广东省惠州市2018届高三第三次调研考试数学文试题 含
最新-广东省惠州市2018届高三数学第三次月考试题 文新
2018届高三调研考试数学试题(文科)本卷分选择题非选择题两部分,共4页,满分150分.考试用时间120分钟. 注意事项:1. 考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔签字笔写在答题卷上;2. 选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上。
答在试题卷上不得分;3.考试结束,考生只需将答题卷交回. 4. 参考公式: 锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集{}1,2,3,4,5,6U =, 集合{}1,3,5A =, {}1,2B =, 则(U C B )A .φB .{}5C .{}3D .{}3,52.下列函数在其定义域内既是奇函数又是增函数的是 ( ) A .tan y x = B .3xy = C .13y x = D .lg y x = 3.如图所示的流程图中,输出的结果是A .5B .20C .60D .1204.三棱柱的直观图和三视图(主视图和俯视图是正方形,左视图是等腰直角三角形)如图所示, 则这个三棱柱的全面积等于 A.12+ B.6+C.8+ D .45.设数列{}n a 是等差数列, 12324a a a ++=-, 1926a =, 则此数列{}n a 前20项和等于 A .160 B .180 C .200 D .2206. 函数xy xe =的最小值是主视图 左视图俯视图(第3题图)19题图A .1-B .e -C .1e-D .不存在 7. 平面向量a 与b 的夹角为060,(2,0)=a ,1=b ,则+=a b ( ) A.3 D .8. 椭圆221259x y +=的左焦点为1F , 点P 在椭圆上, 若线段1PF 的中点M 在y 轴上, 则1PF =A .415B .95 C .6 D .79.已知}02,0,4|),{(},0,0,6|),{(≥-≥≤=≥≥≤+=Ωy x y x y x A y x y x y x ,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为A .19B .29C .13D .4910. 对于∆ABC ,有如下四个命题:①若sin 2sin 2A B = ,则∆ABC 为等腰三角形, ②若sin cos B A =,则∆ABC 是直角三角形③若222sin sin sin A B C +>,则∆ABC 是钝角三角形④若coscoscos222a b c A B C ==, 则∆ABC 是等边三角形其中正确的命题个数是A .1B .2C .3D .4二.填空题:本大题共5小题,每小题5分,满分20分. 11.321i i+-的值等于_______________________. 12.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒 之间,将测试结果分成五组:每一组[13,14);第二组[14,15),…, 第五组[]17,18.右图是按上述分组方法得到的频率分布直方图 若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数等于__________人.13.对于函数()f x ,在使()f x M ≥成立的所有常数M 中,我们把M 的最大值称为()f x(第15小题)的"下确界",则函数15()14,(,)544f x x x x =-+∈-∞-的"下确界"等于_________. (注意:14、15题是选做题,只能做其中一个,两题全答只计前一题得分)14.(坐标系与参数方程选做题)在直角坐标系xoy 中, 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,则直线2()1x t t y t=-+⎧⎨=-⎩为参数和截圆22cos 30ρρθ+-=的弦长等于_______________.4 15.(几何证明选讲选做题)已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC , 圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 ____________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分12分)已知函数2()2cos cos 1f x x x x =+-. (1)求()f x 的周期和单调递增区间;(2)说明()f x 的图象可由sin y x =的图象经过怎样变化得到.17.(本题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人? (2)在上述抽取的6人中选2人,求恰有一名女生的概率.(3)为了研究喜欢打蓝球是否与性别有关,计算出28.333K ≈,你有多大的把握认为是否喜欢打蓝球与性别有关?18.(本题满分14分)如图所示,圆柱的高为2、DF 是圆柱的两条母线,过AD 作圆柱的截面交下底面于BC .(1)求证://BC EF ;(2)若四边形ABCD 是正方形,求证BC BE ⊥; (3)在(2)的条件下,求四棱锥A BCE -的体积.19. (本题满分14分) 已知函数()f x x =,且数列{})(n a f 是首项为2,公差为2的等差数列.(1)求证:数列{}n a 是等比数列;(2) 设)(n n n a f a b ⋅=,求数列{}n b 的前n 项和n S 的最小值..20. (本题满分14分)设抛物线C 的方程为24x y =,()00,M x y 为直线:(0)l y m m =->上任意一点,过点M 作抛物线C 的两条切线,MA MB ,切点分别为A ,B .(1)当M 的坐标为(0,1)-时,求过,,M A B 三点的圆的方程,并判断直线l 与此圆的位置关系;(2)求证:直线AB 恒过定点(0,)m .21.(本题满分14分)已知函数32()()f x ax bx b a x =++-(a ,b 是不同时为零的常数),其导函数为()f x '. (1)当13a =时,若不等式1()3f x '>-对任意x R ∈恒成立,求b 的取值范围; (2)若函数()f x 为奇函数,且在1x =处的切线垂直于直线230x y +-=,关于x 的方程1()4f x t =-在[1,](1)t t ->-上有且只有一个实数根,求实数t 的取值范围.。
惠州市2018届高三第三次调研考试(语文)(可编辑修改word版)
注意事项:惠州市 2018 届高三第三次调研考试语文本试卷分必考和选考两部分,满分为150 分。
考试用时150 分钟。
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卷的相应位置上。
2.考生务必用黑色字迹的钢笔或签字笔作答,答案不能答在试卷上,必须写在答题卷的各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
一、现代文阅读(35 分)(一)论述类文本阅读(本题共3 小题,9 分)阅读下面的文字,完成 1—3 题。
(9 分)青铜器上的艺术表现手段很多,但最重要的还是纹饰,而其中又以动物纹为主体。
考古发现证明,动物纹在青铜器上盘踞了整整 15 个世纪,它对后世造型艺术的影响可想而知。
早期青铜纹饰上可以辨识的动物很多,既有现实中的虎、牛、羊、鹿、蛇等,也有仅存于古人想象中的饕餮、夔龙、夔凤之类。
这些纹饰是上古生存环境与先民心理结构的投影,它们在青铜器上的形态也在不断演变。
除了动物纹外,青铜器上出现较多的纹样还有几何纹,其形式大致有连珠纹、弦纹、直条纹、横条纹等。
根据出土情况来看,早期青铜器上几何纹很少担任主角,在兽面纹、龙纹、鸟纹等大行其道的时代,几何纹只能作为主纹的陪衬或地纹使用;等到动物纹从青铜器上淡出,各种形式的几何纹才如雨后春笋一般大量涌现。
春秋战国之际,以几何纹为主体纹饰的青铜器已屡见不鲜,抽象的线条取代了具体的形象。
青铜器上动物纹与几何纹的此消彼长,与早期彩陶图案的演化历程甚相契合。
彩陶图案早于青铜纹饰,当青铜器开始铸造时,古人已经习惯了以最具特征的部分代替整体的做法,商代早期青铜器上就出现过只有一对兽目的兽面纹。
与此相印证,龙山文化的陶器和玉器上也有强调眼睛的兽面纹。
兽面纹即饕餮纹,是青铜纹饰的代表,宋人以“饕餮”为其命名,可能是因为饕餮的“有首无身”正好概括了这种纹饰的省略性特征。
兽面纹的特征是以兽的鼻梁为中线,两侧作对称排列,眼睛在整个纹饰中居于突出的地位。
2018届高三惠州市三调理科数学试题及答案
3
3
99
2
cos2( x ) = 1 2cos (x 3
5
.故选 D
3
7 )= 39
10 圆C : ( x 1)2 ( y 1)2 1, PAC , PBC 是直角三角形, AC 1, 所以当 PC 最小
时, PA , PB 有最小值, PC min
3 4 11
5
2,
PA min
22 12
3,
SPACB S PAC S PBC 2 S PAC PA gAC
(1) 根据以上数据,能否有 75%的把握认为“手机控”与性别有关?
(2) 现从调查的女性中按分层抽样的方法选出
5 人, 并从选出的 5 人中再随机抽取 3 人,
给 3人中的“手机控”每人赠送 500元的话费。 记这 3 人中“手机控”的人数为 X , 试求 X
的分布列与所赠送话费的数学期望。
参考公式: K 2
n(ad bc) 2
,其中 n a b c d
(a b)(c d)( a c)(b d )
P(K 2 k0)
0.50
0.40
0.25
0.05
0.025
0.010
k0
0.455
0.708
1.321
3.840
5.024
6.635
( 20)(本小题满分 12 分)已知椭圆 C: x2 a2
y2 b2
1(a
有最大值 1.
