8.1_二元一次方程组教案

合集下载

人教版七年级数学下册8.1《二元一次方程组》教案

人教版七年级数学下册8.1《二元一次方程组》教案

人教版七年级数学下册8.1《二元一次方程组》教案一. 教材分析《二元一次方程组》是人教版七年级数学下册第八章的第一节内容,主要介绍了二元一次方程组的概念、解法和应用。

本节内容是学生继学习一元一次方程之后,进一步研究二元一次方程,培养学生解决实际问题的能力,为后续学习更复杂的方程组打下基础。

二. 学情分析学生在之前的学习中已经掌握了一元一次方程的知识,具备了一定的数学思维能力和问题解决能力。

但七年级的学生在逻辑思维和抽象思维方面仍在发展过程中,因此,在教学过程中,需要教师引导学生逐步理解二元一次方程组的概念,并通过实际例子让学生感受方程组在解决实际问题中的作用。

三. 教学目标1.理解二元一次方程组的概念,掌握二元一次方程组的解法;2.能够运用二元一次方程组解决实际问题;3.培养学生的合作交流能力和抽象思维能力。

四. 教学重难点1.重点:二元一次方程组的概念,解法及应用;2.难点:二元一次方程组的解法,以及如何将实际问题转化为方程组问题。

五. 教学方法采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究,合作解决问题,提高学生的数学思维能力和实际问题解决能力。

六. 教学准备1.准备相关案例和练习题;2.准备课件和教学素材;3.准备小组讨论的安排。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引入二元一次方程组的概念。

2.呈现(10分钟)呈现二元一次方程组的定义和性质,引导学生理解并能够描述二元一次方程组。

3.操练(10分钟)通过一些简单的例子,让学生练习解二元一次方程组,引导学生掌握解题方法。

4.巩固(10分钟)让学生分组讨论,分析并解决一些实际问题,巩固所学知识。

5.拓展(10分钟)引导学生思考如何将实际问题转化为方程组问题,提高学生的问题解决能力。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习目标。

7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。

《8.1二元一次方程组》教学设计

《8.1二元一次方程组》教学设计

人教版义务教育课程标准教科书七年级下册
8.1二元一次方程组教学设计
责任学校十街中学责任教师祁小娟
一、教材分析
1、地位作用:《二元一次方程组》是新人教版教材七年级下册第八章《二元一次方程组》的第一节。

本章在学生对一元一次方程已有认识的基础上,对二元一次方程组进行讨论。

涉及求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具。

本节作为“二元一次方程组”的起始课,又是一节概念课,对激发学生学习方程组的兴趣,获得解决实际问题的基本方法具有十分重要的作用,又是学习三元一次方程组的基础,起到承上启下的作用。

2、教学目标:
1、掌握二元一次方程、二元一次方程组及其解的概念;
2、会初步根据实际问题列出二元一次方程组,并尝试找出简单的二元一次方程组的解。

目标分析:
通过二元一次方程与一元一次方程概念的比较,用类比的方法学习二元一次方程、二元一次方程组及其解的概念。

经历把实际问题转化为二元一次方程组问题的过程,体会二元一次方程组是刻画现实世界中含有两个未知数问题的有效数学模型。

3、教学重、难点
教学重点:①了解二元一次方程、二元一次方程组及其解的概念;②能根据实际问题列出二元一次方程组。

教学难点:由一元向多元的过渡,找出简单的二元一次方程组的解。

突破难点的方法:学生自主探索——教师引导的方法。

二、教学准备:多媒体课件
三、教学过程。

8.1二元一次方程组教案

8.1二元一次方程组教案
复备
作业布置
比做题:教科书 习题8.1第1、2、3、题
选做题:教科书 习题8.1第5题




8.1二元一次方程组
一.创设情景,导入新科
二.探究新课
知识点1二元一次方程的概念
知识点2:二元一次方程组的概念
知识点3:二元一次方程、二元一次方程组的解
三.巩固练习
四.课堂小结
五.布置作业




