最新中考数学知识点专题练习卷:因式分解、分式及二次根式
中考数学总复习《二次根式》练习题附带答案
中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。
中考数学 真题精选 专题试卷 分式和二次根式(含答案解析) (含答案解析)
分式和二次根式一.选择题(共17小题)1.(•南昌)计算(﹣1)0的结果为()2.(•陕西)计算:(﹣)0=())(﹣3.(•凉山州)(π﹣3.14)0的相反数是()4.(•上海)当a>0时,下列关于幂的运算正确的是()=(5.(•莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是(),又∵乙先用v,6.(•甘孜州)使二次根式的有意义的x的取值范围是()中:要使7.(•黄冈)下列结论正确的是()有意义的的值等于、式子、分式8.(•随州)若代数式+有意义,则实数x的取值范围是()+有意义,9.(•荆门)当1<a<2时,代数式+|1﹣a|的值是(),∴10.(•重庆)化简的结果是()4=211.(•淮安)下列式子为最简二次根式的是()B、被开方数含能开得尽方的因数或因式,故被开方数含能开得尽方的因数或因式,故、12.(•扬州)下列二次根式中的最简二次根式是()B==13.(•贵港)计算×的结果是()B×.14.(•新疆)下列运算结果,错误的是()﹣(﹣).×=、﹣(﹣),正确,不合题意;、×=15.(•烟台)下列等式不一定成立的是().=(b≠0)(=(16.(•安徽)计算×的结果是()B×=417.(•凉山州)下列根式中,不能与合并的是()B,本选项不合题意;,本选项不合题意;,本选项合题意;、二.填空题(共9小题)18.(•河北)若a=2b≠0,则的值为.=,故答案为:19.(•河南)计算:(﹣3)0+3﹣1=.=1+.故答案为:.20.(•威海)计算:20+()﹣1的值为3.(21.(•泰州)2﹣1等于.)=故答案是:.22.(•贵港)若在实数范围内有意义,则x的取值范围是x≥﹣2.在实数范围内有意义,∴被开方数23.(•南京)计算的结果是5.=×24.(•泰州)计算:﹣2等于2.﹣..25.(•哈尔滨)计算﹣3=.3×=2﹣故答案为:26.(•眉山)计算:2=﹣.﹣,.三.解答题(共4小题)27.(•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.÷•,=.28.(•酒泉)先化简,再求值:÷(1﹣),其中x=0.÷﹣)•=,.29.(•日照)(1)先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值.••=时,原式的二元一次方程组得,30.(•莱芜)先化简,再求值:(1﹣),其中x=3.•=•=。
中考数学总复习 因式分解 专题训练(含答案)
2020年中考数学总复习因式分解专题训练一、单选题1.下列变形是因式分解的是( ) A .22(2)x x x x +=+B .222(1)1x x x +=+-C .22221x x x x ⎛⎫+=+⎪⎝⎭D .22(1)x x x x x +=++2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形3.把(a 2+1)2-4a 2分解因式得( ) A .(a 2+1-4a )2 B .(a 2+1+2a )(a 2+1-2a ) C .(a +1)2(a -1)2D .(a 2-1)2 4.把多项式a 2﹣4a 分解因式,结果正确的是( ) A .a (a ﹣4)B .(a+2)(a ﹣2)C .(a ﹣2)2D .a (a+2(a ﹣2)5.下列等式中,从左到右的变形是因式分解的是( ). A .2323623x y x y =⋅B .ax - ay -1 = a (x - y ) -1C .22111x x x x x x ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭D .29x - = (x + 3)(x - 3)6.下列各式中,能用完全平方公式分解因式的多项式的个数为( ). ①x 2-10x + 25;①4x 2+ 4x -1;①9x 2y 2- 6xy +1;①214x x -+;①42144x x -+. A .1个B .2个C .3个D .4个7.下列因式分解:①()()()()22224a b a b a b a b a +++-+-=;①()()()22412a b a b a b +-+-=+-;①()4222211x x x -+=-;①()422244 41x y x y x y x -=-.正确的式子有( )A .1个B .2个C .3个D .4个8.下列各选项中因式分解正确的是( ) A .()2211x x -=-B .()32222a a a aa -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-9.将下列多项式分解因式,结果中不含因式(x +1)的是( ) A .x 2-1 B .x (x -3)-(3-x ) C .x 2-2x +1D .x 2+2x +110.下列从左到右的变形属于因式分解的是( ) A .(x +1)(x -1)=x 2-1 B .m 2-2m -3=m(m -2)-3 C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3)11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( )A .1B .-1C .-8D .18-12.下列等式从左到右的变形属于因式分解的是( ) A .()()2224x x x +-=-B .623xy x y =gC .()()23441x x x x --=-+D .222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭二、填空题13.分解因式:222x -= _________.14.分解因式:32a ab -=_________.15.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________. 16.若x +y =1,xy =-7,则x 2y +xy 2=_____________. 17.分解因式:(2a+b )2﹣(a+2b )2= .18.已知a 、b 、c 是①ABC 的三条边,且2281252a b a b +=+-,其中c 是①ABC 中最短的边长,则c 的取值范围是________.19.已知a ,b ,c 为三角形的三边,且满足a 2c 2-b 2c 2=a 4-b 4,那么它的形状是_______. 20.分解因式:a 2b+4ab+4b=______.三、解答题21.(知识情境)通常情况下,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.(1)如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >.把余下的部分剪拼成一个长方形(如图2).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是______________;(拓展探究)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.如图3是边长为+a b 的正方体,被如图所示的分割线分成8块.图3(2)用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为:_________________________________________________________________; (3)已知4a b +=,2ab =,利用上面的恒等式求33+a b 的值. 22.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是()3x +,求另一个因数及m 的值. 解:设另一个因式为()x n +,由题意,得()()243x x m x x n -+=++,化简、整理,得()2433x x m x n x n -+=+++,于是有343n m n +=-⎧⎨=⎩解得217m n =-⎧⎨=-⎩,∴另一个因式为()7x -,m 的值为21-.问题:仿照上述方法解答下面的问题:已知二次三项式223x x k +-有一个因式是()4x +,求另一个因式及k 的值.23.观察:22213-=;2222432110-+-=;22222265432121-+-+-=.探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)24.材料1:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.例如:()am bm cm m a b c ++=++,2221(1)x x x ++=+都是因式分解.因式分解也可称为分解因式.材料2:只含有一个未知数,且未知数的最高次数是2的整式方程称作一元二次方程.一元二次方程的般形式是:20ax bx c ++=(其中a ,b ,c 为常数且0a ≠).“转化”是一种重要的数学思想方法,我们可以利用因式分解把部分一元二次方程转化为一元一次方程求解.例如解方程;240x -=24(2)(2)x x x -=+-Q()()220x x ∴+-=20x ∴+=或20x -=∴原方程的解是12x =-,22x =①原方程的解是12x =-,22x =又如解方程:2210x x -+=2221(1)x x x -+=-Q()210x ∴-=10x ∴-=∴原方程的解是121x x ==请阅读以上材料回答以下问题:(1)若22(2)(2)x x m x n x -+=+-,则m =_______;n =_______;(2)请将下列多项式因式分解:22a a -=_______,2244x xy y -+=________;(3)在平面直角坐标系中,已知点()2,1P m m -,)Qn ,其中m 是一元二次方程()22(3)134m m m ---=的解,n 为任意实数,求PQ 长度的最小值.参考答案1.A2.C3.C4.A5.D6.C7.B8.D9.C10.D11.A12.C 13.2(x+1)(x -1) 14.()()a a b a b +- 15.15和17; 16.﹣717.3(a+b )(a ﹣b ). 18.24c <<19.直角三角形或等腰三角形或等腰直角三角形. 20.b (a+2)221.(1)a 2-b 2=(a+b)(a -b)(2)(a +b )3=a 3+3a 2b +3ab 2+b 3(3)40 22.另一个因式为()25x -,k 的值为20. 23.(1)36;(2)83n -;(3)210π24.(1)6m =-,3n =;(2)(2)a a -,2(2)x y -;(3)3.。
中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)
○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
中考数学总复习《分式与二次根式》专项练习题-附带参考答案
中考数学总复习《分式与二次根式》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.计算(﹣ 13 )﹣2的值,正确的是( )A .19B .﹣ 19C .9D .﹣92.下列各数中,化为最简二次根式后能与√3合并的是( )A .√18B .√12C .√23D .√293.使代数式√x−3x−4有意义的x 的取值范围是( )A .x >3B .x ≥3C .x >4D .x ≥3 且x ≠44.下列运算中错误的是( )A .√2 + √3 = √5B .√2 × √3 = √6C .√8 ÷ √2 =2D .(−√3)2 =35.若分式 |x|−1x 2−3x+2 的值为0,则x 的值为( )A .-1B .0C .1D .±16.如果分式xy 2x−3y 中的x ,y 都扩大为原来的2倍,那么分式的值( )A .扩大为原来的2倍B .扩大为原来的4倍C .不变D .不能确定7.若先化简 (1+2p−2)÷p 2−pp 2−4 ,再求值,且 p 是满足 −3<p <3 的整数,则化简求值的结果为()A .0或 −12 或-2或4B .-2或 −12C .-2D .−128.若√x −1+√x +y =0 ,则x 2005+y 2005 的值为: ( )A .0B .1C .-1D .2二、填空题:(本题共5小题,共15分.)9.化简: 4a−4b 3ab ⋅15ab 2a −2b 2÷1a = .10.若分式 x 2−x−2x 2+2x+1 的值为 0 ,则 x 的值等于 .11.计算 √48−√27 的结果等于 .12.已知 1a −1b =12 ,则 ab a−b 的值是13.对于分式 ,当x= 时,分式 x 2−2x−3x−3 无意义;当x= 时,分式值为零.三、解答题:(本题共4题,共45分.)14.化简:(a ﹣1+1a−3)÷a2−4a−3;15.先化简,再求值:222414816a a a a a ---÷+++,其中2a =.16.(1)计算:(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 从﹣1,2,3中取一个你认为合适的数代入求值.17. 先化简,再求值:(1x -y +2x 2-xy )÷x +22x ,其中实数x ,y 满足y =x -2-4-2x +1.参考答案:1.C2.B3.D4.A5.A6.A7.D8.A9.20ab a+b10.211.√312.﹣213.3;-114.原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2) =(a−2)2a−3•a−3(a+2)(a−2) =a−2a+2;15.解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++; 把22a 代入得:原式=2222=--+ 16.(1)(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0=4+√2−3+2×1﹣1=4+√2−3+2﹣1=2+√2;(2)(3a+1−a +1)÷a 2−4a 2+2a+1=3−(a−1)(a+1)a+1×(a+1)2(a+2)(a−2) =−(a+2)(a−2)a+1=﹣a ﹣1要使原式有意义,只能a =3则当a =3时,原式=﹣3﹣1=﹣4.17.略。
中考数学总复习《二次根式》练习题附有答案
中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。
数学中考考点专题复习训练及答案解析3:分式与二次根式
考点03 分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则AB有意义;②若B =0,则AB无意义;③若A =0且B ≠0,则AB=0.学=科网2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则 (1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. (2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分. 【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则 (1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分. (2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式; ③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母. 6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母. 7.分式的运算 (1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减. 用式子表示为:a c a cb b b±±=. ②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减. 用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=. (2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 用式子表示为:a c a cb d b d⋅⋅=⋅. (3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘. 用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅. (4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的. 二、根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0. (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 2.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(32(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩;(4(0,0)ab a b a b =≥≥;(50,0)a aa b b b=≥>. 3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除 0,0)a b ab a b =≥≥;除法法则:(0,0)a aa b b b=≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的. 在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一 分式的有关概念1.分式的三要素: (1)形如AB的式子; (2),A B 均为整式;学科!网 (3)分母B 中含有字母. 2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B ≠. (2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1 要使式子1x +有意义,x 的取值范围是 A .x ≠1B .x ≠0C .x >﹣1且≠0D .x ≥﹣1且x ≠0【答案】D【解析】根据题意得:100x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0.故选:D .1.若分式21xx-在实数范围内无意义,则x 的取值范围是A .x ≠1B .x =1C .x =0D .x >1考向二 分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x 、y 的值都扩大到原来的2倍,则分式的值为 A .扩大为原来2倍 B .缩小为原来的12倍 C .不变D .缩小为原来的14倍【答案】B【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.不改变分式的值,下列变形正确的是A .2233a ab b -=-- B .33a ab b -=-- C .55a a b b=--D .7744a a b b=- 考向三 分式的化简与求值约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3 把分式xx y-,yx y+,222x y-的分母化为x2-y2后,各分式的分子之和是A.x2+y2+2 B.x2+y2-x+y+2 C.x2+2xy−y2+2 D.x2−2xy+y2+2 【答案】C【解析】由平方差公式将x2−y2可化简为(x+y)(x−y),故将xx y-的分母化为x2−y2后可得()22x x yx y+-,将yx y+的分母化为x2−y2后可得()22y x yx y--,所以分式的xx y-,yx y+,222x y-的分母化为x2−y2后,各分式的分子之和为x(x+y)+y(x-y)+2,展开得x2+xy+xy−y2+2合并同类项,得x2+2xy−y2+2,故选C.【名师点睛】本题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.求最简公分母的方法是:(i)将各个分母分解因式;(ii)找各分母系数的最小公倍数;(iii)找出各分母中不同的因式,相同因式中取次数最高的.满足(ii)(iii)的因式之积即为各分式的最简公分母.3.下列分式中,是最简分式的是A .2xyx B .222x y -C .22x yx y+- D .22xx + 考向四 分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母. (2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 计算(1-1x)÷221x x x -+的结果是A .x -1B .11x - C .1xx -D .1x x-【答案】B【解析】原式=(x x −1x )÷()21x x -=1x x -. •()21x x -=11x -, 故选B .4.