15、 S11 11a6 66 , a6 6 ,又 a7 7 ,可得 an n ,
1
1
11
anan 1 n( n 1) n n 1
11 1 1 1 1
S2017
惠州市2018届高三第三次调研考试文数
惠州市2018届高三第三次调研考试数学(文科)全卷满分150分,时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1. 集合}{022≤--=x x x A ,}{1<=x x B ,则)(B C A R = ( )(A) }{1x x > (B) }{12x x <≤ (C) }{1x x ≥ (D) }{12x x ≤≤ 2.设1iz i=-(i 为虚数单位),则1z =( )(A)22(B) 2 (C)12(D) 2 3.等比数列{}n a 中,122a a +=,454a a +=,则1011a a +=( )(A) 8 (B) 16 (C) 32 (D) 64 4. 已知向量a b ⊥,2,a b ==则2a b -=( )(A) 22 (B) 2 (C) 25 (D) 105.下列说法中正确的是( )(A) “(0)0f =”是“函数()f x 是奇函数”的充要条件(B) 若2000:,10p x R x x ∃∈-->,则2:,10p x R x x ⌝∀∈--<(C) 若p q ∧为假命题,则,p q 均为假命题(D) “若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠”6.已知输入实数12x =,执行如图所示的流程图,则输出的x 是 ( )(A) 25 (B) 102 (C) 103 (D) 51 开始 输入xn =1n ≤3 输出x 否结束x =2x +1n =n +1是7.将函数()()1cos24f x x θ=+(2πθ<)的图象向右平移512π个单位后得到函数()g x 的图象,若()g x的图象关于直线9xπ=对称,则θ=()(A)718π(B)18π(C)18π-(D)718π-8.已知x,y满足条件4010x yx yx-≤⎧⎪+-≤⎨⎪-≥⎩,则yx的最大值是( )(A) 1(B) 2(C) 3 (D) 49.某几何体的三视图如图所示,则该几何体的体积为( )(A)833(B)1633(C)3233(D) 16310.已知函数()y f x=的定义域为{}|0x x≠,满足()()0f x f x+-=,当0x>时,()ln1f x x x=-+,则函数()y f x=的大致图象是()(A) (B) (C) (D)11.已知P为抛物线24y x=上一个动点,Q为圆()2241x y+-=上一个动点,则点P到点Q的距离与点P到抛物线的准线的距离之和最小值是()(A) 171-(B) 252-(C) 2(D) 17 12. 设定义在R上的函数()y f x=满足任意t R∈都有()()12f tf t+=,且(]0,4x∈时,()()f xf xx'>,则()()()20164201722018f f f、、的大小关系是()(A) ()()()22018201642017f f f<<(B) ()()()22018201642017f f f>>(C) ()()()42017220182016f f f<<(D) ()()()42017220182016f f f>>二.填空题:本大题共4小题,每小题5分。
广东省惠州市2018-2019学年高三理数第三次调研考试试卷
第1页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省惠州市2018-2019学年高三理数第三次调研考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 若 、 满足约束条件,则 的最大值为( )A . 2B . 6C . 7D . 82. 已知直线 过点,当直线 与圆 有两个交点时,其斜率 的取值范围为( )A .B .C .D .3. 已知集合 ,集合,则集合 ( )A .B .C .D .4. 若复数 满足,则在复平面内, 所对应的点在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. 两个正数 、 的等差中项是 ,一个等比中项是 ,且,则双曲线的离心率 等于( )A .B .C .D .答案第2页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 已知函数与互为反函数,函数的图象与的图象关于 轴对称,若,则实数 的值为( )A .B .C .D .7. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值 ,这就是著名的“徽率”。
广东省惠州市2018届高考数学三调试卷(文科)Word版含解析
一.选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.若集合B={x|x≥0},且A∩B=A,则集合A可能是()A.{1,2} B.{x|x≤1} C.{﹣1,0,1} D.R2.已知向量=(t+1,1),=(t+2,2),若,则t=()A.0 B.﹣3 C.3 D.﹣13.设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.双曲线C:﹣=1(a>0,b>0)的离心率e=,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A.B.C.D.6.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图是()A. B.C.D.7.在△ABC中,角A,B,C的对边分别是a,b,c,已知,且,则△ABC的面积为()A.B.C.4 D.28.执行如图所示的程序框图,则输出的结果为()A.7 B.9 C.10 D.119.已知实数x,y满足:,若z=x+2y的最小值为﹣4,则实数a=()A.1 B.2 C.4 D.810.已知函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移,得到函数g(x)的图象,则函数g (x)的一条对称轴方程为()A.x=B.x=C.x=D.x=11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π12.已知函数f(x)=xsinx+cosx+x2,则不等式的解集为()A.(e,+∞)B.(0,e)C.D.二.填空题:本大题共4小题,每小题5分.13.若复数z满足z•i=1+i(i是虚数单位),则z的共轭复数是.14.若角α满足sinα+2cosα=0,则sin2α的值等于.15.已知直线y=ax与圆C:x2+y2﹣2ax﹣2y+2=0交于两点A,B,且△CAB为等边三角形,则圆C的面积为.16.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{an }中,点(an,an+1)在直线y=x+2上,且首项a1=1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)数列{an }的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,请写出适合条件Tn ≤Sn的所有n的值.18.某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量x的中位数;(2)将y表示为x的函数;(3)根据直方图估计利润不少于4800元的概率.19.如图所示的多面体ABCDE中,已知ABCD是边长为2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.(Ⅰ)若M是DE的中点,试在AC上找一点N,使得MN∥平面ABE,并给出证明;(Ⅱ)求多面体ABCDE的体积.20.已知椭圆C: +=1(a>b>0)的左、右焦点分别为F1(﹣1,0),F2(1,0),点A(1,)在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M、N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足=?若存在,求出直线l的方程;若不存在,说明理由.21.已知函数f(x)=+alnx(a≠0,a∈R).(1)若a=1,求函数f(x)的极值和单调区间;(2)若在区间(0,e]上至少存在一点x0,使得f(x)<0成立,求实数a的取值范围.请考生在第22题和第23题中任选一题作答.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.广东省惠州市2018届高考数学三调试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.若集合B={x|x≥0},且A∩B=A,则集合A可能是()A.{1,2} B.{x|x≤1} C.{﹣1,0,1} D.R【考点】子集与真子集.【分析】集合B={x|x≥0},且A∩B=A,则故A⊆B,进而可得答案.【解答】解:∵集合B={x|x≥0},且A∩B=A,故A⊆B,故A答案中{1,2}满足要求,故选:A2.已知向量=(t+1,1),=(t+2,2),若,则t=()A.0 B.﹣3 C.3 D.﹣1【考点】平面向量共线(平行)的坐标表示.【分析】通过向量的垂直,数量积为0,求出t的值.【解答】解:向量=(t+1,1),=(t+2,2),∴+=(2t+3,3),﹣=(﹣1,﹣1),∵,∴﹣(2t+3)﹣3=0,解得t=﹣3.故选:B3.设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】“y=f(x)的图象关于原点对称”,x∈R,可得y=|f(x)|是偶函数.反之不成立,例如f(x)=x2.【解答】解:“y=f(x)的图象关于原点对称”,x∈R,可得y=|f(x)|是偶函数.反之不成立,例如f(x)=x2,满足y=|f(x)|是偶函数,x∈R.因此,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的必要不充分条件.故选:B.4.双曲线C:﹣=1(a>0,b>0)的离心率e=,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【考点】双曲线的简单性质.【分析】利用双曲线的离心率求出双曲线的渐近线中a,b的关系,即可得到渐近线方程.【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率e=,可得,∴,可得,双曲线的渐近线方程为:y=±.故选:A.5.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】根据题意,设齐王的三匹马分别记为a1,a2,a3,田忌的三匹马分别记为b1,b2,b3,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案【解答】解:设齐王的三匹马分别记为a1,a2,a3,田忌的三匹马分别记为b1,b2,b3,齐王与田忌赛马,其情况有:(a1,b1)、(a2,b2)、(a3,b3),齐王获胜;(a1,b1)、(a2,b3)、(a3,b2),齐王获胜;(a2,b1)、(a1,b2)、(a3,b3),齐王获胜;(a2,b1)、(a1,b3)、(a3,b2),田忌获胜;(a3,b1)、(a1,b2)、(a2,b3),齐王获胜;(a3,b1)、(a1,b3)、(a2,b2),齐王获胜;共6种;其中田忌获胜的只有一种(a2,b1)、(a1,b3)、(a3,b2),则田忌获胜的概率为,故选:D6.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图是()A. B.C.D.【考点】简单空间图形的三视图.【分析】根据三视图的定义判断棱AD1和C1F的位置及是否被几何体遮挡住判断.【解答】解:从几何体的左面看,对角线AD1在视线范围内,故画为实线,右侧面的棱C1F不在视线范围内,故画为虚线,且上端点位于几何体上底面边的中点.故选B.7.在△ABC中,角A,B,C的对边分别是a,b,c,已知,且,则△ABC的面积为()A.B.C.4 D.2【考点】正弦定理.【分析】由已知利用正弦定理可求sinB,结合B的范围可求B的值,进而可求A,利用三角形面积公式即可得解.【解答】解:由正弦定理,又c>b,且B∈(0,π),所以,所以,所以.故选:A.8.执行如图所示的程序框图,则输出的结果为()A.7 B.9 C.10 D.11【考点】程序框图.【分析】模拟程序框图的运行过程,该程序是累加求和的应用问题,当S≤﹣1时输出i的值即可.【解答】解:模拟程序框图的运行过程,如下;,否;,否;,否;,否;,是,输出i=9.故选:B.9.已知实数x,y满足:,若z=x+2y的最小值为﹣4,则实数a=()A.1 B.2 C.4 D.8【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z=x+2y的最小值为﹣4,即可确定a的值.【解答】解:作出不等式组对应的平面区域如图:∵z=x+2y的最小值为﹣4,∴x+2y=﹣4,且平面区域在直线x+2y=﹣4的上方,由图象可知当z=x+2y过x+3y+5=0与x+a=0的交点时,z取得最小值.由,,解得,即A(﹣2,﹣1),点A也在直线x+a=0上,则﹣2+a=0,解得a=2,故选:B10.