有理数综合模拟训练题之提高篇
人教版七年级上册数学 有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。
有理数综合提高题
11.若 ,且 ,那么 的值是________
12.已知|a|=3,|b|=2,|a+b|=a+b,则a-b=______
13.若 且 则 _.
14.若x是不等于1的数,我们把 称为x的差倒数,如2的差倒数是 =-1,-1的差倒数为 = .已知x1=- ,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…依次类推,则x2019=________
15.将从1开始的连续自然数按如下规律排列:
则2019在第行.
三.解答题
1.计算
(1)
(2)
(3)
2.如图,在单位长度为1的数轴上有,A、B、C、D四个点,点A、C表示的有理数互为相反数
(1)请在数轴上标出原点O,并在点A、B、C、D上方标出它们所表示的有理数;
(2)A、C两点间的距离AC=,B、D两点间距离BD=;
C、相等且都不小于0D、m是n的绝对值
4.若 是有理数,则 的值( )
A、可能是正数B、一定是正数
C、不可能是负数D、可能是正数,也可能是负数
5.两个数的差为负数,这两个数()
A、都是负数B、两个数一正一负
C、减数大于被减数D、减数小于被减数
6.已知 ,则化简 所得的结果为( )
A. B. C. D.
有理数综合提高题
一.选择题
1.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c=( )
A.-1 B.0 C.1 D.2
2.下列结论中,正确的是()
A.-a—定是负数B.-|a|一定是非正数
C.|a|—定是正数D.-|a|—定是负数
最新七年级数学有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.4.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.5.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.6.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.7.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.【答案】(1)(2)是(3)(0.-1)等(4)解:∵(a,3)是“共生有理数对”,∴a-3=3a+1解之:a=-2.【解析】【解答】(1)数对(﹣2,1)∴-2×1+1=-1,-2-1=-3-1≠-3∴数对(﹣2,1)不是“共生有理数对”;数对(3,)∴,∴数对(3,)是“共生有理数对”;故答案为:(3,);(2)∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n-(-m)=m-n-n(-m)+1=mn+1∴-n-(-m)=-n(-m)+1,∴(﹣n,﹣m)是“共生有理数对”故答案为:是.(3)∵0×(-1)+1=10-(-1)=1∴(0,-1)是“共生有理数对”.【分析】(1)利用“共生有理数对”的定义:若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。
范老师精选有理数混合运算提高200题(有答案)
有理数提高专项练习200题(有答案)1.(﹣1)2×2+(﹣2)3÷4.2..3..4.﹣14﹣×〔2﹣(﹣3)2〕×(﹣2)35.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)6. ﹣22﹣÷(﹣2)37.(﹣1)2+[20﹣(﹣2)3]÷(﹣4)8..9..10.11..12.18×()﹣(﹣24)×()13..14.15. ﹣32﹣(﹣3)2×(﹣2)﹣[(﹣2)×(﹣1)]216. [2832003+(﹣283)2003﹣10]×(﹣2)÷×(﹣1)200217.18. ﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.19.(﹣2)2+{6﹣(﹣3)×2}÷4﹣5÷×20.21.﹣32÷3+(﹣)×12﹣(﹣1)2010;22..;23.;24.;25..26.27..28.;29.;30.31. .32..;33.﹣32+(﹣3)2+(﹣5)2×(﹣)﹣÷|﹣|.34.(﹣2×5)3﹣(﹣1)×(﹣)2﹣(﹣)2.35.1×﹣(﹣)×2+(﹣)÷136. ﹣22+(﹣2)4×()3﹣||÷(﹣)237.(﹣+)×18+×6﹣×6..38.39..40. [(﹣1)2005+(﹣﹣)×24]÷|﹣32+5|.41.[2﹣(+﹣)×24]÷5×(﹣1)200942. ﹣14﹣[﹣2+(1﹣÷)×(﹣3)].43.44..45. ﹣5+[﹣﹣(1﹣÷)×(﹣3)2]46. ﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3);;47.48. 3×(﹣1)10+(﹣22)×|(﹣2)3|÷4÷2﹣|(﹣3)2|÷(﹣3)2×(﹣1)11;49. ;.50.51. [1]×24]÷(﹣5);52. (﹣10)+8×(﹣2)2﹣(﹣4)×(﹣3);53. ﹣÷(﹣)3+(﹣)×(﹣1)10;54. ﹣3×(﹣)2﹣4×(1﹣)﹣8÷()2;55.(﹣2)3﹣1×(﹣)﹣(﹣2)×(﹣1)×(﹣4).;56.;57.58. ﹣24+|6﹣10|﹣3×(﹣1)2009.59. |﹣|+;60. (﹣13)+(+12)+(﹣7)+(+38);;61.62.(+163)﹣[(+63)+(﹣259)+(﹣41)].;63.;64..65.66.﹣22﹣(﹣22)+(﹣2)2+(﹣2)3﹣3267. 22+(﹣4)+(﹣2)+4;68.(﹣8)+(+)﹣(﹣9)+(﹣);;69.70. (﹣)÷(﹣﹣);71. ﹣9÷;72. ﹣14﹣×[2﹣(﹣3)2].73.74.75.76.﹣14×[﹣32×﹣2]×(﹣).77.﹣32﹣(﹣3)2+32×(﹣1)2006;78..79..80.81.×(﹣2)2﹣(﹣3)3×(﹣2)383.84..85.(﹣3)÷(﹣1)××|﹣2|÷|﹣3|.86.﹣1+3﹣5+7﹣9+11﹣…﹣1997+1999;87. 11+12﹣13﹣14+15+16﹣17﹣18+…+99+100;88. 1991×1999﹣1990×2000;89. 4726342+472 6352﹣472 633×472 635﹣472 634×472 636;90.91. 1+4+7+ (244)1+92.93. 1.94.﹣22﹣(﹣1)2001×(﹣)÷+(﹣3)295.;96.97.98. ﹣5﹣22÷[(﹣)2+3×(﹣)]÷(﹣22)99.(﹣3)+(+2)﹣(+2)﹣(﹣7);100.﹣23÷×;101.[﹣+﹣﹣(﹣)]×(﹣36);102.(+)÷(﹣)﹣×(﹣1);103.﹣14﹣(1﹣)××[2﹣(﹣3)2].104.(2﹣3+1)÷(﹣1).105.+++…+.106.﹣14+〔1﹣(1﹣×)〕×|2﹣(﹣3)2|.107.108.﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)]109.110.;111.[2﹣(﹣3)2]×[(﹣1)2008﹣(1﹣×)]112.113. 0﹣21114.115.116.﹣23÷×(﹣)2+(﹣)×5×(﹣)117.﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)118.;119..120.﹣16;﹣121.122.﹣÷÷(﹣1)100+(1+2﹣)×12123.124.125. 2﹣3﹣5+(﹣3)25﹣(﹣+﹣)÷126.127. ﹣22+(﹣3)×[(﹣4)2+(﹣2)3]﹣(﹣3)2÷(﹣2)128.(﹣5)﹣(+3)+(﹣9)﹣(﹣7)+;129. 10﹣23+32﹣17﹣21+45;130.(﹣3)+(+2)﹣(+2)﹣(﹣7);131.﹣﹣()﹣(﹣3)+6+(+);132. +﹣12﹣11﹣51;133..134. [212﹣(38+16﹣34)×24]÷5×(﹣1)2001135.136.;137.()×(﹣36).138.(﹣20)+(+3)﹣(﹣5)﹣(+7);139.(+6)+(﹣5)﹣(﹣4)+(+2)+(﹣1)﹣(+1);140.﹣13×﹣×+×(﹣13)﹣×;141.(﹣)×(﹣)×(﹣5)×(﹣4)3;142.(﹣3)3÷2×+4﹣2×(﹣);143.﹣16﹣(﹣)÷×[﹣2﹣(﹣3)3]﹣|﹣|.144.0﹣14﹣(﹣1)+(﹣)3××0﹣|﹣5|+5.145..146.1+.147.;148..149.150. [53﹣4×(﹣5)2﹣(﹣1)10]÷(﹣24﹣24+24).151.﹣32+27÷(﹣3)2﹣(﹣)2×|﹣22|﹣(﹣1)2007152.;153..154. [47﹣(﹣1÷)×2]÷155.156.(﹣105)×﹣178×﹣×(﹣178)157.﹣(﹣23)﹣(+59)+(﹣35)+|﹣5﹣32|;158. 1﹣[(﹣5)2×﹣]÷2×(﹣1+).159.﹣÷×(﹣)×+(﹣2)3160. 4﹣(﹣2)2﹣32÷(﹣1)2009+0×(﹣2)5.161.162.(﹣5)×(﹣)﹣(﹣5)×+(﹣5)×(﹣).163.﹣20+(﹣18)﹣12+10;164.;165.;166.﹣×17×(﹣4)×(﹣);167.﹣﹣(﹣)﹣;168.(﹣36)÷4﹣5×(﹣);169.;170..171.172..173.174.175..176. [﹣21×(﹣1)3+6÷×3﹣52]×.177.178.﹣32﹣50÷(﹣5)2﹣1;179..180. 0﹣3+(﹣)﹣(﹣22)﹣5÷(﹣);181. 10÷[﹣(﹣1+1)]×6;182. 18+32÷(﹣2)3﹣(﹣4)2×5;183.﹣7×(﹣)+19×(﹣)﹣5×(﹣).184. 8﹣2×(﹣3)2+[(﹣2)×3]2185.186. 3×(﹣4)+28÷(﹣7);187.﹣14+×[32﹣(﹣3)2];188. (﹣10)+8×(﹣3)2﹣(﹣4)×(﹣3).189. (﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2010 189. 48×(﹣+﹣)191. (+7)+(﹣8)﹣(+3)﹣(﹣4);192.﹣1﹣2÷(﹣)×(﹣3);193.﹣36×(﹣﹣);194.﹣13﹣(1﹣)××[2﹣(﹣3)2];195.