先化简,再求值:2221()211x x x x x x+÷--+-,其中x =4. 考向五 二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 下列各式: ①;②;③;④3a ;⑤269y y ++; ⑥3.其中一定是二次根式的有 A .4个 B .3个 C .2个D .1个【答案】B5.使1x -有意义的x 的取值范围是 A .1x ≠ B .1x ≥ C .>1xD .0x ≥典例6 下列二次根式是最简二次根式的是A .12B .8C .10D .16【答案】C6.下列二次根式 1.2;5x y +;43a ;24x -;15;28.其中是最简二次根式的有 A .2个 B .3个 C .4个D .5个考向六 二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号). 2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较; (2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例7 下列计算正确的是A .1233-=B .326⨯=C .325+=D .824÷=【答案】A【解析】A 、原式=23-3=3,正确;B 、原式=32⨯=6,错误;C 、32+为最简结果,错误;D 、原式=82÷=2,错误, 故选:A .7.已知3232x +=-,3232y -=+,则y x x y +=_____________.典例8 比较大小:27______5(填“>,<,=”). 【答案】>【解析】因为22(27)28,525==,28>25,所以27>5.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a =6-2,b =3-1,c =231+,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c1.下列根式中属于最简二次根式的是 A 21a +B 12C 8D 27x 2.若分式24x x-的值为0,则x 的值是A .2或﹣2B .2C .﹣2D .03.如果把分式xyx y+中的x 和y 都扩大2倍,则分式的值 A .扩大4倍 B .扩大2倍 C .不变D .缩小2倍43A 13 B 3C 23D 125.下列关于分式的判断,正确的是A .当x =2时,12x x +-的值为零 B .当x ≠3时,3x x-有意义C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.若x 、y 为实数,且|2|20x y +-=,则2019x y ⎛⎫⎪⎝⎭的值为A .2B .−2C .1D .−17a 的值为 A .1 B .2 C .23D .328.下列运算中,错误的是 A .x y y xx y y x--=-++ B .a ba b--+=−1C 1D a9.已知 1x <,则 化简的结果是A .1x -B .1x -C .1x --D .1x +10.下列分式是最简分式的是A BCD .22121x x x --+11.若分式11x x -+的值为0,则x 的值为 A .1 B .−1 C .±1D .无解12 A .2B .21x - C .23x -D .41x x --13.若x 、y ()2210y -=,则x y +的值等于A .1B .32 C .2D .5214a=,则1x x +的值为A .22a - B .2a C .24a -D .不确定15_____________. 16.当x =_____________时,分式323xx -+的值为零.17.比较大小:(填“>、<、或=”)18.当a =2_____________.19.已知a ,b 互为倒数,代数式222a ab b a b+++÷11a b ⎛⎫+⎪⎝⎭的值为_____________. 20.已知::2:3:4x y z =,则23x y zx y z+--+的值为_____________.21.计算:(1)|1|−+(2018−π)0;(2+((.22.先化简,再求值:221a b a b a b⎛⎫-÷ ⎪--⎝⎭,其中1a =,1b =.23.先化简,再求值:()()()2222x yx y x y +---,其中,.24.先化简,再求值:2212111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭,其中m 为一元二次方程230x x +-=的根.1.(2018·德阳市)下列计算或运算中,正确的是 A .22aa =B 1882=C .61523345=D .3327-=2.(2018·兰州市)下列二次根式中,是最简二次根式的是A BCD3.(2018·绥化市)若y =x 的取值范围是 A .12x ≤且0x ≠ B .12x ≠C .12x ≤D .0x ≠4.(2018·绥化市)下列运算正确的是A .2235a a a +=B 5=-C .3412a a a ⋅=D .0(π3)1-=5.(2018·曲靖市)下列二次根式中能与ABCD6.(2018·上海市) A .4B .3C .D7.(2018·日照市)计算:(12)−1+tan30°•sin60°= A .﹣32B .2C .52D .728.(2018·莱芜市)若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是 A .2xx y+- B .22yxC .3223y xD .()222y x y -9.(2018·陇南市)使得代数式3x-有意义的x的取值范围是____________.10.(2018·毕节市)观察下列运算过程:()()()22121211221212121--====-+++--()()()()223232322332323232--====-+++--……请运用上面的运算方法计算:1335572015201720172019++++++++++L=____________.11.(2018·益阳市)123=⨯____________.12.(2018·莱芜市)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是23和2,则图中阴影部分的面积是____________.13.(2018·镇江市)计算:182.14.(2018·梧州市)3x-在实数范围内有意义,则x的取值范围是____________.15.(2018·巴彦淖尔市)化简3mm++269m-÷23m-的结果是____________.16.(2018·绥化市)当2x=时,代数式211()x xxx x+++÷的值是____________.17.(2018·大连市)计算:3+2)248+22-.18.(2018·百色市)已知a 2=19,求22211118a a a --+-的值.19.(2018·福建省b 卷)先化简,再求值:2211(1)m m m m+--÷,其中m +1.20.(2018·锦州市)先化简,再求值: 233212),322x x x x x x +-+-÷=++(其中.21.(2018·毕节市)先化简,再求值:22214244aa a a a a ⎛⎫-÷⎪--++⎝⎭,其中a 是方程a 2+a ﹣6=0的解.22.(2018·兰州市)计算:101()(π3)1tan452--+-++o.23.(2018·甘孜州)(1()03.144cos45-π-o ;(2)化简:2211x xx x x ÷---.24.(2018·益阳市)化简:2()y x y x y x y x+-+⋅+.25.(2018·莱芜市)先化简,再求值:233()111a aa a a -+÷--+,其中a +1.26.(2018·曲靖市)先化简,再求值(1a b -﹣22b a b -)÷2222+a ab a ab b --,其中a ,b 满足a +b ﹣12=0.27.(2018·梧州市)解不等式组36451 102 x xx x-≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321xx x+-+•(3xx+﹣239xx--),从上述整数解中选择一个合适的数,求此代数式的值.28.(2018·抚顺市)先化简,再求值:(1﹣x+31x+)÷2441x xx+++,其中x=tan45°+(12)−1.1.【答案】B变式拓展【解析】∵分式21x x-在实数范围内无意义, ∴1﹣x =0,即x =1,故选:B .3.【答案】D【解析】A 、2xy x =y x,错误; B 、222x y -=1x y-,错误; C 、22x y x y +-=1x y-,错误; D 、22x x +是最简分式,正确. 故选D .4.【答案】21x x -;163. 【解析】2221()211x x x x x x+÷--+- =2(+1)2(111)()()x x x x x x x --÷-- =2()(+1)111)(x x x x x x -⋅-+ =21x x -,当x =4时,原式=2416413=-.5.【答案】B 【解析】根据二次根式被开方数必须是非负数的条件知,要使1x -在实数范围内有意义,必须101x x -≥⇒≥.故选B .6.【答案】B 【解析】301.2=, 4123a a =, 2827=,∴5x y +、24x -、15是最简二次根式. 故选:B .8.【答案】D【解析】a 62231),b 31,c 231+()()233131+-()22×31), 2>1>22,∴a >b >c .故选D . 1.【答案】A 【解析】A 、该二次根式符合最简二次根式的定义,故本选项正确;考点冲关B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项错误;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项错误;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项错误;故选A.【名师点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【答案】A【解析】∵分式24xx-的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.3.【答案】B【解析】把分式xyx y+中的x和y都扩大2倍,则22222x y xyx y x y⋅=++,故选B.5.【答案】D【解析】A选项:当x=2时,该分式的分母20x-=,该分式无意义,故A选项错误.B选项:当x=0时,该分式的分母为零,该分式无意义.显然,x=0满足x≠3.由此可见,当x≠3时,该分式不一定有意义,故B选项错误.C选项:当x=0时,该分式的值为3,即当x=0时该分式的值为整数,故C选项错误.D选项:无论x为何值,该分式的分母x2+1>0,该分式的分子3>0.由此可知,无论x为何值,该分式的值总为正数,故D选项正确.故本题应选D.【名师点睛】本题考查了与分式概念相关的知识.分式有意义的条件是分式的分母不等于零,并不是分母中的x的值不等于零.分式的值为零的条件是分式的分母不等于零且分式的分子等于零.在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.6.【答案】D【解析】由非负数的性质可得:x+2=0,y−2=0,即x=−2,y=2,∴2019xy⎛⎫⎪⎝⎭=(−1)2019=−1.故选C.7.【答案】D【解析】31+4,2a a a=-=解得,故选D.8.【答案】D【解析】A.x y y xx y y x--=-++,正确,故不符合题意;B.a ba b--+=−1,正确,故不符合题意;C1,正确,故不符合题意;D a|,错误,故符合题意.故选D.9.【答案】B【解析】∵x<1,∴x-1<0x-1|=1-x.故选:B.10.【答案】C【解析】A选项:化简该分式,得()222a ba ab bam am m+++==,故A选项不符合题意.B选项:化简该分式,得623xy xya a=,故B选项不符合题意.C 选项:对该分式的分子进行因式分解,得()()222111x x x x x +--=.由此可见,该分式的分子与分母没有公因式,符合最简分式的定义,故C 选项符合题意.D 选项:化简该分式,得()()()22211112111x x x x x x x x +--+==-+--,故D 选项不符合题意. 故本题应选C .11.【答案】A【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A . 12.【答案】B 【解析】211()(3)31x x x x +-⋅---=(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B .15623236=⨯=6. 16.【答案】3【解析】依题意得:3﹣x =0且2x +3≠0.解得x =3,故答案为:3.17.【答案】<【解析】将两式进行平方可得:(23=12,(232=18,因为12<18,所以233218.【答案】3- 【解析】∵()()2121214122121a a a a a a +--==-++,∴当a =2时,原式=1223-⨯=-.故本题应填写:3-. 19.【答案】1【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ab =, ∵a ,b 互为倒数,∴ab =1,∴原式=1.故本题应填写:1.20.【答案】411【解析】根据分式的性质(分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变)解答.∵::2:3:4x y z =,∴可设234x k y k z k ===、、,∴226444323121111x y z k k kkx y z k k k k +-+-===-+-+, 故答案为:411.21.【答案】(1);(2)【解析】(1)原式−1−+1=(2)原式=3−−5=2−22.【答案】化简见解析,结果为 【解析】221aba b a b ⎛⎫-÷ ⎪--⎝⎭()()a b a ba ab a b b +--+=⋅-()()a b a b ba b b +-=⋅-a b =+,当1a =,1b =时,原式11+=23.【答案】8-+.【解析】原式2(2)x y x y =---22x y x y =--+222xy y =-.当34x y ==,时,原式=2−2×4=4 −8. 24.【答案】化简见解析,结果为13. 【解析】原式=()()()22122111111m m m m m m m --+--÷++-- =()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++ =()()11m m m m --+ =()11m m + =21m m +. 由m 是方程230x x +-=的根,得到23m m +=,所以原式=13. 【名师点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 1.【答案】B【解析】A 、2a 2×22a a =,此选项错误; B 1882-222,此选项正确;C 、6152335=D 、3327-=,此选项错误;故选:B .2.【答案】B直通中考【解析】A =BC =D =故选B .3.【答案】A【解析】由题意可知:120 0x x -≥⎧⎨≠⎩, 解得:12x ≤且0x ≠, 故选A .4.【答案】D【解析】A. 23a a +=5a ,故A 选项错误;B. =5,故B 选项错误;C. 347a a a ⋅=,故C 选项错误;D. 0(π3)1-=,故D 选项正确,故选D.5.【答案】B【解析】A =BC 合并,故该选项错误;D 3不能与故选B .6.【答案】C,故选C .7.【答案】C【解析】(12)−1+tan30°•sin60°=2+33 32⨯=2+1 2=52,故选C.9.【答案】x>33x-有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.10.20191-【解析】原式=1231)+1253+1275+…+1220172015)+1220192017=121++…=12-.11.【答案】6【解析】原式.故答案为:6.12.【答案】2【解析】设正三角形的边长为a ,则12a 2,解得a则图中阴影部分的面积−2=2.故答案是2.13.【答案】2,故答案为2. 14.【答案】x ≥3【解析】由题意可得:x ﹣3≥0,解得:x ≥3,故答案为:x ≥3.15.【答案】1 【解析】3m m ++269m -÷23m - =()()63·3332m m m m m -+++- =333m m m +++ =1,故答案为1.16.【答案】3 【解析】原式221()1x x x x x x +=+⋅+ =2(1)1x x x x +⋅+ 1x =+,当2x =时,原式213=+=,故答案为:3.17.【答案】294【解析】原式﹣+14=294. 18.【答案】16- 【解析】原式=22121a a a ---()﹣118 =221a ---118, ∵a 2=19,∴原式=2191--﹣118=﹣318=﹣16.19. 【解析】2211(1)m m m m+--÷ =()()2111m m m m m m +-⋅+- =()()111m m m m m +⋅+- =11m -,当m 时,原式==. 20.【答案】11;12x --【解析】原式=()23322)21x x x x ++-⨯+-( , ()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x =3时,原式=113-=12-. 21.【答案】13 【解析】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ =()()()()222222a a a a a a -++⋅+- =2222a a a a a--+⋅- =222a a a a-+⋅-, =2a a +, 由a 2+a ﹣6=0,得a =﹣3或a =2,∵a ﹣2≠0,∴a ≠2,∴a =﹣3,当a =﹣3时,原式=32133-+=-. 22.1.【解析】101()(π3)1tan 2--+-+-+45°=2111-++1=.(2)2211x x x x x ÷--- =()()211·1x x x x x+---x =x (x +1)-x=x 2.24.【答案】x【解析】原式=222x y y x y x y x-++⋅+ =2x x y x y x+⋅+ =x .25.【答案】22【解析】当a 2+1时,原式=()()333111a a a a a a ++-+⨯-+ =()()4111a a a a a+⨯-+ =41a - 22.26.【答案】原式=1a b+=2 【解析】(1a b -﹣22b a b -)÷2222+a ab a ab b -- =()()()()2•a b a b b a b a b a a b -+-+--=1a b+, 由a +b ﹣12=0,得到a +b =12, 则原式=112=2. 27.【答案】原式=11x -,当x =2,原式=1. 【解析】解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3,原式=()231x x +-•[()()2333x x x x --+- ()()333x x x -+-] =()231x x +-•()()()()1333x x x x --+- =11x -, ∵x ≠±3、1,∴x =2, 则原式=1.28.【答案】-15【解析】原式=(21311x x x -+++)÷()221x x ++ =()()()2221·12x x x x x +-+++ =22x x-+, 当x =tan45°+(12)−1=1+2=3时,原式=231235-=-+.。
中考数学5年真题(2019-2023)专题汇总解析—二次根式
中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。
代数式、整式、分式、因式分解精选训练题
