Nogo-A和NgR在大鼠视皮质发育中的经验依赖表达
Nogo-A
★ 通讯 作 者 : E - m a l l :h j y y s j w k @1 6 5 . C O I 1 )
[ 2 ] Z h o u Y T , P a u l G. A s a d K a r i m L i p o t o x i c h e a r t d i s e a s e i n o b e s e r a t s : i mp l i c a t i o n s f o r h u ma n o b e s i t y [ J ] . P r o c e e d i n g s o f t h e
均显著 高于假 手 术组 ( P < 0 . 0 5 ) 。颅脑 创伤 后 l 天 时创 伤 灶边缘 脑 组织 中 Ng R 呈基础 表 达 ,与假 手术 组 比较差 别 无统 计 学意 义 ( P > 0 . 0 5 ) 。创
伤后 3 dN g R 表达 较假 手 术组 明显 升 高 ( P < 0 . 0 5 ) ,在伤 后 7 d达到 高峰 值 ,直 至 伤后 1 0 d N g R表 达仍 处于峰 值 。结论 颅 脑创 伤后 No g o — A 呈双 峰 的 表达 规律 ,N o g o — A 在创 伤后 急性期 可 能 参与 颅脑 创伤 的 急性 病理 过程 ,在创 伤修 复期 发挥抑 制 神 经再 生 的作 用 ,为开辟 颅 脑创 伤救 治的新 方 法提 供 依据 。N g R在 颅脑 创 伤 的恢 复期 显 著 升 高 ,峰 值持 续时 间 长 ,N g R介 导颅 脑创 伤后 神 经再 生 的抑 制 , 阻碍 神 经 功 能
体内和体外条件下Nogo_A在大鼠小脑颗粒神经元上表达差异的研究
Ju.l 2007 23(4) 379~384神经解剖学杂志(Chinese Journal of Neuroanato m y)体内和体外条件下N ogo A在大鼠小脑颗粒神经元上表达差异的研究姚 琴1 金卫林2* 王 颖1 鞠 躬1,2*(1第四军医大学 神经科学研究所,西安710032;2上海交通大学 神经科学研究所,上海200240)摘 要 Nogo A是网膜家族蛋白的成员之一,在抑制成年哺乳动物中枢神经系统损伤后轴突再生的过程中发挥着重要作用。
Nogo A表达于寡突胶质细胞和多种神经元,但在成年动物的小脑颗粒神经元中却未检测到。
为探讨Nogo A在小脑颗粒神经元上的表达情况及其影响因素,本实验应用免疫荧光组织化学染色法研究了Nogo A蛋白在新生大鼠脑切片上和不同体外培养条件下小脑颗粒神经元中的表达。
结果显示:在体条件下Nogo A蛋白在新生大鼠的小脑颗粒神经元上的表达逐渐减少,至新生14 d时检测不到;而在体外培养的来源于新生7d大鼠的小脑颗粒神经元中Nogo A蛋白持续表达,可维持到14d;与胶质细胞共培养,或加入胶质细胞培养上清的小脑颗粒神经元仍然表达Nogo A蛋白。
本研究结果表明,体内和体外两种条件下N ogo A蛋白在小脑颗粒神经元上的表达存在差异,新生期Nogo A在小脑颗粒神经元上的表达下调可能与Pu rk i n j e细胞有关,提示Nogo A在生后发育过程中可能与神经元的迁移或突触的形成密切相关。
关键词 Nogo A 小脑颗粒神经元 表达 免疫荧光组织化学染色 大鼠D IFFERENT NOGO A EXPRESSI ONS I N RAT CEREBELLAR GRANULENEURON S BET W EEN I N VIVO AND IN VITRO COND I TIONSYao Q in1,J i n W eilin2,W ang Ying1,Ju G ong1,2(1I n stitute ofN eurosci en ces,the Fourt h M ilitary M ed i calUn i versit y,X i an710032;2I n stitute ofN eurosci en ces,Shangha i JiaoTong Un i vers i ty,Shangh ai200240)Abstract Nogo A,a m e mb er of the reti cu l on f a m il y of protei n s,plays a i m port ant rol e i n t h e restri ction of axona l regenerati on after i n j u ry t o t h e adu l t ma mm alian cen tral nervous s yste m(CNS).Nogo A w as expressed by o li godendrocytes and m any n euron s,bu t not cereb ell ar granu l e n euron s i n the adu lt an i m a.l To exp l ore t he Nogo A expression i n t he cerebell ar granu l e neu rons and t h e i n fluence fact ors,w e exa m i ned t he express i on ofNogo A i n the cereb ell ar granule neurons on b rai n sections of the n eonatal rats and under d ifferent cu lt ure cond iti on s by fl u orescen t i m munohistoch e m icalm et hods.Th e res u lts s ho w ed t hat in v i v o Nogo A expression i n t he cerebell ar granu l e neu rons of t he neonat a l rats gradua ll y decreased from b i rth and w as undetectab l e at post n atal day14,wh ile its express i on i n cu l tured cerebellar gran u l e neu ron s d eri ved fro m postnatal day7rats cou l d be exa m i ned conti nuou sl y and m ai n tai ned to14days in vit ro.A fter co c u ltured w ith glia cell s or added in supern ate ofg li a cell s c u ltures,the cerebellar granu l e neu rons s till expressed Nogo A p rotei n.Th e presen t res u lts i nd i cate t hat there are d i ff eren ces ofNogo A exp ressi on i n the cerebellar granu le neu ron s bet w een i n vivo and in v it ro.Th e down regu lati on ofNogoA expressi on i n t he cerebellar granu le n euron s neonat ally m ight be related t o the Purk i n je cells.Ou r res u lts suggest thatNogo A m igh t bei nvo l ved i n t he n euron alm i grati on or synap t ogen es i s du ri ng t he postnat al d evelopm ent.K ey w ords Nogo A,cerebellar granu le neuron,exp ress i on,fl uorescen t i m m unoh istoche m istry,rat成年哺乳动物的中枢神经系统在损伤后,神经纤维的生长受限,几乎没有再生能力,髓鞘来源的抑国家重大基础研究计划!973∀基金(No.2003CB515301)和军队科技攻关(N o.06G089)资助项目* 通讯作者 鞠 躬 电话:029 ******** E m ai:l j ugong@f m 金卫林 电话:021 ******** E m ai:l w eili n ji n@yahoo.co m制因子Nogo A是造成再生能力缺陷的重要原因之一[1]。
Nogo-A及NgR的研究进展
Nogo-A及NgR的研究进展
杨雷;赵世刚;刘罡
【期刊名称】《内蒙古医学杂志》
【年(卷),期】2007(039)003
【摘要】Nogo-A是在中枢神经系统髓磷脂中发现的一种抑制轴突生长的蛋白,它含有两个完全独立的具有抑制活性的结构域;位于细胞内的amino-Nogo和位于细胞表面的Nogo-66.Nogo-66是通过与其受体复合体NgR/p75/Lingo-1结合发挥作用的.Nogo-A在发育的神经元胞体和轴突表面的表达,暗示它可能在初期参与了髓鞘的形成.Nogo蛋白及其受体的发现是中枢神经损伤修复分子机制的重大突破.本文就Nogo-A及其受体的结构、分布、功能及有关最新研究情况作一简单介绍.