(﹣)××(﹣4)×(﹣8);196.(﹣1)10×2+(﹣2)3÷4.197. ﹣(﹣3)2﹣[3+×(﹣1)]÷(﹣2).198. ;199. ;200.;参考答案(供参考):1.原式=1×2+(﹣8)÷4=2+(﹣2)=0.2.原式=[50﹣(﹣+)×36]÷49=[50﹣(×36﹣×36+×36)]÷49=[50﹣(28﹣33+6)]÷49=(50﹣1)÷49=49÷49=1.3.原式=16×=12+(﹣5)=74.原式=﹣1﹣×(2﹣9)×(﹣8)=﹣1﹣=﹣.5.原式=﹣8+(﹣3)×18﹣9÷(﹣2)=﹣8﹣54﹣9÷(﹣2)=﹣62+=﹣.6. 原式=﹣4﹣÷(﹣8)=﹣4+=﹣37. (﹣1)2+[20﹣(﹣2)3]÷(﹣4)=1+[20﹣(﹣8)]÷(﹣4)=1+28×(﹣)=1﹣7=﹣6.8.原式=[1﹣(1﹣)]×[2﹣9]=[1﹣]×(﹣7)=×(﹣7)=﹣.9.原式=×(﹣)﹣×(﹣)﹣2=﹣+﹣2=﹣2=﹣1.10.原式=(+﹣)×(﹣48)=﹣(×48+×48﹣×48)=﹣(8+36﹣4)=﹣40.11.原式=×(﹣8)﹣[(﹣4)÷()+1]﹣1=﹣10﹣[(﹣4)×+1]﹣1=﹣10+8﹣1=﹣3.12.原式=[18×﹣18×]﹣[(﹣24)×+(﹣24)×]=(9﹣6)﹣[(﹣8)+(﹣3)]=3﹣(﹣11)=14.13.原式=﹣×[﹣9×﹣8]+1=﹣×(﹣12)+1=18+1=19.原式=﹣3+6﹣8+9=4;14.15. 原式=﹣9﹣9×(﹣2)﹣[(﹣2)×1]2=﹣9+18-4=516.原式=﹣10×(﹣2)×5×1=100.17.原式=﹣3﹣[﹣5+(1﹣)×(﹣)=﹣3﹣[﹣5﹣]=﹣3+5+=18. ﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣××6=﹣1﹣1=﹣2.19.原式=4+[6+6]÷4﹣5××=4+3﹣4=3.20.原式=21.原式=﹣9÷3+(﹣)×12﹣1=﹣6;22.原式===﹣.23.原式=﹣+﹣=3﹣6=﹣3;原式=﹣×﹣8×=﹣2﹣4=﹣6;24.26.原式=﹣9×﹣[25×(﹣)+60×﹣2]=﹣3﹣(﹣15+15﹣2)=﹣3+2=﹣1 27.原式=8﹣8÷(﹣4)×(﹣2)+0=8﹣4=4. 28.原式=[﹣×4×6]÷5×(﹣1)=[﹣(﹣5)]÷5×(﹣1)=.29. 原式=﹣++﹣=﹣++﹣=﹣2;30.原式=﹣×(﹣36)=718;31.原式={1﹣[﹣(﹣)]×16}÷[﹣﹣﹣]=[1﹣(+)×16]÷[﹣﹣﹣]=[1﹣1-41]÷(﹣2) =-41×(﹣)=81. 32.原式=;33.原式=﹣9+9+25×()﹣÷=﹣9+9+(﹣20)﹣=﹣20﹣=﹣ 34.原式=﹣1000﹣(﹣)×﹣100=﹣1099.35.原式=×+×﹣×=×(+﹣)=×()=. 36. 原式=﹣4+16×﹣=﹣4+2﹣28=﹣3037.原式=(﹣+)×18+(﹣)×6=17.38.原式=.39.原式=﹣16×(﹣2)÷(﹣1)+(+﹣)×24=﹣32+×24+×24﹣×24=﹣32+27+32﹣18=9. 40. [(﹣1)2005+(﹣﹣)×24]÷|﹣32+5|=[﹣1+×24]÷|﹣4|=4÷4=141.原式==××(﹣1)=﹣.42. 原式=﹣1﹣[﹣2+×(﹣3)]=﹣1﹣[﹣2﹣2]=﹣1+4=3.43. 原式=21×23×32×34×43×45×54×56×65×67=44.=﹣﹣8×=﹣﹣=﹣545. 原式=﹣5﹣﹣(1﹣×)×9=﹣5﹣(1﹣)×9=﹣5﹣6=﹣11. 46. 原式=﹣10+8÷4﹣12=﹣10+2﹣12=﹣20.47. 原式=(﹣﹣)×(﹣)=(﹣)×(﹣)=3.48. 原式=3+(﹣4)×8÷4÷2﹣9÷9×(﹣1)=3﹣4+1=0.49. 原式=64﹣{81﹣[﹣+×(﹣4)]÷(﹣3)}=64﹣{81﹣3}=64﹣77=﹣13.50.原式=×(﹣)﹣×(﹣)﹣××=﹣+﹣=.51. 原式=(1315﹣15+4﹣14)×(﹣)=(1315﹣25)×(﹣)=41310; 52. 原式=﹣10+32﹣12=10; 53. 原式=﹣÷(﹣)+()=﹣=;54. 原式=﹣3×﹣4×﹣8×=﹣﹣18=﹣20; 55.原式=﹣8+×+8=﹣8++8=.56.原式=﹣++××1=﹣++=; 57.原式=﹣27×4﹣4×()=﹣=0;58. 原式=﹣16+4﹣3×(﹣1)=﹣12+3=﹣9.59. 原式=+0=;60. 原式=﹣13+12﹣7+38=﹣20+50=30; 61.原式=[﹣3+]+[﹣2﹣]=0﹣3=﹣3; 62. 原式=163﹣[63﹣259﹣41]=163+237=400.63.原式=﹣(﹣+)+(8﹣9×1)×=﹣1×=﹣; 64.原式=(﹣3×﹣4×+1×)÷|2×﹣|×2=(﹣﹣+)÷||×2=﹣×4×2=﹣4;65.原式=×16×1﹣()=1﹣(﹣9+56﹣90)=1+9﹣56+90=44.66.原式=﹣4+4+4﹣8﹣9=﹣13. 67.原式=22﹣4﹣2+4=20; 68.原式=(﹣8)++9﹣=1; 69. 原式=(+﹣)×(﹣24)﹣8=(﹣32)﹣3+66﹣8=23;70. 原式=(﹣)÷(﹣﹣)=1;71. 原式=(﹣9)××(﹣)×(﹣4)=﹣;72. 原式=(﹣1)﹣×(2﹣9)=. 73.原式=﹣÷(﹣+)=﹣÷=﹣74.原式=(﹣2)÷(×)×+5=(﹣2)÷×+5=﹣2×32×+5=﹣48+5=﹣43.75.原式=(﹣2)×9×(﹣1)﹣12÷[3﹣1]=18﹣12÷2=18﹣6=12.77. 原式=﹣9﹣9+9×1=﹣9;78. 原式=﹣24×+(﹣8)=﹣1﹣8=﹣9.79.原式=﹣8×8﹣8×+64=﹣1.80. 原式=×36﹣×36+×36=28﹣30+27=25.81. 原式=﹣5﹣4=﹣9.82. 原式=27×4﹣(﹣27)×(﹣8)=27×(4﹣8)=﹣108.83. 原式=(1﹣)×(2﹣9)=×(﹣7)=.84.=1+2(﹣+﹣…﹣)=1+2(﹣)=.85.原式=3××××=1.86.原式=(﹣1+3)+(﹣5+7)+(﹣9+11)+…+(﹣1997+1999)=2××=1000;87.原式=(11﹣13)+(12﹣14)+(15﹣17)+…+(95﹣97)+(96﹣98)+(99+100)=﹣2×+199=﹣88+199=111;88.原式=(1990+1)(2000﹣1)﹣1990×2000=1990×2000﹣1990+2000﹣1﹣1990×2000=10﹣1=9;89.原式=4726342+4726352﹣(472634﹣1)×(472634+1)﹣(472635﹣1)(472635+1)=4726342+4726352﹣4726342+1﹣4726352+1=2;90.原式=×(1﹣+﹣+…+﹣)=×(1﹣)=×=;91.根据题意可知第n项就是a n=1+3(n﹣1),即有244=1+3(n﹣1),∴n=82,∴一共有82个数,又∵1+244=245,4+241=245…,∴原式=(1+244)×82÷2=10045;92. 设原式=m,那么3m=3+m﹣,∴2m=3﹣,∴m=;93. 原式=﹣+﹣+﹣=(1+)﹣(+)+(+)﹣(+)+(+)﹣(+) =1+﹣﹣+…﹣﹣=1﹣=.94.原式=﹣4﹣(﹣1)×(﹣)×6+9=﹣4﹣1+9=4.95. 原式=+﹣﹣=﹣=96. 原式=﹣+﹣(﹣8﹣1)=﹣+﹣×(﹣9)=+3=97.原式=5×+7×﹣12×=(5+7﹣12)×=0.98. 原式=﹣5﹣4÷[﹣]÷(﹣4)=﹣5﹣4÷(﹣2)÷(﹣4)=﹣5﹣(﹣2)÷(﹣4)=﹣5﹣=﹣5.99.原式=﹣3+2﹣2+7=(﹣3﹣2)+(2+7)=﹣6+10=4;100.原式=﹣8××=﹣8;102.原式=÷(﹣)﹣×(﹣)=﹣1+1=0;103.原式=﹣1﹣××[2﹣9]=﹣1+=. 104.(2﹣3+1)÷(﹣1)=(﹣+)×(﹣)=×(﹣)+(﹣)×(﹣)+×(﹣)=﹣2+3﹣.105.∵,∴原式=1﹣+﹣+﹣+…+﹣=1﹣=.106.原式=﹣1+[1﹣]×7=﹣1+= 107.原式=[1+(﹣)×16]÷=[1+(﹣)×16]×=﹣7×=108.原式=﹣1﹣[5×(﹣2)﹣16÷(﹣8)]=﹣1﹣[﹣10+2]=﹣1+8=7. 109.原式=-1-[2-(1-61)]×6=-1-7=-8 110. 原式==30.111.原式=(2﹣9)×[1﹣(1﹣)]=﹣7×(1﹣)=﹣7×=﹣. 112.原式=﹣16×(﹣4)+(5﹣5)﹣2+(﹣1)=64+0﹣2﹣1=61. 113.原式===;114.==27+20﹣21=26;115.=(﹣1﹣4)×===.116.原式=﹣8××+(﹣)×5×(﹣)=﹣8+1=﹣7.117.﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)=﹣9﹣8﹣16÷(﹣8)=﹣9﹣8+2=﹣15. 118. 原式=(﹣9﹣4+18)÷5=(+5)÷5=+5÷5==;119. 原式=﹣8×1﹣12÷(﹣)=﹣8+48=40 120. 原式=﹣16×+×(﹣)=﹣6﹣=﹣;121. 原式=﹣16×(﹣4)+[5﹣5]﹣2﹣1=64﹣2﹣1=61. 122.原式=﹣×(﹣8)×1+×12+×12﹣×12=++28﹣45=17+28﹣45=0.123. 原式=﹣×××=;124. 原式=﹣24×1﹣24×(﹣)﹣24×﹣24×(﹣)=﹣24+18﹣4+15=5.126 原式=32﹣(﹣8+4﹣2)=32+8﹣4+2=38;127. 原式=﹣4+(﹣3)×(16﹣8)+9÷2=﹣4﹣24+=﹣128.原式=﹣5﹣3﹣9+7+=﹣9;129.原式=26;130.原式=﹣+﹣+=﹣6+10=4;131.原式=﹣﹣+3++=﹣=﹣4;132.原式=+﹣﹣=﹣19;133.原式=﹣+﹣﹣﹣﹣=﹣2=.134. 原式=(212﹣480)÷5×(﹣1)=268÷5=.135.原式=﹣16+16﹣1××=﹣.136. =×(﹣8)﹣[4×+1]+1=﹣2﹣[9+1]+1 =﹣2﹣10+1=﹣12+1=﹣11;137.()×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)﹣×(﹣36)=﹣28+30﹣27+14=﹣55+44=﹣11.138. 原式=﹣20+3+5﹣7=﹣19;139. 原式=(+6+4)+(+2﹣1)﹣5﹣1=11+1﹣5﹣1=5;140. 原式=﹣13×(+)﹣×(+)=﹣13﹣=﹣;141. 原式=××5×64=50;142. 原式=﹣27××+4+=﹣++4=﹣;143. 原式=﹣1﹣(﹣)×3×(﹣2+27)﹣|﹣|=﹣1+×75﹣=﹣1+12﹣=11.144. 