已知函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,则把函数f(x)的图象上每个点的横坐标扩大到原来的2倍,再向右平移,得到函数g(x)的图象,则函数g (x)的一条对称轴方程为()A.x=B.x=C.x=D.x=【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得函数g (x)的一条对称轴方程.【解答】解:根据函数f(x)=sinx+λcosx(λ∈R)的图象关于x=﹣对称,可得,可得λ=﹣1,所以.把f(x)的图象横坐标扩大到原来的2倍,再向右平移,得到函数g(x)的图象,故,所以函数g(x)的对称轴的方程为.当k=0时,对称轴的方程为,故选:D.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【考点】球的体积和表面积.【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4,∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a,则=,∴a=2,设小球的半径为r,则4×r=,∴r=,∴球的表面积S=4=.故选:C .12.已知函数f (x )=xsinx+cosx+x 2,则不等式的解集为( )A .(e ,+∞)B .(0,e )C .D .【考点】其他不等式的解法.【分析】求出函数的导数,求出单调增区间,再判断函数的奇偶性,则不等式,转化为f (lnx )<f (1)即为f|lnx|)<f (1),则|lnx|<1,运用对数函数的单调性,即可得到解集.【解答】解:函数f (x )=xsinx+cosx+x 2的导数为: f′(x )=sinx+xcosx ﹣sinx+2x=x (2+cosx ), 则x >0时,f′(x )>0,f (x )递增,且f (﹣x )=xsinx+cos (﹣x )+(﹣x )2=f (x ), 则为偶函数,即有f (x )=f (|x|),则不等式,即为f (lnx )<f (1)即为f|lnx|)<f (1),则|lnx|<1,即﹣1<lnx <1,解得,<x <e . 故选:D .二.填空题:本大题共4小题,每小题5分.13.若复数z 满足z •i=1+i (i 是虚数单位),则z 的共轭复数是 1+i . 【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由z •i=1+i ,得,∴.故答案为:1+i .14.若角α满足sinα+2cosα=0,则sin2α的值等于﹣.【考点】三角函数的化简求值.【分析】根据sinα+2cosα=0求出tanα的值,再把sin2α化为切函数,从而求出它的值.【解答】解:∵sinα+2cosα=0,∴tanα=﹣2,∴sin2α=2sinαcosα====﹣.故答案为:﹣.15.已知直线y=ax与圆C:x2+y2﹣2ax﹣2y+2=0交于两点A,B,且△CAB为等边三角形,则圆C的面积为6π.【考点】直线与圆的位置关系.【分析】根据△ABC为等边三角形,得到圆心到直线的距离为Rsin60°,再根据点到直线的距离公式列出方程,求出圆的半径即可.【解答】解:圆C化为x2+y2﹣2ax﹣2y+2=0,即(x﹣a)2+(y﹣1)2=a2﹣1,且圆心C(a,1),半径R=,∵直线y=ax和圆C相交,△ABC为等边三角形,∴圆心C到直线ax﹣y=0的距离为Rsin60°=×,即d==,解得a2=7,∴圆C的面积为πR2=π(7﹣1)=6π.故答案为:6π.16.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞).【考点】根的存在性及根的个数判断.【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.【解答】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n }中,点(a n ,a n+1)在直线y=x+2上,且首项a 1=1. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 【考点】数列的求和;数列递推式.【分析】( I )由点(a n ,a n+1)在直线y=x+2上,且首项a 1=1.可得a n+1﹣a n =2,利用等差数列的通项公式即可得出.( II )数列{a n }是的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,利用等比数列的求和公式可得{b n }的前n 项和T n ,代入T n ≤S n ,即可得出.【解答】解:( I )∵点(a n ,a n+1)在直线y=x+2上,且首项a 1=1. ∴a n+1=a n +2,∴a n+1﹣a n =2, ∴数列{a n }是等差数列,公差为2, a n =1+2(n ﹣1)=2n ﹣1.( II )数列{a n }是的前n 项和S n ==n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,q=3. ∴a n =3n ﹣1.数列{b n }的前n 项和T n ==.T n ≤S n 化为:≤n 2,又n ∈N *,所以n=1或2.18.某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了160盒该产品,以x (单位:盒,100≤x ≤200)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量x 的中位数; (2)将y 表示为x 的函数;(3)根据直方图估计利润不少于4800元的概率.【考点】古典概型及其概率计算公式;频率分布直方图.【分析】(1)由频率直方图求出需求量为[100,120)的频率,需求量为[120,140)的频率和需求量为[140,160)的频率,由此能求出中位数.(2)当100≤x≤160时,y=50x﹣30×=80x﹣4800,当160<x≤200 时,y=160×50=8000,由此能将将y表示为x的函数.(3)由80x﹣4800≥4800,能求出利润不少于4800元的概率.【解答】解:(1)由频率直方图得:需求量为[100,120)的频率为0.05×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,则中位数x=140+.(2)∵每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元,∴当100≤x≤160时,y=50x﹣30×=80x﹣4800,当160<x≤200 时,y=160×50=8000,∴y=.(3)∵利润不少于4800 元,∴80x﹣4800≥4800,解得x≥120,∴由(1)知利润不少于4800元的概率p=1﹣0.1=0.9.19.如图所示的多面体ABCDE中,已知ABCD是边长为2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.(Ⅰ)若M是DE的中点,试在AC上找一点N,使得MN∥平面ABE,并给出证明;(Ⅱ)求多面体ABCDE的体积.【考点】棱柱、棱锥、棱台的体积.【分析】(I)连结BD,交AC于点N,则点N即为所求,MN∥BE,由线线平行⇒线面平行;(II)取AB的中点F,连接EF,求出EF,因为平面ABCD⊥平面ABE,交线为EF,证明EF为四棱锥E﹣ABCD的高,代入棱锥的体积公式计算.【解答】证明:(I)连结BD,交AC于点N,则点N即为所求,证明如下:∵ABCD为正方形,∴N是BD的中点,又M是DE中点,容易知道MN∥BE,BE⊂平面ABE,MN⊄平面ABE,∴MN∥平面ABE(Ⅱ)取AB的中点F,连接EF因为△ABE是等腰直角三角形,并且AB=2所以EF⊥AB,∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,EF⊂平面ABE,∴EF⊥平面ABCD,即EF为四棱锥E﹣ABCD的高,==∴VE﹣ABCD20.已知椭圆C : +=1(a >b >0)的左、右焦点分别为F 1(﹣1,0),F 2(1,0),点A(1,)在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在斜率为2的直线l ,使得当直线l 与椭圆C 有两个不同交点M 、N 时,能在直线y=上找到一点P ,在椭圆C 上找到一点Q ,满足=?若存在,求出直线l 的方程;若不存在,说明理由. 【考点】椭圆的简单性质.【分析】(Ⅰ)方法一、运用椭圆的定义,可得a ,由a ,b ,c 的关系,可得b=1,进而得到椭圆方程;方法二、运用A 在椭圆上,代入椭圆方程,结合a ,b ,c 的关系,解方程可得a ,b ,进而得到椭圆方程;(Ⅱ)设直线l 的方程为y=2x+t ,设M (x 1,y 1),N (x 2,y 2),P (x 3,),Q (x 4,y 4),MN 的中点为D (x 0,y 0),联立椭圆方程,运用判别式大于0及韦达定理和中点坐标公式,由向量相等可得四边形为平行四边形,D 为线段MN 的中点,则D 为线段PQ 的中点,求得y 4的范围,即可判断.【解答】解:(Ⅰ)方法一:设椭圆C 的焦距为2c ,则c=1,因为A (1,)在椭圆C 上,所以2a=|AF 1|+|AF 2|=+=2,因此a=,b 2=a 2﹣c 2=1,故椭圆C 的方程为+y 2=1;方法二:设椭圆C 的焦距为2c ,则c=1,因为A (1,)在椭圆C 上,所以c=1,a 2﹣b 2=c 2, +=1,解得a=,b=c=1,故椭圆C 的方程为+y 2=1;(Ⅱ)设直线l 的方程为y=2x+t ,设M (x 1,y 1),N (x 2,y 2),P (x 3,),Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由消去x ,得9y 2﹣2ty+t 2﹣8=0,所以y 1+y 2=,且△=4t 2﹣36(t 2﹣8)>0故y 0== 且﹣3<t <3,由=,知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此D 为线段PQ 的中点,所以y 0==,可得y 4=,又﹣3<t <3,可得﹣<y 4<﹣1, 因此点Q 不在椭圆上, 故不存在满足题意的直线l .21.已知函数f (x )=+alnx (a ≠0,a ∈R ). (1)若a=1,求函数f (x )的极值和单调区间;(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,求实数a 的取值范围. 【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求函数f (x )的导数,令导数等于零,解方程,再求出函数f (x )的导数和驻点,然后列表讨论,求函数f (x )的单调区间和极值;(2)若在区间(0,e]上存在一点x0,使得f(x)<0成立,其充要条件是f(x)在区间(0,e]上的最小值小于0即可.利用导数研究函数在闭区(0,e]上的最小值,先求出导函数f'(x),然后讨论研究函数在(0,e]上的单调性,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值.【解答】解:(1)因为f′(x)=﹣+=,当a=1,f′(x)=,令f'(x)=0,得x=1,又f(x)的定义域为(0,+∞),f'(x),f(x)随x的变化情况如下表:所以x=1时,f(x)的极小值为1.f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);(6分(2)∵f′(x)=,(a≠0,a∈R).令f′(x)=0,得到x=,若在区间[0,e]上存在一点x0,使得f(x)<0成立,其充要条件是f(x)在区间(0,e]上的最小值小于0即可.(i)当x=<0,即a<0时,f′(x)<0对x∈(0,+∞)成立,∴f(x)在区间[1,e]上单调递减,故f(x)在区间(0,e]上的最小值为f(e)=+alne=+a,由+a<0,得a<﹣;(ii)当x=>0,即a>0时,①若e≤,则f′(x)≤0对x∈(0,e]成立,∴f(x)在区间(0,e]上单调递减,∴f(x)在区间(0,e]上的最小值为f(e)=+alne=+a>0,显然,f(x)在区间(0,e]上的最小值小于0不成立.②若1<<e,即a>时,则有,∴f(x)在区间[0,e]上的最小值为f()=a+aln,由f()=a+aln=a(1﹣lna)<0,得1﹣lna<0,解得a>e,即a∈(e,+∞).综上,由(1)(2)可知:a∈(﹣∞,﹣)∪(e,+∞).请考生在第22题和第23题中任选一题作答.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【考点】参数方程化成普通方程.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t 2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x ﹣2)2+y 2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t 2﹣2tcosα﹣3=0.设A 、B 两点对应的参数分别为t 1、t 2,则,∴|AB|=|t 1﹣t 2|==,∵|AB|=,∴=.∴cos . ∵α∈[0,π),∴或.∴直线的倾斜角或.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f (x )=|x ﹣a|.(1)若不等式f (x )≤3的解集为{x|﹣1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x+5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)不等式f (x )≤3就是|x ﹣a|≤3,求出它的解集,与{x|﹣1≤x ≤5}相同,求实数a 的值;(2)在(1)的条件下,f (x )+f (x+5)≥m 对一切实数x 恒成立,根据f (x )+f (x+5)的最小值≥m ,可求实数m 的取值范围.【解答】解:(1)由f (x )≤3得|x ﹣a|≤3,解得a ﹣3≤x ≤a+3.又已知不等式f (x )≤3的解集为{x|﹣1≤x ≤5},所以解得a=2.(2)当a=2时,f(x)=|x﹣2|.设g(x)=f(x)+f(x+5),于是所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,则m的取值范围为(﹣∞,5].。