代数式、整式、分式、因式分解精选训练题一、选择题1.计算12-的值为( ) A .2B .12C .2-D .1-2.计算:11()(6-= ) A .6-B .6C .16-D .163.下列各式从左到右的变形为分解因式的是( ) A .32321836x y x y =B .2(2)(3)6m m m m +-=--C .289(3)(3)8x x x x x +-=+-+D .26(2)(3)m m m m --=+-4.计算211x xx x--÷的结果是( ) A .2x B .2x -C .xD .x -5.如果1(0.1)a -=-,0(2022)b =-,23()2c -=-,那么a 、b 、c 三个数的大小为()A .b c a >>B .c b a >>C .b a c >>D .c a b >>6.单项式232x y-的系数和次数分别是( )A .3-,2B .12-,3C .32-,2D .32-,37.下列计算正确的是( ) A .22(3)9a a +=+ B .222(9)189x y x xy y -=-+ C .22(23)469a a a +=++D .222()2x y x xy y -+=-+8.若关于x 的多项式2(2)(24)x ax x ++-展开合并后不含2x 项,则a 的值是( ) A .0B .12C .2D .2-9.已知多项式2ax bx c ++,其因式分解的结果是(1)(4)x x +-,则abc 的值为()A .12B .12-C .6D .6-10.下列等式中,从左到右的变形是因式分解的是( ) A .2(2)2x x x x +=+ B .22(3)69x x x -=-+ C .211()x x x x+=+D .29(3)(3)x x x -=+-11.下列四个式子中在有理数范围内能因式分解的是( ) A .21x +B .2x x +C .221x x +-D .21x x -+12.下列从左边到右边的变形,属于因式分解的是( ) A .2(2)(3)6x x x x -+=+- B .2(2)24x x -=- C .24414(1)1x x x x -+=-+D .3(1)(1)x x x x x -=-+13.下列各式中.是因式分解的是( ) A .292(9)2m m m m -+=-+ B .3()33m n m n +=+ C .2244(2)m m m ++=+D .2223623(2)m m m m --=-+14.下列分式的变形正确的是( )A .33a ab b +=+B .22a a b b=C .2a ab b b =D .a aa b a b-=-++ 15.如果分式1xx +有意义,那么x 的取值范围( ) A .0x ≠ B .1x ≠ C .1x =- D .1x ≠-16.若分式中22aba W+的a 和b 都扩大3倍,且分式的值不变,则W 可以是( ) A .3B .bC .2bD .3b17.下列分式是最简分式的是( ) A .93b aB .22aba bC .a ba b+- D .2aa ab- 18.计算32(3)x y -的结果是( ) A .329x yB .629x yC .326x yD .626x y -19.若2(3)(5)15x x x mx -+=+-,则m 的值为( )A .8-B .2C .2-D .5-20.在下列计算中,正确的是( ) A .4482a a a ⋅=B .236(2)8a a -=-C .347a a a +=D .623a a a ÷=21.下列计算正确的是( ) A .2221x x -= B .22234a a a -+=-C .3(1)31a a +=+D .2(1)22x x -+=--22.若29x mx ++是完全平方式,则m 的值是( ) A .3±B .6-C .6D .6±23.单项式24m n-的系数和次数是( )A .系数是14,次数是3B .系数是14-,次数是3C .系数是14-,次数是2D .系数是3,次数是14-24.一个多项式与221x x +-的和是32x +,则这个多项式为( ) A .251x x -++B .23x x -++C .251x x ++D .23x x --25.下列多项式中,能进行因式分解的是( ) A .22x y +B .32x y x y +C .x y +D .1y +26.下列多项式,能用平方差公式分解的是( ) A .224x y -+B .2294x y +C .22(2)x y +-D .224x y --27.下列等式中,从左到右的变形是因式分解的是( ) A .2(3)(3)9x x x +-=- B .22(2)44x x x +=++ C .2(3)(5)215x x x x -+=+-D .222469(23)x xy y x y -+=-28.将下列多项式因式分解,结果中不含有3x +因式的是( ) A .29x -B .23x x +C .269x x -+D .269x x ++29.多项式2224333126x y x y x y --的公因式是( )A .223x y zB .22x yC .223x yD .323x y z30.下列式子运算结果为1x +的是( )A .2211x x x x -⋅+ B .11x- C .2211x x x +++D .111x x x +÷- 31.下列选项中最简分式是( )A .23x x x+B .224x C .211x x +- D .211x + 32.若234a b c ==,且0abc ≠,则32a bc a+-的值是( ) A .2B .2-C .3D .3-33.下列式子:33,,,21x y a xx a π++,其中是分式的是( ) A .4个 B .3个 C .2个 D .1个34.下列各式中,运算正确的是( )A .11223x x x +=B .2112111x x x +=+-- C .2642142y x x y y⋅=D .221323y xy x y÷=35.下列运算正确的是( ) A .222a a a +=B .235a a a ⋅=C .236(2)8a a -=D .222()a b a b +=+36.下列计算正确的是( ) A .2222a a a ⋅= B .321a a a-⋅= C .235()a a =D .222()a b a ab b -=++37.下列变形中,从左到右不是因式分解的是( ) A .22(2)x x x x -=- B .2221(1)x x x ++=+ C .24(2)(2)x x x -=+-D .22(1)x x x+=+38.若多项式2x bx c ++因式分解的结果为(2)(3)x x -+,则b c +的值为( ) A .5-B .1-C .5D .639.已知223A x x =--,2234B x x =-+,则A B -等于( ) A .21x x --B .21x x -++C .2357x x --D .27x x -+-40.已知23x y -=,则代数式221744x xy y -++的值为( ) A .434B .134C .3D .4二、填空题41.多项式23223x y xy y --+的次数是 .42.已知2b a=,则2222444a ab b a b ++=- .43.若210y y m ++是一个完全平方式,则m = . 44.单项式232x y -的系数为 . 45.若分式2xx-有意义,则x 的取值范围是 . 46.计算:223()2a b ---= . 47.若分式242a a -+的值为零,则a 的值是 .48.因式分解22mx mx m ++= .49.若2610x x -+=,则242461x x x =++ .50.分解因式:2327a -= . 三、解答题51.计算:2213[4.5(3)2]2x x x x ---+.52.先化简,再求值:23(2)[15(2)]a a b a b -----,其中1a =,5b =-.53.因式分解:(1)2()6()m a b n a b ---;(2)222(91)36a a +-;(3)222(5)8(5)16x x -+-+.54.因式分解: (1)229a b -;(2)22242a ab b -+.55.计算:(1)22()()x x y x y -++;(2)[(2)2()()]y x y x y x y x --+-÷;56.先化简,再求值:228(2)22x xx x x x +÷+---,其中1x =.57.先化简,再求值:23211(1)x x x x---÷,其中20x x -.。
中考数学《因式分解》专项练习题及答案
中考数学《因式分解》专项练习题及答案一、单选题1.下列多项式中,能用提公因式法因式分解的是()A.x2-y B.x2+2x C.x2+y2 D.x2-xy+y22.下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.下列因式分解正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y﹣4xy+5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)24.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x)B.ax2(x﹣2)C.ax(x+1)(x﹣1)D.ax(x﹣1)25.下面从左到右的变形是因式分解的是()A.6xy=2x⋅3y B.(x+1)(x−1)=x2−1C.x2−3x+2=x(x−3)+2D.2x2−4x=2x(x−2)6.对于①(x+3)(x−1)=x2+2x−3,②x−3xy=x(1−3y)从左到右的变形,表述正确的是()A.都是因式分解B.都是整式的乘法C.①是因式分解,②是整式的乘法D.①是整式的乘法,②是因式分解7.若x2+kx+16=(x−4)2,那么()A.k=-8,从左到右是乘法运算B.k=8,从左到右是乘法运算C.k=-8,从左到右是因式分解D.k=8,从左到右是因式分解8.把代数式mx2-6mx+9m分解因式,下列结果中正确的是()A.m(x+3)2B.m(x+3)(x-3)C.m(x-4)2D.m(x-3)29.下列等式中,从左到右的变形是因式分解()A.2x2y+8xy2+6=2xy(x+4y)+6B.(5x−1)(x+3)=5x2−14x−3C.x2−y2=(x+y)(x−y)D.x3+y2+2x+1=(x+1)2+y210.下列等式中,从左到右的变形是因式分解的是()A .x(x −2)=x 2−2xB .(x −1)2=x 2−2x −1C .x 2−4=(x +2)(x −2)D .x 2+3x +2=x(x +3)+211.若多项式mx 2-1n 可分解因式为(3x+15)(3x-15),则m 、n 的值为( )A .m=3,n=5B .m=-3,n=5C .m=9,n=25D .m=-9,n=-2512.下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x + 14 =(x ﹣ 12 )2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)二、填空题13.分解因式: 2a 2−2= . 14.分解因式:2 a 3−8a = . 15.因式分解:a 3﹣2a 2b+ab 2= . 16.已知x+y=6,xy=3,则x 2y+xy 2的值为 . 17.因式分解: 3a 2−6a +3 = . 18.分解因式:xy 2﹣9x= .三、综合题19.综合题(1)已知a+b=1,ab= 14 ,利用因式分解求a(a+b)(a-b)-a(a+b)2的值.(2)若x 2+2x=1,试求1-2x 2-4x 的值.20.我们用xyz ̅̅̅̅̅表示一个三位数,其中x 表示百位上的数,y 表示十位上的数,z 表示个位上的数,即xyz̅̅̅̅̅=100x +10y +z . (1)说明abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅一定是111的倍数; (2)①写出一组a 、b 、c 的取值,使abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅能被11整除,这组值可以是a= ,b= ,c= ;②若abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅能被11整除,则a 、b 、c 三个数必须满足的数量关系是 .21.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a+8 解:原式=a 2+6a+8+1-1=a 2+6a+9-1=(a+3)2-12= [(a +3)+1][(a +3)−1]=(a +4)(a +2)②M=a2-2a-1,利用配方法求M的最小值.解:a2−2a−1=a2−2a+1−2=(a−1)2−2∵(a-b)2≥0,∴当a=1时,M有最小值-2.请根据上述材料解决下列问题:2+2x−3.(1)用配方法...因式分解:x(2)若M=2x2−8x,求M的最小值.(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值.22.由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+)(x+);(2)应用:请用上述方法解方程:x2﹣3x﹣4=0.23.将下列各式分解因式:(1)2x2y−8xy+8y(2)a2(x−y)−9b2(x−y)24.因式分解:(1)−20a−15ax(2)(a−3)2−(2a−6)参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】D 6.【答案】D 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】B13.【答案】2(a+1)(a-1) 14.【答案】2a(a+2)(a-2) 15.【答案】a (a ﹣b )2 16.【答案】18 17.【答案】3(a -1)2 18.【答案】x (y ﹣3)(y+3)19.【答案】(1)解:原式=a(a+b)(a-b-a-b)=-2ab(a+b).∵a+b=1,ab= 14∴原式=-2× 14 ×1=- 12 .(2)解:∵x 2+2x=1, ∴1-2x 2-4x=1-2(x 2+2x) =1-2×1=-1.20.【答案】(1)解:abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅ =100a +10b +c +100b +10c +a +100c +10a +b=111a +111b +111c =111(a +b +c)∵a 、b 、c 都是整数 ∴a +b +c 也是整数∴111(a +b +c)是111的倍数∴abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅一定是111的倍数 (2)2;4;5(答案不唯一);a +b +c =11或a +b +c =22(1≤a ≤9,1≤b ≤9,1≤c ≤9)21.【答案】(1)解:原式 =x 2+2x −3+4−4=x 2+2x +1−4 =(x +1)2−22 =[(x +1)+2][(x +1)−2]=(x +3)(x −1) ;(2)解: 2x 2−8x =2(x 2−4x)=2(x 2−4x +4−4) =2[(x −2)2−4] =2(x −2)2−8 ∵(x −2)2≥0∴ 当 x =2 时, M 有最小值 −8 ; (3)解: x 2+2y 2+z 2−2xy −2y −4z +5=(x 2−2xy +y 2)+(y 2−2y +1)+(z 2−4z +4)=(x −y)2+(y −1)2+(z −2)2 ∵(x −y)2+(y −1)2+(z −2)2=0∴{x −y =0y −1=0z −2=0解得 {x =1y =1z =2则 x +y +z =1+1+2=4 .22.【答案】(1)2;4(2)解:∵x 2﹣3x ﹣4=0 x 2+(﹣4+1)x+(﹣4)×1=0 ∴(x ﹣4)(x+1)=0 则x+1=0或x ﹣4=0 解得:x=﹣1或x=4.23.【答案】(1)解:原式=2y (x 2﹣4x+4)=2y (x ﹣2)2;(2)解:原式=(x ﹣y )(a 2﹣9b 2) =(x ﹣y )(a+3b )(a ﹣3b ).24.【答案】(1)解: −20a −15ax= −5a×4−5a⋅3x=−5a(4+3x);(2)解:(a−3)2−(2a−6) = (a−3)2−2(a−3)= (a−3)(a−3−2)=(a−3)(a−5)。
2022年中考数学《分式 二次根式》专题训练及答案
2022年中考数学《分式 二次根式》专题训练及答案一.选择题(共19小题)1.将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A .20%B .x+y 2×100%C .x+3y 20×100%D .x+3y 10x+10y ×100% 2.要使分式1x+2有意义,x 的取值应满足( ) A .x ≠0B .x ≠﹣2C .x ≥﹣2D .x >﹣2 3.1a +2a =( )A .3B .32aC .2a 2 D .3a 4.下列计算正确的是( )A .√22=2B .√(−2)2=−2C .√22=±2D .√(−2)2=±25.下列计算正确的是( )A .√22=±2B .x 2+x 2=2x 4C .(x ﹣y )2=x 2﹣y 2D .(﹣2x 2)3=﹣8x 6 6.代数式√x+1x在实数范围内有意义时,x 的取值范围为( ) A .x >﹣1B .x ≥﹣1C .x ≥﹣1且x ≠0D .x ≠0 7.√3×√6=( )A .3B .3√2C .2√3D .68.下列运算正确的是( )A .√9=±3B .2+√5=2√5C .a 2•a 3=a 6D .(﹣a 3)2=a 69.下列计算中,正确的是( )A .√2+√3=√5B .2+√2=2√2C .√2×√3=√6D .2√5+3√5=6√510.二次根式√x −3中字母x 的取值范围是( )A .x <3B .x ≤3C .x >3D .x ≥311.若方程组{2x −3y =83x −2y =17,设x +y =a 2,x ﹣y =b 2,则代数式√a 2b 2的值为( ) A .±3√5B .3√5C .3√3D .5√5 12.要使分式4x x−3有意义,则x 的取值应满足( ) A .x ≠0B .x ≠﹣3C .x ≠3D .x ≠±3 13.使分式x−3x−4有意义的字母x 的取值范围是( )A .x ≠0B .x ≠3C .x ≠4D .x ≠3且x ≠4 14.若分式x−2x+3的值为零,则x 为( )A .x =2B .x =﹣3C .x =﹣2D .x =2或x =﹣315.你听说过著名的牛顿万有引力定律吗?任何两个物体之间都有吸引力,如果设两个物体的质量分别为m 1,m 2,它们之间的距离是d ,那么它们之间的引力就是f =gm 1m 2d 2(g 为常数),人在地面上所受的重力近似地等于地球对人的引力,此时d 就是地球的半径R .天文学家测得地球的半径约占木星半径的445,地球的质量约占木星质量的1318,则站在地球上的人所受的地球重力约是他在木星表面上所受木星重力的()A .52倍B .25倍C .25倍D .4倍16.下列运算正确的是( )A .(﹣2a 2b ﹣1)2=4a 4b 2 B .(a +b )2=a 2+b 2C .√5−3√5=−2D .2a a 2−b 2+2b b 2−a 2=2a−b17.已知m ,n 是非零实数,设k =m n =m+3n m ,则( )A .k 2=3﹣kB .k 2=k ﹣3C .k 2=﹣3﹣kD .k 2=k +318.下列计算结果是负数的是( )A .2﹣3B .3﹣2C .(﹣2)3D .(﹣3)219.计算|﹣2|+2﹣1的结果是( )A .﹣112B .0C .112D .212二.填空题(共10小题)20.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a ,b 同时满足a 2+2a =b +2,b 2+2b =a +2,求代数式b a +a b 的值.结合他们的对话,请解答下列问题:(1)当a =b 时,a 的值是 .(2)当a ≠b 时,代数式b a +a b 的值是 .21.若√x −1有意义,则x 的值可以是 .(写出一个即可)22.要使式子√x −3有意义,则x 可取的一个数是 .23.计算:√48√12= . 24.若二次根式√x 有意义,实数则x 的取值范围是 .25.二次根式√x 中字母x 的取值范围是 .26.已知√x −11−|7﹣x |+√(x −9)2=3y ﹣2,则2x ﹣18y 2= .27.使√x−2有意义的x 的取值范围为 . 28.若ab =13,则分式a a−b 的值为 .29.若分式x+5x−2的值为0,则x 的值为 .三.解答题(共11小题)30.先化简,再求值:x 2x−3+93−x ,其中x =1. 31.(1)计算:2﹣1+√12−sin30°; (2)化简并求值:1−a a+1,其中a =−12.32.先化简,再求值:x 2+x x 2−2x+1÷(2x−1−1x ),然后在﹣2<x ≤2的范围内选取一个合适的x 的整数值代入求值. 33.化简:x x−1−1x+1−1.小马的解答如下,小马的解答正确吗?如果不正确,写出正确的解答. 解:x x−1−1x+1−1=x (x +1)﹣(x ﹣1)﹣1=x 2+x ﹣x +1﹣1=x 234.请你阅读圆圆同学的解题过程,并回答所提出的问题.计算:3x−1+x−31−x 2.圆圆的解法原式=3(x+1)(x+1)(x−1)−x−3(x+1)(x−1)⋯①=3x+3−x−3(x+1)(x−1)⋯②=2x (x+1)(x−1)⋯③问:圆圆在第 步开始出错(写出序号即可);请你给出正确的解答过程.35.已知m =a 2b ,n =3a 2﹣2ab (a ≠0,a ≠b ).(1)当a =3,b =﹣2时,分别求m ,n 的值.(2)当m =12,n =18时,求1b −23a 的值.36.(1)计算:2sin30°+|√3−2|﹣(2021﹣π)0﹣(12)﹣2;(2)先化简,再求值x−2x 2−9÷x−2x−3,其中x =﹣4.37.(1)计算:(﹣2)0+|√3−2|−(12)−1−(−2)3;(2)先化简,再求值:(x x+2+2x−2)÷1x 2−4,其中x =﹣1. 38.(1)计算:|﹣2|−√273+(√3−1)0.(2)化简:9a 23a−1+11−3a .39.先化简再求值:x 2−2x+1x+2÷(2−x −3x+2),其中x =|2−2√3|+(12)−2−√643×cos30°. 40.