【总页数】3页(P333-335)
【作者】杨雷;赵世刚;刘罡
【作者单位】内蒙古医学院附属医院神经内科,内蒙古,呼和浩特,010050;内蒙古医学院附属医院神经内科,内蒙古,呼和浩特,010050;内蒙古医学院附属医院神经内科,内蒙古,呼和浩特,010050
【正文语种】中文
【中图分类】R741.02
【相关文献】
1.脑缺血预处理对大鼠脑内Nogo-A mRNA、Nogo-A及NgR蛋白表达的影响[J], 焦义明;王金兰;娄季宇;白宏英
2.Nogo-A及其受体NgR的研究进展 [J], 朱立华;赵伟佳
3.中药对脑缺血后Nogo-A、NgR、Rho-A影响的研究概况 [J], ZHAO Lei;TAO Xue;GU Li hua
4.Nogo-A新功能域通过与NgR1结合促进炎症痛和抑制神经突生长 [J],
5.电针抑制Nogo-A/NgR表达对脑缺血大鼠内囊损伤的影响 [J], 董文青;缪化春;吴锋;李怀斌
因版权原因,仅展示原文概要,查看原文内容请购买。
2024年华医网继续教育答案-中西医结合治疗缺血性卒中的进展及诊疗
中西医结合治疗缺血性卒中的进展及诊疗答案2024年华医网继续教育目录丹参与丹参多酚酸—急性脑缺血治疗研究 (1)急性缺血性卒中神经重塑研究进展 (3)《中国缺血性卒中和TIA发作二级预防指南(2022)》最新解读 (7)缺血性卒中早期治疗策略与中药注射剂应用 (9)脑血管病的救治策略与用药 (11)急性缺血性脑卒中规范化诊疗策略 (13)脑梗塞血运重建策略的评价 (15)急性缺血性卒中的诊治策略 (17)急性脑梗死血管再通治疗 (19)低NIHSS评分大血管闭塞的血管内治疗 (21)中西医结合急性缺血性卒中溶栓策略 (23)缺血性脑卒中免疫机制研究进展及潜在新药物靶点的展望 (25)女性卒中的特点及中西医结合诊疗策略 (27)丹参与丹参多酚酸—急性脑缺血治疗研究1.丹参中作用最强的有效成分是()A.丹酚酸AB.丹酚酸BC.丹酚酸CD.丹酚酸DE.丹参多酚酸参考答案:A2.根据《中国药典》2020版,丹参的质量评价标准中,丹酚酸B的含量不得少于多少()A.0.1%B.0.5%C.1.0%D.2.0%E.3.0%参考答案:E3.丹参的应用历史最早可追溯到哪本历史文献()A.《神农本草经》B.《新修本草》C.《日华子本草》D.《妇人明理论》E.《本草纲目》参考答案:A4.发现丹参中首个水溶性成分的时间是()A.1934年B.1980sC.1984年D.1988年E.1993年参考答案:B5.丹参多酚酸的药理作用机制不包括以下哪一项?A.抗血小板聚集及凝集B.抗氧化和清除自由基C.抑制细胞凋亡和保护神经元D.促进细胞凋亡E.促进损伤后血管及神经元增殖参考答案:D急性缺血性卒中神经重塑研究进展1.神经重塑不包括以下哪部分()A.基因表达改变B.轴突生长C.突触不可再生D.大脑网络重组E.神经元再生参考答案:C2.关于缺血性脑卒中与神经重塑过程,以下哪项描述是正确的()A.缺血性脑卒中不能诱导轴突发芽或生长B.轴突生长通常在缺血性脑卒中后30天会出现C.轴突生长形成的皮质回路可以在缺血后立即观察到D.卒中可诱导对侧运动皮层轴突发芽,进入同侧梗死周围皮层、对侧纹状体、红核等E.卒中只能诱导与梗死部位相邻的皮层中的轴突发芽,不能涉及同侧皮层参考答案:D3.1990年-2019年缺血性卒中年龄标化的发病率最高的国家是()A.中国和印度B.美国和印度C.印度与埃及D.美国与埃及E.中国与埃及参考答案:E4.神经重塑主要发生在卒中后的哪个时期()A.慢性期B.超急性期C.急性期D.亚急性期E.稳定期参考答案:D5.在轴突生长过程中,表达上调的信号有()A.Nogo-AB.NgRC.RhoAD.ROCKE.BDNF参考答案:E星形胶质细胞CX43、半通道及缝隙连接对脑缺血性神经炎性反应调控及丹参多酚酸的干预1.AMPK/mTOR/ULK1通路在自噬中的主要作用是()A.抑制自噬B.控制基因表达C.促进细胞分裂D.激活自噬E.维持细胞稳态参考答案:D2.半通道是由多少个Cx43蛋白质构成的六聚体()A.4个B.5个C.6个D.7个E.8个参考答案:C3.缝隙连接(GJ)主要作用是什么()A.神经细胞传导B.细胞间物质交流与通讯C.神经元修复D.血管生成E.能量代谢参考答案:B4.丹参中活血作用最强且含量最高的水溶性化合物是()A.丹酚酸AB.丹酚酸BC.丹酚酸CD.丹酚酸DE.丹参酮参考答案:B5.丹酚酸B(SalB)的主要作用不包括哪一项()A.改善微循环B.抗炎C.促凝D.抗氧化E.对缺血性卒中有保护作用参考答案:C《中国缺血性卒中和TIA发作二级预防指南(2022)》最新解读1.根据2022版指南,对于既往未接收降压治疗的缺血性卒中或TIA患者,发病数天且病情稳定后,如果收缩压多少mmHg以上,建议启动降压治疗?A.120B.130C.140D.150E.160参考答案:C2.卒中患者合并睡眠呼吸暂停的比例有多少?A.<40%B.<50%C.<60%D.>70%E.>90%参考答案:D3.对于非心源性TIA或缺血性卒中患者,推荐使用的预防卒中及其他心血管事件的药物是什么?A.口服抗血小板药物B.抗凝药物C.溶栓药物D.钙通道阻滞剂E.利尿剂参考答案:A4.对于具有活动能力的缺血性卒中或TIA患者,在急性期后,推荐的体育锻炼频率和时长应为?A.每周至少1次,每次至少5分钟的中等强度运动B.每周至少2次,每次至少10分钟的有氧运动C.每周至少3-4次,每次至少10分钟的中等强度运动,如快走D.每周至少5次,每次至少30分钟的高强度运动E.每周至少2次,每次至少20分钟的有氧运动,如快走、慢跑参考答案:C5.筛查隐源性卒中的栓子来源的金标准是()A.经胸超声心动图B.心电图筛查C.血液检测D.颈部血管超声E.食道超声心动图参考答案:E缺血性卒中早期治疗策略与中药注射剂应用1.下列哪项不属于丹参多酚酸注射液治疗急性期脑梗死的临床疗效()A.有效减少脑梗死面积B.选择性增加急性脑梗死缺血半暗带脑血流C.促进神经功能恢复D.不能联合溶栓治疗,会增加出血风险E.有效改善患者认知和运动功能参考答案:D2.下列哪项不是痰热腑实的常用药()A.瓜蒌B.胆南星C.大黄D.芒硝E.黄芪参考答案:E3.生地用于治疗阳闭时,其作用是()A.凉血清热B.清肝熄风C.育阴潜阳D.使火降风熄,则气血下归E.益气养血参考答案:A4.关于注射用丹参多酚酸用药安全,说法错误的是()A.一次一支,一日一次B.滴速控制在每分钟40滴及以上C.药液配置后,应在4小时内用完D.不宜与藜芦及其制剂同时使用E.在静脉输液时,建议选择精密输液器参考答案:B5.心血管疾病的病理基础是()A.高血压B.高血糖C.血脂紊乱D.动脉粥样硬化E.炎症参考答案:D脑血管病的救治策略与用药1.目前我国成年人致死、致残的首要原因是()A.糖尿病B.冠状动脉粥样硬化C.心肌梗死D.高血压E.脑卒中参考答案:E2.下列哪项不属于中风病的危险因素()A.高血压B.糖尿病C.体力活动过多D.吸烟E.肥胖参考答案:C3.中风病痰热内闭清窍证的治法是什么()A.熄风化痰,活血通络B.清热化痰,醒神开窍C.平肝熄风,清热泻火D.益气活血,养阴通络E.益气回阳,固脱参考答案:B4.在中风病的战略防御阶段,主要治则是什么()A.活血化瘀B.益气养阴C.检测和支持D.熄风通络E.清热化痰参考答案:C5.下列哪种中成药适合在中风病急性期和恢复期应用()A.参麦注射液B.醒脑静注射液C.刺五加注射液D.脉络宁注射液E.丹参多酚酸注射液参考答案:E急性缺血性脑卒中规范化诊疗策略1.STAIR推荐意见中提出,卒中病理的级联瀑布反应涉及多重途径,可能需要哪种策略进行有效调控()A.单一机制药物B.手术治疗C.联合多种药理作用的药物D.增加药物剂量E.延长治疗时间参考答案:C2.缺血性卒中全流程规范化管理的内容不包括()A.公众教育卒中一级预防B.院内急性期救治C.院内二级预防D.门诊复查卒中后认知等功能障碍识别与管理E.长期康复卒中三级预防参考答案:C3.关于不同类型患者采取不同降脂方案,说法错误的是()A.非心源性缺血性卒中患者推荐给予低强度他汀治疗B.合并颅内外大动脉粥样硬化证据的非心源性缺血性卒中患者高强度他汀治疗,需要时联合依折麦布高强度他汀治疗,需要时联合依折麦布C.极高危缺血性卒中患者给予最大耐受剂量他汀治疗后,LDL-C仍高于1.8 mmol/L,推荐与依折麦布联合应用D.若他汀与依折麦布联合治疗后,LDL-C 水平仍未达到目标水平,推荐联合使用PCSK9 抑制剂治疗以预防 ASCVD 事件发生E.他汀不耐受者,根据LDL-C水平目标值,可考虑使用PCSK9抑制剂或依折麦布参考答案:A4.2024年国家卫生健康委将什么作为国家医疗质量安全十大改进目标之一()A.提升急性心肌梗死救治率B.提升急性脑梗死再灌注治疗率C.降低癌症死亡率D.推广疫苗接种E.扩大慢性病筛查范围参考答案:B5.大脑中动脉M2或M3段闭塞的患者,可以考虑在发病6h内进行哪种治疗方法()A.动脉溶栓B.静脉溶栓C.机械取栓D.保守治疗E.抗血小板治疗参考答案:C脑梗塞血运重建策略的评价1.首要DNT的时间目标是()A.≥50%患者在60分钟内溶栓B.≥50%患者在55分钟内溶栓C.≥50%患者在50分钟内溶栓D.≥50%患者在45分钟内溶栓E.≥50%患者在40分钟内溶栓参考答案:A2.脑梗塞治疗策略不包括()A.静脉溶栓B.动脉溶栓C.促进血小板聚集D.抗凝E.改善侧支循环参考答案:C3.中国医学科学院研究所首次分离得到丹参多酚酸的时间是()A.上世纪80年代B.上世纪90年代C.2000年D.2001年E.2010年参考答案:A4.对于轻型卒中患者,在发病24小时内启动哪种治疗对预防90天内的早期卒中复发有益?A.单一阿司匹林治疗B.单一氯吡格雷治疗C.阿司匹林+氯吡格雷双抗治疗D.替罗非班治疗E.抗凝治疗参考答案:C5.下列哪项检查应在静脉溶栓前进行()A.基线心电图B.血糖测定C.肌钙蛋白评估D.胸片检查E.血小板计数参考答案:B急性缺血性卒中的诊治策略1.下列哪项不是AIS核心理论——挽救缺血半暗带的基础()A.局部血流B.组织氧分压C.全脑血流D.时间窗E.组织窗参考答案:C2.AIS静脉溶栓治疗的时间窗内,rt-PA的使用剂量是多少()A.0.6mg/kgB.0.7mg/kgC.0.8mg/kgD.0.9mg/kgE.1.0mg/kg参考答案:D3.关于静脉溶栓后出血转化的ECASS分型,说法错误的是()A.HI1沿梗死灶边缘小点状出血B.HI2 :梗死区内片状无占位效应出血或多个融合的点状出血C.PH1:血肿≤梗死面积的30%并有轻微占位效应的出血D.HI3由HI4.HI2共同组成E.血肿>梗死面积的30%并有明显占位效应的出血或远离梗死灶的出血参考答案:D5.丹酚酸通过何种方式展现其主要的药效学特点?A.抑制细菌生长B.单纯抗氧化作用C.通过改善侧支循环、抗炎、抗氧化、抗凋亡、保护血脑屏障、改善线粒体功能、抗血小板聚集等一系列作用机制D.单一改善线粒体功能E.仅具有抗炎效果参考答案:C6.丹酚酸在AIS治疗中的主要作用不包括()A.改善侧枝循环B.抗炎、抗氧化C.抑制肿瘤细胞生长D.保护血脑屏障E.抗血栓形成参考答案:C急性脑梗死血管再通治疗1.WAKE-UP试验中,对于醒后卒中患者,如果MRI显示DWI-FLAIR不匹配,推荐使用哪种治疗()A.血管内机械取栓B.口服抗血小板药物C.阿替普酶静脉溶栓D.安慰剂E.抗凝治疗参考答案:C2.急性脑梗死治疗中,哪个区域与神经功能缺失加重和恢复密切相关()A.梗死核心区B.缺血半暗带C.良性缺血区D.静脉系统E.动脉系统参考答案:B3.对于醒后卒中的急性缺血性脑卒中患者,如果距最后正常时间远超(),MRI显示DWI-FLAIR不匹配,且不适合或未计划进行机械取栓,指南推荐阿替普酶静脉溶栓治疗A.0.5hB.1.5hC.2.5hD.3.5hE.4.5h参考答案:D4.脑梗死静脉溶栓加用注射用丹参多酚酸的主要作用机制不包括()A.增加出血风险B.改善脑部微循环C.减轻神经元损伤D.抗氧化应激E.改善缺血再灌注损伤参考答案:A5.在溶栓治疗过程中出现疑似脑出血的情况,应采取的措施是()A.立即给予6-8个单位血小板输注B.血液科会诊,注意目前的凝血功能C.停止溶栓药物输注,立即抽血进行检查,立即行平扫头颅 CT 检查D.立即给予ε-氨基己酸4-5g静脉注射E.有关外科和/或内科治疗需要商讨共同决定参考答案:C低NIHSS评分大血管闭塞的血管内治疗1.有研究表明,有轻度神经功能缺损的患者占急性缺血性卒中住院患者的比例是()A.9.9%B.0.26%C.>50%D.0.8%E.10%参考答案:C2.关于低NIHSS评分ASI-LVO症状进展的病理机制,说法不正确的是()A.梗死灶扩大B.开始侧枝循环良好,紧跟着侧枝循环衰竭,症状加重C.再发梗死D.梗死灶缩小,远端大血管闭塞E.栓子逃逸会导致失语参考答案:D3.丹酚酸的作用机制不包括()A.抗炎B.促进血小板凝集C.抗氧化D.抗凋亡E.保护神经单元参考答案:B4.建议NIHSS评分为()时候进行影像学检查,可筛查出90%的LVOA.≥1分B.≥2分C.≥3分D.≥4分E.≥5分参考答案:B5.对于大脑中动脉M1段及颈动脉闭塞而致急性缺血性脑卒中患者,发病前NIHSS评分()时可考虑动脉取栓治疗A.≥6分B.<6分C.>5分D.≤5分E.>7分参考答案:B中西医结合急性缺血性卒中溶栓策略1.脑卒中急诊救治体系中,关于诊断和评估的下列哪个步骤描述不准确()A.按照诊断流程处理疑似脑卒中患者B.对疑似脑卒中患者无需进行头颅平扫CT/MRI检查C.进行必要的血液学、凝血功能和生化检查,并尽量缩短检查时间D.进行心电图检查,有条件时应持续心电监测E.使用神经功能缺损量表评估病情严重程度参考答案:B2.导致脑血管疾病过早死亡和疾病负担的首要原因是()A.短暂性脑缺血发作B.椎基底动脉供血不足C.脑血管性痴呆D.卒中E.高血压脑病参考答案:D3.以下关于注射用丹参多酚酸的描述,哪一项是正确的()A.注射用丹参多酚酸主要通过单一靶点干预发挥药效B.丹参多酚酸无法改善微循环和侧支循环C.丹参多酚酸不具备抗炎和抗氧化的作用D.丹参多酚酸能改善脑部循环、保护脑神经和抗血栓形成E.丹参多酚酸无法保护血脑屏障和改善线粒体功能参考答案:D4.AHA/ASA建议超过多少比例的静脉溶栓患者DNT应缩短至60分钟以内()A.30%B.40%C.50%D.60%E.70%参考答案:C5.2018年中国居民脑血管病的死亡率占我国居民总死亡率的多少()A.10%B.15%C.20%D.22%E.30%参考答案:D缺血性脑卒中免疫机制研究进展及潜在新药物靶点的展望1.缺血性脑卒中主要是由于什么引起的?A.脑出血B.动脉粥样硬化C.脑部肿瘤D.脑炎E.癫痫参考答案:B2.在缺血性脑卒中中,低氧状态主要激活哪种细胞?A.神经元B.星形胶质细胞C.少突胶质细胞D.小胶质细胞E.内皮细胞参考答案:D3.豨莶草最早记载于我国哪本医术()A.《唐本草》B.《本草纲目》C.《本草图经》D.《本草蒙筌》E.《中国药典》参考答案:A4.国家卒中登记数据显示,卒中患者1年内的复发率为多少?A.5.9%B.10.9%C.13.4%D.14.7%E.19.1%参考答案:D5.以下哪项不是现代医学对缺血性脑卒中的治疗重点?A.溶栓治疗B.抗栓治疗C.改善脑循环D.切除梗死脑组织E.脑保护治疗参考答案:D女性卒中的特点及中西医结合诊疗策略1.根据中医理论,女子多少岁进入绝经期()A.35岁B.42岁C.49岁D.56岁E.63岁参考答案:C2.女性卒中的死亡率在女性死因中排名第几()A.第一B.第二C.第三D.第四E.第五参考答案:C3.偏头痛与先兆脑卒中关系的可能机制不包括()A.遗传倾向B.内皮功能障碍C.神经传递功能障碍D.凝血异常E.经卵圆孔未闭的反常栓塞参考答案:C4.雌激素对人体的影响说法错误的是()A.雌激素对血管有抗氧化作用B.雌激素使NO生物利用度增高C.雌激素使氧自由基产生升高D.内源性雌激素有利于维持绝经前妇女的正常血压E.雌激素可能通过抑制交感神经影响血压参考答案:C5.下列哪项是妊娠期的生理变化之一()A.全身血管收缩与静脉阻滞B.血液动力学与血管系统保持稳定C.凝血系统呈现低凝状态D.全身血管舒张与静脉瘀滞E.免疫系统功能下降参考答案:D。