2018最新试题资料-惠州市2018届高三第三次调研考试语文试题及答案
惠州市2018届高三第三次调研考试语文试题及答案惠州市2018届高三第三次调研考试语试题及答案惠州市2018届高三第三次调研考试语试题及答案
5 惠州市2018届高三第三次调研考试语试题
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同的一组是高考资网A.复辟/开辟炽热/翅膀杀戮/绿林
B.苔藓/脚癣菁华/粳米诏书/召开
c.淘气/熏陶邻居/可怜强劲/干劲
D.粮食/ 娘亲戏弄/弄堂侍从/寺庙
2.下面语段中画线的词语,使用不恰当的一项是
一些人为了谋求一官半职求名得利而不愿离开领导干部队伍,说话而言不由衷,行事而吃里爬外,还必须装得像模像样,怕人发现,这种煎熬真是受罪啊。
甚至有些时候连他们自己都有些渴望“有一说一”,以至于有些腐败分子入狱后,竟然长长松一口气说自己“终于解脱了”。
分裂的世界观导致内心迷茫与行为变异的力量之大由此可见一斑。
A.言不由衷 B.吃里爬外 c.有一说一 D.可见一斑
3.下列句子没有语病的一句是
A.奥巴马总统在威斯康星州立大学举行了盛大的校园集会,从而拉开了旨在提升民主党选情的一连串校园造势活动。
B.惠州之“媚”,不仅仅因为它正在生成的明氛围,以及日渐成熟的城市化人格,更因为有一个堪比西子的“媚西湖”,这才是惠州“媚”力最重要的精神化泉所在。
c.由于首次中途轨道修正满足轨道精度要求,嫦娥二号卫星原计划需进行的中途轨道修正再次取消,预计将于6日进入预定环月轨道。
惠州市2018届高三第三次调研考试 语文试题【答案打印版】
惠州市2018届高三第三次调研考试语文试卷语文参考答案及评分标准2018年1月19日一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)1.(3分)D.(解析:“取代而消失”不对。
)2.(3分)D.(解析:A.“龙山文化”只是佐证,“影响”无据;B.“直到宋代才得以正式命名”曲解原文意思;C.“时有串换”无据。
)3.(3分)C.(解析:“决定”无据。
)(二)文学类文本阅读(本题共3小题,14分)4.(3分)D.5.(5分)(解析:这个说法反映了妻子对他的埋怨和怜惜(2分):①住房仄陋、衣食简单,生活单调。
(1分)②送孩子上学很简单粗暴,很多费时费事的家务事不干,在时间问题上吝啬小气。
(1分)③对待家人给予他作品的反馈很任性很孩子气。
(1分)④随遇而安,容易满足,高兴着别人的高兴。
(1分)本题最多得5分。
)6.(6分)(解析:有不合理之处:①写作是他的业余爱好,也没有发表作品。
(1分)②活动圈狭窄,生活中接触人不多。
写作和为人处世没能做到“老妪能解”。
(1分)有合理之处:③他感情细腻敏感,语言表达颇有文学性。
如把周围的楼叫山,调侃说“山高月小”;把下联的“专”改为“尽”。
(1分)④关注生活,热爱生活,就是孩子的尿布,在眼中也是幸福的旗子。
周围人的生活,他觉得可爱、充满美感。
而这是写作成功的价值观基础。
(1分)⑤专注读书、写作,不以写作为苦事。
装了一肚子故事,勤勤恳恳写作,希望把故事写给世人看。
(1分)⑥对写作有正确态度,不投机取巧,锲而不舍,乐此不疲。
(1分)⑦妻子和懂行的人对他的写作前景也看好。
“精神上的大富翁”“说不定将来要去作协工作”都是对他作品质量的肯定。
(1分)作者以“一位作家”为题,看似不合理,但可以启发读者思考其中肯定称许的意思和提醒的意味。
(1分)每点1分,任意答对4点即可得6分。
意思对即可。
)(三)实用类文本阅读(本题共3小题,12分)7.(3分)D.(解析:同比增长率概念理解错误。
2018年最新 惠州市2018高三调研考试数学测试题 精品
惠州市高三调研考试 数学 测试题(2018.11)第 Ⅰ 卷 (选择题,共50分)一.选择题:本大题共12小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设实数集R 为全集,集合P ={x |f (x )=0},Q ={x |g (x )=0},H ={x |h (x )=0},则方程0)()()(22=+x h x g x f 的解集是A . Q P ∁R HB . Q P ∁R HC .H Q PD .Q P2. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2 a 10-a 12的值为 A .20B .22C .24D .283. 函数xx xx x f sin tan )(3-+=的奇偶性是A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数4. 设O 是平面上任意一点,OA =a ,OB =b ,OC =m a +n b (m 、n ∈R ),若A 、B 、C 三点共线,则m 、n 满足 A .m +n =-1B .m +n =1C .m +n =0D .m -n =15. 要使mm --=-464cos 3sin αα有意义,则m 范围是 A .m ≤37B .m ≥-1C .m ≤-1或m ≥37 D .-1≤m ≤37 6. 若a 、b ∈R ,则下列不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +a1≥2.其中一定成立是 A .①②③B .①②④C .①②D .②④7. 若函数f (x )的定义域为(0,+∞),且f (x )>0,f / (x )>0,那么函数y =xf (x ) A .存在极大值B .存在极小值C .是增函数D .是减函数8. 已知函数x y 2log =的反函数是)(1x f y -=,则函数)1(1x f y -=-的图象是 A BCD9. 直线y =m (m 为常数)与正切曲线y =x ωtan (ω>0)相交,则相邻两个交点的距离是 A .πB .ωπ C .ωπ2 D .π210. 若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是A .m ≤-1B .-1≤m <0C .m ≥1D .0<m ≤1二.填空题:本大题共4小题,每小题5分,共20分.将正确答案填在题中横线上.11. 若sin2α<0,sin α-cos α>0,则cos αααsin 1sin 1+-+sin αααcos 1cos 1+-= .12. 不等式22322)21(a x ax x +-<对一切实数x 都成立,则a 的取值范围是 .13. 函数)23(log 27.0+-=x x y 的单调递增区间是.14. 设)(1x f -是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b f a f ,则 f (a +b )的值为 .三.解答题:本大题共6小题,满分80分.15. (本大题满分12分) 已知函数cos 3cos sin)(2xx x x f +=. (1) 将f (x )写成)sin(ϕω+x A +C 的形式,并求其图象对称中心的横坐标; (2) 如果△ABC 的三边a 、b 、c 满足b 2=ac ,且边b 所对的角为x ,试求x 的范围及此时函数f (x )的值域.16. (本大题满分12分)集合A 是由适合以下性质的函数)(x f 组成的:对于任意的x ≥0, f (x )∈[-2,4],且f (x )在[0,+∞]上是增函数.(1)判断函数2)(1-=x x f 及x x f )21(64)(2⋅-=(x ≥0)是否在集合A 中?并说明理由.(2)对于(1)中你认为是集合A 中的函数f (x ),不等式f (x )+ f (x +2)<2 f (x +1)是否对于任意的x ≥0总成立?证明你的结论.17.(本大题满分14分) 设向量a =(3,-1) ,b =(21,23),若存在实数m (m ≠0)和角])44[(ππθθ,-∈,使c =a +(tan 2θ-3)b ,d =-m a +(tan θ)b ,且c ⊥d .(1)试求函数m =f (θ)的关系式;(2)求函数m =f (θ)的最大值和最小值.18.(本大题满分14分) 某售货员负责在甲、乙、丙三个柜面上售货,如果在某一个小时内各柜面不需要售货员照顾的概率分别为0.9、0.8、0.7.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内: (1)只有丙柜面需要售货员照顾的概率; (2)三个柜面最多有一个需要售货员照顾的概率; (3)三个柜面至少有一个需要售货员照顾的概率.19.(本大题满分14分)已知函数f (x )满足f ( xy )=f (x ) f (y ) (x 、y ∈R ),且x >1时,f (x )<1,又41)2(=f . (1)求证:当x >0时,f (x )>0;(2)求证:f (x )在(0,+∞)上的单调递减;(3)解关于x 的不等式:|)(|ax xf ->1.20.(本大题满分14分)已知一次函数f (x )的图象关于y =x 对称的图象为C ,且f (1)=0,若点)(1nn n a an A +,(∈n N*)在曲线C 上,a 1=1,对于不小于2的任意正整数n ,都有111=--+n n n n a aa a . (1) 求曲线C 的方程; (2) 求{a n }的通项公式;(3) 设)!2(!4!321++++=n a aa S n n ,求S n .高中调研测试题(高三数学)(2018年11月26日)答案一.选择题:BCBBD CCCBB 二.填空题:11.)4sin(2πα- 12.(43,+∞) 13.X<1 14.2 15.解:(1) )32cos 1(2332sin 213cos 33cos 3sin)(2x x x x x x f ++=+= 2分 23)332sin(++=πx 4分由0)332sin(=+πx 得:πππ213332-=⇒=+k x k x (k ∈Z ) ∴对称中心的横坐标为π213-k (k ∈Z ).6分 (2)由已知得acacc a ac b c a x 22cos 22222-+=-+=≥21 8分又x 是△ABC 的内角,∴x 的取值范围是]30(π,10分这时,]953(332πππ,∈+x ,∴)332sin(3sin ππ+<x ≤1故函数f (x )的值域是]313(+,. 12分16.解:(1) 函数2)(1-=x x f 不在集合A 中 ∵当x =49时,f (49)=5>4,不满足条件4分∵当x ≥0时,0<x )21(≤1,∴-2≤x )21(64⋅-<4即f 2 (x )∈[-2,4],6分又设x 1<x 2,则21)21()21(x x >, 21)21(6)21(6x x ⋅-<⋅-, ⇒ f 2 (x 1)<f 2 (x 2)即f 2 (x )是增函数,∴f 2 (x )在集合A 中.8分(2)0)41()21(6)1(2)2()(<-⋅=+-++x x f x f x f∴不等式f (x )+ f (x +2)<2 f (x +1)对于任意的x ≥0总成立.12分17.解:(1)a ·b =0231321=-⨯⨯ ∴c ·d =[a +(θ2tan -3)b ][-m a +(θtan )b ]=-m a 2+(θθtan 3tan 3-)b 2 4分∵c ⊥d ,∴c ·d =0,即-m a 2+(θθtan 3tan 3-)b 2=0,又| a |=2,| b |=1∴m =)(=θθθtan 3tan 41)(3-f ,其中]44[ππθ,-∈6分(2)令tan θ=t ,得m =g (t )=41(t 3-3t ),t ∈[-1,1]求导得 g /(t )=43(t 2-1)≤08分 g (t )在[-1,1]上单调递减10分∴当t =-1,即4πθ-=时,函数g (t )有最大值21,当t =1,即πθ=时,函数g (t )有最小值-1.12分18.解:设事件A 为“甲柜面不需要售货员照顾”,事件B 为“乙柜面不需要售货员照顾”,事件C 为“丙柜面不需要售货员照顾”则事件A 、B 、C 相互独立,且P (A )=0.9,P (B )=0.8,P (C )=0.7. 2分 (1)设事件D 表示“某一小时内只有丙柜面需要售货员照顾”,则C B A D ⋅⋅=,且事件A 、B 、C 相互独立∴P (D )=P (C B A ⋅⋅)=P (A ) P (B ) P (C )=0.9×0.8×0.3=0.216. 4分 (2) 设事件E 表示“某一小时内三个柜面最多有一个需要售货员照顾”, 则C B A C B A C B A C B A E ⋅⋅+⋅⋅+⋅⋅+⋅⋅=6分又C B A C B A C B A C B A ⋅⋅⋅⋅⋅⋅⋅⋅、、、彼此互斥,且A 、B 、C 、C B A 、、相互独立∴)()()()()(C B A P C B A P C B A P C B A P E P ⋅⋅+⋅⋅+⋅⋅+⋅⋅== 0.9×0.8×0.7+0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.918 8分 (3) 设事件F 表示“某一小时内三个柜面至少有一个需要售货员照顾”, 则C B A F ⋅⋅=10分又A 、B 、C 相互独立∴)(F P =P (A ) P (B ) P (C )=0.9×0.8×0.7=0.518 ∴)(1)(F P F P -==0.496.12分 19.