0﹣14﹣(﹣1)+(﹣)3××0﹣|﹣5|+5=0﹣1+1+0﹣5+5=0.145.原式=﹣9××[25×(﹣)﹣(﹣60)×]=﹣3×[﹣15+15]=﹣3×0=0.146.原式=1+++…+=1+++…+=2×(++…+) =2×(1﹣+﹣+…+﹣)=2×(1﹣)=.147. =4+(﹣2)=2;148. =﹣1+[1﹣×24﹣×24+×24]÷5=﹣1+[1﹣9﹣4+18]÷5=﹣1+×=﹣1+=.149.原式=﹣1﹣(﹣﹣)×(﹣)=﹣1﹣(﹣﹣)×(﹣)=﹣1﹣×(﹣)=﹣1+=150. 原式=(125﹣4×25﹣1)÷(﹣16﹣24+16)=24÷(﹣24)=﹣1.151.原式=﹣9+27÷9﹣×4﹣(﹣1)=﹣9+3﹣1+1=﹣6.152. 原式=4+3﹣1=6;153. 原式=[﹣﹣﹣+]÷9=(﹣6)÷9=.154. 原式=[47﹣(18﹣)×]÷=[47﹣×]×=×=20;155. 原式===.156.原式=﹣105×+105×﹣105×﹣178×+×178=﹣21×3+15×4﹣35×5+178×(﹣)=﹣63+60﹣175+178=0157.原式=23﹣59﹣35+37=﹣34;158.原式=﹣()××()=﹣=.159.原式=﹣××(﹣)×+(﹣8)=+(﹣8)=﹣.160. 原式=4﹣4﹣9÷(﹣1)+0=4﹣4+9+0=9.161.原式==﹣2﹣9+5=﹣6.162.原式=(﹣5)×(﹣﹣﹣)=(﹣5)×(﹣1)=5.163.原式=﹣20﹣18﹣12+10=﹣40;164.原式=﹣﹣﹣3=﹣4;165.原式=﹣×48=﹣24;166.原式=﹣×17×4×=﹣×17×4×=﹣17;167.原式=﹣+﹣=43;168.原式=﹣36÷4+5×=﹣9+6=﹣3;169.原式=﹣×(﹣9×+)÷=××=;170.原式=﹣4﹣6+2+3×=﹣4﹣6+2+1=﹣7171.=﹣1﹣××6+1=﹣1.172.=﹣÷﹣4×3=﹣14.173. 原式=﹣1﹣(﹣)××(﹣6)=﹣1+1=0;174. 原式=﹣25﹣[﹣8+÷(﹣4)×(﹣2)]=﹣25﹣(﹣8+)=﹣25+=﹣17;175. 原式=××(﹣)+×﹣=﹣+××=﹣﹣=(或).176. 原式=(21+6×3×3﹣25)×=50×=177.原式=×(﹣)﹣﹣÷(﹣)=﹣﹣+=﹣.178.原式=﹣9﹣50÷25﹣1=﹣12;179.原式=﹣1﹣[2﹣(1﹣)]×(9﹣4)=.180. 0﹣3+(﹣)﹣(﹣22)﹣5÷(﹣)=﹣3﹣+4+20=21﹣=20;181. 10÷[﹣(﹣1+1)]×6=10÷(﹣)×6=10÷×6=10×6×6=360;182. 18+32÷(﹣2)3﹣(﹣4)2×5=18+32÷(﹣8)﹣16×5=18﹣4﹣80=18﹣84=﹣66;183. ﹣7×(﹣)+19×(﹣)﹣5×(﹣)=(﹣7+19﹣5)×(﹣)=(﹣12+19)×(﹣) =7×(﹣)=﹣22.184. 原式=8﹣2×9+36=8﹣18+36=26.185. 原式=4+(﹣4)÷(﹣)+×(﹣16)=4+6﹣1=9.186. 原式=﹣12﹣4=﹣16;187. 原式=﹣1+×[9﹣9]=﹣1;188. 原式=﹣10+8×9﹣12=﹣10+72﹣12=50189. 原式=﹣8﹣2×(﹣3)+3﹣1=﹣8+6+3﹣1=0190. 原式=48×(﹣)+48×+48×(﹣)=﹣8+36﹣4=24.191. (+7)+(﹣8)﹣(+3)﹣(﹣4)=7﹣8﹣3+4=11﹣11=0;192.﹣1﹣2÷(﹣)×(﹣3)=﹣1﹣×(﹣)×(﹣3)=﹣1﹣4=﹣6;193.﹣36×(﹣﹣)=(﹣36)×+(﹣36)×(﹣)+(﹣36)×(﹣)=﹣4+6+2=﹣4+8=4;194.﹣13﹣(1﹣)××[2﹣(﹣3)2]=﹣1﹣××(2﹣9)=﹣1+=;195.(﹣)××(﹣4)×(﹣8)=(﹣)×(﹣4)×[×(﹣8)]=1×(﹣10)=﹣10;196.(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2﹣2=0.197. 原式=﹣9﹣(3﹣×)×(﹣)=﹣9+×=﹣.198. 原式=﹣﹣﹣=(﹣1)﹣1=﹣2;199.原式=﹣1﹣(﹣+﹣)×(﹣36)=﹣1+11=10;200.原式=4÷9×(﹣)=×(﹣)=﹣1;。
有理数综合提高训练题
有理数综合提高训练题1、已知数轴上有A、B两点,A、B之间的距离为1,A点与原点O 的距离为3,那么点B对应的数是2、如图是小明画的数轴,在数轴上标出的点中任意相邻两点间的距离都相等,他在清理数轴旁边的污渍时,不慎将原点O和C处相应的数擦掉了,请你将它们补上3、在数轴上表示整数的点称为“整点”,设数轴的单位长度是1cm,若在这个数轴上任意画出一条长为2022cm的线段AB,则线段AB盖住的整点最多有个。
4、如下图所示,按下列方法将数轴的正半轴绕在一个圆(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0、1、2)上;先让原点与圆周上的数字0所对应的点重合,再将正半轴按顺时针的方向绕在该圆周上,使数轴上的1、2、3、4…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系。
(1)圆周上的数字a与数轴上的数字5对应,则a=(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是(用含n 的代数式表示)。
5、如图,数轴上线段MO(O为原点)的七等分点,A、B、C、D、E、F中,只有两点对应的数是整数,点M对应的数m>-10,那么m可以取的不同值有个,m的最小值为6、一动点P从数轴上的原点出发,沿数轴的正方向,以每前进5个单位,后退3个单位的程序,设点P每秒前进或后退一个单位,表示第n秒P点在数轴的位置对应的数(如,,),则为()A、504B、505C、506D、5077、已知数轴上有A、B两点,点A对应的数是a,点B对应的数是b,A、B之间的距离为1,点A与原点的距离为3,求所有满足条件的点B与原点的距离的和8、在数轴上,N点对应的数是n,N点与原点O点的距离是N点与30所对应点之间的距离的4倍,那么N点表示的数是多少9、一条直线的流水线上依次有5个机器人,它们站立的位置在数轴上依次用点表示,如下图(1)怎样将点移动,使它先到达,再到达,请用文字语言说明;(2)若原点是零件的供应点,那5个机器人分别到达供应点的总路程是多少(3)将零件的供应点设在何处,才能使5个机器人分别到达供应点取货的总路程最短10、两个十位数1 111 111 111和9 999 999 999的乘积有几个奇数(利用运算律计算)11、计算:89899899989999899999 (凑整法计算)12、计算:(裂项相消计算)思考:比较 n为任意自然数与2的大小。
专题2-35 《有理数及其运算》计算题综合训练(提高篇)(专项练
专题2.35 《有理数及其运算》计算题综合训练(提高篇)(专项练习)一、解答题 1.(1)3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭(2)()22012201121(0.25)4522--⨯+-÷-(3)1111864126⎛⎫-⨯-++÷ ⎪⎝⎭(4)()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(5)22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭(7)222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦(8)111112123123100+++++++++++2.(1)421211(1)0.52368⎛⎫⎛⎫---÷----⎪ ⎪⎝⎭⎝⎭(2)21211312144335⎛⎫⎛⎫--⨯--++÷- ⎪ ⎪⎝⎭⎝⎭3.计算:(1)(+16)﹣(+11)﹣(﹣18)+(﹣15);(2)﹣12﹣(1﹣0.5)÷212(2)5⎡⎤⨯--⎣⎦;(3)4341(72)()98253-⨯-+-;(4)22222211()19()6()777-⨯-+⨯-+⨯-4.计算:(1)()()()7935------;(2) 4.2 5.78.410-+-+;(3)15214632-++-.5.计算:(1)3583927⎛⎫-⨯-+ ⎪⎝⎭; (2)23121111113382⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫---÷-⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.6.计算(能简算的要简算):(1)(4)8( 2.5)(125)-⨯⨯-⨯-; (2)1111(24)46812⎛⎫-+-+⨯- ⎪⎝⎭;(3)121321334⎛⎫⎛⎫÷-÷- ⎪ ⎪⎝⎭⎝⎭; (4)14(81)2(16)49-÷⨯⨯-.7.计算:32531(4)(1)42⎡⎤⎛⎫-⨯-++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)153(30)265⎛⎫-⨯-- ⎪⎝⎭.8.计算:(1)45(8)()( 1.25)34-⨯-⨯-⨯; (2)1138()842-⨯+-;(3) 3311.83(11.8) 1.711.811.8(0.3)44⨯--⨯-⨯-⨯-.9.计算:(l)243(1)()( 2.5)()3925+⨯-⨯-⨯-; (2)5183()(2)()()115134-⨯-⨯-⨯-.10.计算:(1)2304124()(2)3-⨯+---;(2)422311(1){[()0.4(1)](2)}532---+⨯-÷-.11.计算下列各题: (1)1112-134-114+412; (2)(-22.84)-(+38.57)+(-37.16)-(-32.57); (3)112-56+234+38-423; (4)(-36)-(-28)+(+125)+(-4)-(+53)-(-40).11.计算:(1)20173(1)(6)(2)⨯-+-÷-; (2)42232[1(3)]()(15)35-÷--+-⨯-.13. 计算: (1)131123-2 1.25848⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭; (2)()32018112122⎛⎫-+-⨯---- ⎪⎝⎭;(3)11112-342⎛⎫-⨯+ ⎪⎝⎭.14.计算:(1)2–12×(13–14+12); (2)–12018+24÷(–2)2–32×(13)2.15.