(1)化简:(4a−2+3)÷1a−2;(2)解不等式组:{3x +1≤2(2+3x)2x −3<x .参考答案与试题解析一.选择题(共19小题)1.【解答】解:由题意可得,混合后的糖水含糖:10%x+30%y x+y ×100%=x+3y 10x+10y ×100%, 故选:D .2.【解答】解:要使分式1x+2有意义,则x +2≠0, 解得:x ≠﹣2.故选:B .3.【解答】解:1a +2a =1+2a =3a , 故选:D .4.【解答】解:A .√22=2,故本选项符合题意;B .√(−2)2=2,故本选项不符合题意;C .√22=2,故本选项不符合题意;D .√(−2)2=2,故本选项不符合题意;故选:A .5.【解答】解:A 选项,原式=2,故该选项不符合题意; B 选项,原式=2x 2,故该选项不符合题意;C 选项,原式=x 2﹣2xy +y 2,故该选项不符合题意;D 选项,原式=﹣8x 6,故该选项符合题意;故选:D .6.【解答】解:根据题意得x +1≥0,且x ≠0.∴x ≥﹣1且x ≠0.故选:C .7.【解答】解:原式=√3×6=√18=3√2,故选:B .8.【解答】解:A .√9=3,故此选项错误;B .2+√5,无法计算,故此选项错误;C .a 2•a 3=a 5,故此选项错误;D .(﹣a 3)2=a 6,故此选项正确.故选:D .9.【解答】解:A 、√2与√3不是同类二次根式,故A 错误.B 、2与√2不是同类二次根式,故B 错误.C 、原式=√6,故C 正确.D 、原式=5√5,故D 错误.故选:C .10.【解答】解∵二次根式√x −3有意义,∴x ﹣3≥0,解得:x ≥3.故选:D .11.【解答】解:解方程组{2x −3y =83x −2y =17,得:{x =7y =2, 则a 2=x +y =9,b 2=x ﹣y =7﹣2=5.则√a 2b 2=√9×5=3√5.故选:B .12.【解答】解:由题意得:x ﹣3≠0,∴x ≠3,故选:C .13.【解答】解:根据题意得x ﹣4≠0,则x ≠4.故选:C .14.【解答】解:由题意得:x ﹣2=0且x +3≠0,解得:x =2,故选:A .15.【解答】解:设木球的质量为M ,则地球的质量为1318M ,一个人的质量为m , ∵地球的半径为R ,地球的半径约占木星半径的445, ∴木星的半径为R ÷445=R •454=45R 4,∴站在地球上的人所受的地球重力约是他在木星表面上所受木星重力的:gm 1318M R 2gmM (45R 4)2=20255088≈0.4,故选:B .16.【解答】解:A 选项,原式=4a 4b ﹣2=4a 4b 2,故该选项正确,符合题意;B 选项,(a +b )2=a 2+2ab +b 2,故该选项错误,不符合题意;C选项,原式=﹣2√5,故该选项错误,不符合题意;D选项,原式=2aa2−b2−2ba2−b2=2(a−b)(a+b)(a−b)=2a+b,故该选项错误,不符合题意.故选:A.17.【解答】解:k=m+3nm=1+3n m,又∵k=m n,∴k=1+3nm=1+3k,∴k2=k+3,故选:D.18.【解答】解:A、2﹣3=18,故此选项不合题意;B、3﹣2=19,故此选项不合题意;C、(﹣2)3=﹣8,故此选项符合题意;D、(﹣3)2=9,故此选项不合题意;故选:C.19.【解答】解:|﹣2|+2﹣1=2+12=212.故选:D.二.填空题(共10小题)20.【解答】解:(1)当a=b时,a2+2a=a+2,a2+a﹣2=0,(a+2)(a﹣1)=0,解得:a=﹣2或1,故答案为:﹣2或1;(2)联立方程组{a2+2a=b+2①b2+2b=a+2②,将①+②,得:a2+b2+2a+2b=b+a+4,整理,得:a2+b2+a+b=4③,将①﹣②,得:a2﹣b2+2a﹣2b=b﹣a,整理,得:a2﹣b2+3a﹣3b=0,(a+b)(a﹣b)+3(a﹣b)=0,(a﹣b)(a+b+3)=0,又∵a≠b,∴a+b+3=0,即a+b=﹣3④,将④代入③,得a2+b2﹣3=4,即a2+b2=7,又∵(a +b )2=a 2+2ab +b 2=9∴ab =1,∴b a +a b =b 2+a 2ab =7,故答案为:7.21.【解答】解:由题意可得:x ﹣1≥0,即x ≥1.则x 的值可以是大于等于1的任意实数.故答案为:2(答案不唯一).22.【解答】解:要使式子√x −3有意义,必须x ﹣3≥0, 解得:x ≥3,所以x 可取的一个数是4,故答案为:4(答案不唯一).23.【解答】解:√48√12=√4812=√4=2.故答案为:2.24.【解答】解:若二次根式√x 有意义,则x ≥0. 故答案为x ≥0.25.【解答】解:由二次根式有意义的条件可知,二次根式√x 中字母x 的取值范围是x ≥0. 故答案为:x ≥0.26.【解答】解:∵√x −11一定有意义,∴x ≥11,∴√x −11−|7﹣x |+√(x −9)2=3y ﹣2,√x −11−x +7+x ﹣9=3y ﹣2,整理得:√x −11=3y ,∴x ﹣11=9y 2,则2x ﹣18y 2=2x ﹣2(x ﹣11)=22.故答案为:22.27.【解答】解:∵√x−2有意义,∴{x −2≥0x −2≠0,解得x >0. 故答案为:x >2.28.【解答】解:∵a b =13, ∴设a =k ,b =3k (k ≠0),∴原式=k k−3k=k −2k=−12,故答案为:−12.29.【解答】解:由题意可得:x +5=0且x ﹣2≠0, 解得x =﹣5.故答案为:﹣5.三.解答题(共11小题)30.【解答】解:原式=x 2x−3−9x−3 =x 2−9x−3=(x+3)(x−3)x−3 =x +3,当x =1时,原式=1+3=4.31.【解答】解:(1)2﹣1+√12−sin30° =12+2√3−12=2√3;(2)1−a a+1=a+1a+1−a a+1 =a+1−a a+1 =1a+1, 当a =−12时,原式=1−12+1=2. 32.【解答】解:原式=x(x+1)(x−1)2÷[2x x(x−1)−x−1x(x−1)] =x(x+1)(x−1)2÷2x−x+1x(x−1) =x(x+1)(x−1)2⋅x(x−1)x+1=x 2x−1, ∵x (x ﹣1)≠0,且x +1≠0,∴x ≠0且x ≠±1,∴整数x 可以取2,当x =2时,原式=222−1=4. 33.【解答】解:不正确,正确解答如下:x x−1−1x+1−1=x(x+1)x 2−1−x−1x 2−1−x 2−1x 2−1=x 2+x−x+1−x 2+1x 2−1 =2x 2−1. 34.【解答】解:②;正确解答如下:原式=3(x+1)(x+1)(x−1)−x−3(x+1)(x−1)=3x+3−x+3(x+1)(x−1)=2x+6(x+1)(x−1)=2x+6x 2−1. 故答案为:②.35.【解答】解:(1)当a =3,b =﹣2时,m =a 2b =32×(﹣2)=﹣18,n =3a 2﹣2ab =3×32﹣2×3×(﹣2)=27+12=39;(2)由题意得,m =a 2b =12,n =3a 2﹣2ab =18, 则1b −23a =3a−2b 3ab =3a 2−2ab3a 2b=183×12=12. 36.【解答】解:(1)原式=2×12+2−√3−1﹣4=1+2−√3−1﹣4=﹣2−√3;(2)原式=x−2(x+3)(x−3)•x−3x−2 =1x+3,当x =﹣4时,原式=1−4+3=−1. 37.【解答】解:(1)原式=1+2−√3−2+8 =9−√3;(2)(x x+2+2x−2)÷1x 2−4 =(x x+2+2x−2)•(x +2)(x ﹣2)=x (x ﹣2)+2(x +2)=x 2﹣2x +2x +4=x 2+4,当x =﹣1时,原式=(﹣1)2+4=1+4=5.38.【解答】解:(1)原式=2﹣3+1 =0;(2)原式=9a 23a−1−13a−1 =9a 2−13a−1 =(3a+1)(3a−1)3a−1=3a +1.39.【解答】解:原式=(x−1)2x+2÷(4−x 2x+2−3x+2) =(x−1)2x+2÷1−x 2x+2=(x−1)2x+2•x+2(1+x)(1−x) =1−x x+1. ∵x =2√3−2+4﹣4×√32=2, ∴原式=1−22+1=−13.40.【解答】解:(1)原式=4+3(a−2)a−2×(a ﹣2) =4+3a ﹣6=3a ﹣2;(2){3x+1≤2(2+3x)②2x−3<x①,解①得:x≥﹣1,解②得:x<3,故不等式组的解集是:﹣1≤x<3.。
中考数学试题分项解析专题14因式分解分式二次根式含解析试题
专题1.4 因式分解分式二次根式一、单项选择题1.【2021年中考数学试卷】将多项式x﹣x3因式分解正确的选项是〔〕A. x〔x2﹣1〕 B. x〔1﹣x2〕 C. x〔x+1〕〔x﹣1〕 D. x〔1+x〕〔1﹣x〕【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x〔1﹣x2〕=x〔1﹣x〕〔1+x〕.应选D.【点睛】此题主要考察了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【HY2021年中考数学试卷】某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购置假设干本笔记本.假设小锦购置笔记本的花费为36元,那么小勤购置笔记本的花费可能为以下何者?〔〕A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考察了质因数分解,正确得出笔记本的单价是解题关键.3.【2021年中考数学试卷】以下运算正确的选项是〔〕A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.〔a+2〕〔a﹣2〕=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法那么、负指数幂的性质、二次根式的加减运算法那么、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、〔a+2〕〔a﹣2〕=a2﹣4,故D选项错误,应选C.【点睛】此题考察了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法那么是解题关键.4.【2021年中考数学试卷】假设2n+2n+2n+2n=2,那么n=〔〕A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】此题考察了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法那么是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n〔m,n是正整数〕.5.【2021年中考数学试题】,,那么式子的值是〔〕A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:〔x-y+〕〔x+y-〕===〔x+y〕〔x-y〕,当x+y=4,x-y=时,原式=4×=12,应选:D.点睛:此题考察了分式的混合运算和求值,能正确根据分式的运算法那么进展化简是解此题的关键.6.【2021年中考数学试卷】据?经济日报?2021年5月21日报道:目前,世界集成电路消费技术程度最高已到达7nm〔1nm=10﹣9m〕,主流消费线的技术程度为14~28nm,中国大陆集成电路消费技术程度最高为28nm.将28nm用科学记数法可表示为〔〕A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【2021年中考数学试卷】:﹣=,那么的值是〔〕A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:等式左边两项通分并利用同分母分式的减法法那么计算,变形后即可得到结果.详解:∵﹣=,∴=,那么=3,应选:C.点睛:此题考察了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目详细条件选择适宜的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【2021年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为〔〕A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考察了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【2021年中考数学试卷】教师设计了接力游戏,用的方式完成分式化简,规那么是:每人只能看到前一人给的式子,并进展一步计算,再将结果传递给下一人,最后完成化简.过程如下图:接力中,自己负责的一步出现错误的选项是〔〕A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法那么逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,应选D.【点睛】此题考察了分式的乘除法,纯熟掌握分式乘除法的运算法那么是解题的关键. 10.【2021年中考数学试】题二次根式中的x的取值范围是〔〕A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:此题考察了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【HY2021年中考数学试卷】算式×〔﹣1〕之值为何?〔〕A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答此题.详解:×〔﹣1〕=×﹣1=,应选:A.点睛:此题考察二次根式的混合运算,解答此题的关键是明确二次根式混合运算的计算方法.12.【2021年中考数学试卷】以下计算正确的选项是〔〕A. B.C. D.【答案】B点睛:此题主要考察二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法那么.13.【2021年初中毕业学业考试数学试题】以下运算正确的选项是〔〕A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法那么:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a 〔a≥0〕;完全平方公式:〔a±b〕2=a2±2ab+b2;幂的乘方法那么:底数不变,指数相乘进展计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、〔a+1〕2=a2+2a+1,故原选项错误;D、〔a3〕2=a6,故原选项正确.应选:D.点睛:此题主要考察了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法那么和计算公式.二、填空题14.【2021年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x〔x+2y〕〔x﹣2y〕【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x〔x2-4y2〕=x〔x+2y〕〔x-2y〕,故答案为:x〔x+2y〕〔x-2y〕点睛:此题考察了提公因式法与公式法的综合运用,纯熟掌握因式分解的方法是解此题的关键.15.【2021年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a〔a﹣b〕2.【点睛】此题考察了提公因式法与公式法的综合运用,纯熟掌握因式分解的方法是解此题的关键.16.【2021年中考数学试题】因式分解:ab+ac=_____.【答案】a〔b+c〕【解析】分析:直接找出公因式进而提获得出答案.详解:ab+ac=a〔b+c〕.故答案为:a〔b+c〕.点睛:此题主要考察了提取公因式法分解因式,正确找出公因式是解题关键.17.【2021年中考数学试卷】假设a,b互为相反数,那么a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=〔a+b〕〔a﹣b〕=0,故答案为:0.【点睛】此题考察了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【2021年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣〔a﹣2〕2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣〔a2﹣4a+4〕=﹣〔a﹣2〕2,故答案为:﹣〔a﹣2〕2点睛:此题考察了因式分解﹣运用公式法,纯熟掌握因式分解的方法是解此题的关键.19.【湘西州2021年中考数学试卷】要使分式有意义,那么x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】此题考察分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【2021年中考数学试卷】计算的结果是_____.【答案】【点睛】此题考察了同分母分式的加减法,纯熟掌握同分母公式加减法的法那么是解题的关键,注意结果要化成最简分式.21.【2021年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法那么进展计算即可得答案.【详解】原式===,故答案为:.【点睛】此题考察分式的加减运算,纯熟掌握分式加减的运算法那么是解题的关键,此题属于根底题.22.【2021年中考数学试题】假设分式的值是0,那么x的值是______.【答案】-3点睛:此题主要考察分式的值是0的条件,注意分母不为0.23.【HY自治区2021年中考数学试题】假如代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考察了二次根式的定义,正确把握定义是解题关键.24.【2021年中考数学试卷】与最简二次根式5是同类二次根式,那么a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数一样可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:此题考察了同类二次根式的定义:化成最简二次根式后,被开方数一样,这样的二次根式叫做同类二次根式.25.【2021年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考察了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数一样的二次根式进展合并,合并方法为系数相加减,根式不变.三、解答题26.【临安2021年中考数学试卷】阅读以下题目的解题过程:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4〔A〕∴c2〔a2﹣b2〕=〔a2+b2〕〔a2﹣b2〕〔B〕∴c2=a2+b2〔C〕∴△ABC是直角三角形问:〔1〕上述解题过程,从哪一步开场出现错误?请写出该步的代号:;〔2〕错误的原因为:;〔3〕此题正确的结论为:.【答案】〔1〕C;〔2〕没有考虑a=b的情况;〔3〕△ABC是等腰三角形或者直角三角形.〔2〕错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;〔3〕此题正确的结论为:△ABC是等腰三角形或者直角三角形,故答案为:△ABC是等腰三角形或者直角三角形.【点睛】此题考察因式分解的应用、勾股定理的逆定理,解答此题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【2021年中考数学试卷】先化简,再求值:〔﹣〕÷,其中a=.【答案】原式=【点睛】此题考察了分式的化简求值,纯熟掌握分式化简求值的步骤是解题的关键. 28.【2021年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答此题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】此题考察分式的化简求值,纯熟掌握分式化简求值的方法是解答此题的关键. 29.【2021年中考数学试题】先化简,再求值:〔+1〕÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法那么即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:此题考察分式的运算法那么,解题的关键是纯熟运用分式运算法那么.30.【2021年中考数学试题】先化简,再求代数式〔1﹣〕÷的值,其中a=4cos30°+3tan45°.【答案】点睛:此题考察分式的运算,解题的关键是纯熟运用分式的运算法那么,此题属于根底题型.31.【广西2021年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣〔〕﹣1【答案】+2【解析】【分析】按顺序先进展绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进展计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣〔〕﹣1=4+3﹣2﹣2=+2.【点睛】此题考察了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,纯熟掌握各运算的运算法那么以及实数混合运算的运算法那么是解题的关键.32.