2016-2017年第二学期7年级下册
8.1二元一次方程组教案
阿克吐别克镇中学
座孜古丽.玛买提
2017年4月17日
备课时间
授课时间
课型
新授课
授课课题
8.1二元一次方程组




知识目标
.
弄懂二元一次方程,二元一次方程组和它们的解的含义,并会检查一对数是不是某个二元一次方程组的解。
能力目标
学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性。
情 感态 度价值观 Nhomakorabea.
通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣。
追问:章引言中问题的解是什么?
这个队在10场比赛中胜6场、负4场.
三.巩固练习
练习3教科书第89页练习
学生独立完成练习,然后同学之间进行交流。
四.课堂小结
小结:谈谈你本节课的收获
(1)举例说明二元一次方程、二元一次方程组的概念.
(2)举例说明二元一次方程、二元一次方程组的解的概念.
教师引导学生谈谈自己的收获
定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解。

人教版七年级数学 下册 第八章 8.1 二元一次方程组 教案(表格式)

人教版七年级数学 下册 第八章 8.1 二元一次方程组 教案(表格式)

教学设计定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究活动:满足x +y=35的值有哪些? 教师启发: (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值? (2)你能模仿一元一次方程解给二元一次方程的解下定义吗? (3)它与一元一次方程的解有什么区别?定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为目标导学二:二元一次方程组及其解的定义例2: 有下列方程组:①x +y =2;xy =1,②+y =1;1③;1④=7;y⑤x -y =1,x +π=3,其中二元一次方程组有( )A .1个B .2个C .3个D .4个解析:①方程组中第一个方程含未知数的项xy 的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤方程组中的π是常数.故选B.方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是只含两个未知数;三看含未知数的项的次数是不是都为1.例3:用库存化肥给麦田追肥,如果每亩施肥6公斤,就缺少200公斤,如果每亩施肥5公斤,就剩余300公斤,问有多少亩麦田?库存化肥有多少?分析:本题有两上未知数:麦田的亩数和库存化肥的数量。

相等关系:1、每亩施肥6公斤所需化肥量=库存化肥量+200公斤。

2、每亩施肥5公斤,所需化肥量=库存化肥量-300公斤 小组讨论,解答。

四、课堂总结我们学习二元一次方程和方程组,要结合一元一次方程来理解。

1、方程mx−2y=3x+4是关于x、y的二元一次方程,则m的值范围是( )A.m≠0 B.m≠−2 C.m≠3 D.m≠42、已知是方程3x-my=1的一个解,则m=__________。

3、已知方程,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4.4、写出二元一次方程3x-5y=1的一个正整数解______.5、下列方程组中,是二元一次方程组的是()A、B、C、D、。

8.1二元一次方程组(教案)

8.1二元一次方程组(教案)
五、教学反思
在本次《二元一次方程组》的教学中,我发现了一些值得思考的问题和亮点。首先,学生对二元一次方程组的概念和结构掌握得比较扎实,能够理解并运用代入法和加减消元法解题。然而,在具体操作过程中,部分学生对于如何选择合适的方程进行代入以及如何进行消元还存在一定的困难。
在讲授新课环节,我通过案例分析和实际操作,让学生体会到了二元一次方程组在现实生活中的应用。这一点得到了学生的积极反馈,他们对此表现出浓厚的兴趣。但同时,我也意识到,在今后的教学中,需要更加注重培养学生的逻辑思维能力和问题解决能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二元一次方程组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-在讲解代入法时,以\( \begin{cases} {x+y=5} \\ {2x-y=3}\end{cases}\)为例,强调如何从方程组中选取合适的方程进行代入。
-通过\( \begin{cases} {3x+4y=7} \\ {2x+3y=5}\end{cases}\)讲解加减消元法,让学生掌握消元的步骤和技巧。
-针对实际问题,如“甲乙两地相距120公里,甲车从甲地出发,以每小时40公里的速度向乙地行驶,同时乙车从乙地出发,以每小时30公里的速度向甲地行驶,两车多久后相遇?”,指导学生如何从中提取信息,建立方程组\( \begin{cases} {x+y=120} \\ {4x+3y=0}\end{cases}\)。