计算:(1)-13-5+8; (2)123()45935-+⨯;(3)201921(1)(1)33(3)2---÷⨯--.16.计算:(1)0﹣(﹣2) (2)(+10)+(﹣14)(3)5.6+(﹣0.9)+4.4+(﹣8.1) (4)1﹣47+15﹣37+95(5)(﹣0.5)﹣(﹣314)+2.75﹣(+712). 17.计算(1)﹣5+3﹣2 (2)﹣20﹣(﹣18)+(﹣14)+13(3)5.6+(﹣0.9)+4.4+(﹣8.1)(4)(+ 32)﹣512﹣52+(﹣712)18.计算(1)36﹣76+(﹣23)﹣(﹣10)(2)﹣6﹣9(4)(﹣134)﹣(+613)﹣2.25+103(4)11+(﹣35)﹣(﹣41)+(﹣16)(5)(﹣323)﹣(﹣234)﹣(﹣123)﹣(+1.75)(6)(﹣478)﹣(﹣512)+(﹣414)﹣(+318).19.计算(1)(﹣9.8)﹣(+6);(2)4.7﹣(﹣8.9)﹣7.5+(﹣6);(3)1﹣3+5﹣7+9﹣11+…+97﹣99 (4)1.75+(﹣612)+338+(﹣134)+(+258).20.计算:(1)45+(﹣20);(2)(﹣8)﹣(﹣1);(4)|﹣10|+|+8|;(4)(﹣12)﹣5+(﹣14)﹣(﹣39);(5)0.47﹣456﹣(﹣1.53)﹣116;(6)36﹣76+(﹣23)﹣105;(7)﹣20+|﹣14|﹣(﹣18)﹣13;(8)(8)(+1.75)+(﹣13)+(+45)+(+1.05)+(﹣23)+(+2.2).21.计算:(1)-∣-3∣×123-12÷(-6)﹙2)25×﹙-0.125﹚×﹙-4﹚×﹙-45) ×﹙-8﹚×114(3)1-2-3+4+5-6-7+8+…-2007+2008+2009-2010(5)(13-14-16)×(-48)22.计算:(1)3(4)8(3)(3)-+-+--- (2)357244612⎛⎫-⨯-+ ⎪⎝⎭(3)223(3)3(2)4-÷-+⨯-+- (4)()()3116-2---48⎛⎫÷⨯ ⎪⎝⎭23.计算:(1)12-17+3-5; (2)3()(4)24-⨯--;(4)3777(1)48128--÷; (4)20112(1)6[3(3)]--⨯--; 24.计算(1)﹣22+(﹣3)×[(﹣4)2+2] (2)﹣16×34﹣(﹣16)×12+16×(﹣14)25.先阅读第(1)题的计算过程,再根据第(1)题的解题方法完成第(2)题: (1)计算5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解:5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()()()()5231591736342⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+++++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦=[(–5)+(–9)+(+17)+(–3)]+52316342⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=1101144⎛⎫+-=- ⎪⎝⎭.上面这种解题方法叫做拆项法.(2)计算:∣522120092013402216332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ∣()35917424816++++-.26.计算:(1)2150--÷256-+() (2)20111222.7524(1)83⎛⎫+-⨯+- ⎪⎝⎭(3)311312122⎛⎫-÷⨯--÷- ⎪⎝⎭27.计算:(1) -13×23-0.34×27+13×(-13)-57×0.34;(2) 3113×4112-1113×4112×2-9.5×1113.28.观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:()11n n =+_____________. (2)直接写出下列各式的计算结果: ∣1111 (12233420162017)+++++=⨯⨯⨯⨯______________; ∣()11111223341n n ++++=⨯⨯⨯+______________.(3)探究并计算:1111 (13355720152017)+++++⨯⨯⨯⨯.29.计算:(1)2125824(3)3-+-+÷-⨯;(2)20171313[2()24]5(1)2864-+-⨯÷⨯-.30.计算: (1)514-(-223)+(-314)-(+423); (2)(-3594812-+)×(-24);(4)(-3)÷34×43×(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.31.运用运算律作较简便的计算:(1)-1.25×(-5)×3×(-8);(2)(5231234+-)×(-12);(3)113(19)19(19) 424-⨯--⨯-⨯-.32.计算(1)146842213⎛⎫-⨯-÷-+⎪⎝⎭(2)422112250.25326-÷-+⨯--()()()33.计算:(1)135()(12)6412-+-⨯-;(2)2215(1)4()2--⨯--÷-.34.计算题:(1)23+17+(-7)+(-16);(2)(-514)+(-3.5);(4)(+23)+(-34);(4)23+(-15)+(-1)+13.35.解答下列各题:(1)(﹣3.6)+(+2.5) (2)-37﹣(﹣312)﹣247+12(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9) (4)﹣5﹣(﹣11)+213﹣(﹣23)(5)312﹣(﹣13)+223+(﹣12) (6)25﹣|﹣112|﹣(+214)﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2) (8)(﹣414)﹣(+513)﹣(﹣414) 36.计算:(1)()()()()910283+-++---+; (2)()1212237⎛⎫⎛⎫-⨯-⨯-⎪ ⎪⎝⎭⎝⎭;(3)6663210111111⎛⎫⎛⎫⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭--; (4)()()0.5151712-+-----; (4)3416401373⎛⎫⎛⎫-⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭; (6)()157362612⎛⎫+-⨯- ⎪⎝⎭;(6)()()15144⎛⎫⨯⨯- ⎪⎝⎭---; (8)18(19)1519-⨯.37.请阅读下列材料: 计算:121123031065⎛⎫÷-+- ⎪⎝⎭. 方法一:121123031065⎛⎫÷-+- ⎪⎝⎭121123036105⎡⎤⎛⎫⎛⎫=÷+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1513062⎛⎫=÷- ⎪⎝⎭1133010=⨯=. 方法二:计算原数的倒数 211213106530⎛⎫-+-÷⎪⎝⎭ 21123031065⎛⎫=-+-⨯ ⎪⎝⎭20351210=-+-=,所以原式110=. 请依照上题用两种方法计:113224261437⎛⎫÷-+- ⎪⎝⎭.38.计算:42991310.25(1)12 3.7524283⎛⎫⎛⎫-÷-⨯-++-⨯ ⎪ ⎪⎝⎭⎝⎭.39.计算下列各题: (1)()157482812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦(2)()()222211432333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(3)()()232415123262⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭(4)666433363777⎛⎫⎛⎫⨯--⨯--⨯ ⎪ ⎪⎝⎭⎝⎭40.计算与化简:(1)12﹣(﹣6)+(﹣9); (2)(﹣48)×(﹣1572812-+);(3) ﹣32÷(﹣2)2×|﹣113|×6+(﹣2)3.(1)-5-(-3)+(-4)-[-(-2)]; (2)-14+13712812⎛⎫--+ ⎪⎝⎭×(-24);(3)-62×2112⎛⎫- ⎪⎝⎭-32÷3112⎛⎫- ⎪⎝⎭×3;(4)22539⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭-(-1)1000-2.45×8+2.55×(-8).42.计算:(1)(213−13+16)×(−78); (2)−24×(−1)4−|−12|÷[−(12)2];(3)−18÷(−3)2+5×(−12)3−(−15)÷5.43.计算: (1)12(13)(17)33⎛⎫--++--- ⎪⎝⎭; (2)()()1352119+----;(3)()()()743410--+---+-; (4)67( 3.2)(1)5⎛⎫----+- ⎪⎝⎭.(1)22452(3)(1)(1)---⨯---; (2)24103(2)554⎛⎫⎛⎫-+----÷- ⎪ ⎪⎝⎭⎝⎭;(4)11124834⎛⎫-⨯-+ ⎪⎝⎭.45.计算:(1)32821142⎛⎫-++- ⎪⎝⎭; (2)242113(1)326⎛⎫---⨯-÷ ⎪⎝⎭.46.计算:(1)8214(3)(6)(3)|4|-+⨯-+-÷-+-; (2)22019342(1)5293⎛⎫-⨯-÷⨯- ⎪⎝⎭.47.计算: (1)23×(2﹣5)+(﹣6)÷(﹣4); (2)133()(48)6412-+-⨯-;(3)﹣13+(﹣12)+3×[12﹣(﹣1)6]﹣0.12.48.计算:(1)215482()14+÷⨯--; (2)2213(2)0.254[()]4028-⨯-÷--.49.计算: (1) 316+(157-)+(126-)+(647-); (2) 25.7+(-7.3)+(-13.7)+7.3;(3)(-2.125)+(135+)+(158+)+(-3.2); (4) (-0.8)+6.4+(-9.2)+3.6+(-1).50.计算: (1)| -2|÷(-12)+(-5)×(-2); (2) (23-12+56)×(-24);(3) 15÷(-32+56); (4) (-2)2-|-7|-3÷(-14)+(-3)3×(-13)2.参考答案1.