【巿2021年中考数学试卷】计算:〔﹣1〕2021+π0﹣〔〕﹣1+.【答案】1【解析】【分析】按顺序分别进展乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进展运算即可.【详解】〔﹣1〕2021+π0﹣〔〕﹣1+=1+1﹣3+2=1.【点睛】此题考察了实数的混合运算,涉及到0次幂、负指数幂,纯熟掌握0次幂的运算法那么、负指数幂的运算法那么以及实数混合运算的运算法那么是解题的关键.33.【2021年中考数学试卷】先化简,再求值:〔x+2+〕÷,其中x=2.【答案】,4-2.【点睛】此题考察了分式的化简求值,纯熟掌握分式混合运算顺序和运算法那么是解题的关键.34.【2021年中考数学试题】化简代数式:,再从不等式组的解集中取一个适宜的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进展去括号,利用分式混合运算法那么化简,再解不等式组,进而得出x的值,即可计算得出答案.点睛:此题主要考察了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法那么是解题关键.35.【2021年中考数学试卷】计算:〔﹣1〕2+〔π﹣3.14〕0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进展乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进展计算即可.【详解】〔﹣1〕2+〔π﹣3.14〕0﹣|﹣2|=1+1-〔2-〕=1+1-2+=.【点睛】此题考察了实数的运算,纯熟掌握运算法那么是解此题的关键.36.【2021年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进展分式的加减运算,然后再进展分式的乘除法运算,由x 为整数且满足不等式组可以求得x的值,然后代入化简后的结果进展计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】此题考察分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,纯熟掌握分式的化简求值的方法是解答此题的关键.37.【2021年中考数学试卷】先化简,再求值:〔1+〕÷,其中x满足x2﹣2x﹣5=0.【答案】5点睛:此题考察了分式的化简求值,纯熟掌握运算法那么是解此题的关键.38.【2021年中考数学试题】先化简,再求值:〔1﹣〕÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法那么化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:此题主要考察分式的化简求值,解题的关键是纯熟掌握分式混合运算顺序和运算法那么.39.【〔黔东南,黔南,黔西南〕2021年中考数学试题】〔1〕计算:|﹣2|﹣2cos60°+〔〕﹣1﹣〔2021﹣〕0〔2〕先化简〔1﹣〕•,再在1、2、3中选取一个适当的数代入求值.【答案】〔1〕6;〔2〕-2〔2〕〔1﹣〕•,===,当x=2时,原式=.点睛:此题考察分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答此题的关键是明确它们各自的计算方法.40.【2021年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法那么化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:此题主要考察分式的化简求值,解题的关键是纯熟掌握分式的混合运算顺序和运算法那么.41.【2021年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:此题考察了分式的化简求值:先把分式的分子或者分母因式分解,再进展通分或者约分,得到最简分式或者整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【州2021年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法那么计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考察了分式的化简求值,正确进展分式的混合运算是解题关键.43.【HY自治区2021年中考数学试题】先化简,再求值:〔+1〕÷,其中x是方程x2+3x=0的根.【答案】-2点睛:此题考察分式的化简求值、一元二次方程的解,解答此题的关键是明确分式的化简求值的计算方法.44.【2021年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考察了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或者整式,再代入求值.45.【2021年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:此题主要考察分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法那么.46.【2021年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进展分式的加减运算,然后再进展分式的乘除运算,最后把数值代入化简后的结果进展计算即可得.【详解】原式=[+]×〔x﹣3〕2=×〔x﹣3〕2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】此题主要考察了分式的化简求值,纯熟掌握分式的混合运算法那么是解题关键.47.【2021年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进展零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进展计算即可得.【详解】原式=1﹣〔2﹣1〕+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】此题主要考察了实数的混合运算,解决此类题目的关键是纯熟掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【2021年中考数学试卷】先化简,再求值:〔1+〕÷.其中x=3.【答案】x+2,5点睛:此题考察了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进展约分,注意运算的结果要化成最简分式或者整式.49.【2021年中考数学试题】〔1〕计算:π0+2cos30°﹣|2﹣|﹣〔〕﹣2;〔2〕化简:〔2﹣〕÷.【答案】〔1〕2﹣5;〔2〕【解析】分析:〔1〕先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;〔2〕根据分式的混合运算顺序和运算法那么计算可得.详解:〔1〕原式=1+2×﹣〔2﹣〕﹣4=1+﹣2+-4=2﹣5;〔2〕原式=,=,=.点睛:此题主要考察分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法那么.50.【2021年中考数学试题】先化简,再求值:,其中,.【答案】7点睛:此题主要考察分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法那么.创作人:历恰面日期:2020年1月1日。
专题1.2 因式分解、分式、二次根式(全国中考23个考点真题训练)(解析版)
2023年中考数学考前30天迅速提分复习方案(全国通用)专题1.2 因式分解、分式、二次根式(全国中考23个考点真题训练)一.因式分解的意义(共1小题)1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是( )A .x 2﹣x 1﹣=x (x 1﹣)﹣1B .x 21﹣=(x 1﹣)2C .x 2﹣x 6﹣=(x 3﹣)(x +2)D .x (x 1﹣)=x 2﹣x【分析】根据因式分解的定义判断即可.【解答】解:A 选项不是因式分解,故不符合题意;B 选项计算错误,故不符合题意;C 选项是因式分解,故符合题意;D 选项不是因式分解,故不符合题意;故选:C .【点评】本题主要考查因式分解的知识,熟练掌握因式分解的定义是解题的关键.二.因式分解-提公因式法(共1小题)2.(2022•青海)下列运算正确的是( )A .3x 2+4x 3=7x 5B .(x +y )2=x 2+y 2C .(2+3x )(23﹣x )=9x 24﹣D .2xy +4xy 2=2xy (1+2y )【分析】利用合并同类项法则、完全平方公式、平方差公式、提公因式法分别计算各题,根据计算结果得结论.【解答】解:A .3x 2与4x 3不是同类项不能加减,故选项A 计算不正确;B .(x +y )2=x 2+2xy +y 2≠x 2+y 2,故选项B 计算不正确;C .(2+3x )(23﹣x )=49﹣x 2≠9x 24﹣,故选项C 计算不正确;D .2xy +4xy 2=2xy (1+2y ),故选项D 计算正确.故选:D .【点评】本题主要考查了整式的运算,掌握整式的运算法则和整式的提取公因式法是解决本题的关键.三.因式分解-运用公式法(共1小题)3.(2022•荆门)对于任意实数a ,b ,a 3+b 3=(a +b )(a 2﹣ab +b 2)恒成立,则下列关系式正确的是( )A .a 3﹣b 3=(a ﹣b )(a 2+ab +b 2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)【分析】把所给公式中的b换成﹣b,进行计算即可解答.【解答】解:∵a3+b3=(a+b)(a2﹣ab+b2),∴a3﹣b3=a3+(﹣b3)=a3+(﹣b)3=[a+(﹣b)][(a2﹣a•(﹣b)+(﹣b)2]=(a﹣b)(a2+ab+b2)故选:A.【点评】本题考查了因式分解﹣运用公式法,把所给公式中的b换成﹣b是解题的关键.四.提公因式法与公式法的综合运用(共1小题)﹣xy2= 3x(x+2y)(x24.(2022•绵阳)因式分解:3x312﹣y) .【分析】先提取公因式,再套用平方差公式.﹣y2)【解答】解:原式=3x(x24﹣y).=3x(x+2y)(x2故答案为:3x(x+2y)(x2﹣y).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.五.因式分解-十字相乘法等(共1小题)﹣) .﹣= (a2+1)(a+2)(a2﹣a245.(2022•内江)分解因式:a43【分析】先利用十字相乘法因式分解,再利用平方差公式进行因式分解.【解答】解:a4﹣3a2﹣4=(a2+1)(a2﹣4)=(a2+1)(a+2)(a﹣2),﹣).故答案为:(a2+1)(a+2)(a2【点评】本题考查的是十字相乘法因式分解,掌握十字相乘法、平方差公式因式分解是解题的关键.六.因式分解的应用(共5小题)6.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为 10 .【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a 2﹣b2=a﹣b,由此可得原式=a+b+9=10.﹣b+1)+10,把前两部分利用平方差进行因式分方法二:将原式分为三部分,即a2﹣(b22﹣=0.从而得出原式的值.解,其中得到一因式a+b1【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9﹣b+1)+10=a2﹣(b22﹣)2+10=a2﹣(b1﹣)+10.=(a﹣b+1)(a+b1又∵a+b=1,∴原式=10.【点评】本题考查了因式分解应用,用到的知识为平方差公式:a2﹣b2=(a+b)(a﹣b).7.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:﹣b因式分解.﹣ab4+6将2a3【观察】经过小组合作交流,小明得到了如下的解决方法:﹣b)解法一:原式=(2a3﹣ab)﹣(46﹣b)=a(23﹣b)﹣2(23﹣)﹣b)(a2=(23﹣b)﹣)﹣(3ab6解法二:原式=(2a4﹣)﹣)﹣3b(a2=2(a2﹣b)﹣)(23=(a2【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax +a 22﹣ab ﹣bx +b 2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a 和b (a >b ),斜边长是3,小正方形的面积是1.根据以上信息,先将a 42﹣a 3b +2a 2b 22﹣ab 3+b 4因式分解,再求值.【分析】(1)用分组分解法将x 2﹣a 2+x +a 因式分解即可;(2)用分组分解法将ax +a 22﹣ab ﹣bx +b 2因式分解即可;(3)先将a 42﹣a 3b +2a 2b 22﹣ab 3+b 4因式分解,再求值即可.【解答】解:(1)原式=(x 2﹣a 2)+(x +a )=(x +a )(x ﹣a )+(x +a )=(x +a )(x ﹣a +1);(2)原式=(ax ﹣bx )+(a 22﹣ab +b 2)=x (a ﹣b )+(a ﹣b )2=(a ﹣b )(x +a ﹣b );(3)原式=(a 4+2a 2b 2+b 4)﹣(2ab 3+2a 3b )=(a 2+b 2)2﹣2ab (a 2+b 2)=(a 2+b 2)(a 2+b 2﹣2ab )=(a 2+b 2)(a ﹣b )2,∵直角三角形的两条直角边长分别是a 和b (a >b ),斜边长是3,小正方形的面积是1,∴a 2+b 2=32=9,(a ﹣b )2=1,∴原式=9.【点评】本题主要考查因式分解的知识,熟练掌握因式分解的应用是解题的关键.8.(2022•台湾)健康生技公司培养绿藻以制作「绿藻粉」,再经过后续的加工步骤,制成绿藻相关的保健食品.已知该公司制作每1公克的「绿藻粉」需要60亿个绿藻细胞.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)假设在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞亦可继续分裂.今从1个绿藻细胞开始培养,若培养期间绿藻细胞皆未死亡且培养环境的光照充沛,经过15天后,共分裂成4k 个绿藻细胞,则k 之值为何?(2)承(1),已知60亿介于232与233之间,请判断4k个绿藻细胞是否足够制作8公克的「绿藻粉」?【分析】(1)由1个绿藻细胞每20小时可分裂成4个绿藻细胞,可知经过15天,即360小时,分裂成418个绿藻细胞,故k之值为18;(2)根据每1公克的「绿藻粉」需要60亿个绿藻细胞,60亿介于232与233之间,可得制作8公克的「绿藻粉」需要60×8亿个绿藻细胞,且235<60×8亿<236,又418=(22)18=2 36,即得418个绿藻细胞足够制作8公克的「绿藻粉」.【解答】解:(1)15天=15×24小时=360小时,∵1个绿藻细胞每20小时可分裂成4个绿藻细胞,∴从1个绿藻细胞开始培养,经过20小时分裂成4个绿藻细胞,经过20×2=40(小时),分裂成42个绿藻细胞,经过20×3=60(小时),分裂成43个绿藻细胞,......经过20×18=360(小时),分裂成418个绿藻细胞,∴k之值为18;(2)∵每1公克的「绿藻粉」需要60亿个绿藻细胞,∴制作8公克的「绿藻粉」需要60×8亿个绿藻细胞,∵60亿介于232与233之间,∴232×8<60×8亿<233×8,即235<60×8亿<236,而418=(22)18=236,∴60×8亿<418,∴418个绿藻细胞足够制作8公克的「绿藻粉」.【点评】本题考查有理数的乘方,解题的关键是读懂题意,根据已知找到规律求出k的值.9.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.【分析】(1)根据“和倍数”的定义依次判断即可;(2)根据“和倍数”的定义表示F(A)和G(A),代入中,根据为整数可解答.【解答】解:(1)∵357÷(3+5+7)=357÷15=23……12,∴357不是“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”;(2)由题意得:a+b+c=12,a>b>c,由题意得:F(A)=,G(A)=,∴===,∵a+c=12﹣b,为整数,∴====7+(1﹣b),∵1<b<9,∴b=3,5,7,∴a+c=9,7,5,①当b=3,a+c=9时,(舍),,则A=732或372;②当b=5,a+c=7时,,则A=516或156;③当b=7,a+c=5时,此种情况没有符合的值;综上,满足条件的所有数A为:732或372或516或156.【点评】本题考查了新定义问题,根据新定义问题进行计算是解题关键.﹣)会徽的主题图案有着丰富的数学10.(2022•常州)第十四届国际数学教育大会(ICME14元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进﹣的举办年份.制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME14(1)八进制数3746换算成十进制数是 2022 ;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.【分析】(1)根据已知,从个位数字起,将八进制的每一位数分别乘以80,81,82,83,再把所得结果相加即可得解;(2)根据n进制数和十进制数的计算方法得到关于n的方程,解方程即可求解.【解答】解:(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022;(2)依题意有:n2+4×n1+3×n0=120,解得n1=9,n2=﹣13(舍去故n的值是9.【点评】本题主要考查因式分解的应用,有理数的混合运算,解题的关键是弄清各个进制数转化为十进制数的计算方法.七.分式的定义(共1小题)11.(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有( )A.2个B.3个C.4个D.5个【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【点评】本题考查了分式的定义,掌握一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解题的关键,注意π是数字.八.分式有意义的条件(共1小题)12.(2022•无锡)分式中x的取值范围是( )﹣D.x≤2 A.x≠2B.x≠2﹣C.x≤2【分析】由分母不等于0列式计算即可.【解答】解:∵分式有意义,∴2﹣x≠0,解得x≠2,故选:A.【点评】本题考查分式有意义的条件,解题的关键是掌握分式有意义时,分母不等于0.九.分式的值为零的条件(共1小题)13.(2022•广西)当x= 0 时,分式的值为零.【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x=0且x+2≠0,然后进行计算即可解答.【解答】解:由题意得:2x=0且x+2≠0,﹣,∴x=0且x≠2∴当x=0时,分式的值为零,故答案为:0.【点评】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.一十.分式的值(共1小题)14.(2022•湖州)当a=1时,分式的值是 2 .【分析】把a=1代入分式计算即可求出值.【解答】解:当a=1时,原式==2.故答案为:2.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.一十一.分式的乘除法(共1小题)15.(2022•德阳)下列计算正确的是( )A.(a﹣b)2=a2﹣b2B.=1C.a÷a•=a D.(﹣ab2)3=﹣a3b6【分析】根据分式的乘除法,算术平方根,幂的乘方与积的乘方,完全平方公式,进行计算即可进行判断.【解答】解:A.(a﹣b)2=a22ab+b2,故A选项错误,不符合题意;B.==1,故B选项正确,符合题意;C.a÷a•=1×=,故C选项错误,不符合题意;D.(﹣ab2)3=﹣a3b6,故D选项错误,不符合题意.故选:B.【点评】本题考查了分式的乘除法,算术平方根,幂的乘方与积的乘方,完全平方公式,解决本题的关键是掌握以上知识熟练进行计算.一十二.分式的加减法(共2小题)16.(2022•天津)计算+的结果是( )A.1B.C.a+2D.【分析】按同分母分式的加减法法则计算即可.【解答】解:原式===1.故选:A.【点评】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键.17.(2022•襄阳)化简分式:+= m .【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式===m,故答案为:m.【点评】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算,本题属于基础题型.一十三.分式的混合运算(共218.(2022•威海)试卷上一个正确的式子(+)÷★=被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A.B.C.D.