解:(1)∵x >0,∴ 2)]([)()()()(x f x f x f x x f x f ===≥0 又若0)(=x f ,则0)2()()2()2(==⋅=x f x f x x f f ,与41)2(=f 矛盾 ∴f (x )>0. 4分(2)设0<x 1<x 2,则12x x >1,∴0<)(12x x f <1∴)()()()(1121122x f x xf x x x f x f =⋅= ∵f (x 1)>0,0<)(12x x f <1,∴f (x 1)< f (x 2) 故f (x )在(0,+∞)上是减函数.8分(3) 由f (xy )=f (x )f (y )得:f (1)=f (1×1)=f (1)f (1)=[f (1)]2 由(1)知f (1)>0,∴f (1)=1不等式可化为:)1(|)(|f a x xf >-由(2)可得:||||1||a x x ax x-<⇔<-10分两边平方得:2ax ―a 2<0,当a <0时,解得2ax >,当a >0时,解得2ax <,当a =0时,不等式化为:0<0,无解.综上所述,当a =0,不等式的解集是φ,当a <0时,不等式的解集是{x |2ax >},当a >0时,不等式的解集是{x |2ax <}. 12分20.解:(1)设f (x )=ax +b (a ≠0),则a +b =0∴曲线C 的方程为11+=x ay∵点)(1n n n a a n A +, (∈n N*)在曲线C 上,∴11+=+na n n2分由111=--+n n n n a a a a 知{n n a a1+}是公差为1的等差数列,∴n n a a n n +=-+=+1)1(121 4分∴n n a n n +=+=+111 ⇒ a =1 ∴曲线C 的方程为y =x +1.6分(2)由(1)得:11+=+n a ann∴2211232211=-=-==-----a an a a n a a n a a n n n n n n ,,,, 8分相乘得:!2)2)(1(1232211n n n n a aa a a a a a n n n n n n =⨯⨯--=⋅⋅----- 即!1n a a n= ⇒ a n =n ! 10分 (3)2111)1)(2(1)!2(!)!2(+-+=++=+=+n n n n n n n a n12分 ∴)2(2)2111()4131()3121(+=+-+++-+-=n nn n S n 14分.。
《精编》广东省惠州市高三数学第三次调研考试 文 新人教A版.doc
惠州市届高三第三次调研考试数学试题(文科〕本试卷共6页,21小题,总分值150分。
考试用时120分钟。
本卷须知:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:锥体的体积公式13V Sh =,其中s 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共10 小题,每题5分,总分值50分.每题给出的四个选项中,只有一项为哪一项符合题目要求. 1.复数i z +=21,i z -=12,那么z = 21z z •在复平面上对应的点位于〔 〕 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.向量12||,10||==b a ,且60-=⋅b a ,那么向量a 与b 的夹角为〔 〕 A .060 B .0120 C .0135 D .0150 3.在等比数列{}n a 中,5113133,4,a a a a ⋅=+=那么155a a =〔 〕 A .3 B .13 C .3或13 D .3-或13- 4. 设α表示平面,b a ,表示直线,给定以下四个命题:①αα⊥⇒⊥b b a a ,//; ②αα⊥⇒⊥b a b a ,//; ③αα//,b b a a ⇒⊥⊥; ④b a b a //,⇒⊥⊥αα. 其中正确命题的个数有〔 〕5.2(sin cos )1y x x =+-是〔 〕 A. 最小正周期为2π的奇函数2π的偶函数C. 最小正周期为π的奇函数D. 最小正周期为π的偶函数6. 命题“,11a b a b >->-若则〞的否命题是〔 〕A.,11a b a b >-≤-若则 b a ≥,那么11-<-b a C.,11a b a b ≤-≤-若则 D.,11a b a b <-<-若则7.假设方程()20f x -=在(,0)-∞内有解,那么()y f x =的图象是〔 〕8.设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,那么此椭圆的方程为〔 〕A .2211612x y +=B .2211216x y +=C .2214864x y +=D .2216448x y +=9.定义域为(-1,1)的奇函数()y f x =又是减函数,且2(3)(9)0.f a f a -+-<那么a 的取值范围是〔 〕A .(3,10)B .(22,3)C .(22,4)D .(-2,3)10.对任意实数,x y ,定义运算x y ax by cxy *=++,其中,,a b c 是常数,等式右边的运算是通常的加法和乘法运算。
惠州市2018届高三第三次调研考试文科数学(含解析)(2018.01)
(B) 102
103
(D) 51
1 5 个单位后得到函数 g x cos 2 x ( )的图象向右平移 4 2 12
的图象,若 g x 的图象关于直线 x
对称,则 ( 9
)
第 1 页 共 14 页
(C) 18 18 x y 0 y 8.已知 x , y 满足条件 x y 4 0 ,则 的最大值是 ( x x 1 0
三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤。第17~21题为必考题,每个考 生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17. (本小题满分 12 分) 在 ABC 中,角 A, B, C 的对边分别为 a, b, c ,已知 cosC cosAcosB 2cosAsinB . (1)求 tanA ; (2)若 b 2 5 , AB 边上的中线 CD 17 ,求 ABC 的面积.
2 2
1 1 ,则 sin ”的否命题是“若 ,则 sin ” 6 2 6 2 6.已知输入实数 x 12 ,执行如图所示的流程图,则输出的 x 是 ( )
(D) “若 开始
输入 x
n=1 n=n+1 x=2x+1 (C)
n≤3 是
否
输出 x
结束
(A) 25 7.将函数 f x
f ( x) ln x x 1 ,则函数 y f ( x) 的大致图象是(
)
(A)
2
(B)
2
(C)
2
(D)
11.已知 P 为抛物线 y 4 x 上一个动点,Q 为圆 x y 4 1 上一个动点,则点 P 到 点 Q 的距离与点 P 到抛物线的准线的距离之和最小值是( (A) )
广东省惠州市2018届高三第三次调研考试理科数学答案
惠州市2018届高三第三次调研考试理科数学参考答案一. 选择题(共12小题)1、[1,2]A =-,(,1)A =-∞,[1,1)A B ⋂=-,故选B2.66(1)331(1)(1)i z i i i i -===-++- 故选D . 3.本题主要考查n 次独立重复试验中恰好发生k 次的概率公式.故选B 4. 3345124a a a q a q +=+=,解得32q =,99910111212()a a a q a q a a q +=+=+32216=⨯=.故选B5.1(4)()(2)f x f x f x +=-=+ ,∴周期4T =;(2018)(45042)(2)f f f =⨯+=(2)2f =-=-.故选A6.由题意925122n==, 9n =,191219()()rrr r T C x ax --+=-=9329()r rr a C x--,930r -=3r =,339()84a C -=-, 1.a =故选A7.直观图是三条侧棱两两垂直的三棱锥,且侧棱长都为2,114222323V =⨯⨯⨯⨯=.故选C8. 11,1,123S n S ===+=;22,327n S ==+=;33,7215n S ==+=;44,15231n S ==+=;55,3126333n S ==+=≥,输出的63S =.故选C .9.1cos()33x π-= ∴5cos(2)3x π-=cos[2()]3x ππ-- =cos 2()3x π-- =212cos ()3x π--=79 22sin ()1cos ()33x x ππ-=--=89∴25cos(2)sin ()33x x ππ-+-=785993+=.故选D10圆C:22(1)(1)1x y -+-=,,PAC PBC ∆∆是直角三角形,1AC =,所以当PC 最小时,,PA PB 有最小值,min 341125PC -+==,min PA ==PACB PAC PBC S S S ∆∆=+2PAC S ∆=PA AC =≥g 故选C11、设1()()2F x f x x =-,1'()'()02F x f x =-<,即()F x 在R上单调递减 2211()22f x x <+Q ,2211()(1)22f x x f ∴-<-,即2()(1)F x F <,21x >,解得1x >或1x <-.故选A12.()(0)1xf x x x=>+,则1()1n n nn a a f a a +==+, 得1111+=+n n a a ,即1111=-+nn a a , ∴数列}1{n a 是首项为2、公差为1的等差数列,∴11n n a =+,即11+=n a n .21[()](1)f x x '=+ ,∴函数()f x 在点(,())(n f n n ∈N *)处的切线方程为:21()1(1)n y x n n n -=-++,令0=x ,得222)1()1(1n n n n n n b n +=+-+=. 2222(1)()24n n n b n n n a a λλλλλ∴+=++=++-,仅当5=n 时取得最小值, 只需5.525.4<-<λ,解得911-<<-λ,故λ的取值范围为)9,11(--.故选A二、填空题(共4小题)13. 2017201816.13、2a b -=rr==14、作出可行域,z 表示可行域内的点(,)x y 与点(2,0)-之间的斜率,当过点(1,3)时,z 有最大值1.15、1161166S a ==,66a =,又77a =,可得n a n =,11111(1)1n n a a n n n n +∴==-++ 20171111111112233420172018S =-+-+-++-L =12017120182018-=。
广东省惠州市2017-2018学年高考数学三模试卷(文科) Word版含解析
2017-2018学年广东省惠州市高考数学三模试卷(文科)一、选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)2.如果复数z=(b∈R)的实部和虚部相等,则|z|等于()A.3B.2C.3 D.23.已知函数f(x)是偶函数,当x>0时,,则在(﹣2,0)上,下列函数中与f(x)的单调性相同的是()A.y=﹣x2+1 B.y=|x+1|C.y=e|x| D.4.已知函数的最小正周期为π,则该函数的图象是()A.关于直线对称B.关于点对称C.关于直线对称D.关于点对称5.下列四个结论:①若p∧q是真,则¬p可能是真;②“∃x0∈R,x02﹣x0﹣1<0”的否定是“∃x∈R,x2﹣x﹣1≥0”;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减.其中正确结论的个数是()A.0个B.1个C.2个D.3个6.如图,圆C内切于扇形AOB,∠AOB=,若向扇形AOB内随机投掷300个点,则落入圆内的点的个数估计值为()A.450 B.400 C.200 D.1007.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当{a n}的前n项和最大时n的值为()A.7 B.8 C.9 D.108.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.309.执行如图所示的程序框图,则输出的结果是()A.14 B.15 C.16 D.1710.已知x,y满足,若目标函数z=y﹣x的最小值是﹣4,则k的值为()A.B.﹣3 C. D.﹣211.已知抛物线y2=2px(p>0)的焦点F恰好是双曲线﹣=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为()A.B.C.1+D.1+12.已知函数f(x)=,若函数y=f(x)﹣kx有3个零点,则实数k的取值范围是()A.(﹣1,1)B.(1,+∞)C.[2,+∞)D.[1,2)二.填空题:本大题共4小题,每小题5分.13.已知{a n}是首项为1的等比数列,S n是a n的前n项和,且9S3=S6,则数列的前5项和为.14.已知函数f(x)=2lnx+bx,直线y=2x﹣2与曲线y=f(x)相切,则b=.15.设M是线段BC的中点,点A在直线BC外,,,则=.16.