(1)13-;(2)174-;(3)-8;(4)496;(5)8;(6)13-;(7)161;(8)200101 【分析】根据有理数的混合运算法则分别计算. 【详解】 解:(1)3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭=3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=110441015153-⨯⨯⨯ =13-;(2)()22012201121(0.25)4522--⨯+-÷-=()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭ =2012201151424254⎛⎫-⨯-⨯⎪⎝⎭=2011411444⎛⎫-⨯⨯- ⎪⎝⎭=174-; (3)1111864126⎛⎫-⨯-++÷ ⎪⎝⎭ =111866412⎛⎫⨯--⨯⎪⎝⎭ =1114848486412⨯-⨯-⨯ =8124--=-8;(4)()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦=111423⎛⎫--- ⎪⎝⎭=12323+ =496; (5)22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=44411.35 1.057.7999⨯-⨯+⨯ =()411.35 1.057.79-+⨯=4189⨯=8;(6)2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭=()5112246274-+⨯+-⨯ =14125625-+⨯⨯=213-+=13-;(7)222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭=35141254⎛⎫⨯++⎪⎝⎭=511284⨯+ =160+1 =161;(8)111112123123100+++++++++++ =()()()11111221331100100222+++++⨯+⨯+⨯=2222122334100101++++⨯⨯⨯⨯ =11112122334100101⎛⎫⨯++++⎪⨯⨯⨯⨯⎝⎭=11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭=200101【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序,以及一些常用的简便运算方法.2.(1)38-;(2)20. 【分析】(1)先计算有理数的乘方与减法、将有理数的除法转化为乘法,再计算绝对值运算、有理数的乘法与减法即可得;(2)先计算有理数的乘方、有理数的乘法与减法,再计算有理数的除法与加减法即可得. 【详解】(1)原式()11116684⎛⎫=--⨯---- ⎪⎝⎭, 3118=---, 38=-;(2)原式1212121214415329⎡⎤⎛⎫=--⨯--⨯+⨯+÷ ⎪⎢⎥⎝⎭⎣⎦, ()381542219=----++⨯, 1093=--+,20=.【点睛】本题考查了含乘方的有理数混合运算,熟记有理数的运算法则和运算律是解题关键. 3.(1)8;(2)4;(3)71225;(4)﹣44. 【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题; (3)根据乘法分配律可以解答本题; (4)根据乘法分配律可以解答本题. 【详解】解:(1)(+16)﹣(+11)﹣(﹣18)+(﹣15) =16+(﹣11)+18+(﹣15) =(16+18)+[(﹣11)+(﹣15)] =34+(﹣26) =8;(2)﹣12﹣(1﹣0.5)÷212(2)5⎡⎤⨯--⎣⎦ =﹣1﹣12×5×(2﹣4) =﹣1﹣12×5×(﹣2)=﹣1+5 =4; (3)4341(72)()98253-⨯-+-=(﹣72)×49﹣(﹣72)×38+(﹣72)×425﹣(﹣72)×13=﹣32+27+(﹣111325)+24 =71225; (4)22222211()19()6()777-⨯-+⨯-+⨯- =[(﹣11)+19+6]×(﹣227) =14×(﹣227) =﹣44.【点睛】本题主要考查的是含有乘方的有理数的混合运算,掌握有理数的运算法则是解题的关键. 4.(1)-8;(2)3.1;(3)34. 【分析】根据有理数的加、减混合运算的相关法则进行计算即可.【详解】(1)()()()()()()793579351688⎡⎤------=-+-++=-+=-⎣⎦ ;(2)()()4.2 5.78.410 4.28.4 5.71012.615.7 3.1-+-+=--++=-+=; (3)15214632-++-=11523334263424⎛⎫⎛⎫--++=-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】熟悉“有理数加减混合运算的相关运算法则,能灵活的使用运算律把符号相同的数结合到一起先相加”是解答本题的关键.5.(1)7 ; (2) 132【分析】(1) 先运算乘方,再利用乘法分配率进行解答.(2) 根据有理数混合运算的解题步骤进行解答.【详解】解:(1)35858327271587927927⎛⎫⎛⎫-⨯-+=-⨯--⨯=-= ⎪ ⎪⎝⎭⎝⎭; (2)2312111-1-1-1338-2-⎡⎤⎛⎫⎛⎫⎛⎫÷⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎛⎫ ⎪⎝⎭ 459279388⎡⎤⎛⎫⎛⎫=+÷-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 458279398⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭ 427582798398⎛⎫⎛⎫=⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭ 352=-+ 132=. 【点睛】进行含乘方的混合运算时,先计算乘方,再根据有理数混合运算的解题步骤进行解答,解题过程中可灵活运用运算律.6.(1)-10000;(2)3;(3)1;(4)256【解析】【分析】(1)根据乘法交换律和结合律计算即可;(2)利用乘法分配率计算即可;(3)利用除法法则计算即可;(4)利用乘除法混合运算法则计算即可.【详解】(1)原式()()()()[]4 2.5812510100010000=-⨯-⨯⨯-=⨯-=-.(2)原式1111(24)(24)(24)(24)6432346812⎛⎫=-⨯-+⨯--⨯-+⨯-=-+-= ⎪⎝⎭. (3)原式108510341334385⎛⎫⎛⎫=÷-÷-=⨯⨯= ⎪ ⎪⎝⎭⎝⎭.(4)原式9444(81)(16)(81)(16)16162564999=-÷⨯⨯-=-⨯⨯⨯-=⨯=. 【点睛】 本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.7.(1)-6;(2)28【解析】【分析】(1)先算乘方,再用乘法分配律进行计算;(2)利用乘法分配律进行计算.【详解】解(1)32531(4)(1)42⎡⎤⎛⎫-⨯-++-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 3116148⎡⎤⎛⎫=⨯-++- ⎪⎢⎥⎝⎭⎣⎦ 3116(1)161648⎛⎫=⨯-+⨯+⨯- ⎪⎝⎭1612(2)6=-++-=-(2)153(30)265⎛⎫-⨯-- ⎪⎝⎭ 15330(30)(30)265⎛⎫⎛⎫=-⨯+-⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭15251828=-++=.【点睛】本题考查了有理数的含有乘方的混合运算,注意运用运算定律使计算更简便.8.(1)-503;(2)9;(3)59 【解析】【分析】(1)利用乘法的交换,结合律进行计算即可(2)利用乘法分配律进行计算即可(3)利用逆乘法分配律计算即可【详解】(1)原式=10×(-53 )=-503(2)原式=-1-2+12=9(3)原式=11.8 ×333+1.7-+0.344⎛⎫ ⎪⎝⎭=11.8×5=59 【点睛】此题考查有理数的乘法,解题关键在于掌握运算法则9.(1)2-9 ;(2)613【解析】【分析】原式各项根据负因式个数确定出正负,再利用乘法法则计算即可得到结果.【详解】(1)54532-=-392259⨯⨯⨯ (2)511836=11513413⨯⨯⨯ 【点睛】此题考查有理数的乘法,解题关键在于掌握运算法则10.(1)1;(2)518. 【解析】【分析】(1)结合负整数指数幂、零指数幂的概念进行求解即可(2)先算乘方,再算乘除,最后算加减,有括号,要先做括号内的运算.【详解】(1)2304124()(2)3-⨯+--- =3141164⨯+-24116=+-16116=+-1=.(2)422311(1){[()0.4(1)](2)}532---+⨯-÷- 3121{[()]4}59523=--+⨯-÷ 31311[()]5954=---⨯ 32211()5454=-+⨯ 5411=1()9090-+ 65190=- 13118=- 518=. 【点睛】此题考查有理数的混合运算,解题关键在于掌握负整数指数幂,零指数幂的运算法则 11.(1)13;(2)-66;(3)-78;(4)100. 【解析】【分析】(1)利用加法的交换律和结合律把分母相同的项合在一起分别计算,即可得结果; (2)利用加法的交换律和结合律把能凑整的小数合在一起分别计算,即可得结果;(3)先把带分数拆分成整数与分数的和,然后利用加法的交换律和结合律把整数、分数(分母为2、4、8与3、6的分别计算)分别合在一起计算,最后再通分计算,即可得结果; (4)先去括号,利用加法的交换律和结合律分别把正数、负数合在一起分别计算,即可得结果;【详解】(1)原式=1131114112244⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭ =16-3=13.(2)原式=(-22.84-37.16)+(-38.57+32.57)=-(22.84+37.16)-(38.57-32.57)=-60-6=-66.(3)原式=1533212426483+-+++--=()1335212424863⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭=46354188866⎛⎫⎛⎫-+++-+ ⎪ ⎪⎝⎭⎝⎭=133182-+-=1312188-+-=78- (4)原式=362812545340-++--+=(2812540)(45336)++-++=193-93=100【点睛】本题考查了加法运算律在加减混合运算中的应用,灵活运用加法交换律和结合律能达到简便计算的目的。