【分析】根据已知分式得出被墨汁遮住部分的代数式是(+)÷,再根据分式的运算法则进行计算即可;【解答】解:(+)÷★=,∴被墨汁遮住部分的代数式是(+)÷=•=•=;故选:A.【点评】本题考查了分式的化简,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.19.(2022•自贡)化简:•+ .【分析】先将原分式的分子、分母分解因式,然后约分,再计算加法即可.【解答】解:•+=+=+=,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确因式分解的方法和分式加法的运算法则.一十四.分式的化简求值(共7小题)20.(2022•玉林)若x是非负整数,则表示﹣的值的对应点落在如图数轴上的范围是( )A.①B.②C.③D.①或②【分析】原式第二项约分后,利用同分母分式的减法法则计算得到最简结果,即可作出判断.【解答】解:原式=﹣=﹣====1,则表示﹣的值的对应点落在如图数轴上的范围是②.故选:B .【点评】此题考查了分式的化简求值,以及数轴,熟练掌握运算法则是解本题的关键.21.(2022•菏泽)若a 22﹣a 15﹣=0,则代数式(a ﹣)•的值是 15 .【分析】利用分式的相应的法则对分式进行化简,再把相应的值代入运算即可.【解答】解:(a ﹣)•===a 22﹣a ,∵a 22﹣a 15﹣=0,∴a 22﹣a =15,∴原式=15.故答案为:15.【点评】本题主要考查分式的化简求值,解答的关键是对相应的运算法则的掌握.22.(2022•内蒙古)先化简,再求值:(﹣x 1﹣)÷,其中x =3.【分析】先通分算括号内的,把除化为乘,化简后将x=3代入计算即可.【解答】解:原式=•=﹣•=﹣,当x=3时,原式=﹣=﹣5.【点评】本题考查分式化简求值,解题的关键是掌握分式的性质,将所求式子化简.23.(2022•阜新)先化简,再求值:÷(1﹣),其中a=4.【分析】根据分式的混合运算法则把原式化简,把a的值代入计算即可.【解答】解:原式=÷(﹣)=÷=•=,当a=4时,原式==.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.24.(2022•资阳)先化简,再求值.,其中a=﹣3.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a的值代入原式即可求出答案.【解答】解:原式===,当a=﹣3时,原式=.【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.25.(2022•黑龙江)先化简,再求值:(﹣1)÷,其中a=2cos30°+1.【分析】利用分式的减法法则和除法法则对分式进行计算化简,把特殊角的三角函数值代入计算求出a的值,代入化简后的分式进行计算,即可得出答案.【解答】解:(﹣1)÷=÷=×=,当a=2cos30°+1=2×+1=时,原式==﹣.【点评】本题考查了分式的化简求值,特殊角的三角函数值,掌握分式的混合计算及特殊角的三角函数值是解决问题的关键.26.(2022•黑龙江)先化简,再求值:()÷,在﹣2,0,1,2四个数中选一个合适的代入求值.【分析】先算括号内的减法,同时把除法变成乘法,再算乘法,最后代入求出即可.【解答】解:原式=•=2x+8,分母不能为0,则x≠±2,除数不能为0,则x≠0,当x=1时,原式=2+8=10.【点评】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.一十五.零指数幂(共2小题)27.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为( )A.5B.2C.1D.0【分析】首先根据定义运算提取公因式,然后利用定义运算计算即可求解.【解答】解:原式=lg5(lg5+lg2)+lg2=lg5×lg(5×2)+lg2=lg5lg10+lg2=lg5+lg2=lg10=1.故选:C.【点评】本题主要考查了定义运算,实际上是对数的运算,读懂题目意思是关键.28.(2022•百色)计算:32+(﹣2)017﹣.【分析】首先计算乘方、零指数幂,然后从左向右依次计算,求出算式的值即可.﹣【解答】解:32+(﹣2)017﹣=9+117=﹣7.【点评】此题主要考查了有理数的乘方的运算方法,以及零指数幂的运算,解答此题的关键是要明确:a0=1(a≠0).一十六.负整数指数幂(共2小题)29.(2022•南充)比较大小:22﹣30.(选填>,=,<)【分析】先分别计算22﹣和30的值,再进行比较大小,即可得出答案.【解答】解:∵22﹣=,30=1,∴22﹣<30,故答案为:<.【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义,零指数幂的意义是解决问题的关键.﹣()﹣1﹣()2+20350.30.(2022•长沙)计算:|4|+【分析】先化简各式,然后再进行计算即可解答.﹣()﹣1﹣()2+20350【解答】解:|4|+﹣=4+32+1=6.【点评】本题考查了零指数幂,负整数指数幂,绝对值,实数的运算,准确熟练地化简各式是解题的关键.一十七.二次根式有意义的条件(共2小题)31.(2022•湘西州)要使二次根式有意义,则x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.﹣,【解答】解:∵3x6≥0∴x≥2,故选:D.【点评】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.32.(2022•菏泽)若在实数范围内有意义,则实数x的取值范围是 x>3 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.﹣>0,【解答】解:由题意得,x3解得x>3.故答案为:x>3.【点评】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.一十八.二次根式的性质与化简(共2小题)33.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s【分析】把a=5×105m/s2,s=0.64m代入公式v=,再根据二次根式的性质化简即可.【解答】解:v===8×102(m/s),故选:D.【点评】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.34.(2022•桂林)化简的结果是( )A.2B.3C.2D.2【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为2.【解答】解:=2,故选:A.【点评】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.一十九.最简二次根式(共1小题)35.(2022•杭州)计算:= 2 ;(﹣2)2= 4 .【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解答】解:=2,(﹣2)2=4,故答案为:2,4.【点评】本题考查的是二次根式的化简、有理数的乘方,掌握二次根式的性质是解题的关键.二十.二次根式的乘除法(共2小题)36.(2022•随州)已知m为正整数,若是整数,则根据==3可知m有最小值3×7=21.设n为正整数,若是大于1的整数,则n的最小值为 3 ,最大值为 75 .【分析】先将化简为10,可得n最小为3,由是大于1的整数可得越小,越小,则n越大,当=2时,即可求解.【解答】解:∵==10,且为整数,∴n最小为3,∵是大于1的整数,∴越小,越小,则n越大,当=2时,=4,∴n=75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词37.(2022•山西)计算:×的结果为 3 .【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).二十一.二次根式的加减法(共1小题)38.(2022•哈尔滨)计算+3的结果是 2 .【分析】先化简各二次根式,再根据混合运算的顺序依次计算可得答案.【解答】解:原式=+3×==2.故答案为:2.【点评】此题考查的是二次根式的运算,掌握其运算法则是解决此题的关键.二十二.二次根式的混合运算(共3小题)39.(2022•安顺)估计(+)×的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式=2+,∵3<<4,∴5<2+<6,故选:B.【点评】此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.40.(2022•天津)计算(+1)(﹣1)的结果等于 18 .【分析】根据平方差公式即可求出答案.【解答】解:原式=()212﹣=191=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.41.(2022•襄阳)先化简,再求值:(a+2b)2+(a+2b)(a2﹣b)+2a(b﹣a),其中a=﹣,b=+.【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【解答】解:原式=a2+4b2+4ab+a2﹣4b2+2ab﹣2a2=6ab,∵a=﹣,b=+,∴原式=6ab=6×(﹣)(+)=6.【点评】此题主要考查了二次根式的混合运算与整式的混合运算——化简求值,正确掌握整式的混合运算法则是解题关键.二十三.二次根式的化简求值(共1小题)42.(2022•内蒙古)已知x,y是实数,且满足y=++,则.【分析】根据负数没有平方根求出x的值,进而求出y的值,代入计算即可求出值.【解答】解:∵y=++,﹣,2﹣x≥0,∴x2≥0∴x=2,y=,则原式=×==,故答案为:【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.。
中考数学总复习《分式及二次根式》专项测试卷及答案
中考数学总复习《分式及二次根式》专项测试卷及答案(测试时长:60分钟;总分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共8小题,共40分)1.结果相同的是( )A .321-+B .321+-C .321++D .321--2. )A B C D 3.下列计算正确的是( )A 4=±B .()021-=C =D 3= 4.若分式23x x -+的值等于0,则x 的值是( ) A .2 B .﹣2 C .3 D .﹣35.试卷上一个正确的式子(11a b a b++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A .a a b -B .a b a -C .a a b +D .224a a b - 6.化简222a b ab a b b a++--的结果是( ) A .a +b B .a ﹣b C .2()a b a b +- D .2()a b a b-+ 7.(2022年内蒙古乌海)若分式11x x --的值等于0,则x 的值为( ) A .﹣1B .0C .1D .±18.函数11=-+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠- D .23x ≤且1x ≠- 二、填空题(本题共5小题,每空3分,共15分)9.(2022年四川南充)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值_____. 10.计算:2-=_____________. 11.与最简二次根式5是同类二次根式,则a= . 12.已知实数a 、b 30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x 则1211x x +=_____________. 13.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________. 三、解答题(本题共4小题,共45分)14.计算:22)+15.01(2022)2--+.16.先化简,再求值:2225321121x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭,从22x -<≤中选出合适的x 的整数值代入求值.17.阅读下列引例的解答过程:已知x ,y 为实数,且y= √x −2021+√2021−x +1 ,求x+y 的值.解:由题意,得x-2021≥0且2021-x ≥0∴x ≥2 021且x ≤2 021∴x=2 021,∴y=1∴x+y=2 022.结合引例,请挖掘下列问题中所蕴含的条件并解决问题:(1)已知y= √x−4+√4−x2 -2.求(x+y)y 的值.(2)已知y= √−x 2 -1,求x-y 的值.(3)已知|2021-x|+ √x −2022 = x ,求x-20212的值.参考答案:1.A2.D3.B4.A5.A6.B7.A8.D9.5-10.511.212.2 3 -13.243+ 14.715.5 216.11xx-+;-1.17.(1)解:由已知可得x=4,y=-2,∴(x+y)y=(4-2)-2= 14(2)解:由题意得x=0,y=-1,∴x-y=0-(-1)=1(3)解:∵x-2022≥0,∴x≥2022∴x-2021+ √x−2020 =x∴√x−2020 =2021∴x-2 0212=2022.。
中考数学《因式分解》专题训练(附带答案)
中考数学《因式分解》专题训练(附带答案)一、单选题1.下列分解因式中,完全正确的是()A.x3-x=x(x2-1)B.4a2-4a+1=4a(a-1)+1C.x2+y2=(x+y)2D.6a-9-a2=-(a-3)22.下列等式正确的是()A.(a﹣b)2=a2﹣b2B.9a2﹣b2+6ab=(3a﹣b)2C.3a2+2ab﹣b2=(3a﹣b)(a+b)D.3.把多项式x2+3x−54分解因式,其结果是()A. (x+6 ) (x−9 )B. (x−6 ) (x+9 )C. (x+6 ) (x+9 )D. (x−6 ) (x−9 )4.下列多项式中,不能用公式法因式分解的是()A.x2+xy B.x2+2xy+y2C.﹣x2+y2D.14x2﹣xy+y25.下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+16.边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为( ) A.35B.70C.140D.2807.把x2﹣4x+c分解因式得:x2﹣4x+c=(x﹣1)(x﹣3),则c的值为()A.3B.4C.﹣3D.﹣48.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣19.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)10.下列因式分解错误的是()A.x2+xy=x(x+y)B.x2−y2=(x+y)(x−y)C.x2+6x+9=(x+3)2D.x2+y2=(x+y)211.把代数式ax2-4ax+4a因式分解,下列结果中正确的是()A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2)12.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )二、填空题13.分解因式:x 2﹣3x ﹣4= ;(a+1)(a ﹣1)﹣(a+1)= . 14.因式分解:x 2−8x −9= .15.把多项式a 3-4a 分解因式的结果是 。
《分式、二次根式(含解析)》2022年中考数学分类专练
山东省2021年、2021年数学中考试题分类〔3〕——分式、二次根式一.选择题〔共10小题〕1.〔2021•淄博〕化简222a b aba b b a++--的结果是( ) A .a b + B .a b - C .2()a b a b+-D .2()a b a b-+2.〔2021•临沂〕计算11x yx y ---的结果为( ) A .(1)(1)x y x y -+-- B .(1)(1)x yx y ---C .(1)(1)x y x y ----D .(1)(1)x yx y +--3.〔2021•威海〕分式222111a a a a++---化简后的结果为( ) A .11a a +- B .31a a +- C .1a a --D .2231a a +--4.〔2021•济南〕化简24142x x +-+的结果是( ) A .2x - B .12x - C .22x -D .22x + 5.〔2021•临沂〕计算211aa a ---的正确结果是( )A .11a --B .11a -C .211a a ---D .211a a -- 6.〔2021•聊城〕如果分式||11x x -+的值为0, 那么x 的值为( )A .1-B .1C .1-或1D .1或07.〔2021( )A .1B .53C .5D .98.〔2021•济宁〕以下各式是最简二次根式的是( )AB C D 9.〔2021•东营〕以下运算正确的选项是( )A .33352x x x -=-B .3842x x x ÷=C .2xy x xy y x y=-- D 10.〔2021•聊城〕以下各式不成立的是( )AB C 5= D 二.填空题〔共12小题〕11.〔2021•济宁〕3m n +=-, 那么分式22(2)m n m n n m m+--÷-的值是 .12.〔2021•聊城〕计算:21(1)1a a a a+÷=-- .13.〔2021•菏泽〕计算121()(3)2---的结果是 .14.〔2021•菏泽〕计算4)的结果是 .15.〔2021•青岛〕计算:= . 16.〔2021, 那么x 的取值范围为 . 17.〔2021= .18.〔2021•菏泽〕x ,那么2x -的值是 .19.〔2021tan 45︒= .20.〔20210-= .21.〔2021•枣庄〕观察以下各式:1111(1)122=+=+-⨯,11111()2323=+=+-⨯,11111()3434=+=+-⨯, 请利用你发现的规律, 计算:其结果为 .22.〔2021•滨州〕计算:21()|2|2---= .三.解答题〔共13小题〕23.〔2021•东营〕〔1202021(2cos60)()|32-︒--+;〔2〕先化简, 再求值:22222()xy y x y x x x xy---÷+,其中1x, y =. 24.〔2021•潍坊〕先化简, 再求值:213(1)211x x x x x +--÷-+-, 其中x 是16的算术平方根. 25.〔2021•烟台〕先化简, 再求值:2222()y y xx y x y xy y -÷--+,其中1x =+, 1y =. 26.〔2021•青岛〕〔1〕计算:11()()a ba b b a+÷-;〔2〕解不等式组:235,123x x x --⎧⎪⎨+<⎪⎩27.〔2021•菏泽〕先化简, 再求值:2124(2)244a a a a a a --÷+++, 其中a 满足2230a a +-=. 28.〔2021•德州〕先化简:2124()244x x xx x x x -+--÷--+, 然后选择一个适宜的x 值代入求值. 29.〔2021•滨州〕先化简, 再求值:22221244y x x y x y x xy y ---÷+++;其中cos30x =011(3)()3y π-=--.30.〔2021•莱芜区〕先化简, 再求值:1(1)(2)a a a -÷+-, 其中1a =-.31.〔2021•日照〕〔1〕计算:0201911|2|(1)()2π-++--;〔2〕先化简, 再求值:233111a a a a ++-÷--, 其中2a =; 〔3〕解方程组:25,342x y x y -=⎧⎨+=⎩32.〔2021•烟台〕先化简2728(3)33x xx x x -+-÷--, 再从04x 中选一个适合的整数代入求值.33.〔2021•东营〕〔1〕计算:101()(3.14)|2sin 452019π-+-++︒;〔2〕化简求值:22222()a b a ab b a b a ab a++-÷--, 当1a =-时, 请你选择一个适当的数作为b 的值, 代入求值.34.〔2021•菏泽〕先化简, 再求值:22121(1)y x y x y y x -÷-+-, 其中2019x y =+.35.〔2021sin 602︒.山东省2021年、2021年数学中考试题分类〔3〕——分式、二次根式一.选择题〔共10小题〕1.〔2021•淄博〕化简222a b aba b b a++--的结果是( ) A .a b + B .a b - C .2()a b a b +- D .2()a b a b-+【解答】解:原式222a b aba b a b+=--- 222a b aba b +-=- 2()a b a b -=- a b =-. 应选:B .2.〔2021•临沂〕计算11x yx y ---的结果为( ) A .(1)(1)x y x y -+-- B .(1)(1)x yx y ---C .(1)(1)x y x y ----D .(1)(1)x yx y +--【解答】解:原式(1)(1)(1)(1)(1)(1)x y y x x y x y --=----- (1)(1)xy x xy yx y --+=-- (1)(1)x yx y -+=--. 