Nogo-A及其受体NgR对中枢神经系统损伤后修复的影响
脑 深 核 N R mR g NA表 达 强度 高 于颗粒 细 胞和 P ri e细胞 ; ukn j
前 脑 的大 部 , 括 纹状 体 、 脑 网状 核 、 丘 脑 和 基 底 前 脑 包 丘 下 Ng NA表达 很 弱或无 表 达 。 R mR
表 面受体 而被 发现 。 g N R与 N g — oo A结 合后 通过 一系 列信 号转 导过程 发挥 抑制 中枢 神经再 生 的作用 , 与中枢 神经 系统
损伤 后 的修复 有着 密切关 系 。对 于 N g— ooA及其受 体 N R的深 人研 究 , 有 助于 推动 中枢神 经系 统损伤 的治 疗 。 g 将
[ 关键词】 g— N R; Noo A; g 中枢神经 系统损伤 【 分 类号】 6 11 中图 R5. [ 献标 识 码】A 文
[ 编号 】1 7 — 2 0 2 1 ) 1a 一 0 — 3 文章 6 3 7 1 (0 2 0 ( )0 9 0
Th m p c i n o g A nd is r c pt r Ng o c n r lne v u y tm e i a to f No o— a t e e o R n e t a r o s s se
【 通讯作 者】 甄云 (97 一 , , 16 . ) 硕士, 8 男 硕士研究生导师 , 副教授 , 主任医师。
・
综 述 ・
Ng R位 于细 胞膜 的 表面 , 糖 基化 磷 脂酰 肌 醇锚 定 在 细 靠
21 年 1 第 9 第 1 02 月 卷 期
2 分 布 . 2
发生及 进展 过程 , 并在 脑缺 血损伤 后 的修 复 中发挥 抑 制作用 。 但 吴 功雄 等 ㈣研 究 认 为 , 鼠脑 梗 死 后 3d内 N g — 含量 大 oo A 下 降 , 发病 后 第 7天 开 始上 升 , 到 2周达 高 峰 , 虑 因为 梗 死 考
NgR1复合物的实验研究进展与干扰策略
3.NgRI受体复合物的基因干预:既往通过NEPI瑚中和
NgR、增加cAMP水平、灭活Rho等分子途径,虽能在一定程度 上改善其髓磷脂相关抑制物的抑制作用,但其作用时间短、不 够稳定、难以通过血脑屏障等缺点限制了它的实际应用。通 过基因治疗改善髓磷脂相关抑制物受体作用是目前治疗脊髓 损伤理论上最有可能取得重大突破的方法之一。2005年, Teng等¨纠通过基因工程技术敲除小鼠的NSR及Nogo基因, “等Ⅲ1通过基因工程建立分泌NgR(3i0)ecto转基因小鼠, 改善了髓磷脂相关抑制物的抑制作用,但基因敲除或转基因 干预不能用于中枢神经系统损伤的临床治疗。基因治疗的 RNA干扰技术近两年发展迅速,2005年,Ahmed等¨引分别对 NgR、p75NTR、Rho.A进行RNA干扰下调了髓磷脂相关抑制物 的作用,促进了脊髓损伤后轴突的再生。通过RNA干扰技术 直接沉默相关基因的表达来克服神经再生抑制因子的作用无 疑是一种合理的选择,且具有很好的应用前景。但小干扰
(NgR2、NgR3、LINGO-2、LINGO-3、HNGO.4)可能也参与了神
经轴突的生长抑制作用,而硫酸软骨素蛋白多糖和胶质瘢痕 中的其他组分也参与了神经轴突再生的抑制。另外, Chivatakarn等¨刚的研究发现,NgRI仅参与MAGs介导的急性 生长锥塌陷,而MAGs对慢性神经再生的抑制作用可能是通 过另一个非NgRI介导的细胞转导途径。因而解决中枢神经 系统的再生仍然需要付出艰苦的努力。 参考文献
RNA的高效转染是RNA干扰治疗成功的前提,NgR的基因表 达细胞是难以转染的神经元,优化小干扰RNA的合成、转导 仍是未来工作的重点。 三、小结 虽然很多体内外实验通过对NgRl复合物及其下游信号 转导途径的阻断抑制了MAG、Nogo・A、OMgp对神经再生的阻 碍作用,显著促进中枢神经系统轴突再生。但是NgRI/ LINGO.1/P'/5(TROY)不是中枢神经系统微环境中抑制因子 作用的惟一受体复合物,NgRl和LINGO.1家族的成员
Nogo-A和NgR在老年大鼠脑组织中的表达分布
・
6 ・ 1
No oA 和 Ng 在 老 年 大 鼠脑 组 织 中 的表 达分 布 g— R
张博 爱 史蕙青 贾延 劫 李文涛 刘艳 茹
郑州【 要 】 目的 研 究 N g— 和 Ng 在 老 年 大 鼠脑 内的表 达 阳性 分 布 。 方 法 免 疫 组 织 化 学 方 法 ( C 法 ) 摘 o oA R AB 。结 果 No oA g- 和 Ng 在 老 年 大 鼠脑 内的 神 经 元 和神 经 纤 维 有 广 泛 的表 达且 阳性 反 应 的 强 度 不 同 。结 论 N g - 和 N R在 老 年 大 鼠脑 内广 泛 R o oA g 表 达 可 能在 衰 老 中发 挥 作 用 。 【 键 词 】 N g - N R; 疫 细胞 化 学 ; 鼠 关 o oA; g 免 大 【 图 分 类号 】 R 4 . 2 中 7 10 【 献 标识 码】 A 文 【 章 编 号】 17 —lO 20 )20 6 -2 文 6 35 1 (0 7 0—0 10
[ src] Obe t e Tosu y tee p eso fNo o A n R i h h ri f e i a. to s I Ab ta t jci v td h x r sino g - a d Ng nt et eb ano nl r tMeh d mmu o itc e — s e n hso h mi
[ e od ] No o A; R ;I K yw r s g — Ng mmu o itc e sr ; a n hs h mi y R t o t
20 0 0年 N g - 和 Ng 的 发 现 揭 示 了 中 枢 神 经 系 统 损 伤 o oA R
后 的 再 生 障 碍 的 原 因 之 一 , 试 验 通 过 免 疫 组 化 染 色 法 观 察 本
LINGO-1在神经系统疾病中的研究进展2024(全文)
LINGO-1在神经系统疾病中的研究进展2024(全文)摘要LINGO-1是富含亮氨酸重复序列和免疫球蛋白结构域的Nogo 受体作用蛋白-1,在神经系统疾病中特异性表达。
近年来,越来越多证据表明LINGO-1在神经胶质瘢痕形成、细胞死亡及炎症反应中发挥重要作用。
LINGO-1会抑制少突胶质细胞活化,阻止轴突和髓鞘的形成和功能恢复,因此被认为是神经元存活、神经突延伸及轴突髓鞘化的负调节剂。
LINGO-1水平的变化与多种神经系统疾病的发生和发展存在一定联系。
该文对LINGO-1的生理功能进行阐述,并对LINGO-1在多发性硬化症、脊髓损伤、新生儿脑损伤及癫痫等神经系统疾病中的最新研究进展进行综述,旨在探寻神经系统疾病治疗的新策略。
儿童常见的神经系统疾病包括脊髓损伤(spinal cord injury,SCI)、新生儿脑损伤、癫痫、中枢神经系统(central nervous syetem,CNS)感染等,具有高致残率及病死率,严重威胁儿童健康[1 ]。
目前研究发现脑组织中富含亮氨酸重复序列和免疫球蛋白(Ig)结构域的Nogo 受体作用蛋白-1(LINGO-1)是神经再生的抑制因子,在髓鞘的形成和神经突的延伸中发挥重要作用,LINGO-1作为髓鞘再生治疗的新兴分子靶标,其表达水平可能是评估脑损伤严重程度的重要指标[2 ]。
本文主要综述了LINGO-1在多发性硬化症(multiple sclerosis,MS)、新生儿脑损伤、癫痫、SCI等神经系统疾病中的作用及机制,以期能够为神经系统疾病的治疗提供新思路。
1 LINGO-1的生物学功能1.1 LINGO-1的来源、结构和表达特点LINGO-1是一种重要的跨膜蛋白,由12个富含亮氨酸的重复序列和一个Ig结构域组成,共编码614个氨基酸。
LINGO-1基因位于15q24染色体上,具有强大的细胞外结构区域,包括N末端和C末端覆盖结构域、Ig结构域、一个跨膜结构域和一个短的细胞质尾部。
Nogo-A及其受体NgR对中枢神经系统损伤后修复的影响
Nogo-A及其受体NgR对中枢神经系统损伤后修复的影响作者:古磊(综述),甄云(审校)来源:《中国医药导报》2012年第01期[摘要] Nogo-A是近年来在中枢神经系统髓鞘中发现的一种抑制中枢神经轴突生长的蛋白,NgR作为Nogo-A的细胞表面受体而被发现。
NgR与Nogo-A结合后通过一系列信号转导过程发挥抑制中枢神经再生的作用,与中枢神经系统损伤后的修复有着密切关系。
对于Nogo-A及其受体NgR的深入研究,将有助于推动中枢神经系统损伤的治疗。
[关键词] Nogo-A;NgR;中枢神经系统损伤[中图分类号] R651.1 [文献标识码] A [文章编号] 1673-7210(2012)01(a)-009-03The impaction of Nogo-A and its receptor NgR on central nervous system repair after injuryGU Lei (review), ZHEN Yun (proofreader)Department of Neurosurgery, Xixiang People's Hospital Affiliated to Guangdong Medical College, Guangdong Province, Shenzhen 518102, China[Abstract] Nogo-A which is recently found in central nervous system (CNS) myelin sheath can inhibit the growth of nerve axon. NgR is found as the cell surface receptor of Nogo-A. The combination of NgR and Nogo-A can inhibit the neural regeneration in CNS through a series of signal conduction and has close relationship with CNS repair after injury. The thorough study of Nogo-A and NgR will help to promote the clinical treatment of CNS injury.[Key words] Nogo-A; NgR; Central nervous system injury自从Nogo-A蛋白及其受体NgR被发现,中枢神经损伤再生机制的研究就成为神经科学研究领域的热点。
脊髓损伤后髓磷脂抑制分子及作用机制的研究进展
脊髓损伤后髓磷脂抑制分子及作用机制的研究进展脊髓损伤(SCI)常导致损伤平面以下运动、感觉以及括约肌永久性功能障碍。
尽管国内外学者对此进行了不懈的探索,但是如何治愈SCI迄今仍是一全球性的医学难题。
脊髓损伤后轴突不能再生的主要原因包括髓磷脂相关抑制分子的存在、含抑制分子的胶质瘢痕形成、硫酸软骨素蛋白多糖等。
其中,髓磷脂相关神经生长抑制因子对中枢神经再生抑制起着关键作用,其相关抑制因子主要包括三种髓磷脂源性生长抑制蛋白:髓磷脂相关糖蛋白、少突胶质细胞髓磷脂糖蛋白、Nogo-A。
所有这些生长抑制因子都结合共同抑制蛋白受体—Nogo-66(NgR)受体复合体,激活远端的Rho信号途径。
激活Rho与其下游的效应器蛋白-Rho 蛋白激酶Ⅱ(ROCKⅡ),激活的ROCKⅡ作用于多种蛋白质底物而产生级联瀑布信号传递,调节生长锥内细胞骨架的重组,改变神经的生长方向,影响肌球蛋白的收缩等,引起轴突生长锥的回缩及塌陷,介导脊髓损伤后轴突的再生抑制。
本文简要综述SCI后几类髓磷脂相关抑制分子及其通过Rho-ROCKⅡ信号途径传递及机制的研究进展。
标签:脊髓损伤;髓磷脂抑制分子;Rho-ROCKⅡ;脊髓损伤(spinal cord injury,SCI)后,由于多种原因导致的轴突再生困难常引起永久性的神经功能缺损[1],一直是治疗难点。
近年研究发现,SCI后修复困难的原因包括SCI后再生能力的下降、胶质瘢痕的屏障作用、神经营养因子的缺乏及髓鞘产生的轴突再生抑制因子等[2]。
SCI后的轴突再生抑制分子大致可分为3类:髓磷脂相关抑制物、胶质瘢痕起源的抑制物、斥性轴突导向分子(repulsive axon guidance molecules,RGM)。
本文主要针对SCI后髓磷脂相关抑制分子及其作用机制做一简要综述。
1髓磷脂相关抑制因子及其生物学特性中枢神经系统内的髓鞘是由少突胶质细胞生成一种脂蛋白,包绕神经元轴突绝缘以保证电信号传导并保护轴突。