人教版七年级数学下册 8.1二元一次方程组教案设计

人教版七年级数学下册 8.1二元一次方程组教案设计

8.1 二元一次方程组一、教学目标:1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.二、教学重难点:教学难点:弄懂二元一次方程组解的含义知识重点:二元一次方程、二元一次方程组及其解的含义。

三、创设情境,导入课题幻灯:古老的“鸡兔同笼问题”“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.方案一:算术方法把兔子都看成鸡,则多出94-35 × 2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,进而鸡有35-12=23只.或类似的也可以先求鸡的数量.35×4-94=46,46÷2=23方案二:列一元一次方程解设有x只鸡,则有(35-x)只兔.根据题意,得2x十4(35-x)=94.(解方程略)教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?四、分析问题(一)讨论二元一次方程、二元一次方程组的概念师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)方案三:设有x 只鸡,y 只兔,依题意得x +y=35,①2x +4y=94.②针对学生列出的这两个方程,提出如下问题:(1)、你能给这两个方程起个名字吗?(2)为什么叫二元一次方程呢?(3)什么样的方程叫二元一次方程呢?结合学生的回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?⎩⎨⎧=+=+944235y x y x 定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.(二)讨论二元一次方程、二元一次方程组的解的概念探究活动:满足x +y=35的值有哪些?请填入表中:教师启发:(1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?(2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?(3)它与一元一次方程的解有什么区别?定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为⎩⎨⎧==by a x师:那么什么是二元一次方程组的解呢?学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做⎩⎨⎧=+=+944235y x y x 的解记为:⎩⎨⎧==1223y x 注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”. 议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢? 巩固新知:例1 下列各对数值中是二元一次方程x +2y=2的解是( )A ⎩⎨⎧==02y xB ⎩⎨⎧=-=22y x C ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x解法分析:将A 、B,C,D 中各对数值逐一代人方程检验是否满足方程,选A,B,C.变式:其中是二元一次方程组⎩⎨⎧-=+=+2222y x y x 解是( ) 解法分析:在例1的基础上,进一步检验A 、B 、C 中各对值是否满足方程2x +y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.例2(教材102页练习)五、小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.本节课学习了哪些内容?你有哪些收获?(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)六、布置作业1、必做题:教科书102页习题8.1第1、2题.2、选做题:教科书102页习题8.1第3题.3、备选题:(1)根据下列语句,列出二元一次方程:①甲数的一半与乙数的32的和为11 ②甲数和乙数的2倍的差为17(2)方程x +2y=7在自然数范围内的解( )A 有无数个B 有一个C 有两个D 有三个(3)若mx +y=1是关于x,y 的二元一次方程,那么m的值应是( )A.m ≠OB. m=0C. m 是正有理数D. m 是负有理数(4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快?。