应选:A .3.〔2021•威海〕分式222111a a a a++---化简后的结果为( ) A .11a a +- B .31a a +- C .1a a -- D .2231a a +--【解答】解:222111a a a a++--- 2(1)1(1)(1)1a a a a a ++=++-- 2111a a a +=+-- 31a a +=-. 应选:B .4.〔2021•济南〕化简24142x x +-+的结果是( ) A .2x - B .12x - C .22x - D .22x +【解答】解:原式4221(2)(2)(2)(2)(2)(2)2x x x x x x x x x -+=+==+-+-+--, 应选:B .5.〔2021•临沂〕计算211a a a ---的正确结果是( )A .11a --B .11a -C .211a a ---D .211a a -- 【解答】解:原式2(1)1a a a =-+-,22111a a a a -=---, 11a =-. 应选:B .6.〔2021•聊城〕如果分式||11x x -+的值为0, 那么x 的值为( )A .1-B .1C .1-或1D .1或0【解答】解:根据题意, 得 ||10x -=且10x +≠, 解得, 1x =. 应选:B .7.〔2021( )A .1B .53C .5D .9【解答】解:原式===1515= 1=.应选:A . 8.〔2021•济宁〕以下各式是最简二次根式的是( )AB C D【解答】解:A , 符合题意;B =, 不是最简二次根式, 不符合题意;C =不是最简二次根式, 不符合题意;D =不是最简二次根式, 不符合题意. 应选:A . 9.〔2021•东营〕以下运算正确的选项是( )A .33352x x x -=-B .3842x x x ÷=C .2xy x xy y x y=-- D 【解答】解:A 、333352x x x -=-, 故此选项错误; B 、32842x x x ÷=, 故此选项错误;C 、2xy xxy y x y=--, 正确;D , 故此选项错误. 应选:C . 10.〔2021•聊城〕以下各式不成立的是( )AB C 5= D【解答】==, A 选项成立, 不符合题意;=B 选项成立, 不符合题意;=, C 选项不成立, 符合题意;==D 选项成立, 不符合题意;应选:C .二.填空题〔共12小题〕11.〔2021•济宁〕3m n +=-, 那么分式22(2)m n m n n m m +--÷-的值是 13.【解答】解:原式22(2)m n m mn n m m+-++=÷2()m n mm m n +=-+ 1m n=-+, 当3m n +=-时,原式13=故答案为:1312.〔2021•聊城〕计算:21(1)1a a a a+÷=-- a - .【解答】解:原式1(1)1a aa a a-+=--1(1)1a a a =-- a =-.故答案为:a -.13.〔2021•菏泽〕计算121()(3)2---的结果是 7- .【解答】解:原式297=-=-. 故答案为:7-.14.〔2021•菏泽〕计算4)的结果是 13- .【解答】解:原式224=- 316=- 13=-.故答案为:13-.15.〔2021•青岛〕计算:= 4 .【解答】解:原式==4=,故答案为:4.16.〔2021, 那么x 的取值范围为 5x .【解答】在实数范围内有意义, 必须50x -, 解得:5x ,故答案为:5x .17.〔2021=【解答】解:原式==故答案为:18.〔2021•菏泽〕x =, 那么2x -的值是 4 .【解答】解:2x -=226x ∴-+=,24x ∴-=, 故答案为:419.〔2021tan 45︒=1 .【解答】tan 4511︒=-,1.20.〔20210-= 1 .【解答】0211-=-=,故答案为:1.21.〔2021•枣庄〕观察以下各式:1111(1)122=+=+-⨯,11111()2323=+=+-⨯,11111()3434=+=+-⨯, 请利用你发现的规律, 计算:其结果为 20182018 .【解答】111111(1)1()1()22320182019=+-++-+⋯++-1111111201812233420182019=+-+-+-+⋯+-201820182019=, 故答案为:201820182019.22.〔2021•滨州〕计算:21()|2|2---= 2+【解答】解:原式422=-=+故答案为:2+三.解答题〔共13小题〕23.〔2021•东营〕〔1202021(2cos60)()|32-︒--+;〔2〕先化简, 再求值:22222()xy y x yx x x xy ---÷+, 其中1x , y =.【解答】解:〔1〕原式202021(2)2(32=⨯--+143=---6=;〔2〕原式222222x xy y x xyx x y -++=-2()()()()x y x x y x x y x y -+=+- x y =-.当1x =, y =时,原式11=.24.〔2021•潍坊〕先化简, 再求值:213(1)211x x x x x +--÷-+-, 其中x 是16的算术平方根. 【解答】解:原式2222113()21211x x x x x x x x x -++-=-÷-+-+-, 2231()213x x x x x x --=⨯-+-, 2(3)1(1)3x x x x x --=⨯--, 1xx =-. x 是16的算术平方根, 4x ∴=,当4x =时, 原式43=.25.〔2021•烟台〕先化简, 再求值:2222()y y xx y x y xy y -÷--+, 其中1x =+, 1y =.【解答】解:2222()y y xx y x y xy y -÷--+, 2()[]()()()()()y x y y xx y x y x y x y y x y +=-÷+-+-+, ()()()xy y x y x y x y x +=⨯+-, 2y x y=-,当1x =, 1y =时,原式2=26.〔2021•青岛〕〔1〕计算:11()()a ba b b a+÷-;〔2〕解不等式组:235,123x x x --⎧⎪⎨+<⎪⎩【解答】解:〔1〕原式22()()b a a b ab ab ab ab=+÷-22a b a b ab ab +-=÷()()a b abab a b a b +=+- 1a b =-;〔2〕解不等式235x --, 得:1x -,解不等式123x x +<, 得:3x >,那么不等式组的解集为3x >.27.〔2021•菏泽〕先化简, 再求值:2124(2)244a a a a a a --÷+++, 其中a 满足2230a a +-=. 【解答】解:原式2224124()22(2)a a a a a a a +-=-÷+++ 2228(2)24a a a a a -+=+- 22(4)(2)24a a a a a -+=+- 2(2)a a =+22(2)a a =+2230a a +-=, 223a a ∴+=,那么原式236=⨯=.28.〔2021•德州〕先化简:2124()244x x xx x x x -+--÷--+, 然后选择一个适宜的x 值代入求值. 【解答】解:2124()244x x xx x x x -+--÷--+2(1)(2)(2)(2)[](2)(2)4x x x x x x x x x x--+-=-⨯--- 24(2)(2)4x x x x x --=-- 2x x-=, x 不能取0, 2, 4把1x =代入21211x x --==-.29.〔2021•滨州〕先化简, 再求值:22221244y x x y x y x xy y ---÷+++;其中cos30x =011(3)()3y π-=--. 【解答】解:原式2()()12(2)y x x y x y x y x y -+-=-÷++ 2(2)12()()x y x y x y x y x y -+=+++- 21x yx y +=++ 2x y x yx y +++=+ 23x yx y+=+,cos303x =, 011(3)()1323y π-=--=-=-, ∴原式233(2)032⨯+⨯-==-.30.〔2021•莱芜区〕先化简, 再求值:1(1)(2)a a a-÷+-, 其中1a =-.【解答】解:1(1)(2)a a a-÷+-221(1)a a a a -+=-÷2(1)(1)aa a =-- 1a a =-, 当1a =-时, 原式11112-==--.31.〔2021•日照〕〔1〕计算:0201911|2|(1)()2π-++--;〔2〕先化简, 再求值:233111a a a a ++-÷--, 其中2a =; 〔3〕解方程组:25,342x y x y -=⎧⎨+=⎩【解答】解:〔1〕02019112|(1)()2π-++--21(1)2=+--=〔2〕233111a a a a ++-÷-- 311(1)(1)3a a a a a +-=-+-+ 111a =-+ 111a a +-=+ 1a a =+ 当2a =时, 原式22213==+; 〔3〕25342x y x y -=⎧⎨+=⎩①②, ①4⨯+②, 得1122x =,解得, 2x =,将2x =代入①中, 得1y =-, 故原方程组的解是21x y =⎧⎨=-⎩. 32.〔2021•烟台〕先化简2728(3)33x x x x x -+-÷--, 再从04x 中选一个适合的整数代入求值. 【解答】解:2728(3)33x x x x x -+-÷-- 229728()333x x x x x x --=-÷--- (4)(4)332(4)x x x x x x +--=-- 42x x+=, 当1x =时, 原式145212+==⨯.33.〔2021•东营〕〔1〕计算:101()(3.14)|2sin 452019π-+-++︒; 〔2〕化简求值:22222()a b a ab b a b a ab a ++-÷--, 当1a =-时, 请你选择一个适当的数作为b 的值, 代入求值.【解答】解:〔1〕原式201912=++2020=+-2020=;〔2〕原式222()()a b a a a b a b -=-+ 2()()()()a b a b a a a b a b -+=-+1a b=+, 当1a =-时, 取2b =, 原式1112==-+. 34.〔2021•菏泽〕先化简, 再求值:22121(1)y x y x y y x -÷-+-, 其中2019x y =+. 【解答】解:22121(1)y x y x y y x -÷-+- 12()()()y x y y x y x x y x y-+=+--+ (2)y x y =---x y =-,2019x y =+,∴原式20192019y y =+-=.35.〔2021sin 60︒.【解答】解:原式1123=-1=+=.。
全国2024年中考数学试题精选50题分式二次根式含解析
2024年全国中考数学试题精选50题:分式、二次根式一、单选题1.(2024·绵阳)若有意义,则a的取值范围是()A. a≥1B. a≤1C. a≥0D. a≤﹣12.(2024·淄博)化简的结果是()A. a+bB. a﹣b C.D.3.(2024·威海)人民日报讯,2024年6月23日,中国胜利放射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统投时精度达到了十亿分之一秒,十亿分之一用科学记数法可以表示为()A. B.C.D.4.(2024·威海)分式化简后的结果为()A. B.C.D.5.(2024·滨州)冠状病毒的直径约为80~120纳米,1纳米=米,若用科学记数法表示110纳米,则正确的结果是()A. 米B.米 C.米 D. 米6.(2024·鄂尔多斯)二次根式中,x的取值范围在数轴上表示正确的是()A. B. C.D.7.(2024·赤峰)2024年6月23日9时43分,我国胜利放射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.000 000 009 9秒.数据“0. 000 000 009 9”用科学记数法表示为()A. B.C.D.8.(2024·云南)下列运算正确的是()A. B.C. D.9.(2024·南通)下列运算,结果正确的是()A. B.C. D.10.(2024·上海)下列各式中与是同类二次根式的是()A. B.C.D.11.(2024·呼和浩特)下列运算正确的是()A.B.C. D.12.(2024·包头)的计算结果是()A. 5B.C.D.13.(2024·包头)下列计算结果正确的是()A. B.C. D.14.(2024·长沙)下列运算正确的是()A. B.C. D.15.(2024·邵阳)下列计算正确的是()A.B.C.D.16.(2024·郴州)下列运算正确的是()A. B.C. D.17.(2024·郴州)年月日,北斗三号最终一颗全球组网卫星在西昌卫星放射中心点火升空.北斗卫星导航系统可供应高精度的授时服务,授时精度可达纳秒(秒= 纳秒)用科学记数法表示纳秒为()A. 秒B.秒 C.秒 D. 秒18.若关于x的分式方程=+5的解为正数,则m的取值范围为()A. m<﹣10B. m≤﹣10 C. m≥﹣10且m≠﹣6 D. m>﹣10且m≠﹣6二、填空题19.(2024·眉山)关于x的分式方程的解为正实数,则k的取值范围是________.20.(2024·东营)2024年6月23日9时43分,“北斗三号”最终一颗全球组网卫星放射胜利,它的授21.(2024·永州)在函数中,自变量x的取值范围是________.22.(2024·南县)若计算的结果为正整数,则无理数m的值可以是________.(写出一个符合条件的即可)23.(2024·昆明)要使有意义,则x的取值范围是________.24.(2024·营口)(3 + )(3 ﹣)=________.25.(2024·山西)计算:________.26.(2024·呼和浩特)分式与的最简公分母是________,方程的解是________.27.(2024·包头)计算:________.28.(2024·包头)在函数中,自变量的取值范围是________.29.(2024·邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.21 6330.(2024·郴州)若分式的值不存在,则________.31.(2024·黑龙江)在函数中,自变量x的取值范围是________.三、计算题32.(2024·眉山)先化简,再求值:,其中.33.(2024·烟台)先化简,再求值:÷ ,其中x=+1,y=﹣1.34.(2024·滨州)先化筒,再求值:其中35.(2024·呼伦贝尔)先化简,再求值:,其中.36.(2024·鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:()÷ ,其中a满意a2+2a﹣15=0.37.(2024·赤峰)先化简,再求值:,其中m满意:.38.(2024·永州)先化简,再求值:,其中.39.(2024·南县)先化简,再求值:,其中40.(2024·云南)先化简,再求值:,其中.41.(2024·营口)先化简,再求值:(﹣x)÷ ,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2024·宿迁)先化简,再求值:÷(x﹣),其中x=﹣2.43.(2024·南通)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)44.(2024·娄底)计算:45.(2024·郴州)计算:46.(1)计算:sin30°+ ﹣(3﹣)0+|﹣|(2)因式分解:3a2﹣4847.(2024·长沙)先化简,再求值,其中48.(2024·娄底)先化简,然后从,0,1,3中选一个合适的数代入求值.49.(2024·山西)(1)计算:(2)下面是小彬同学进行分式化简的过程,请仔细阅读并完成相应任务.第一步其次步第三步第四步第五步第六步任务一:填空:①以上化简步骤中,第________步是进行分式的通分,通分的依据是________或填为________;②第________步起先出现不符合题意,这一步错误的缘由是________;(3)任务二:请干脆写出该分式化简后的正确结果;解;.任务三:除订正上述错误外,请你依据平常的学习阅历,就分式化简时还须要留意的事项给其他同学提一条建议.50.(2024·通辽)用※定义一种新运算:对于随意实数m和n ,规定,如:.(1)求;(2)若,求m的取值范围,并在所给的数轴上表示出解集.答案解析部分一、单选题1.【答案】 A【解析】【解答】解:若有意义,则,解得:.故答案为:A.【分析】干脆利用二次根式有意义的条件分析得出答案.2.【答案】 B【解析】【解答】解:原式====a﹣b.故答案为:B.【分析】跟据同分母分式相加减的运算法则计算.同分母分式相加减,分母不变,分子相加减.3.【答案】 B【解析】【解答】,故答案为:B.【分析】依据科学记数法的表示形式(n为整数)进行表示即可求解.4.【答案】 B【解析】【解答】解:故答案为:B.【分析】依据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再依据同分母分式相加减的法则计算.5.【答案】 C【解析】【解答】解:110纳米=110×10-9米=1.1×10-7米.故答案为:C.【分析】肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所确定.6.【答案】 D【解析】【解答】解:依据题意得3+x≥0,解得:x≥﹣3,故x的取值范围在数轴上表示正确的是.故答案为:D .【分析】依据二次根式的性质,被开方数大于或等于0,可以求出x的范围.7.【答案】 C【解析】【解答】解:0. 000 000 009 9用科学记数法表示为.8.【答案】 D【解析】【解答】解:A. ,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确;故答案为:D.【分析】依据一个正数的正的平方根就是该数的算术平方根即可推断A;依据与互为倒数即可推断B;依据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘即可推断C;依据同底数幂的除法,底数不变,指数相减即可推断D.9.【答案】 D【解析】【解答】解:A. 与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C. ,此选项错误;D. ,此选项计算正确.故答案为:D.【分析】(1)由同类二次根式的定义可知与不是同类二次根式,所以不能合并;(2)同理可知不能合并;(3)由二次根式的除法法则可得原式=;(4)由二次根式的乘法法则可得原式=.10.【答案】 C【解析】【解答】解:A、和是最简二次根式,与的被开方数不同,故A选项不符合题意;B、,3不是二次根式,故B选项不符合题意;C、,与的被开方数相同,故C选项符合题意;D、,与的被开方数不同,故D选项不符合题意;故答案为:C.【分析】依据同类二次根式的概念逐一推断即可.11.【答案】 C【解析】【解答】解:A、,不符合题意;B、,不符合题意;C、=== ,符合题意;D、,不符合题意;故答案为:C.【分析】分别依据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则推断即可.12.【答案】 C【解析】【解答】= ,故答案为:C.【分析】依据二次根式的运算法则即可求解.13.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】依据幂的乘方、积的乘方、单项式除法、分式加法以及分式乘除混合运算的学问逐项解除即可.14.【答案】 B【解析】【解答】解:A、,故本选项不符合题意;B、,故本选项符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意.故答案为:B.【分析】依据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用解除法求解.15.【答案】 D【解析】【解答】解:A. ,故A选项不符合题意;B. ,故B选项不符合题意;C. ,故C选项不符合题意;D. ,故D选项符合题意.故答案为D.【分析】分别运用二次根式、整式的运算、分式的运算法则逐项解除即可.16.【答案】 A【解析】【解答】A. ,计算符合题意,符合题意;B. ,故本选项不符合题意;C. ,故本选项不符合题意;D. 不能计算,故本选项不符合题意;故答案为:A.【分析】依据积的乘方、同底数幂的乘法、二次根式的减法以及合并同类项法则进行计算得出结果进行推断即可.17.【答案】 A【解析】【解答】∵1秒=1000000000纳秒,∴10纳秒=10÷1000000000秒=0.000 00001秒=1×10-8秒.故答案为:A.【分析】肯定值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所运用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所确定.18.【答案】 D【解析】【解答】解:去分母得,解得,由方程的解为正数,得到,且,,则m的范围为且,二、填空题19.【答案】 k>-2且k≠2【解析】【解答】解:方程两边同乘(x-2)得,1+2x-4=k-1,解得,,且故答案为:且【分析】利用解分式方程的一般步骤解出方程,依据题意列出不等式,解不等式即可.20.【答案】【解析】【解答】因为,故答案为:.