浅述nogo
浅述Nogo-A蛋白及康复治疗对其的影响脑卒中是严重危害人类健康和生命安全的常见的难治性疾, 中国每年发生脑卒中病人达200万。
发病率高达120/10万。
现幸存卒中病人700万,其中450万病人有不同程度的运动、感觉、言语和认知等功能障碍以致丧失劳动力和生活不能自理,致残率高达75%。
给家庭和社会造成巨大负担。
目前许多研究表明,康复治疗可以改善脑卒中患者的各项功能,虽然其机制尚未完成明确,但有研究显示与神经轴突生长抑制剂-A(Nogo-A)表达的降低有关,本文就Nogo-A蛋白及康复治疗对其的影响进行简单的探讨。
1 Nogo-A蛋白1.1 Nogo-A的分子结构2000年三个实验室同时发现了一个未知的基因,因为其转录编码的蛋白能抑制中枢神经系统(CNS)轴突的再生,因此命名为Nogo,Nogo基因能编码三种蛋白:Nogo-A、Nogo-B 及Nogo-C,其中Nogo-A目前被认为是最强的抑制神经生长作用的蛋白。
Nogo-A是个含有1163个氨基酸的跨膜蛋白,相对分子量为126×106,富含酸性氨基酸和脯氨酸[1]。
含有1个短的胞内域,2-3个跨膜结构域和1个较大的胞外结构域。
被亲水结构域(Nogo-66)分开的氨基端和羧基端均没有亲水的信号序列,分别由172个氨基酸序列和188个残基组成。
Nogo-66有66个残基,位于细胞的表面,是Nogo-A蛋白的一个抑制性功能区域,能抑制轴突生长和诱导生长锥塌陷。
Nogo-A的另一个功能抑制区域是位于胞内的氨基端区段(NiG),与Nogo-66有协同作用,在髓鞘受损的时候起抑制作用。
1.2Nogo-A的分布原位杂交技术发现,Nogo-mRNA主要表达于中枢神经系统, 在其他组织系统如肌肉,睾丸和心脏也有少量表达[2]。
因而Nogo-A也主要是分布于成年哺乳动物的少突胶质细胞内质网,在少突胶质细胞的表面及神经元内也有少量的表达,但施万细胞和星型胶质细胞中未发现,外周的睾丸和心脏也有少量表达,但尚未发现有什么作用。
轴突导向因子的研究进展
目的:观察局灶性脑梗死大鼠皮质轴突生长导向因子-1 ( netrin-1,Ntn1)和臂板蛋白3a( semaphorin-3a,sema3a)的表达及电针干预对其表达的影响。
探索Ntn1与sema3a在电针对脑梗后神经可塑性影响中的作用。
方法:将135只雄性Sprague-Dawle(SD)大鼠分为正常组(n=15)、模型组(n=60)及电针组(n=60)。
利用线栓法制作大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)模型,并行longa评分。
2,3,5—氯化三苯基四氮唑(TTC)染色与苏木精—伊红染色法(hematoxylin-eosinstaining,HE)染色确定造模成功。
电针选穴“内关”( PC6),“足三里”( ST36),刺激参数为疏密波,频率80~100Hz,强度以保持针刺局部轻微颤抖为度,留针30 min。
电刺激在大鼠麻醉苏醒后90 min 进行。
分别在术后1d、3d、7d、14d时,对术后大鼠进行神经功能评分(modified neurologic severity scores,mNSS),利用免疫组化检测缺血侧大脑脑皮质中Ntn1、sema3a、神经丝蛋白200( NF200)分布和表达,免疫印迹法检测缺血侧大脑皮质Ntn1 和sema3a 的蛋白表达。
结果:免疫组化结果显示在各个时相点大鼠脑皮质均表达Ntn1 和sema3a,主要集中在细胞质阳性表达。
Westernblot 检测结果显示,与正常组相比,模型组Ntn1 蛋白的表达水平在脑梗死后1d即开始明显上升(P<0.01),3d时呈上升趋势( P<0.01),7d时达峰值(P<0.01),14d时仍显著高于基础水平(P<0.01),电针组与模型组相比,Ntn1 蛋白表达趋势相同,但表达量明显高于模型组,术后1d、3d、7d、14d时有统计学差异( P<0.05,P<0.01).与正常组相比,模型组sema3a蛋白的表达水平在术后1d即开始上升(P<0.01),7d时达高峰(P<0.01),14d时仍高于基础水平(P<0.01)。
以NgR为靶点治疗视神经损伤的研究进展
以NgR为靶点治疗视神经损伤的研究进展
中图分类号:R774.6
许娜(综述),杨永福(审校)
(玉溪市人民医院眼科。云南玉溪653100)
文献标识码:A
文章编号:1006-2084(2009)03-371-03
【4]Vieke∞s C,Hales P,Kaushik V,群蠢.Hydrolysis of biol螺ical pep- tides by human angiotensin·converting enzyme—related c.m'bexypep- tidaseI J『.J Biol Chem,2002,277(17):14838-14843.
1808一1820.
TikeHis C,Johnston CI。Forbes JM。甜耐,Characterization of renal
angiotensin-converting enzyme 2 in diabetic nephropathy[J].Hy- pertension,2003,41(3):392-397. Mizuiri S,HamIli H.Arita M。et a1.Expression of ACE and ACE2 in individuals with diabetic kidney dise8踯and healthy controls [J].Am J Kidney Dis,2008,51(4):613-623. Soler砌,Wvsocki J,Ye M,et“.ACE2 iIIllibition wol3目ens glom* ular injury in association with increased ACE expression in atrepto- zotocin-induced diabetic mice[J].Kidney Int,2007,72(5): 614-623.
Nogo-A
和 mR NA表 达较 低 , 3 d 后 下降至最低 , 7 d 后迅速上升达到 高峰 , 至1 4 d 逐渐下降 , 但仍高于假手术组 ; 与假手术组 比
较, 模 型组 在损 伤后 7 d 、 1 4 d , No g o . A蛋 白和 mR NA表达均 明显增高 , 差异均有显著性意义( P<O . 0 5 ) 。
n—T l 1 s p i n o u s p r o c e s s a n d l mi a n a ,a v o i d i n g i n j u r y o f s p i n a l c o r d ,g r o u p C wa s ma d e a c c o r d i n g t o t h e mo d i —
Yaf eng。 M A Y o ng, e t a 1 . / / C h i n e s e J o u r n l a o f Re h a b i l i t a t i o n Me d i c i n e ,2 0 1 5 ,3 O ( 9 ) :8 6 7 —_ 8 7 1
方法: 选用 1 0 8 只S D大 鼠随机分成 正常组 、 假手术组 和模型组 , 每组 3 6 只, A组不 做任何处理 , B组 咬除 T . T 。 . 棘 突 及椎板 , 避免损伤脊髓 ; C组按照改 良A l l e n 法造模 。分别 于干 预后 2 4 h 、 第3 天、 第7 天、 第1 4 天处死大鼠 , 每组 9 只,
中 田 庙 复 医 学 雾 磊 2 0 1 5 年, 第3 o 卷, 第9 期
・
基础 研 究・
N o g o - A在脊髓损伤大鼠脊髓组织中的动态表达
杨 俊锋 张亚峰 马 勇 尹
NgR1在心肺复苏后大鼠海马的表达变化
NgR1在心肺复苏后大鼠海马的表达变化哺乳动物中枢神经系统(CNS)损伤后神经轴突生长受限可能与一系列神经生长抑制因子有关,如髓鞘相关蛋白(myelin associated glycoprotein,MAG)、少突胶质细胞髓鞘糖蛋白(oligodendrocyte myelin glycoprotein,OMgp)和Nogo-A 等。
这些神经生长抑制因子可能通过与Nogo受体NgR1 (nogo receptor 1)结合,进一步激活下游的信号传导系统,抑制神经轴突生长[1]。
研究发现,CNS 损伤后脑组织中NgR1 mRNA和蛋白表达明显升高,提示NgR1可能抑制损伤后轴突再生[2-4]。
以往关于NgR1在CNS分布的相关研究多集中于局灶行缺血模型,如脑梗死、脊髓损伤等[5-7]。
心脏骤停(cardiac arrest,CA)及心肺复苏(cardiopulmonary resuscitation,CPR)过程可能引起全脑严重的缺血-再灌注损伤,导致神经元坏死、凋亡,最终导致神经功能障碍。
轴突损伤后不能自我修复可能是CA后神经元难以再生的主要原因。
NgR1在CPR后CNS神经元缺血-再灌注损伤后的变化情况至今尚未见报道。
本实验通过观察大鼠CPR后NgR1蛋白的表达及变化,探讨NgR1在轴突再生抑制中的作用。
1 材料与方法1.1 材料所有动物实验遵照1996版《美国实验动物使用指引》(NIH Publications No. 80223)的要求进行,并获得中山大学动物伦理委员会的批准。
选用健康雄性SD 大鼠60只(体质量220~280 g),随机(随机数字法)分为3组:空白对照组5只,假手术组5只,实验组50只。
所有动物均由中山大学实验动物中心提供,分笼饲养。
1.2 方法1.2.1 建立大鼠CA模型实验组及手术组大鼠经腹腔注射麻醉后,仰卧位固定于手术台上,采用经口气管插管、经肢体导联进行心电监护;并于右侧股动、静脉穿刺置管建立输液通道用于给药及连接生理监护记录仪监测血压、心率变化。
Nogo-A 受体在早期神经元细胞分化过程中的表达
Nogo-A 受体在早期神经元细胞分化过程中的表达何主强;杨国平;赵洪洋【摘要】目的:探讨在早期神经元细胞生长发育过程中 Nogo-A 受体(NG-R)的表达变化。
方法:体外培养 PC12细胞,实验组加入50 ng/mL 细胞生长因子(NGF)进行诱导分化1、3、5、7 d,对照组中不加入 NGF 诱导分化。
于不同时间点镜下观察细胞轴突发育及细胞分化情况,免疫荧光法观察 NG-R 蛋白在PC12细胞中的表达与定位,RT-PCR 法检测 NG-R mRNA 在 PC12细胞中的表达变化,western blot 法检测 NG-R 蛋白在 PC12细胞中的表达变化。
结果:随着诱导分化时间的增加,实验组 PC12细胞轴突发育及细胞分化增加;对照组PC12细胞未检测出 NG-R mRNA 及蛋白表达;实验组随着 NGF 诱导刺激时间延长,PC12细胞内 NG-R mRNA 及蛋白表达量逐步增加,组间差异有统计学意义,且均高于对照组(P<0.05或0.01),但实验组诱导1 d PC12细胞内 NG-R 蛋白表达量与对照组差异无统计意义(P>0.05)。
结论:在神经元发育早期 NG-R 的表达随着轴突生长逐渐升高。
【期刊名称】《神经损伤与功能重建》【年(卷),期】2015(000)002【总页数】3页(P95-97)【关键词】PC12 细胞;Nogo-A 受体;细胞分化【作者】何主强;杨国平;赵洪洋【作者单位】武汉市第一医院神经外科武汉430022;武汉市第一医院神经外科武汉430022;华中科技大学同济医学院附属协和医院神经外科武汉430030【正文语种】中文【中图分类】R741;R741.02Nogo-A是一种髓鞘蛋白,在成熟中枢神经系统中主要功能是抑制神经突生长[1]。
在成熟脑组织和脊索,少突胶质细胞表达Nogo-A受体(Nogo-A receptor,NG-R)分子,通过与Nogo-A结合抑制轴突的再生[1]。
脂多糖对部分神经胶质细胞NgR表达的实验研究
脂多糖对部分神经胶质细胞NgR表达的实验研究王清萍;张士发【摘要】目的:观察脂多糖诱导早产鼠小胶质细胞和少突胶质前体细胞NgR的表达及变化, 了解NgR表达在TLR-4介导的神经胶质细胞释放炎性细胞因子中的作用. 方法: 采用振荡和差速贴壁法体外纯化培养MG和OPCs, 分别用特异性抗体CD11b和O4做细胞鉴定; 用实时荧光定量PCR检测各组MG、OPCs的NgR和MG的TLR-4基因表达情况, 并用ELISA测各组TNF-α 的含量. 结果: LPS诱导后较其他对照组及处理组MG的TLR-4表达水平和MG、OPCs的NgR表达水平均增高, 差异具有统计学意义 (P < 0.05), 各组MG经LPS诱导后较其对照组及处理组的TNF-α 的含量增高, 差异具有统计学意义 (P < 0.05). 结论:细菌感染使MG和OPCs的NgR表达增高; 脂多糖诱导小胶质细胞表达大量TLR-4需要NgR的介导; TLR-4可能存在上调NgR基因表达的作用.