有理数(正数、负数、相反数、绝对值)
有理数提高训练题(一) 姓名: 得分:一、填空题(每空3分,共24分)1.常熟市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
2.绝对值大于1而不大于3的整数有 ,它们的和是 。
3.有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 ,负整数是 ,正分数是 ,非负数是 。
4.观察下面一列数,根据规律写出横线上的数, -11;21;-31;41; ; ;……;第2003个数是 。
5.321-的倒数是 ,321-的相反数是 ,321-的绝对值是 , 已知|a|=4,那么a = 。
6.比较大小:(1)-2 +6 ; (2) 0 -1.8 ;(3)23-_____ 45- 7.最小的正整数是_____;绝对值最小的有理数是_____。
绝对值等于3的数是______。
绝对值等于本身的数是8、在数轴上,表示与-2的点距离为3的数是___________。
二、选择题(每题3分,共24分)1.下列说法不正确的是 ( )A .0既不是正数,也不是负数B .1是绝对值最小的数C .一个有理数不是整数就是分数D .0的绝对值是02.2-的相反数是 ( )A .21-B .2-C .21D .2 3.下列说法中正确的是 ( )A.最小的整数是0B. 互为相反数的两个数的绝对值相等C. 有理数分为正数和负数D. 如果两个数的绝对值相等,那么这两个数相等4.绝对值不大于5的所有整数有( )个A.9B.5C.11D.65.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 ( )A. 在家B. 在学校C. 在书店D. 不在上述地方6.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2, 则代数式mb a cd m ++-2 的值为 ( ) A 、3- B 、3 C 、5- D 、3或5-7.下列式子中,正确的是( )A .∣-5∣ =5B .-∣-5∣ = 5C .∣-0.5∣ =21-D .-∣- 21∣ =21 8、绝对值小于101的所有整数的和是( )A 、100B 、5050C 、-5050D 、0三、判断题(每题2分,共10分)1.-21一定大于-41。
七年级有理数专题训练(提高班)
有理数提高训练 一、选择题1、下列语句中,正确的是( )A.1是最小的正有理数 B.0是最大的非正整数C.1-是最大的负有理数 D.有最小的正整数和最小的正有理数 2.点A 在数轴上距离原点3个单位长度,将A 向右移动4个单位长度,再向左移动7个单位长度,此时点A 表示的数是( )A.0B.6- C.0或6-D.0或63.已知a 是有理数,则下列判断:①a 是正数;②a -是负数;③a 与a -必然有一个负数;④a 与a -互为相反数.其中正确的个数是( ) A.1个B.2个C.3个D.4个4.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )10-1a bA. ab >0B. ︱a ︱>︱b ︱C. a -b >0D. a +b >05.一个有理数的偶次方是正数,那么这个有理数的奇次方是( )A.正数B.负数C.正数或负数 D.无法判定 6.若ab ≠0,则︱a ︱a +︱b ︱b的取值不可能是( )A. 0B. 1C. 2D. -27.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A. ①,②都不对B. ①对,②不对C. ①,②都对D. ①不对,②对8.下列说法正确的个数是( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A 1B 2C 3D 4 9.若a+b <0,ab <0,则( )A a >0,b >0B a <0,b <0C a,b 两数一正一负,且正数绝对值大于负数的绝对值D a,b 两数一正一负,且负数绝对值大于正数的绝对值10.已知:a> 0 b<0 |a| < |b| <1那么以下判断正确的是( ).A1-b >-b>1+a>a B1+a > a >1-b>-b C1+a > 1-b >a>-b D1-b >1+ a>-b>a13.若实数a 、b 、c 在数轴上对应点的位置如图所示, 则|c|-|b-a|+|b+c|等于( ).A .-aB .-a+2bC .-a-2cD .a-2b14.已知数轴上三点A 、B 、C 分别表示有理数a 、1、 -1,那么1+a 表示---------( )A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和15.有理数a 等于它的倒数,则a 2004是( ) A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数16. (-0.125)2003×(-8)2004的值为( )A.-4B.4C.-8D.817.若m <0,n >0,m+n <0,则m,n,-m,-n 这四个数的大小关系是( )A.m >n >-n>-mB.-m >n >-n >mC.m >-m >n >-nD.-m >-n >n >m 二、填空题18.若那么2a 一定是 。
有理数提高训练
第一章有理数提高训练题一、选择题1、在0,()()221,3,3,3------,234- ,2a 中,正数的个数为( )A .1个 B.2个 C.3个 D.4个2、下列说法中,正确的是( )A 负整数和负分数统称为有理数B 正分数、0、负分数统称为分数C 正整数、负整数、正分数、负分数统称为有理数D 0不是有理数3、如右图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C ,若点C 表示的数为1,则点A 表示的数为( )A 7B 3C -3D -24、下列说法正确的是( )A 、倒数等于它本身的数只有1B 、平方等于它本身的数只有1C 、立方等于它本身的数只有1D 、正数的绝对值是它本身5、-4的倒数的相反数是( ) A .-4 B .4 C .-41 D .416、已知一个数的倒数的相反数为135,则这个数为 ( )。
A 、165B 、516C 、165- D 、516-7、如果一个有理数的绝对值是8,那么这个数一定是( )。
A 、-8 B 、-8或8 C 、8 D 、以上都不对 8、如果a a =-,下列成立的是( )A 、0a >B 、0a <C 、0a >或0a =D 、0a <或0a = 9.若x 是-3的相反数,y =5,则x y +的值为( ) A .-8 B .2 C .8或-2 D .-8或210、红星队在4场足球赛中战绩是:第一场3︰1胜,第二场2︰3负,第三场0︰0平, 第四场2︰5负,则红星队在这次比赛中总的净胜球数是( )球A .+1B .-1C .+2D .-2 11、下列各组数中相等的是( )A 、-2与)2(--B 、-2与2-C 、2-与2--D 、2-与212. 据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57 万人用科学记数法表示为 ( )A .7.6057×105人B .7.6057×106人C .7.6057×107人D .0.76057×107人 13.第六次人口普查公布的数据表明,登记的全国人口数量约为1340 000 000人,这个数据用 科学记数法表示为( )A.134×107人B.13.4×108 人C.1.34×109人D.1.34×1010人· · · B A C 0 15 214.从《中华人民共和国2011年国民经济和社会发展统计报告》中获悉,去年我国国内生产 总值达397983亿元.请你以亿元..为单位用科学计数法表示去年我国的国内生产总值(结果 保留两个有效数字)( ) A. 3.9×1013B.4.0×1013C.3.9×l05D. 4.0×l0515. 今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学 记数法(保留2个有效数字)可以表示为( )A .58×105人B .5.8×105人C . 5.8×106人D .0.58×107人16.某市在一次扶贫助残活动中,共捐款3185800元,将3185800元用科学记数法表示(保留两个有效数字)为( )A .3.1×610元B .3.1×510元C .3.2×610元D .3.18×610元 17. 已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为 (保留三个有效数字)( )A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米18. 由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字 19、下列说法正确的是( )A .近似数4.0精确到十分位,有两个有效数字B .近似数41030.2⨯精确到百分位 C .用科学记数法表示250000为41025⨯ D .近似数2.120有三个有效数字 20、按括号内的要求用四舍五入法对1022.0099的近似值,其中错误..的是( )。