已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E﹣ABCD的外接球的表面积为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知acosB﹣(2c﹣b)cosA=0.(Ⅰ)求角A的大小;(Ⅱ)若a=4,求△ABC面积的最大值.18.随着国民生活水平的提高,利用长假旅游的人越来越多.某公司统计了2012到2016(Ⅱ)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程,判断它们之间是正相关还是负相关;并根据所求出的直线方程估计该公司2019年春节期间外出旅游的家庭数.参考公式:=,=﹣.19.如图,ABC﹣A1B1C1是底面边长为2,高为的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).(Ⅰ)证明:PQ∥A1B1;(Ⅱ)当时,求点C到平面APQB的距离.20.已知点A1,A2的坐标分别为(﹣2,0),(2,0).直线A1M,A2M相交于点M,且它们的斜率之积是.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)已知点A(1,t)(t>0)是轨迹C上的定点,E,F是轨迹C上的两个动点,如果直线AE与直线AF的斜率存在且互为相反数,求直线EF的斜率.21.已知函数f(x)=x﹣ax2﹣lnx(a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣2ln2.[选修4-1:几何证明选讲]22.如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC•BC=AD•AE;(Ⅱ)若AF=2,CF=2,求AE的长.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=2sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若点P的直角坐标为(1,0),圆C与直线l交于A、B两点,求|PA|+|PB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|x+|(a>0)(I)当a=2时,求不等式f(x)>3的解集;(Ⅱ)证明:f(m)+.2016年广东省惠州市高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)【考点】交、并、补集的混合运算.【分析】由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规则解出A∩(∁R B)即可得出正确选项【解答】解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B2.如果复数z=(b∈R)的实部和虚部相等,则|z|等于()A.3B.2C.3 D.2【考点】复数求模.【分析】由已知条件利用复数代数形式的乘除运算法则和复数的实部和虚部相等,求出z=3+3i,由此能求出|z|.【解答】解:z====﹣i,∵复数z=(b∈R)的实部和虚部相等,∴,解得b=﹣9,∴z=3+3i,∴|z|==3.故选:A.3.已知函数f(x)是偶函数,当x>0时,,则在(﹣2,0)上,下列函数中与f(x)的单调性相同的是()A.y=﹣x2+1 B.y=|x+1|C.y=e|x| D.【考点】奇偶性与单调性的综合;函数奇偶性的判断.【分析】先判断函数f(x)的单调性和奇偶性,然后进行判断比较即可.【解答】解:∵f(x)是偶函数,当x>0时,,∴当x>0时函数f(x)为增函数,则在(﹣2,0)上f(x)为减函数,A.在(﹣2,0)上y=﹣x2+1为增函数,不满足条件.B.y=|x+1|在(﹣∞,﹣1)上是减函数,在(﹣2,0)上不单调,不满足条件.C.f(x)在(﹣2,0)上是单调递减函数,满足条件.D.当x<0时,f(x)=x3+1是增函数,不满足条件.故选:C4.已知函数的最小正周期为π,则该函数的图象是()A.关于直线对称B.关于点对称C.关于直线对称D.关于点对称【考点】正弦函数的对称性.【分析】通过函数的周期求出ω,利用正弦函数的对称性求出对称轴方程,得到选项.【解答】解:依题意得,故,所以,==≠0,因此该函数的图象关于直线对称,不关于点和点对称,也不关于直线对称.故选A.5.下列四个结论:①若p∧q是真,则¬p可能是真;②“∃x0∈R,x02﹣x0﹣1<0”的否定是“∃x∈R,x2﹣x﹣1≥0”;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减.其中正确结论的个数是()A.0个B.1个C.2个D.3个【考点】的真假判断与应用.【分析】①根据复合真假关系进行判断②根据含有量词的的否定进行判断③根据充分条件和必要条件的定义进行判断④根据幂函数单调性的性质进行判断【解答】解:①若p∧q是真,则p,q都是真,则¬p一定是假,故①错误;②“∃x0∈R,x02﹣x0﹣1<0”的否定是“∀x∈R,x2﹣x﹣1≥0”,故②错误;③当a>5且b>﹣5时,a+b>0,即充分性成立,当a=2,b=1时,满足a+b>0,但a>5且b>﹣5不成立,即③“a>5且b>﹣5”是“a+b>0”的充充分不必要条件,故③错误;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减.故④正确,故正确结论的个数是1个,故选:B.6.如图,圆C内切于扇形AOB,∠AOB=,若向扇形AOB内随机投掷300个点,则落入圆内的点的个数估计值为()A.450 B.400 C.200 D.100【考点】模拟方法估计概率.【分析】本题是一个等可能事件的概率,试验发生包含的事件对应的包含的事件对应的是扇形AOB,满足条件的事件是圆,根据题意,构造直角三角形求得扇形的半径与圆的半径的关系,进而根据面积的求法求得扇形OAB的面积与⊙P的面积比,可得概率,即可得出结论..【解答】解:由题意知本题是一个等可能事件的概率,设圆C的半径为r,试验发生包含的事件对应的是扇形AOB,满足条件的事件是圆,其面积为⊙C的面积=π•r2,连接OC,延长交扇形于P.由于CE=r,∠BOP=,OC=2r,OP=3r,==;则S扇形AOB∴⊙C的面积与扇形OAB的面积比是.∴概率P=,∵向扇形AOB内随机投掷300个点,∴落入圆内的点的个数估计值为300×=200.故选C.7.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当{a n}的前n项和最大时n的值为()A.7 B.8 C.9 D.10【考点】等差数列的性质.【分析】由题意和等差数列的性质可得{a n}的前8项为正数,从第9项开始为负数,由此易得结论.【解答】解:∵等差数列{a n}满足a7+a8+a9>0,a7+a10<0,∴3a8=a7+a8+a9>0,a8+a9=a7+a10<0,∴a8>0,a9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴当{a n}的前n项和最大时n的值为8,故选:B.8.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.30【考点】由三视图求面积、体积.【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断三棱柱的高及消去的三棱锥的高,判断三棱锥与三棱柱的底面三角形的形状及相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∴几何体的体积V=×3×4×5﹣××3×4×3=30﹣6=24.故选:C.9.执行如图所示的程序框图,则输出的结果是()A.14 B.15 C.16 D.17【考点】程序框图.【分析】通过分析循环,推出循环规律,利用循环的次数,求出输出结果.【解答】解:第一次循环:,n=2;第二次循环:,n=3;第三次循环:,n=4;…第n次循环:=,n=n+1令解得n>15∴输出的结果是n+1=16故选:C.10.已知x,y满足,若目标函数z=y﹣x的最小值是﹣4,则k的值为()A.B.﹣3 C. D.﹣2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.【解答】解:由z=y﹣x得y=x+z,若z=y﹣x的最小值为﹣4,即y﹣x=﹣4,即y=x﹣4,则不等式对应的区域在y=x﹣4的上方,先作出对应的图象,由得,即C(4,0),同时C(4,0)也在直线kx﹣y+2=0上,则4k+2=0,得k=,故选:C.11.已知抛物线y2=2px(p>0)的焦点F恰好是双曲线﹣=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为()A.B.C.1+D.1+【考点】双曲线的简单性质.【分析】先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把=c代入整理得c4﹣6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e.【解答】解:由题意,∵两条曲线交点的连线过点F∴两条曲线交点为(,p),代入双曲线方程得,又=c代入化简得c4﹣6a2c2+a4=0∴e4﹣6e2+1=0∴e2=3+2=(1+)2∴e=+1故选:C.12.已知函数f(x)=,若函数y=f(x)﹣kx有3个零点,则实数k的取值范围是()A.(﹣1,1)B.(1,+∞)C.[2,+∞)D.[1,2)【考点】函数零点的判定定理.【分析】由f(0)=ln1=0,可得:x=0是函数y=f(x)﹣kx的一个零点;当x<0时,由f(x)=kx,得﹣x2+x=kx,解得x=﹣k,由x=﹣k<0,可得:k>;当x>0时,函数f(x)=e x﹣1,由f'(x)∈(1,+∞),进而可得k>1;综合讨论结果,可得答案.【解答】解:∵函数f(x)=,∴f(0)=ln1=0,∴x=0是函数y=f(x)﹣kx的一个零点,当x<0时,由f(x)=kx,得﹣x2+x=kx,即﹣x+=k,解得x=﹣k,由x=﹣k<0,解得k>,当x>0时,函数f(x)=e x﹣1,f'(x)=e x∈(1,+∞),∴要使函数y=f(x)﹣kx在x>0时有一个零点,则k>1,∴k>1,即实数k的取值范围是(1,+∞),故选:B.二.填空题:本大题共4小题,每小题5分.13.已知{a n}是首项为1的等比数列,S n是a n的前n项和,且9S3=S6,则数列的前5项和为.【考点】数列的求和.【分析】利用等比数列求和公式代入9s3=s6求得q,根据首项为1写出等比数列{a n}的通项公式,从而确定出数列也为等比数列,进而根据等比数列求和公式求得数列的前5项和.【解答】解:显然q≠1,所以,所以是首项为1,公比为的等比数列,则前5项和为:.故答案为:14.已知函数f(x)=2lnx+bx,直线y=2x﹣2与曲线y=f(x)相切,则b=0.【考点】利用导数研究曲线上某点切线方程.【分析】设出切点坐标,求出函数在切点处的导数,把切点横坐标分别代入曲线和直线方程,由纵坐标相等得一关系式,再由切点处的导数等于切线的斜率得另一关系式,联立后求得b 的值.【解答】解:设点(x0,y0)为直线y=2x﹣2与曲线y=f(x)的切点,则有2lnx0+bx0=2x0﹣2 (*)∵f′(x)=+b,∴+b=2 (**)联立(*)(**)两式,解得b=0.故答案为:0.15.设M是线段BC的中点,点A在直线BC外,,,则=2.【考点】向量在几何中的应用.【分析】根据向量加法的平行四边形形法则和减法的三角形法则,可得以AB、AC为邻边的平行四边形ABDC为矩形,可得AM是Rt△ABC斜边BC上的中线,可得=,结合题中数据即可算出的值.【解答】解:∵∴以AB、AC为邻边作平行四边形,可得对角线AD与BC长度相等因此,四边形ABDC为矩形∵M是线段BC的中点,∴AM是Rt△ABC斜边BC上的中线,可得=∵,得2=16,即=4∴==2故答案为:216.已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E﹣ABCD的外接球的表面积为16π.【考点】球的体积和表面积.【分析】设球心到平面ABCD的距离为d,利用△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,∠AEB=60°,可得E到平面ABCD的距离为,从而R2=()2+d2=12+(﹣d)2,求出R2=4,即可求出多面体E﹣ABCD的外接球的表面积.【解答】解:设球心到平面ABCD的距离为d,则∵△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,∠AEB=60°,∴E到平面ABCD的距离为,∴R2=()2+d2=12+(﹣d)2,∴d=,R2=4,∴多面体E﹣ABCD的外接球的表面积为4πR2=16π.故答案为:16π.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知acosB﹣(2c﹣b)cosA=0.(Ⅰ)求角A的大小;(Ⅱ)若a=4,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后求出cosA的值,即可确定出角A的大小;(Ⅱ)由a,cosA的值,利用余弦定理列出关系式,再利用基本不等式求出bc的最大值,即可确定出三角形ABC面积的最大值.