%Objective: To observe NgR expression and changes in oligodendrocyte precursor cells and microglia cells after induction with lipopolysaccharide (LPS), and explore the role of NgR expression in releasing inflammatory cytokines by glial cells mediated by Toll-like receptor-4 (TLR-4). Methods: Microglia (MG) and oligodendrocytes precursor cells (OPCs) were purified and cultured in vitro technique by using modified shaking and adherence methods. Immunocytochemical analysis was performed to identify the cultured cells by CD11b and O4 antibody, respectively. Real-time quantitative PCR was used to detect the NgR expression in MG and OPCs as well as TLR-4 in MG, and tumor necrosis factor alpha (TNF-α) content was measured with ELISA in each group. Results: The expression of TLR-4 in MG as well as NgR inOPCs and MG in LPS-induced groups were significantly higher than that in control group and intervention group. The difference was significant (P <0.05). TNF-α level in LPS-induced group was significantly higher than that in both control and intervention groups (P < 0.05). Conclusion: Bacteria infection may facilitated NgR expression in OPCs and MG, and TLR-4 expression in large quantity induced by LPS requires NgR mediation. The findings suggest that TLR-4 could the role to up-regulate the expression of NgR gene.【期刊名称】《皖南医学院学报》【年(卷),期】2018(037)001【总页数】4页(P7-10)【关键词】少突胶质前体细胞;小胶质细胞;Nogo受体;Toll样受体4;肿瘤坏死因子α【作者】王清萍;张士发【作者单位】皖南医学院第一附属医院弋矶山医院儿科, 安徽芜湖 241001;皖南医学院第一附属医院弋矶山医院儿科, 安徽芜湖 241001【正文语种】中文【中图分类】R329随着围产医学的发展及新生儿重症监护(neonatal intensive care unit,NICU)技术的不断提高,早产儿的出生率和存活率越来越高,导致早产儿神经系统后遗症[1](认知、行为障碍、视听功能异常和脑瘫)发病率逐年增加,从而影响早产儿的生存质量,给家庭社会带来严重的负担。
Nogo-A及其受体NgR的研究进展
Nogo-A及其受体NgR的研究进展
朱立华;赵伟佳
【期刊名称】《医学综述》
【年(卷),期】2008(014)003
【摘要】中枢神经系统的神经元是一群高度分化的细胞,其损伤后修复与再生是非常困难和复杂的.Nogo是最近研究发现的在中枢神经系统损伤后具有再生抑制作用的因子.Nogo基因的表达产物有3种:Nogo-A、Nogo-B、Nogo-C,其
中,Nogo-A的抑制作用越来越受到研究者的重视,成为当前神经再生研究领域的热点.现就Nogo-A及其受体的结构、分布、作用机制及有关最新研究进展做一简单综述.
【总页数】3页(P328-330)
【作者】朱立华;赵伟佳
【作者单位】广西医科大学第一附属医院神经内科,南宁,530021;广西医科大学第一附属医院神经内科,南宁,530021
【正文语种】中文
【中图分类】R741.02
【相关文献】
1.戊四氮点燃大鼠海马Nogo-A及其受体NgR的表达 [J], 张宏伟;连亚军;赵俊娜;夏建华;尹俊峰;陈媛;陈洲平
2.Nogo-A及NgR的研究进展 [J], 杨雷;赵世刚;刘罡
3.Nogo-A及其受体NgR对中枢神经系统损伤后修复的影响 [J], 古磊
4.甲基强的松龙对实验性变态反应性脑脊髓炎大鼠脑组织Nogo-A及其受体NgR 蛋白表达的影响 [J], 蓝瑞芳;朱立华;赵伟佳
5.甲基泼尼松龙对实验性变态反应性脑脊髓炎大鼠脑组织 Nogo-A 及其受体 NgR 蛋白表达的影响 [J], 蓝瑞芳;朱立华;赵伟佳
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NEURAL REGENERATION RESEARCH Volume 7, Issue 1, January 2012Cite this article as: Neural Regen Res. 2012;7(1):13-17.13Xiaoying Wu, Professor, Department of Ophthalmolo-gy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, ChinaCorresponding author:Xiaoying Wu, Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China wux-iaoyingxy@Received: 2011-05-25 Accepted: 2011-07-12 (N20110225002/WLM)Wu XY , Luo YL, Liu SZ, Li KS. Experience-dependent expression of Nogo-A and Nogo receptor in thedeveloping rat visual cortex. Neural Regen Res. 2012;7(1):13-17.doi:10.3969/j.issn.1673-5374.2012.01.002Experience-dependent expression of Nogo-A and Nogo receptor in the developing rat visual cortex*★Xiaoying Wu, Yulin Luo, Shuangzhen Liu, Kuanshu LiDepartment of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, ChinaAbstractNogo-A and Nogo receptor (NgR) expression in the visual cortex following a critical developmental period (postnatal days 20-60) has been previously shown. However, little is known regarding Nogo-A and NgR expression between postnatal day 0 and initiation of the critical period. The present study analyzed Nogo-A and NgR expression at four different time points: postnatal day 0 (P0), before critical period (P14), during critical period (P28), and after critical period (P60). Results showed significantly increased Nogo-A mRNA and protein expression levels in the visual cortex following birth, and expression levels remained steady between P28 and P60. NgR mRNA orprotein expression was dramatically upregulated with age and peaked at P14 or P28, respectively, and maintained high expression to P60. In addition, Nogo-A and NgR expression was analyzed in each visual cortex layer in normal developing rats and rats with monocular deprivation. Monocular deprivation decreased Nogo-A and NgR mRNA and protein expression in the rat visual cortex, in particular in layers II-III and IV in the visual cortex contralateral to the deprived eye. These findings suggested that Nogo-A and NgR regulated termination of the critical period in experience- dependent visual cortical plasticity.Key Words: monocular deprivation; neural regeneration; Nogo receptor; Nogo-A; plasticity; primary visual cortexINTRODUCTIONRecovery of visual function following amblyopia in children over 7 years is exceptionally limited, leaving the affected individual with life-long poor visual acuity and a compromised quality of life. To date, there is no effective treatment for older children with amblyopia. Amblyopiatreatment remains difficult due to reduced visual cortical plasticity and termination of the critical period. Although visual cortical plasticity has been widely studied since its initial discovery by Hubel and Wiesel [1-2], the description of the underlying molecular mechanisms has lagged behind.Nevertheless, reactivation of adult visual cortical plasticity is crucial for the effective treatment of adult amblyopic patients. Evidence exists that the developmentalincrease in intracortical inhibition contributes to reduced synaptic plasticity [3]. Nogo, a member of the reticulon family ofmembrane-associated molecules, has been identified in myelin of the central nervous system as a potent inhibitor of neuriteoutgrowth and cortical plasticity [4-6]. Nogo-A is one of the most powerful growth inhibitors among these myelin-associated inhibitors [7-8]. These inhibitory signals are mediated by areceptor complex, which includes theligand-binding Nogo receptor (NgR)[9-10] and two signal-transducing binding partners, p75[11] and LINGO-1[12]. Activation of the neurotrophin receptor complex leads to Rho and Rho kinase pathway activation, resulting in a rearrangement of the cytoskeleton.Previous studies have shown that theNogo-NgR system is implicated in plasticity in the hippocampal and corticalmicrocircuitry, as well as in the spinal cord [13-14]. However, very little is known regarding expression and involved mechanisms in the visual cortex. Aspreviously reported [15] in Nogo-A or NgR null mice, the adult visual cortex responds to monocular deprivation, with dramatic shifts in ocular dominance distribution of cortical neurons that favors the non-deprived eye. These results strongly suggest that Nogo-A and NgR play pivotal roles in visual cortical plasticity. Therefore, it is important to determine expression patterns of