七年级有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.4.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.5.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).【答案】(1)50;5(2)10或;-45.【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为 =5,故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t= .∴当AB=BC时,t=10或.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m×BC=-45.故答案为-45.【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.6.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.7.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果:=________.【答案】(1)(2)【解析】【解答】解:(1);故答案为: .(2)..故答案为:.【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.8.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A 点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.【答案】(1)4(2)解:设经过a秒后P、Q相距5cm,由题意得,20-(2+3)a=5,解得:,或(2+3)a−20=5,解得:a=5,答:再经过3秒或5秒后P、Q相距5cm(3)解:点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为 s或s,设点Q的速度为ycm/s,当2s时相遇,依题意得,2y=20−2=18,解得y=9当5s时相遇,依题意得,5y=20−6=14,解得y=2.8答:点Q的速度为9cm/s或2.8cm/s.【解析】【解答】解:(1)设经过x秒两点相遇,由题意得,(2+3)x=20,解得:x=4,即经过4秒,点P、Q两点相遇;故答案为:4.【分析】(1)设经过x秒两点相遇,根据总路程为20cm,列方程求解;(2)设经过a秒后P、Q相距5cm,分两种情况:用AB的长度−点P和点Q走的路程;用点P和点Q走的路程−AB的长度,分别列方程求解;(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.9.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;10.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.①当C在A左侧时,,,;②C在A和B之间时,,点C不存在;③点C在B点右侧时,,,;故答案为或8.(2)解:依题意得:.点P对应的有理数为.(3)解:①甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得,.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.【解析】【分析】(1)根据题意可得,;(2)对点C的位置进行分类讨论,并用x表示出和的长度,利用“ ”列出方程即可求出答案;(3)对乙蚂蚁运动的方向进行分类讨论,根据到原点距离相等列出方程求解即可.11.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.【答案】(1)-9(2)5或-3(3)解:为负号,理由如下:∵点在点的右边且,∴,∵,∴,∴,∵,∴,∴,∴的值为负号.【解析】【解答】解:(1)∵线段AB的长表示为6,∴,∵,∴,∴∴ =-9;(2)∵的最小值是4,∴ AB=4,∴,∵,∴,∴或-3;【分析】(1)根据线段的长表示为6,可以得出,再结合可得互为相反数,即得到答案 =-9;(2)根据的含义为点P到点,点的距离和,其取最小值4,故P在点,之间,即PA+PB=AB=4,再根据和可以求出的值;(3)根据点在点的右边且可以判定出,由可知,即,根据可以判断的符号.12.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.【答案】(1)-4,-3,-2,-1,0,1,2(2)-5或4(3)【解析】【解答】解:(1)∵ = 表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,又∵表示2与-4两数在数轴上所对应的两点之间的距离为6,∴当数轴上表示x的点在表示-4的点的左侧时,,不符合题意,当数轴上表示x的点在表示2的点的右侧时,,不符合题意,当数轴上表示x的点在表示-4的点与表示2的点之间(包括表示-4与2的点)时,,符合题意,∴,∴使,整数是-4,-3,-2,-1,0,1,2.故答案是:-4,-3,-2,-1,0,1,2;(2)∵ = 表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,∴当x=-5时,表示-5与-3两数在数轴上所对应的两点之间的距离为2,表示-5与2两数在数轴上所对应的两点之间的距离为7,即:,∴x=-5符合题意,当x=4时,表示4与-3两数在数轴上所对应的两点之间的距离为7,表示4与2两数在数轴上所对应的两点之间的距离为2,即:,∴x=4符合题意,综上所述:当时,的值是:-5或4.故答案是:-5或4;(3)∵ = 表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,∴当数轴上表示x的点在表示-7的点的左侧时,,当数轴上表示x的点在表示4的点的右侧时,,当数轴上表示x的点在表示-7的点与表示4的点之间(包括表示-7与4的点)时,,∴当取最小值时,.故答案是:.【分析】(1)根据绝对值的几何意义,得表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(2)根据绝对值的几何意义,得表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(3)根据绝对值的几何意义,得表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,结合条件,即可求解.。
有理数综合模拟训练题之提高篇
有理数综合模拟训练题之提高篇班级_______姓名_________学号_______得分_______一.判断题(正确的打“√”号,错误的打“×” 号)(1)当底数为负数时,立方数随底数的增大而变小。
( )(2)若某数的相反数的绝对值与其绝对值的相反数相等,则此数为零 ( )(3)若0≠a ,0≠b ,则0≠+b a ( )(4)一个有理数的绝对值一定大于这个数 ( ) (5)912010124652412524165125-=+-=+⨯-⨯=⨯⎪⎭⎫ ⎝⎛+- ( ) (6)把630000用科学记数法表示为6.3×610 ( )(7)近似数2.0003有5个有效数字,它们是2,0,0,0,3 ( )(8)把数x 的小数点向左移动2位得到y ,那么要从3x 得到3y ,只要把3x 的小数点向左移动8位 ( )(9)若972.3993.12= ,则397200019932=- ( )(10)当1≠a 时,1-a 与a -1的差的倒数不存在 ( )二.选择题(1)下列说法中错误的是 ( )(A)绝对值大于1而小于4的整数只有2和3(B)倒数和它本身相等的数只有1和-1(C)相反数与本身相等的数只有0(D)只有相反数而无倒数的只有0(2)计算()()2000199922-+-所得结果为 ( )(A) 19992 (B)()19992- (C)19992- (D)-2(3)若0<+b a ,0<ab ,b a >,则有 ( )(A)0,0<>b a (B)0,0>>b a (C)0,0><b a (D)0,0<<b a(4)当6-<a 时,化简||3|3|a +-的结果为 ( )(A)6--a (B)a +6 (C)a - (D)a(5)一个多位数的个位数字设为a ,而这个多位数的任何次幂的个位数字仍为a ,那么数字a( )(A)只能是1 (B)除1以外还有1个 (C)共有3个 (D)共有4个(6)为了比较两个有理数的大小,现提出了4种新方法:(1)倒数大的反而小;(2)绝对值大的反而小;(3)平方后大的数较大(4)把两数求商,若商大于1,则被除数较大;商等于1,则两数相等;商小于1,则除数较大。
七年级上册数学有理数能力提升习题
七年级数学上册-有理数能力提升习题一、选择题1、有理数a 、b 在数轴上的对应的位置如图所示: 则( )A .a + b <0B .a + b >0;C .a -b = 0D .a+b >0 2、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a = 3、如果0a b +>,且0ab <,那么( ) A.0,0a b >> ; B.0,0a b <<;C.a 、b 异号; D. a 、b 异号且负数和绝对值较小 4、下列代数式中,值一定是正数的是( )A .x 2B.|-x+1|C.(-x)2+2 D.-x 2+15.如果a 表示有理数,那么a 2+1,-|a +1|,-(-a +1),|a |+1中肯定为正数的有( )A.1个B.2个C.3个D.4个6. 下列说法:①有理数中,0的意义仅表示没有;②整数包括正整数和负整数;③正数和负数统称有理数;④0是最小的整数;⑤负分数是有理数.其中正确的个数( )A.1个B.2个C.3个D.5个7. 已知a 、b 表示两个非零的有理数,则|a|a +|b|b 的值不可能是( )A.2B.-2C.-1D.08. 在数轴上把表示一个数的点向右移动8个单位后,表示这个数的相反数,则这个数是( )A.4B.-4C.6D.-69. a 、b 为任何非零有理数,则a|a|+b|b|+ab |ab|的可能取值是( ) A.-3或1 B.3或1或-1 C.1或3 D.-1或310. 化简-|-(+5)|,结果正确的是( ) 0-11ab11.已知a,b互为相反数,且a≠0,则()A.b a >0B.ba=0 C.ba=1 D.ba=-112.关于-(-a)2的相反数,有下列说法:①等于a2;②等于(-a)2;③值可能为0;④值一定是正数.其中正确的有()A.1个B.2个C.3个D.4个13.若关于x的方程|2x-3|-m=0只有一个解,则m的值是()A.正数B.负数C.0D.不存在二、填空题14.已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=3AB,则点C表示的数是______ .15.如图,将一个直径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动2周,点A所在位置表示的数是______ .16.若|m-2|=2-m,则m ______2.17.若|m+3|=|n+3|,则m、n之间的关系为______ .18.计算|3.14-π|-π的结果是______ .19.如图,数轴上的点A,B分别表示数-1和2,点C是线段AB的中点,则点C表示的数是______ .20.已知|a|=|b|,则a和b的关系为______ .21.