人教版七年级下册数学 8.1 二元一次方程组 教案

人教版七年级下册数学 8.1 二元一次方程组 教案

8.1 二元一次方程组 教案【学习目标】1.理解二元一次方程、二元一次方程组及它们的解的含义;2.会检验一组数是不是某个二元一次方程(组)的解.【要点梳理】要点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x a y b=⎧⎨=⎩的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个. 【典型例题】类型一、二元一次方程1.已知下列方程,其中是二元一次方程的有________.(1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【思路点拨】按二元一次方程满足的三个条件一一检验.【答案】(1)(4)(5)(8)(10)【解析】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x 的次数为2.【总结升华】判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.举一反三:【变式】(2015春•桃园县校级期末)下列各方程中,是二元一次方程的是( )A .=y+5xB .3x+2y=2x+2yC .x=y 2+1D .【答案】D .类型二、二元一次方程的解2.(2016春•吴兴区期末)下列数组中,是二元一次方程x+y=7的解的是( )A .B .C .D .【思路点拨】二元一次方程x+y=7的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【答案】B【解析】解:A 、把x=﹣2,y=5代入方程,左边=﹣2+5≠右边,所以不是方程的解;故本选项错误;B 、把x=3,y=4代入方程,左边=右边=7,所以是方程的解;故本选项正确;C 、把x=﹣1,y=7代入方程,左边=6≠右边,所以不是方程的解;故本选项错误;D 、把x=﹣2,y=﹣5代入方程,左边=﹣7≠右边,所以不是方程的解.故本选项错误. 故选B .【总结升华】考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.【高清课堂:二元一次方程组的概念409142 例2(2)】举一反三:【变式】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= . 【答案】33.已知二元一次方程3142x y +=. (1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ;(3)用适当的数填空,使2_______x y =-⎧⎨=⎩是方程的解. 【思路点拨】用含一个未知数的代数式表示另一个未知数,就是把要表示的未知数当未知数,把其他的未知数当已知数,然后再将方程变形.【答案与解析】解:(1)将方程变形为3y =22x -,化y 的系数为1,得236x y =-. (2)将方程变形为232x y =-,化x 的系数为1,得46x y =-. (3)把x =-2代入236x y =-得, y =1. 【总结升华】用含x 的代数式表示y ,其实质表示为“y =含x 的代数式”的形式.在进行方程的变形过程中,有效地利用解一元一次方程的方法技巧很重要.举一反三:【变式】已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .【答案】解:(1)2x =7-3y , 732y x -=;(2)3y =7-2x ,723x y -= 类型三、二元一次方程组及方程组的解 4.(2015春•道外区期末)下列各方程组中,属于二元一次方程组的是( )A .B .C .D .【答案】C .【解析】解:A 是二元二次方程组,故A 不是二元一次方程组;B 是三元一次方程组,故B 不是二元一次方程组;C 是二元一次方程组,故C 是二元一次方程组;D 不是整式方程,故D 不是二元一次方程组;【总结升华】本题考查了二元一次方程组,含有两个未知数,且每个未知数的次数都是1的方程式二元一次方程,两个二元一次方程组成的方程组.5.判断下列各组数是否是二元一次方程组4221x y x y +=⎧⎨+=-⎩①②的解.(1)35x y =⎧⎨=-⎩ (2)21x y =-⎧⎨=⎩【答案与解析】解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩是方程①的解.把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解. 所以35x y =⎧⎨=-⎩不是方程组的解.(2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解,再把21x y =-⎧⎨=⎩代入方程②中,左边=x+y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【总结升华】检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.举一反三:【变式】写出解为12x y =⎧⎨=-⎩的二元一次方程组. 【答案】 解:此题答案不唯一,可先任构造两个以12x y =⎧⎨=-⎩为解的二元一次方程,然后将它们用“{”联立即可,现举一例:∵ x =1,y =-2,∴ x+y =1-2=-1.2x-5y =2×1-5×(-2)=12.∴ 12512x y x y +=-⎧⎨-=⎩就是所求的一个二元一次方程组. 注:任选的两个方程,只要其对应系数不成比例,联立起来即为所求.。