Nogo-A and NgR in the visual cortex of normal and early monocular deprivation rats.The first goal of this study was to analyze spatiotemporal expression of Nogo-A and NgR in the rat visual cortex during normal development from postnatal day 0 to60(P0-P60). Nogo-A and NgR mRNA and14protein expressions were measured through the use of reverse transcriptase-PCR (RT-PCR) and western blot and immunofluorescence, respectively. Because monocular deprivation affects maturation of cortical circuitry [16], the effects of monocular deprivation on Nogo-A and NgR mRNA and protein expression levels during the critical period of ocular dominance plasticity were analyzed.RESULTSQuantitative analysis of experimental animalsTen Sprague-Dawley pregnant rats were included in the study. A total of 84 rat pups were randomly assigned to six groups according to postnatal days and visualmanipulation: NorP0 (neonatal period; n = 10), NorP14 (before critical period; n = 10), NorP28 (during critical period; n = 10), NorP60 (after critical period; n = 20), MDP28 (n = 10), and MDP60 (n = 20). For the monocular deprivation (MD) model, a previously described method was utilized at P21[17]. Four rat pups were excluded, because model establishment was not successful. In total, 80 rat pups were included in the study.Nogo-A and NgR mRNA expression in the rat visual cortex (Figure 1) Nogo-A and NgR mRNA expression, as well as the internal control glyceraldehyde phosphatedehydrogenase (GAPDH), were amplified by RT-PCR. Bands corresponding to Nogo-A (300 bp), NgR (400 bp), and GAPDH (500 bp) were detected (Figure 1). In general, Nogo-A mRNA expression was significantly increased at P28 (P < 0.01) and maintained at a steady level between P28 to P60 (Figures 1A and 1C). Similarly, NgR mRNA was significantly increased at P14 (P < 0.01) and was maintained at a high level to P60 (Figures 1A and 1D). In response to MD, both Nogo-A and NgRmRNA expression were slightly reduced at P28 and P60, although neither of these changes were significant (P > 0.05; Figures 1B -D).Nogo-A and NgR protein expression in the rat visual cortexWestern blot was used to quantify Nogo-A and NgR protein expression during development and in response to MD (Figure 2). Expression of 200 kDa and 66 kDa bands, corresponding to Nogo-A and NgR protein, respectively, weresignificantly elevated at the peak critical period (P28) and expression remained high up to P60 (Figure 2A).Following normalization with GAPDH expression, there was a 1.6-fold Nogo-A protein increase and 1.3-fold NgRFigure 1 Reverse transcriptase-PCR analysis andquantification of Nogo-A and NgR mRNA expression in the visual cortex of normal development rats and rats with Figure 2 Western blot analysis and quantification ofNogo-A and NgR protein expression in the visual cortex of normal development rats and rats with monocularP0 P14 P28 P60 1.2 1.0 0.8 0.6 0.4 0.2 0 P0 P14 P28 P601.2 1.00.80.6 0.4 0.2 0a a a aa NormalMD Normal MD Time points (day) Time points (day) P0 P14 P28 P60 1.4 1.2 1.00.8 Normal MD Time points (day)P0 P14 P28 P60 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 Normal MD Time points (day) a aa aprotein increase at P28 compared with protein expression at P0 (P < 0.01; Figures 2C, D). Following MD induction, Nogo-A and NgR protein expression decreased minimally in the primary visual cortex compared with age-matched normal controls (P > 0.05; Figures 2B-D).Nogo-A and NgR expression in all visual cortex layersIn the NorP60 and MDP60 groups, Nogo-A and NgR protein expression in the rat primary visual cortex was observed using immunofluorescence. Several Nogo-A and NgR immunoreactive cells were detected in all visual cortex layers. Notably, Nogo-A and NgR expression significantly decreased in layers II-III and IV in the visual cortex contralateral to the deprived eye following monocular deprivation (Figure 3). These results were not consistent with results from RT-PCR and western blot analysis.DISCUSSIONIn comparison to the adult brain, the adolescent brain is thought to exhibit more robust plasticity due to an immature neuronal circuitry. During early postnatal periods, changes in visual input can lead to specific neuronal connectivity and functional changes. In rats, the so-called “critical period” begins at the time of eye opening (P14), reaches a peak at P28, and ends atP32[16]. Decreased or absent synaptic plasticity in the adult visual cortex contributes to difficulties in amblyopia treatment and other cortical-based visual disorders. It is wildly accepted that the Nogo-NgR system takes part in axonal outgrowth inhibition, as well as neuronal plasticity[13-14]. Therefore, analysis ofNogo-A and NgR expression patterns in the visual cortex in normal developmental and monocular deprivation rats is important to determine the mechanisms of action.Results from the present study demonstratedNogo-A/NgR mRNA and protein expression in the visual cortex of neonatal rats, which suggested that expression did not inhibit axonal outgrowth in the visual cortex during early development, but might participate in axonal guidance. These results are consistent with previous results[18]. Nogo-A and NgR mRNA and protein levels increased after birth and reached a plateau by adulthood. It was hypothesized that high neuronal levels of Nogo-A or NgR resulted in a locked visual cortex state in the adult rat; in addition, one or both of these proteins must be effectively downregulated to reactivate cortical plasticity. During normal development, mRNA and protein expression is consistent with decreased visual cortical plasticity with age. However, when compared with NgR mRNA expression during normal development, the upregulation of protein expression lagged behind, which could be due to a longer translation process from mRNA to protein.Monocular deprivation also led to slightly decreased Nogo-A and NgR expression in the visual cortex, as determine by RT-PCR and western blot analysis, which was consistent with previous results[19]. It is possible that the mixture of all cortical layers in RT-PCR and western blot analysis results in obscured selective expression