【解答】解:(Ⅰ)在△ABC中,已知等式acosB﹣(2c﹣b)cosA=0,利用正弦定理化简得:sinAcosB﹣(2sinC﹣sinB)cosA=0,整理得:sinAcosB+sinBcosA=2sinCcosA,即sin(A+B)=sinC=2sinCcosA,∴cosA=,∵A为三角形内角,∴A=;(Ⅱ)∵a=4,A=,∴由余弦定理得:16=b2+c2﹣bc≥2bc﹣bc=bc,即bc≤16,当且仅当b=c时取等号,∴S△ABC=bcsinA=bc≤4,当且仅当b=c时取等号,则△ABC面积的最小值为4.18.随着国民生活水平的提高,利用长假旅游的人越来越多.某公司统计了2012到2016(Ⅱ)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程,判断它们之间是正相关还是负相关;并根据所求出的直线方程估计该公司2019年春节期间外出旅游的家庭数.参考公式:=,=﹣.【考点】线性回归方程.【分析】(Ⅰ)利用列举法计算基本事件数,求出对应的概率值;(Ⅱ)由已知数据求出回归直线方程的系数,写出对应方程,判断是正相关关系;利用回归方程计算x=2019时y的值即可.【解答】解:(Ⅰ)从这5年中任意抽取两年,所有的事件有:,,,,,,,,,共10种,至少有1年多于20个的事件有:,,,,,,共7种,则至少有1年多于20个的概率为P=;(Ⅱ)由已知数据得=2014,=16,(x i﹣)(y i﹣)=﹣2×(﹣10)+(﹣1)×(﹣6)+0×0+1×6+2×10=52,=(﹣1)2+(﹣2)2+02+12+22=10,∴==5.2,=﹣=16﹣5.2×2014=﹣10456.8,∴回归直线的方程为y=5.2x﹣10456.8,∴y与x是正相关关系;当x=2019时,y=5.2×2019﹣10456.8=42,∴该村2019年在春节期间外出旅游的家庭数约为42.19.如图,ABC﹣A1B1C1是底面边长为2,高为的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).(Ⅰ)证明:PQ∥A1B1;(Ⅱ)当时,求点C到平面APQB的距离.【考点】点、线、面间的距离计算;棱柱的结构特征.【分析】(I)由平面ABC∥平面A1B1C1,利用线面平行的性质定理可得:AB∥PQ,又AB ∥A1B1,即可证明PQ∥A1B1.(II)建立如图所示的直角坐标系.设平面APQB的法向量为=(x,y,z),则,利用点C到平面APQB的距离d=即可得出.【解答】证明:(I)∵平面ABC∥平面A1B1C1,平面ABC∩平面ABQP=AB,平面ABQP∩平面A1B1C1=QP,∴AB∥PQ,又∵AB∥A1B1,∴PQ∥A1B1.解:(II)建立如图所示的直角坐标系.∴O(0,0,0),P(0,0,),A(0,1,0),B(﹣,0,0),C(0,﹣1,0),∴=(0,﹣1,),=(﹣,﹣1,0),=(0,﹣2,0),设平面APQB的法向量为=(x,y,z),则,可得,取=,∴点C到平面APQB的距离d===.20.已知点A1,A2的坐标分别为(﹣2,0),(2,0).直线A1M,A2M相交于点M,且它们的斜率之积是.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)已知点A(1,t)(t>0)是轨迹C上的定点,E,F是轨迹C上的两个动点,如果直线AE与直线AF的斜率存在且互为相反数,求直线EF的斜率.【考点】抛物线的简单性质.【分析】(I)设M(x,y),根据斜率关系列方程化简即可;(II)设AE的斜率为k,则AF的斜率为﹣k,联立直线方程与椭圆方程,根据根与系数的关系求出E,F的坐标,代入斜率公式化简得出答案.【解答】解:(I)设M(x,y),则k AM=,k BM=.∴,即.∴点M的轨迹方程为.(II)由椭圆方程得E(1,).设直线AE方程为y=k(x﹣1)+.则直线AF的方程为y=﹣k(x﹣1)+.联立方程组,消元得:(3+4k2)x2+4k(3﹣2k)x+4(﹣k)2﹣12=0,设E(x E,y E),F(x F,y F),∵点A(1,)在椭圆上,∴x E=,y E=k(x E﹣1)+.同理可得:x F=,y F=﹣k(x F﹣1)+.∵x E+x F=+=,x E﹣x F=﹣=﹣.∴k EF===.21.已知函数f(x)=x﹣ax2﹣lnx(a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣2ln2.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)先求出函数的导数,通过讨论a的范围,确定导函数的符号,从而判断函数的单调性;(2)表示出f(x1)+f(x2)=lna++ln2+1,通过求导进行证明.【解答】解:(1)∵f′(x)=﹣,(x>0,a>0),不妨设φ(x)=2ax2﹣x+1(x>0,a>0),则关于x的方程2ax2﹣x+1=0的判别式△=1﹣8a,当a≥时,△≤0,φ(x)≥0,故f′(x)≤0,∴函数f(x)在(0,+∞)上单调递减,当0<a<时,△>0,方程f′(x)=0有两个不相等的正根x1,x2,不妨设x1<x2,则当x∈(0,x1)及x∈(x2,+∞)时f′(x)<0,当x∈(x1,x2)时,f′(x)>0,∴f(x)在(0,x1),(x2,+∞)递减,在(x1,x2)递增;(2)由(1)知当且仅当a∈(0,)时f(x)有极小值x1和极大值x2,且x1,x2是方程的两个正根,则x1+x2=,x1 x2=,∴f(x1)+f(x2)=(x1+x2)﹣a[(x1+x2)2﹣2x1 x2]﹣(lnx1+lnx2)=ln(2a)++1=lna++ln2+1(0<a<),令g(a)=lna++ln2+1,当a∈(0,)时,g′(a)=<0,∴g(a)在(0,)内单调递减,故g(a)>g()=3﹣2ln2,∴f(x1)+f(x2)>3﹣2ln2.[选修4-1:几何证明选讲]22.如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC•BC=AD•AE;(Ⅱ)若AF=2,CF=2,求AE的长.【考点】与圆有关的比例线段.【分析】(I)如图所示,连接BE.由于AE是⊙O的直径,可得∠ABE=90°.利用∠E与∠ACB都是所对的圆周角,可得∠E=∠ACB.进而得到△ABE∽△ADC,即可得到.(II)利用切割线定理可得CF2=AF•BF,可得BF.再利用△AFC∽△CFB,可得AF:FC=AC:BC,进而根据sin∠ACD=sin∠AEB,AE=,即可得出答案.【解答】证明:(I)如图所示,连接BE.∵AE是⊙O的直径,∴∠ABE=90°.又∠E与∠ACB都是所对的圆周角,∴∠E=∠ACB.∵AD⊥BC,∠ADC=90°.∴△ABE∽△ADC,∴AB:AD=AE:AC,∴AB•AC=AD•AE.又AB=BC,∴BC•AC=AD•AE.解:(II)∵CF是⊙O的切线,∴CF2=AF•BF,∵AF=2,CF=2,∴(2)2=2BF,解得BF=4.∴AB=BF﹣AF=2.∵∠ACF=∠FBC,∠CFB=∠AFC,∴△AFC∽△CFB,∴AF:FC=AC:BC,∴AC==.∴cos∠ACD=,∴sin∠ACD==sin∠AEB,∴AE==[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=2sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若点P的直角坐标为(1,0),圆C与直线l交于A、B两点,求|PA|+|PB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)把直线l的参数方程消去参数t可得,它的直角坐标方程;把圆C的极坐标方程依据互化公式转化为直角坐标方程.(Ⅱ)把直线l方程与圆C的方程联立方程组,求得A、B两点的坐标,可得|PA|+|PB|的值.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数),消去参数t可得3x+y﹣3=0.圆C的方程为ρ=2sinθ,即ρ2=2ρsinθ,即x2+y2=2y,即x2+=3.(Ⅱ)由求得,或,故可得A(,﹣)、B(﹣, +).∵点P(1,0),∴|PA|+|PB|=+=(2﹣)+(2+)=4.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|x+|(a>0)(I)当a=2时,求不等式f(x)>3的解集;(Ⅱ)证明:f(m)+.【考点】带绝对值的函数.【分析】(I)当a=2时,去掉绝对值,再求不等式f(x)>3的解集;(Ⅱ)f(m)+f(﹣)=|m+a|+|m+|+|﹣+a|+|﹣+|≥2|m+|=2(|m|+)≥4,可得结论.【解答】(I)解:当a=2时,f(x)=|x+2|+|x+|,不等式f(x)>3等价于或或,∴x<﹣或x>,∴不等式f(x)>3的解集为{x|x<﹣或x>};(Ⅱ)证明:f(m)+f(﹣)=|m+a|+|m+|+|﹣+a|+|﹣+|≥2|m+|=2(|m|+)≥4,当且仅当m=±1,a=1时等号成立,∴f(m)+.2016年9月3日。
_广东省惠州市2018-2019学年高三文数第三次调研考试试卷_
第1页,总13页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省惠州市2018-2019学年高三文数第三次调研考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 已知函数 ,则函数y=f (x )的大致图象为( )A .B .C .D .2. 若 、 满足约束条件,则 的最大值为( )A . 2B . 6C . 7D . 83. 已知直线 过点,当直线 与圆 有两个交点时,其斜率 的取值范围为( )A .B .C .D .4. 已知集合 ,集合,则集合 ( )A .B .C .D .答案第2页,总13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………5. 要得到函数的图象,只需要将函数的图象( )A . 向左平移 个单位B . 向右平移 个单位C . 向左平移 个单位D . 向右平移 个单位6. 已知双曲线 : 的一条渐近线方程为 ,则双曲线 的离心率等于( )A .B .C .D .7. 已知函数 是奇函数,若 ,则 的取值范围是( )A .B .C .D .8. 已知 , ,则 ( )A .B .C .D .9. 如图所示,△ABC 中, ,点E 是线段AD 的中点,则 ( )A .B .C .D .10. 榫卯是在两个木构件上所采用的一种凹凸结合的连接方式,凸出部分叫榫,凹进部分叫卯,榫和卯合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,如图所示是一种榫卯的三视图,则该空间几何体的表面积为( )。
2018届 惠州市 高三第三次调研考试 理科数学(含答案解析)
惠州市2018届高三第三次调研考试理科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.1、集合}{220A x x x =--≤,{}10B x x =-<,则A B = ( )A .}{1x x ≥ B .}{11x x -≤< C .{}1x x <- D . {}21x x -≤< 2、已知i 为虚数单位,复数z 满足61z i=+,则复数z 的虚部为( ) A .3i B .3C .3i -D .3-3、抽奖一次中奖的概率是90%,5个人各抽奖一次恰有3人中奖的概率为( )A .30.9 B .33250.90.1C ⨯⨯C .31(10.9)--D .32350.90.1C ⨯⨯4、等比数列{}n a 中,122a a +=,454a a +=,则1011a a +=( ) A .8B .16C .32D .645、已知函数()f x 是定义在R 上的偶函数,且1(2)()f x f x +=-,当32x -≤≤-时()f x x =,则(2018)f =( )A .-2B .2C .-3D .36、若()na x x-展开式中所有二项式系数之和是512 ,常数项为84- ,则实数a 的值是( )A .1B .﹣1C .1±D .27、如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体的体积为( ) A .16B .1C .43D .48、如图是一个算法的流程图,则输出S 的值是( )A .15B .31C .63D .1279、已知1cos()33x π-=,则25cos(2)sin ()33x x ππ-+-的值为( ) A .19- B .19 C .53- D . 5310、已知,PA PB 是圆C :224470x y x y +--+=的两条切线(,A B 是切点), 其中P 是直线:34120l x y -+=上的动点,那么四边形PACB 的面积的最小值为( )A.2B. 22C.3D.2311、已知函数()()f x x R ∈满足(1)1f =,()f x 的导数1'()2f x <,则不等式221()22x f x <+的解集是( )A.(,1)(1,)-∞-⋃+∞B. (,2)(2,)-∞-⋃+∞C. (1,)+∞D. (2,)+∞12、已知函数()(0)1xf x x x=>+,设()f x 在点(,())(n f n n ∈N *)处的切线在y 轴上的截距为n b ,数列{}n a 满足:112a =,1()(*)n n a f a n N +=∈,在数列2n n n b a a λ⎧⎫+⎨⎬⎩⎭中,仅当5n =时,2n n n b a a λ+取最小值,则λ的取值范围是( )A.(11,9)--B. ( 5.5, 4.5)--C. (4.5,5.5)D. (9,11) 二.填空题:本题共4小题,每小题5分。
高三数学-【数学】广东省惠州三中2018届高三上学期第