若|x+1|+(y-3)2=0,则x y的值为______ .三、计算题22.把下列各数在数轴上表示出来,再按大小顺序用“>”号连接起来-(-4),0,-(+4),-52,-|-1|,3.5.23.如果a,b互为倒数,c,d互为相反数,且m的绝对值是2,求代数式4ab-(c+d)+m的值.四、解答题24.重庆一中举行校园歌手比赛,有10位评委按10分制评分,每一轮由评委给出分后,去掉一个最高分,去掉一个最低分,剩下8位评委分数的平均分即为该选手的最终得分.已知初一(1)班陈同学一曲《蓝莲花》结束,评委给出了分数,为方便记录,以9.6分为基础,超过记为正,不足记为负,记录如下:0.2,-0.4,0,0.3,0.5,0.4,-0.6,-0.2,0.3,0.4,求陈同学最终得分为多少分?25.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“-”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)-2,+15,-10,+10,-3,-12,-4,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?26.若|x -3|+|y -5|=0,求x -y 的值.27.若|x |=2,|y |=4,且|x -y |=y -x ,再求x +y 的值.28.已知m 、n 互为相反数,且mn ≠0,a 、b 互为负倒数,|x -2|=3,求x 3-(1+m +n -ab )x 2+(mn )2023的值.29.七年级某班七名学生的体重,以48kg 为标准,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如表:(1)最高体重与最低体重相差多少? (2)求七名学生的平均体重. 30.阅读下列材料并解决有关问题:我们知道|x |={x ,(x >0)0,(x =0)−x(x <0),以当x >0时,x|x|=xx =1; 当x <0时,x|x|=x−x =-1.现在我们可以用这个结论来解决下面问题:(1)已知a ,b 是有理数,当ab ≠0时,a|a|+b|b|= ______ ; (2)已知a ,b 是有理数,当abc ≠0时,a|a|+b|b|+c|c|= ______ ;(3)已知a ,b ,c 是有理数,a +b +c =0,abc <0,则b+c|a|+a+c|b|+a+b|c|= ______ .。
原题目:有理数专项综合训练提高题
原题目:有理数专项综合训练提高题有理数是整数和分数的总称。
有理数的加、减、乘、除及其比较大小是数学中的基本运算。
为了提高对有理数的综合运用能力,下面是一些原题目以供训练。
题目一已知有理数 $a = -\frac{2}{3}$,$b = \frac{5}{6}$,$c =\frac{4}{5}$,计算下列各式的值:a) $2a + b$b) $a - b + c$c) $2a \cdot (b - c)$d) $\frac{a}{b} + c$题目二已知有理数 $x = -\frac{3}{8}$,$y = \frac{4}{9}$,$z =\frac{7}{6}$,计算下列各式的值:a) $3x + 2y$b) $2x - 5y + 4z$c) $3x \cdot (y - z)$d) $\frac{x}{y} + z$题目三已知有理数 $m = -\frac{1}{2}$,$n = \frac{3}{4}$,计算下列各式的值:a) $(mn)^2$b) $\frac{5m}{3n} - \frac{2mn}{n}$c) $\frac{n}{m^2} - \frac{m}{n^2}$d) $(\frac{m}{n})^3$题目四已知有理数 $p = -\frac{11}{9}$,$q = \frac{4}{7}$,$r =\frac{3}{5}$,计算下列各式的值:a) $2p + 3q - 4r$b) $p + q \cdot r$c) $5p \cdot (q - r)$d) $\frac{p + r}{q}$以上是有理数专项综合训练提高题的题目,希望对您提高有理数的运用能力有所帮助。
加油!。
有理数提高测试题
第一章有理数提高测试题一、选择题:(每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( ) A.-1 B.0 C.1 D.22、下列说法中正确的是( )A.两个负数相减,等于绝对值相减;B.两个负数的差一定大于零C.负数减去正数,等于两个负数相加;D.正数减去负数,等于两个正数相减 3、计算:123456789100.10.20.30.40.50.60.70.80.9-+-+-+-+-++++++++的结果为( )A.91B.911C.91-D.911-4、若三个不等的有理数的代数和为0,则下面结论正确的是( ) A.3个加数全为0 B.最少有2个加数是负数 C.至少有1个加数是负数 D.最少有2个加数是正数5、以下命题正确的是( ). (A )如果 那么a 、b 都为零 (B )如果 ,那么a 、b 不都为零 (C )如果,那么a 、b 都为零 (D )如果,那么a 、b 均不为零6、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .47、绝对值大于 1 小于 4 的整数的和是( ) A 、0 B 、5 C 、-5 D 、108、a,b 互为相反数,下列各数中,互为相反数的一组为( )A.a 2与b 2B. a 3与b 3C. a 2n 与b 2n (n 为正整数)D. a 2n+1与b 2n+1(n 为正整数) 9、若a 2003·(-b)2004<0,则下列结论正确的是( )A .a>0,b>0 B.a<0,b>0 C.a<0,b<0 D.a<0,b ≠0。
10.有理数-32,(-3)2,|-33|,13-按从小到大的顺序排列是( )A .13-<-32<(-3)2<|-33|B .|-33|<-32<13-<(-3)2C .-32<13-<(-3)2<|-33|D .13-<-32<|-33|<(-3)211、平方与绝对值都是它的相反数的数是________,这个数的立方和它的关系是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数综合模拟训练题
一.判断题(正确的打“√”号,错误的打“×” 号)
(1)当底数为负数时,立方数随底数的增大而变小。
( )
(2)若某数的相反数的绝对值与其绝对值的相反数相等,则此数为零 ( )
(3)若0≠a ,0≠b ,则0≠+b a ( )
(4)一个有理数的绝对值一定大于这个数 ( ) (5)912010124652412524165125-=+-=+⨯-⨯=⨯⎪⎭
⎫ ⎝⎛+- ( ) (6)把630000用科学记数法表示为6.3×610 ( )
(7)近似数2.0003有5个有效数字,它们是2,0,0,0,3 ( )
(8)把数x 的小数点向左移动2位得到y ,那么要从3x 得到3y ,只要把3x 的小数点向左移动8位 ( )
(9)若972.3993.12= ,则397200019932=- ( )
(10)当1≠a 时,1-a 与a -1的差的倒数不存在 ( )
二.选择题
(1)下列说法中错误的是 ( )
(A)绝对值大于1而小于4的整数只有2和3
(B)倒数和它本身相等的数只有1和-1
(C)相反数与本身相等的数只有0
(D)只有相反数而无倒数的只有0
(2)计算()()2000199922-+-所得结果为 ( )
(A)19992 (B)()19992- (C)19992- (D)-2
(3)若0<+b a ,0<ab ,b a >,则有 ( )
(A)0,0<>b a (B)0,0>>b a (C)0,0><b a (D)0,0<<b a
(4)当6-<a 时,化简||3|3|a +-的结果为 ( )
(A)6--a (B)a +6 (C)a - (D)a
(5)一个多位数的个位数字设为a ,而这个多位数的任何次幂的个位数字仍为a ,那么数字a ( )
(A)只能是1 (B)除1以外还有1个 (C)共有3个 (D)共有4个
(6)为了比较两个有理数的大小,现提出了4种新方法:(1)倒数大的反而小;(2)绝对值大的反而小;(3)平方后大的数较大(4)把两数求商,若商大于1,则被除数较大;商等于1,则两数相等;商小于1,则除数较大。
这4种方法 ( )
(A)都正确 (B)都不正确 (C)只有一个正确 (D)有两个正确
(7)已知a 是一个整数,5232++a a 是一个偶数,那么 ( )
(A)a 是奇数 (B)a 是偶数 (C)a 是任意整数 (D)a 不可能是整数
(8)4个各不相等的整数d c b a ,,,,它们的积9=⨯⨯⨯d c b a ,那么d c b a +++的值是 ( )
(A)0 (B)4 (C)8 (D)不能确定
(9)若3-≤x ,则x --22的值是 ( )
(A)x -4 (B)x --4 (C)x (D)x -
(10)当31<<x 时,化简2
|1||3|--+-x x x 的结果是 ( ) (A)2 (B)-2 (C)22-x (D)2
2--x 三.空题 (1)10
3-与它的相反数的和是________,6与它的倒数的积是___________。
(2)若38.21624.42=,则24
.462-=__________;又若2138.02=x ,则=x ________。
(3)已知0|
|||=+b b a a ,则=⨯⨯b a b a ||___________。
(4)如果0,0,0<<->+ab b a b a ,则a _____0,b _____0,||a _____||b (填“=”或“<”或“>” )。
(5)设有理数c b a ,,满足0,0>=++abc c b a ,则c b a ,,中正数的个数为________。
(6)用“偶数”或“奇数”填:当n 为_________时,()()()214114111=-+---++n n
n n 当n 为_________时,()()()5
115111+-+-=-+n n n n
(7)已知2<a ,且4|2|=-a ,则3a 的倒数的相反数是____________。
(8)若有理数0<<n m 时,()()n m n m -+的符号为 _____,32n m ⨯的符号为____。
(9)已知有理数c b a ,,满足1||||||=++c c b b a a ,则=|
|abc abc ____________。
(10)已知10032a a a a A ++++= ,则当1=a 时,=2A _______,当1-=a 时,=A _______。