changes in specific cortical layers most critical for plasticity. Therefore, immunofluorescence analysis allowed for layer-specific assessment of expression. Nogo-A and NgR protein expression was significantly decreased in layers II-III and IV in the visual cortex after monocular deprivation. In the thalamus, the lateral geniculate nucleus receives inputs from both eyes and relays information to layer IV in the primary visual cortex, which subsequently transmits to layer II-III via synapses[20]. It was hypothesized that significantly decreased inputs to the visual cortex following monocular deprivation could lead to decreased expression of Nogo-A and NgR. The layer-specific downregulation of Nogo-A and NgR protein levels following monocular deprivation suggested a role for the Nogo-NgR system in visual cortical plasticity. Recent identification of this pathway, from myelin Nogo-A to its receptor NgR to intracellular Rho/Rho kinase pathway, provides an opportunity to develop interventions for reactivation of visual cortical plasticity in adult rats.In conclusion, targeting of the Nogo-NgR system could promote plastic mechanisms underlying recovery from amblyopia in the visual system, as well as from various forms of damage in other regions of the central nervous system. Results from the present study provided a basisFigure 3 Immunofluorescence demonstrates Nogo-A (Aand B) and Nogo receptor (NgR) (C and D) expression inthe primary visual cortex of NorP60 (after critical period)and MDP60 (monocular deprivation) rats (red = Cy3labeling, scale bar = 200 µm).For rat models of monocular deprivation, the right eyelidswere sutured together, and the left primary visual cortexwas observed. Several Nogo-A and NgR immunoreactivecells are visible in all visual cortex layers (A-D). Notably,monocular deprivation significantly decreases Nogo-A andNgR protein expression in layers II-III and IV in the visualcortex contralateral to the deprived eye (B and D).15for future studies to more precisely explore possible roles for the Nogo-NgR system.MATERIALS AND METHODSDesignComparative, observational, developmental, neurobiological study.Time and settingThe experiments were performed at the Laboratory of Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China, from March 2009 to July 2010.MaterialsTen female, Sprague-Dawley rats with litters of mixed gender were obtained from the Laboratory Animal Center of Central South University in China (License No. SCXK (Xiang) 2006-0002). All animal research followed the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research. Every effort was made to minimize animal suffering and to reduce the number of animals. All experiments were performed under double-blinded conditions to minimize errors.The mother was provided food and clean water ad libitum and was housed in a temperature- and light-controlled facility.MethodsEstablishment of monocular deprivation (MD) models All surgical procedures were performed under 10% chloral hydrate (0.2 mL/100g, intraperitoneally). The lid margins of the right eye were removed, and the eyelids were sutured together using 6-0 silk. A small bead of antibiotic ointment was placed between the lids prior to closing. The suture was checked daily until the rat was sacrificed at P28 or P60. Minimal eye opening was excluded.RT-PCRA subset of pups at P0, P14, P28, and P60, as well as rats from the monocular deprivation model at P28 andP60, were sacrificed and the binocular zone of the left primary visual cortex was removed and frozen forRT-PCR analysis. Frozen samples were homogenized and total RNA was extracted with Trizol (Invitrogen, Carlsbad, CA, USA). RT-PCR was performed with an RT-PCR kit (MBI Fermentas, Vilnius, Lithuania) according to manufacturer instructions. Rat GAPDH was amplified as a control for the PCR reaction. Primer sequences (synthesized by Invitrogen) were as follows:Nogo-A amplification was performed for 30 cycles of1 minute at 94°C for denaturing, 45 seconds at 55°C for annealing and 3 minutes at 72°C for extension. For NgR and GAPDH, the annealing temperature was 54°C and 56°C, respectively. Amplified products were subjected to electrophoresis on a 1% agarose gel and were stained with ethidium bromide. Gels were photographed under ultraviolet transillumination. The ratio of Nogo-A or NgR to GAPDH product was obtained by analyzing the absorbance value of the corresponding bands using Quantity One (Bio-Rad, Hercules, CA, USA).Western blot analysisThe binocular zone of the left primary visual cortex was immediately resected according to coordinates from The Rat Brain in Stereotaxic Coordinates[21]. The samples were then homogenized in ice-cold lysis buffer. Following sonication and centrifugation, supernatants were collected and protein concentrations were determined using the Bradford method (Bio-Rad), with bovine serum albumin serving as the standard[22]. Protein samples were denatured in sample buffer at 100°C for 8 minutes. Equal amounts of protein were loaded into each lane of an 8% sodium dodecyl sulfate polyacrylamide gel and were separated by electrophoresis. Protein bands were then transferred to nitrocellulose membranes (Amersham Bioscience, Buckinghamshire, England). Transfer efficiency was analyzed by Ponceau-S red staining. The membrane was then incubated in blocking buffer at room temperature for 2 hours while shaking, following by rabbit anti-Nogo-A polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA; 1: 800) or rabbit anti-NgR polyclonal antibody (Santa Cruz Biotechnology; 1: 300) overnight at 4°C. Mouseanti-GAPDH polyclonal antibody (Santa Cruz Biotechnology; 1: 200) was used as the loading control for protein quantification. Subsequently, the membrane was washed three times with Tris-bufferedsaline/Tween-20 (TBST) and incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology; 1: 7 500) or rabbit anti-mouse IgG (Santa Cruz Biotechnology; 1: 7 500) in blocking solution for1 hour. After three washes with TBST, the membranes were incubated with ECL Plus reagent for 3 minutes. Band densities were captured on X-ray films and were quantified using NIH