是哪些指令或者数据。
在对于要求不高的情况下,可以用它来测试,它相对示波器来说,优势就是通道数多,但是它的劣势是探头连接困难,除非设计的时候就已经考虑了连接问题,否则飞线就是唯一的选择,如果信号线在PCB的内层,几乎很难做到。
6. 频谱测试对于产品的开发前期,这种测试应用相对比较少,但是对于后期的系统测试,比如EMC测试,很多产品都需要测试。
通过该测试发现某些频点超标,然后可以使用近场扫描仪(其中关键的仪器是频谱仪),例如EMC SCANER,来分析板卡上面具体哪一部分的频谱比较高,从而找出超标的根源所在。
不过这些设备相对都比较昂贵,中小公司拥有的不多,因此通常情况下都是在设计时仔细做好匹配和屏蔽,避免后面测试时发现信号频谱超标,因为后期发现了问题,很多情况下是很难定位的。
图2:两种电缆的差分传输损耗(上)和差分近端串扰(下)。
7. 频域阻抗测试现在很多标准接口,比如E1/T1等,为了避免有太多的能量反射,都要求比较好地匹配,另外在射频或者微波,相互对接,对阻抗通常都有要求。
这些情况下,都需要进行频域的阻抗测试。
阻抗测试通常使用网络分析仪,单端端口相对简单,对于差分输入的端口,可以使用Balun进行差分和单端转换。
传输损耗测试,对于长的PCB走线,或者电缆等,在传输距离比较远,或者传输信号速率非常高的情况下,还有频域的串扰等,都可以使用网络分析仪来测试。
同样的,对于PCB差分信号或者双绞线,也可是使用Balun进行差分到单端转换,或者使用4 端口网络分析来测试。
多端口网络分析仪的校准,使用电子校准件可以大大提高校准的效率。
8. 误码测试误码测试实际上是系统测试,利用误码仪,甚至是一些软件都可做,比如可以通过两台电脑,使用软件,测试连接两台电脑间的网络误码情况。
误码测试可以对数据的每一位都进行测试,这是它的优点,相比之下示波器只是部分时间进行采样,很多时间都在等待,因此漏过了很多细节。
低误码率的设备的误码测试很耗费时间,有的测试时间是一整天,甚至是数天。
实际中如何选用这上述测试手段,需要根据被测试对象进行具体分析,不同的情况需要不同的测试手段。
比如有标准接口的,就可以使用眼图测试、阻抗测试和误码测试等,对于普通硬件电路,可以使用波形测试、时序测试,设计中有高速信号线,还可以使用TDR测试。
对于时钟、高速串行信号,还可以抖动测试等。
另外上面众多的仪器,很多都可以实现多种测试,比如示波器,可以实现波形测试,时序测试,眼图测试和抖动测试等,网络分析仪可以实现频域阻抗测试、传输损耗测试等,因此灵活应用仪器也是提高测试效率,发现设计中存在问题的关键。
信号完整性仿真信号完整性测试是信号完整性设计的一个手段,在实际应用中还有信号完整性仿真,这两个手段结合在一起,为硬件开发活动提供了强大的支持。
图1是目前比较常见的硬件开发过程。
在需求分析和方案选择阶段,就可以应用一些信号完整性测试手段和仿真手段来分析可行性,或者判断哪种方案优胜,比如测试一些关键芯片的评估板,看看信号的电平、速率等是否满足要求,或者利用事先得到的器件模型,进行仿真,看接口的信号传输距离是否满足要求等。
在平时利用测试手段,也可以得到一些器件的模型,比如电缆的传输模型,这种模型可以利用在仿真中,当这些模型积累比较多,一些部分测试,包括设计完毕后的验证测试,可以用仿真来替代,这对于效率提高很有好处,因为一个设计中的所有的信号都完全进行测试,是比较困难的,也是很耗费时间的。
在设计阶段,通常是使用仿真手段,对具体问题进行分析,比如负载的个数,PCB信号线的拓扑结构,并根据仿真结果对设计进行调整,以便将大多数的信号完整性问题解决在设计阶段。
图4:实际应用测试(上:电缆A,下:电缆B)。
系统调试以及验证测试阶段,主要是利用信号完整性测试手段,对设计进行测试,看是否设计的要求。
如果发现了严重问题,就要去解决,信号完整性的测试和仿真手段都将用来寻找问题的根源,以及寻找适合的解决方案上面。
信号完整性测试和信号完整性仿真紧密结合,是信号完整性设计的基本要求。
应用实例某种进口电缆A在公司的各个产品中广泛应用,由于是独家供应商,多年价格一直没有下降过,在通信产品的价格逐年大幅度地下降的情况下,是不大正常的,这种情况下需要寻找替代的供应商,由于涉及的产品众多,并且产品在网络中的地位很高,替代就显得非常谨慎,因此需要通过多方面测试验证,才能够决定能否替代。
根据规格需求,找到拟用来替代的国产电缆B,根据这种情况,设计多种测试进行验证两种电缆的效果:1. 频域测试:测试两种电缆的传输损耗、反射、串扰等;2. 时域测试:测试两种电缆的眼图测试、波形测试等;3. 仿真:利用仿真软件,仿真眼图传输情况;4. 其他测试:呼叫测试(系统测试的一种,模拟实际应用的性能)。
图2、3和4是部分的测试结果。
从图2可以看到,两种电缆的差分传输损耗差不多,而电缆A得近端串扰则相对比较大。
图3使用了仿真软件,仿真20米长的电缆,传输40Mbps信号的眼图情况,仿真使用的电缆模型是利用上面频域测试得到的模型,通过仿真可以看到电缆B的眼图比电缆A的眼图要好,不论眼高还是眼图抖动。
图4是实际应用的眼图情况,很明显电缆B的眼图要比电缆A的眼图要好,和前面的仿真结果比较吻合,不过电缆A的实际反射比较大一点,这和仿真使用驱动器件的模型有关。