【分析】依据科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所确定,进而求解.21.【答案】x≠3【解析】【解答】∵在函数中,x-3≠0,∴x≠3.故答案是:x≠3.【分析】依据分式有意义的条件,即可求解.22.【答案】(答案不唯一)【解析】【解答】解:∵ ,∴ 时的结果为正整数,故答案为:(答案不唯一).【分析】依据为12,即可得到一个无理数m的值.23.【答案】x≠﹣1【解析】【解答】解:要使分式有意义,需满意x+1≠0.即x≠﹣1.故答案为:x≠﹣1.【分析】依据分式的分母不能为0,建立不等式即可求解.24.【答案】 12【解析】【解答】解:原式=(3 )2﹣()2=18﹣6=12.故答案为:12.【分析】干脆利用平方差公式去括号,再依据二次根式的性质化简,最终利用有理数的减法计算得出答案.25.【答案】 5【解析】【解答】原式=2+2 +3−2 =5.故答案为5.【分析】敏捷运用完全平方公式进行求解.26.【答案】;x=-4【解析】【解答】解:∵ ,∴分式与的最简公分母是,方程,去分母得:,去括号得:,移项合并得:,变形得:,解得:x=2或-4,∵当x=2时,=0,当x=-4时,≠0,∴x=2是增根,∴方程的解为:x=-4.【分析】依据最简公分母的定义得出结果,再解分式方程,检验,得解.27.【答案】【解析】【解答】解:=== .故答案为.【分析】先将乘方绽开,然后用平方差公式计算即可.28.【答案】【解析】【解答】在函数中,分母不为0,则,即,故答案为:.【分析】在函数中,分母不为0,则x-3≠0,求出x的取值范围即可.29.【答案】【解析】【解答】解:由题意可知,第一行三个数的乘积为:,设其次行中间数为x ,则,解得,设第三行第一个数为y ,则,解得,∴2个空格的实数之积为.故答案为:.【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最终一行的三个数相等都是,即可求解.30.【答案】 -1【解析】【解答】∵分式的值不存在,∴x+1=0,解得:x=-1,故答案为:-1.【分析】依据分式无意义的条件列出关于x的方程,求出x的值即可.31.【答案】【解析】【解答】解:函数中:,解得:.故答案为:.【分析】干脆利用二次根式和分式有意义的条件列出不等式组求解即可.三、计算题32.【答案】解:原式,,.当时,原式【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.33.【答案】解:÷=÷=×=当x=+1,y=﹣1时原式==2﹣.【解析】【分析】依据分式四则运算依次和运算法则对原式进行化简÷ ,得到最简形式后,再将x=+1、y=﹣1代入求值即可.34.【答案】解:,,,;∵ ,所以,原式.【解析】【分析】干脆利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.35.【答案】解:原式== ,将代入得:原式=-4+3=-1,故答案为:-1.【解析】【分析】先依据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.36.【答案】(1)解:解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)解:原式=====,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.【解析】【分析】(1)分别求出每一个不等式的解集,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;(2)先依据分式的混合运算依次和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.37.【答案】解:原式为==== ,又∵m满意,即,将代入上式化简的结果,∴原式= .【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并依据m所满意的条件得出,将其代入化简后的公式,即可求得答案.38.【答案】解:当时,原式【解析】【分析】先依据分式的混合运算步骤进行化简,然后代入求值即可.39.【答案】解:时,原式=【解析】【分析】先利用分式的运算法则化简,然后代入计算即可.40.【答案】解:当上式【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.41.【答案】解:原式===﹣2﹣x.∵x≠1,x≠2,∴在0≤x≤2的范围内的整数选x=0.当x=0时,原式=﹣2﹣0=﹣2.【解析】【分析】先通分计算括号内异分母分式的减法,再将能分解因式的分子、分母分解因式,化除法为乘法进行约分化简,然后依据分式有意义的条件取x的值,代入求值即可.42.【答案】解:原式=÷( ﹣)=÷=·=,当x=﹣2时,原式===.【解析】【分析】先通分计算括号内异分母分式的减法,再将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转变为乘法,约分化为最简形式,最终将x的值代入计算可得.43.【答案】(1)解:原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)解:原式====.【解析】【分析】(1)依据完全平方公式,平方差公式去括号,再合并同类项即可;(2)括号内先通分计算,将各个分式的分子、分母能分解因式的分别分解因式,然后变除为乘,进行约分即可.44.【答案】原式.【解析】【分析】先计算肯定值运算、特别角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.45.【答案】.【解析】【分析】依据负整指数幂的性质,特别角的三角函数值,肯定值,零指数幂的性质,干脆计算即可.46.【答案】(1)sin30°+ ﹣(3﹣)0+|﹣|=+4﹣1+=4;(2)3a2﹣48=3(a2﹣16)=3(a+4)(a﹣4).【解析】【分析】(1)先用特别角的三角函数值、零指数幂的性质、肯定值的性质、算术平方根的学问化简,然后计算即可;(2)先提取公因式3,再运用平方差公式分解因式即可.四、解答题47.【答案】.将x=4代入可得:原式= .【解析】【分析】先将代数式化简,再代入值求解即可.48.【答案】原式分式的分母不能为0解得:m不能为,0,3则选代入得:原式.【解析】【分析】先计算括号内的分式减法,再计算分式的除法,然后选一个使得分式有意义的x的值代入求值即可.五、综合题49.【答案】(1)原式(2)三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号(3)解:答案不唯一,如:最终结果应化为最简分式或整式;约分,通分时,应依据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【解析】【解答】(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号;故答案为:五;括号前是“ ”号,去掉括号后,括号里的其次项没有变号;【分析】(1)先分别计算乘方,与括号内的加法,再计算乘法,再合并即可得到答案;(2)先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,依据同分母分式的加减法进行运算,留意最终的结果必为最简分式或整式.50.【答案】(1)===(2)∵ ,∴解得:将解集表示在数轴上如下:【解析】【分析】(1)依据新定义规定的运算法则列式,再由有理数的运算法则计算可得;(2)依据新定义列出关于x的不等式,解不等式即可得.。
九年级二次根式专题训练
九年级二次根式专题训练一、二次根式的概念1. 二次根式的定义- 形如公式的式子叫做二次根式。
其中,公式叫做被开方数。
- 例如:公式,公式都是二次根式,因为公式,公式。
而公式不是二次根式,因为公式。
2. 二次根式有意义的条件- 被开方数必须是非负数。
- 例1:求公式中公式的取值范围。
- 解析:要使二次根式有意义,则公式,解得公式。
- 例2:若公式有意义,则公式满足的条件是()- A. 公式 B. 公式 C. 公式 D. 公式- 解析:因为二次根式有意义的条件是被开方数公式,解不等式公式,公式,得公式,所以答案是B。
二、二次根式的性质1. 公式- 例1:计算公式。
- 解析:根据性质公式,所以公式。
- 例2:若公式,则公式____。
- 解析:由公式(公式),已知公式,所以公式。
2. 公式- 例1:化简公式。
- 解析:先计算公式,然后公式。
- 例2:化简公式。
- 解析:先将公式变形为公式,则公式,因为公式,所以公式,公式。
三、二次根式的乘除1. 二次根式的乘法法则- 公式。
- 例1:计算公式。
- 解析:根据乘法法则公式。
- 例2:化简公式。
- 解析:将公式分解因数公式,则公式。
2. 二次根式的除法法则- 公式。
- 例1:计算公式。
- 解析:根据除法法则公式。
- 例2:化简公式。
- 解析:公式。
四、二次根式的加减1. 同类二次根式- 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
- 例如:公式化简为公式,公式化简为公式,公式和公式是同类二次根式,因为它们化成最简二次根式后被开方数都是公式。
2. 二次根式的加减法则- 二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式合并。
- 例1:计算公式。
- 解析:先化简公式,公式,则公式。
- 例2:计算公式。
- 解析:化简公式,公式,公式,则公式。
因式分解、分式、二次根式测试题
数学测试题二(总分120分)之青柳念文创作------因式分解、分式、二次根式一、选择题:(每小题3分,共30分)1. 多项式15x3y4m2-35x4y2m2+20x3ym的各项公因式是()A 5x3yB 5x3ymC 5x3m D5x3m2y2. 下列从左到右的变形中是因式分解的是()A (a+b)2=a2+2ab+b2B x2-4x+5=(x-2x)2+1C x2-5x-6=(x+6)(x-1)D x2-10x+25=(x-5)2(B C D(E4.C D)(A)1 (BC D6. 多项式a2+b2, x2-y2, -x2-y2, -a2+b2中,能分解因式的有()A 4个B 3个C 2个D 1个7. 如果多项式x2-mx-15能分解因式,则m的值为()A 2或-2B 14或-14C 2或-14D ±2或±148. 若22)(81814181x a a a +=+-则x 为( )A 1B -1C 21 D -2 9. 若多项式4ab -4a 2-b 2-m 有一个因式为(1-2a+b )则m的值为( )A 0B 1C -1D 410. 如果 (a 2+b 2-3) (a 2+b 2) -10 = 0那末a 2+b 2的值为( )A -2B 5C 2D -2或5二、填空题(每小题4分,共20分)1、二次根式,(8)1/2,(75)1/2,(1/50)1/2,(1/27)1/2,(48)1/2中,是同类二次根式的分别是_______.2 中根号外的因式移到根号内,化简为_______.3、当X________时,式子(7-2X)1/2有意义.4.已知a 、b 、c 为正数,d 2222d c ab d c ab +-=______.5.若1+x +3-y =0,则(x -1)2+(y +3)2=______.三、分解下列各式与计算:(每小题4分,共28分)1、- m 2 – n 2 + 2mn + 1 3. (x +a)2 – (x – a)2 4. –x 5y – xy+2x 3y 5、()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-÷+--x x x x 11116.(6、7用简便方法计算)7.四、化简求值:(每题6分,共18分)1、已知:a2– b2– 5=0 c2 – d2– 2 =02、求:(ac + bd)2– (ad + bc)2的值3五、观察下列分解因式的过程:8分)分解因式的方法,叫做配方法.x2+ 2ax –3a2请你用配方法分解因式:=x2+2ax+a2–a2–3a2(先加上a2,再减去a2)m2– 4mn +3n2=(x+a)2– 4a2(运用完全平方公式)=(x+a+2a) (x+a – 2a) (运用平方差公式)=(x+3a) (x – a) 像上面这样通过加减项配出完全平方式把二次三项式六、(每小题8分,共16分)列方程解应用题:(1)一组学生乘汽车去春游,预计共需车费120元,后来变,这样每人少摊3元,原来这组学生的人数是多少个?(2)有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超出规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?。
2023年中考一轮数学专项测试——分式与二次根式(含答案)
分式与二次根式专项测试卷(考试时间:60分钟卷面满分:100)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.)1.(2021年黑龙江绥化)定义一种新的运算:如果.则有,那么的值是()A.B.5C.D.2.(2021·上海中考真题)下列实数中,有理数是()A.B.C.D.3.(2021·四川成都市·中考真题)分式方程的解为()A.B.C.D.4.(2022广东广州)代数式有意义时,应满足的条件为()A.B.C.D.≤-1 5.(2020·辽宁朝阳市·中考真题)计算的结果是()A.0B.C.D.6.(2020·浙江金华市·中考真题)分式的值是零,则的值为()A.5B.C.D.27.(2022年山东威海)试卷上一个正确的式子()÷★=被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A.B.C.D.8.(2019·山东聊城市·中考真题)下列各式不成立的是()A. B.C.D.二、填空题:(本题共4小题,每小题5分,共20分.)9.(2022年黑龙江哈尔滨)在函数中,自变量x的取值范围是___________.10.(2021·四川眉山市·中考真题)观察下列等式:;;;……根据以上规律,计算______.11.(2020·内蒙古呼和浩特市·中考真题)分式与的最简公分母是_______,方程的解是____________.12.(2020·黑龙江绥化市·中考真题)在函数中,自变量x的取值范围是_________.三、解答题:(本题共4题,共40分.解答应写出文字说明、证明过程或演算步骤.)13.(2020年湖南永州)先化简,再求值:,其中.14.(2019·辽宁大连市·中考真题)计算:15.(2021·陕西中考真题)解方程:.16.(2021年山东烟台)先化简,再求值:,从中选出合适的x的整数值代入求值.参考答案:1.B2.C3.A4.B5.B6.B7.A8.C9.10.11.x=-412.且13.,114.715.16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【来源】山东省淄博市 2018 年中考数学试题
【答案】2x(x﹣1)(x﹣2).
【解析】分析:首先提取公因式 2x,再利用十字相乘法分解因式得出答案.
详解:2x3﹣6x2+4x
=2x(x2﹣3x+2)
=2x(x﹣1)(x﹣2).
故答案为:2x(x﹣1)(x﹣2).
点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关
【答案】
【解析】【分析】根据平方差公式直接进行因式分解即可.
【解答】原式
故答案为:
【点评】考查因式分解,常用的方法有:提取公因式法,公式法,十字相乘法.
19.若分式 的值为 0,则 x 的值为______.
【来源】山东省滨州市 2018 年中考数学试题 【答案】-3
20.若分式
有意义,则 的取值范围是_______________ .
【答案】(4+x)(4﹣x)
【解析】分析:16 和 x2 都可写成平方形式,且它们符号相反,符合平方差公式特点,利用
平方差公式进行因式分解即可.
详解:16-x2=(4+x)(4-x).
点睛:本题考查利用平方差公式分解因式,熟记公式结构是解题的关键.
11.分解因式:2x3﹣6x2+4x=__________.
详解:原式=
,
=
,
=a﹣1
故选:B.
点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,
本题属于基础题型.
9.下列分解因式正确的是( )
A.
B.
C.
D.
【来源】安徽省 2018 年中考数学试题
【答案】C 二、填空题 10.分解因式:16﹣x2=__________.
【来源】江苏省连云港市 2018 年中考数学试题
【答案】2ab(a﹣b)2.
16.因式分解:
__________.
【来源】江苏省扬州市 2018 年中考数学试题
【答案】
【解析】分析:原式提取 2,再利用平方差公式分解即可.
详解:原式=2(9-x2)=2(x+3)(3-x),
故答案为:2(x+3)(3-x)
点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的
详解:原式=(x+2)(x-1).
故答案是:(x+2)(x-1).
点睛:考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式
提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
15.分解因式:2a3b﹣4a2b2+2ab3=_____.
【来源】四川省宜宾市 2018 年中考数学试题
.
故选:C. 点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础 题型.
6.若分式 的值为 0,则 x 的值是( )
A. 2 B. 0 C. -2 D. -5 【来源】浙江省温州市 2018 年中考数学试卷 【答案】A 【解析】分析: 根据分式的值为 0 的条件:分子为 0 且分母不为 0,得出混合组,求解得出 x 的值. 详解: 根据题意得 :x-2=0,且 x+5≠0,解得 x=2. 故答案为:A. 点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于 零.
键.
12.分解因式:a2-5a =________.
【来源】浙江省温州市 2018 年中考数学试卷
【答案】a(a-5)
13.已知
,
,则代数式
的值为__________.
【来源】四川省成都市 2018 年中考数学试题
【答案】0.36
【解析】分析:原式分解因式后,将已知等式代入计算即可求出值.
详解:∵x+y=0.2,x+3y=1,
∴2x+4y=1.2,即 x+2y=0.6,
则原式=(x+2y)2=0.36.
故答案为:0.36
点睛:此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.
14.因式分解:
____________.
【来源】山东省潍坊市 2018 年中考数学试题
【答案】
【解析】分析:通过提取公因式(x+2)进行因式分解.
解得: 故选 A. 【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.
3.计算
的结果为
A.
B.
C.
D.
【来源】江西省 2018 年中等学校招生考试数学试题 【答案】A
4.若分式 的值为零,则 x 的值是( )
A. 3 B. -3 C. ±3 D. 0 【来源】浙江省金华市 2018 年中考数学试题 【答案】A 【解析】试题分析:分式的值为零的条件:分子为 0 且分母不为 0 时,分式的值为零.
7.已知
,
,则式子
的值是( )
A. 48 B.
C. 16 D. 12
【来源】湖北省孝感市 2018 年中考数学试题
【答案】D
8.化简
的结果为( )
A.
B. a﹣1 C. a D. 1
【来源】山东省淄博市 2018 年中考数学试题 【答案】B 【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.
由题意得
,
,故选 A.
考点:分式的值为零的条件
点评:本题属于基础应用题,只需学生熟练掌握分式的值为零的条件,即可完成.学科@网
5.计算
的结果为( )
A. 1 B. 3 C.
D.
【来源】天津市 2018 年中考数学试题 【答案】C 【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.
详解:原式=
最新中考数学知识点专题练习卷
因式分解、分式及二次根式
一、单选题 1.估计
的值应在( )
A. 1 和 2 之间 B. 2 和 3 之间 C. 3 和 4 之间 D. 4 和 5 之间 【来源】【全国省级联考】2018 年重庆市中考数学试卷(A 卷) 【答案】B
2.若分式 的值为 0,则 的值是( )
A. 2 或-2 B. 2 C. -2 D. 0 【来源】2018 年甘肃省武威市(凉州区)中考数学试题 【答案】A 【解析】【分析】分式值为零的条件是:分子为零,分母不为零. 【解答】根据分式有意义的条件得:
关键.
17.分解因式:
________.
【来源】2018 年浙江省舟山市中考数学试题
【答案】
【解析】【分析】用提取公因式法即可得到结果.
【解答】原式=
.
故答案为:
【点评】考查提取公因式法因式分解,解题的关键是找到公因式.
18.因式分解:
__________.
【来源】2018 年浙江省绍兴市中考数学试卷解析