Image (Bethesda, Maryland, USA). ImmunofluorescenceImmunofluorescence was performed according to standard protocols[23]. Animals were euthanized and transcardially perfused with saline followed by 4% paraformaldehyde in 0.1 M phosphate-buffered saline. Brain specimens were removed, post-fixed overnight, and then placed in 20% and 30% sucrose until the samples sank. A series of frozen, coronal, brain sections, which included the visual cortex, were cut into 20-µm thick sections using a freezing microtome. The sections were then blocked with 5% bovine serum albumin plus 0.1% Triton-X 100 for 2 hours at 37°C. The sections were incubated in rabbit anti-Nogo-A polyclonal antibody16(Santa Cruz Biotechnology; 1: 100) or rabbit anti-NgR polyclonal antibody (Santa Cruz Biotechnology; 1: 100) for 2 hours at 4°C, followed by Cy3-conjugated goatanti-rabbit IgG (Santa Cruz Biotechnology; 1: 100) for 30 minutes at 37°C. The sections were then extensively washed with phosphate-buffered saline, mounted on slides, air-dried, and coverslipped. Images were obtained using the Leica LAS AF system (Leica Microsystems, Heidelberg, Germany) using appropriate filters for Cy3. Statistical analysisSPSS 14.0 software (SPSS, Chicago, IL, USA) was used for statistical analysis. Relative absorbance data of corresponding bands by RT-PCR and western blot were expressed as mean ± SD. Statistical differences between normal groups were analyzed using one-way analysis of variance followed by least significant difference-t-test. The unpaired Student’s t-test was used to evaluate significant differences between normal and MD groups of the same age. P < 0.05 was considered statistically significant.Author contributions: Xiaoying Wu, Yulin Luo, and Shuangzhen Liu designed the study; Yulin Luo and Kuanshu Li performed the experiments; Yulin Luo and Xiaoying Wu analyzed the data; Yulin Luo and Xiaoying Wu wrote the manuscript.Conflicts of interest:None declared.Funding:This study was supported by the Graduate Degree Thesis Innovation Foundation of Central South University, No. 2009BSXT050.Ethical approval: This study was approved by the Central South University Committee on Animal Research. Acknowledgments:We thank Xuegang Luo and Kun Xiong from the Laboratory of Neurobiology, Xiangya School of Medicine, Central South University in China, for technical support. The authors also wish to thank Zhenghai Liu, Lei Shang, and Jie Zeng at the same laboratory for their help.REFERENCES[1] Hubel DH, Wiesel TN. The period of susceptibility to thephysiological effects of unilateral eye closure in kettens. J Physiol.1970;206(2):419-436.[2] Wiesel TN, Hubel DH. Single-cell responses in the striate cortexof kittens deprived of vision in one eye. J Neurophysiol. 1963;26:1003-1017.[3] Berardi N, Pizzorusso T, Ratto GM, et al. Molecular basis ofplasticity in the visual cortex. Trends Neurosci. 2003;26(7):369-378.[4] Ng CE, Tang BL. Nogos and the Nogo-66 receptor: factorsinhibiting CNS neuron regeneration. J Neurosci Res. 2002;67(5):559-565. [5] Grandpré T, Strittmatter SM. Nogo: a molecular determinant ofaxonal growth and regeneration. Neuroscientist. 2001;7(5):377-386.[6] Gonzenbach RR, Schwab ME. Disinhibition of neurite growth torepair the injured adult CNS: focusing on Nogo. Cell Mol Life Sci.2008;65(1):161-176.[7] Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is amyelin-associated neurite outgrowth inhibitor and an antigen formonoclonal antibody IN-1. Nature. 2000;403(6768):434-439. [8] Taketomi M, Kinoshita N, Kimura K, et al. Nogo-A expression inmature oligodendrocytes of rat spinal cord in association withspecific molecules. Neurosci Lett. 2002;332(1):37-40.[9] Barton WA, Liu BP, Tzvetkova D, et al. Structure and axonoutgrowth inhibitor binding of the Nogo-66 receptor and relatedproteins. EMBO J. 2003;22(13):3291-3302.[10] Hu F, Liu BP, Budel S, et al. Nogo-A interacts with the Nogo-66receptor through multiple sites to create an isoform-selectivesubnanomolar agonist. J Neurosci. 2005;25(22):5298-5304. [11] Wong ST, Henley JR, Kanning KC, et al. A P75 (NTR) and Nogoreceptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci. 2002;5(12):1302-1308. [12] Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of theNogo-66 receptor/p75 signaling complex. Nat Neurosci. 2004;7(3): 221-228.[13] Gillani RL, T sai SY, Wallace DG, et al. Cognitive recovery in theaged rat after stroke and anti-Nogo-A immunotherapy. BehavBrain Res. 2010;208(2):415-424.[14] Cao Y, Shumsky JS, Sabol MA, et al. Nogo-66 receptor antagonistpeptide (NEP1-40) administration promotes functional recoveryand axonal growth after lateral funiculus injury in the adult rat.Neurorehabil Neural Repair. 2008;22(3):262-278.[15] McGee AW, YangY, Fischer QS, et al. Experience-drven plasticityof visual cortex limited by myelin and nogo receptor. Science.2005;309(5744):2222-2226.[16] Gordon JA, Stryker MP. Experience-denpendent plasticity ofbinocular responses in the primary visual cortex of the mouse. JNeurosci. 1996;16(10):3274-3286.[17] Maffei A, Nelson SB, Turrigiano GG. Selective reconfiguration oflayer 4 visual cortical circuitry by visual deprivation. Nat Neurosci.2004;7(12):1353-1359.[18] Brosamle C, Halpern ME. Nogo-Nogo receptor signaling in PNSaxon outgrowth and pathfinding. Mol Cell Neurosci. 2009;40(4):401-409.[19] Lyckman AW, Horng S, Leamey CA, et al. Gene expressionpatterns in visual cortex during the critical period: synapticstabilization and reversal by visual deprivation. Proc Natl Acad Sci U S A. 2008;105(27):9409-9414.[20] Coleman JE, Law K, Bear MF. Anatomical origins of oculardominance in mouse primary visual cortex. Neuroscience.2009;161(2):561-571.[21] Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates.New York: Academic Press. 2007.[22] Bradford MM. A rapid and sensitive method for the quantitation ofmicrogram quantities of protein utilizing the principle ofprotein-dye binding. Anal Biochem. 1976;72:248-254.[23] Xiaolei Y, Rongdi Y, Shuxing J, et al. The expression patterns ofNogo-A and NgR in the neonatal rat visual nervous system.Neurochem Res. 2009;34(7):1204-1208.(Edited by Wang JF, Li JT/Qiu Y/Song LP)17。