惠州市第三中学2018-2018学年第一学期第三次测试高三文科数学一、选择题:(本大题共10小题,每小题5分,满分50分)1. 在复平面内,复数cos3sin 3z i =+(i 是虚数单位)对应的点位于( )A 第一象限B 第二象限C 第三象限D 第四象限 2.抛物线2y x =的焦点坐标为 ( )A 1(,0)4B 1(,0)2C 1(0,)2D 1(0,)43.已知点M (1,0)是圆C:22420x y x y +--=内的一点,则过点M 的最短弦所在的直线方程 是 ( )A 10x y +-=B 01=--y xC 01=+-y xD 02=++y x 4.等差数列}{n a 的前n 项和为2811,30n S a a a ++=若,那么13S 值的是 ( ) A 130B 65C 70D 以上都不对5. 已知R 是实数集,{21,M xN y y x ⎧⎫=<=⎨⎬⎩⎭,则)(M C N R ⋂= ( ) A ()1,2 B []0,2 C ∅ D []1,2 6. 下列有关命题的说法错误..的是 ( ) A 命题“若0232=+-x x 则 1=x ”的逆否命题为:“若1≠x , 则0232≠+-x x ”. B “1=x ”是“0232=+-x x ”的充分不必要条件. C 若q p ∧为假命题,则p 、q 均为假命题.D 对于命题p :x R ∃∈,使得210x x ++<. 则⌝p :x R ∀∈, 均有210x x ++≥.7. 函数xxa y x=(01)a <<的图象的大致形状是 ( )A B C D8.已知函数()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( )A ()1,2B ()2,3C (]2,3D ()2,+∞9.已知函数x x x f 2)(+=,x x x g ln )(+=,1)(--=x x x h 的零点分别为,,21x x3x ,则321,,x x x 的大小关系是( )A 123x x x <<B 213x x x <<C 132x x x <<D 321x x x << 10.设()11xf x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2009=f x ( ) A 1x-B xC11x x -+ D11x x +-二、填空题:(本大题共5小题,考生作答4小题,每小题5分,满分20分)(一)必做题(11~13题) 11.过曲线21x y x+=(0x >)上横坐标为1的点的切线方程为 . 12.已知向量)2,1(=→a , ),2(xb =→如果→a 与→b 所成的角为锐角,则x 的取值范围是 .13. 已知y x z k k y x xy x y x 3)(020,+=⎪⎩⎪⎨⎧≤++≤≥,若为常数满足条件的最大值为8,则k = .(二)选做题(14~15题,考生只能从中选做一题;如果二题都做,则按第14题评分) 14.(坐标系与参数方程选做题)在极坐标系中,点(2,)3M π到直线:sin()42l πρθ+=的距离为 .15.(几何证明选讲选做题)已知PA 是圆O(O 为圆心)的切线,切点为A ,PO 交圆O 于B ,C两点,AC =,∠PAB=300,则圆O 的面积为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惠州市2018届高三第三次调研考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)若集合{}|0B x x =≥,且A B A = ,则集合A 可能是( ) (A ){}1,2(B ){}|1x x ≤(C ){}1,0,1-(D )R(2)已知向量(1,1),(2,2),t t =+=+ m n 若()()+⊥-m n m n ,则t =( )(A )0 (B )3- (C )3 (D )1-(3)设函数R x x f y ∈=),(,“)(x f y =是偶函数”是“)(x f y =的图像关于原点对称”的( )条件(A )充分不必要 (B )必要不充分条件 (C )充要 (D )既不充分也不必要(4)双曲线)0,0(1:2222>>=-b a b y a x C 的离心率213=e ,则它的渐近线方程为( )(A )x y 23±= (B )x y 32±= (C )x y 49±= (D )x y 94±= (5)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为( ) (A )31 (B )41 (C )51 (D )61 (6)如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为( )(7)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知2,b c ==4C π=,则ABC ∆的面积为( )(A )13+ (B 1 (C )4 (D )2 (8)执行如下图所示的程序框图,则输出的结果为( ) (A )7 (B )9 (C )10 (D )11(9)已知实数x ,y 满足:⎩⎪⎨⎪⎧x +3y +5≥0x +y -1≤0x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )(A )1 (B )2 (C )4 (D )8 (10)已知函数()sin cos ()f x x x R λλ=+∈的图象关于4x π=-对称,则把函数()f x 的图象上每个点的横坐标扩大到原来的2倍,再向右平移3π,得到函数()g x 的图象,则函数()g x 的一条对称轴方程为( ) (A )6x π=(B )4x π=(C )3x π=(D )116x π=(11)已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的87时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于 ( )(A )67π (B )34π(C )32π (D )2π(12)已知2cos sin )(x x x x x f ++=,则不等式1(ln )(ln )2(1)f x f f x+<的解集为( )(A )),(+∞e(B )(0,)e(C )1(0,)(1,)e e(D )),1(e e第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个考生都必须做答。
第22题、第23题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分。
AC D E1D F1A 1B 1C ABE1D F 1A 1B 1C (1)(2)(A)(B)(C)(D)(13)若复数z 满足1z i i ⋅=+(i 是虚数单位),则z 的共轭复数是____________. (14)若角α满足sin 2cos 0αα+=,则sin 2α的值等于____________.(15)已知直线ax y =与圆0222:22=+--+y ax y x C 交于两点B A ,,且CA B ∆为等边三角形,则圆C 的面积为____________. (16)已知函数()()2||()24x x m f x x m x mx m≤⎧=⎨>-+⎩,其中0>m ,若存在实数b ,使得关于x的方程b x f =)(有三个不同的零点,则m 的取值范围是____________.三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)已知数列{}n a 中,点),(1+n n a a 在直线2+=x y 上,且首项11a =. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n a 的前n 项和为n S ,等比数列}{n b 中,11a b =,22a b =,数列}{n b 的前n 项和为n T ,请写出适合条件n n S T ≤的所有n 的值.某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如下图所示。
该同学为这个开学季购进了160盒该产品,以x (单位:盒,100200x ≤≤)表示这个开学季内的市场需求量,y (单位:元)表示这个开学季内经销该产品的利润。
(Ⅰ)根据直方图估计这个开学季内市场需求量x 的中位数; (Ⅱ)将y 表示为x 的函数,并根据直方图估计利润不少于4800元的概率。
(19)(本小题满分12分)如图所示的多面体ABCDE 中,已知ABCD 是边长为2的正方形,平面ABCD ⊥平面ABE ,∠AEB=90°,AE=BE.(Ⅰ)若M 是DE 的中点,试在AC 上找一点N ,使得MN//平面ABE ,并给出证明; (Ⅱ)求多面体ABCDE 的体积。
频率/组距需求量1001201401601802000.01500.01250.01000.00750.0050OM DCABE已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为()()121,0,1,0F F -,点1,2A ⎛ ⎝⎭在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M N 、时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ = ?若存在,求出直线的方程;若不存在,说明理由.(21)(本小题满分12分)已知函数()()1ln 0f x a x a a x=+≠∈R ,. (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(Ⅱ)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数a 的取值范围.请考生在第22题和第23题中任选一题做答,做答时请在答题卡的对应答题区写上题号,并用2B 铅笔把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l 的参数方程是1cos sin x t y t αα=+⎧⎨=⎩(t 为参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,且AB =求直线l 的倾斜角α的值.(23)(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -a |.(Ⅰ)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值; (Ⅱ)在(Ⅰ)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.惠州市2018届第三次调研考试 文科数学参考答案与评分标准一、选择题(本大题共12小题,每小题5分,共60分)1.【解析】因为B A ⊆,只有A 满足。
2.【解析】(23,3),(1,1),t +=+-=--m n m n ()(),(23)30,t +⊥-∴-+-=m n m n 解得3t =-.3.【解析】)(x f y =是偶函数不能推出)(x f y =的图像关于原点对称,反之可以。
4.【解析】双曲线)0,0(1:2222>>=-b a b y a x C 的离心率213=e ,可得4131,4132222=+∴=a b a c ,可得23=a b ,双曲线的渐近线方程为:x y 23±=. 5.【解析】 设田忌的上,中,下三个等次马分别为A ,B ,C ,齐王田忌的上,中,下三个等次马分别为c b a ,,,从双方的马匹中随机的选一匹比赛的所有可能有Cc Cb Ca Bc Bb Ba Ac Ab Aa ,,,,,,,,共9种,田忌马获胜有Bc Ac Ab ,,3种,田忌马获胜的概率为31. 6.【解析】从几何体的左面看,对角线1AD 在视线范围内,画实线,右侧面的棱F C 1不在视线范围内,画虚线。
且上端点位于几何体上底面边的中点。
7.【解析】由正弦定理sin 1sin sin sin 2b c b C B B C c =⇒==,又c b >,且(0,)B π∈,所以6B π=,所以712A π=,所以1171sin 22122122S bc A π==⨯⨯=⨯⨯=8.【解析】11,lg lg 31,3i S ===->-否;1313,lg +lg lg lg51,355i S ====->-否;1515,lg +lg lg lg71,577i S ====->-否; 1717,lg +lg lg lg91,799i S ====->-否;1919,lg +lg lg lg111,91111i S ====-<-是,输出9,i =故选B .9.【解析】如图,当直线经过点)35,(--a a C 时满足,5243a a --+⋅=-,所以2=a 10.【解析】(0)()2f f π=-,可得1λ=-,所以()sin cos )4f x x x x π=-=-,横坐标扩大到原来的2倍,再向右平移3π,得到函数()g x 的图象,115()()]sin()234212g x x x πππ=--=-,所以函数()g x 的对称轴的方程为1511,2,21226x k x k k Z πππππ-=+=+∈.当0k =时,对称轴的方程为116x π=.故选:D .11.【解析】当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,31(), 2.48xx ==得(也可以直接计算体积求得)易得小三棱锥,设小球半径为r ,则11,33S S r r ⋅⋅⋅=底面底面得故小球的表面积224.3S r ππ==故选C. 12.【解析】,因为()f x -=()f x 所以()f x 是偶函数。