(完整版)8.1_二元一次方程组教案

(完整版)8.1_二元一次方程组教案

8.1 二元一次方程组第一课时教课方案23 中宋运美教学目标重点难点知识技术1、使学生掌握二元一次方程、二元一次方程组的观点。

2、使学生认识二元一次方程、二元一次方程组的解的含义。

数学思虑1、经过学习二元一次方程、二元一次方程组的观点让学生体验方程组的特色。

2、认识二元一次方程、二元一次方程组的解的含义同时学会研究问题的方法。

解决问题1、会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

2、会查验一对数是不是方程组的解。

感情态度经过研究实质问题,领会数学的应用价值,提升剖析问题、解决问题的能力。

是学生认识到一对数一定同时知足两个二元一次方程,才是相应的二元一次方程组的解。

掌握查验一对数是不是某个二元一次方程的解的书写格式。

理解二元一次方程组的解的含义。

教课过程:问题与情境师生行为设计企图一、提出问题由学生独立思虑学生对这两个问题1、文具盒中有红、后,回答以下问题:的猜想会有多种答案,黄两种颜色彩笔共10 (1)发问:假如将为下一步理解二元一次支,请猜一猜,红色、题中的未知量用未知数方程的解的不独一性作黄色彩笔各多少支?表示能够获取什么方准备。

2、篮球联赛中每场程?思虑取的两个问题竞赛都要分出输赢,在(2)你获取的两个指引学生初步领会二元一次竞赛中,甲队共参方程是一元一次方程加了 10 场竞赛,你知道吗?与一元一次方程比甲队胜、负场数分别是较有何异同?你给它起多少吗?个什么名字较适合?二、研究新识,解决问题二元一次方程的概念:(1)联合方程学生要点关注学生x y 10 , x y 22 的对“元”及“次”的理命名,理解并掌握二元解。

一次方程的观点。

(2)练一练:判断以下方程中,哪一些是二元一次方程,哪一些不是?并说明原因( 1)2x 5y 10学生独立思虑,然后再分组沟通,教师深( 2)2x y z 1(3)1y 20入小组,参加活动,关注、学生可否理解观点,x( 4)x2x 2x 0 并紧扣观点解决问题。

8.1二元一次方程组教案

8.1二元一次方程组教案

8.1 二元一次方程组教学目标:1、理解二元一次方程、二元一次方程组以及它们的解的概念:(1)理解二元一次方程的概念;(2)理解在同一个方程组相同的字母必须表示相同的量;(3)了解二元一次方程与二元一次方程组的关系;(4)二元一次方程(组)的解的概念;(5)理解方程组的解与方程组的关系,能正确检验一组未知数的值是否是方程组的解;(6)掌握方程组的解的读法、表示法(7)理解二元一次方程的解与二元一次方程组的解的区别;(8)已知一个二元一次方程,能用其中一个未知数表示另一个未知数。

2、体会实际问题中常会遇到有多个未知量互相依赖互相影响的现象,二元一次方程组就是反映现实世界中的两个未知量之间的关系的一种有效模型教学重点、难点:二元一次方程,二元一次方程组及其解的含义教学过程:一、 问题探究,概念学习:思考问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。

某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?解法一:可用我们学过的一元一次方程解决,设胜了x 场,则有 2(10)16x x +-= 解法二:引言中的问题包含了哪些必须同时满足的条件?设胜了x 场,负了y 场,你能用方程把这些条件表示出来吗?显然这两个条件可以用方程 10216x y x y +=+= 来表示。

探究1:这两个方程有什么特点?与一元一次方程有什么不同?定义1:像前面列出的方程这样,每个方程都有两个未知数,并且含有未知数的项的次数都是1.像这样的整式方程,我们把它叫做二元一次方程.上面的问题中包含两个必须同时满足的条件,也就是未知数x,y 必须同时满足方程10216x y x y +=+=,把这两个二元一次方程合在一起,写成10216x y x y +=⎧⎨+=⎩就组成了一个方程组. 定义2:这个方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个整式方程,像这样的方程组叫做二元一次方程组。

人教版七年级下数学8.1二元一次方程组教案

人教版七年级下数学8.1二元一次方程组教案

(1)x+y=11;(2)m+1=2;(3)x2+y=5;(4)3x-π=11;(5) -5x=4y+2;(6)7+a=2b+11c(7)2713xy;(8)4xy+5=0.方法归纳:判断一个方程是否为二元一次方程的方法:一看原方程是否是整式方程且只含有两个未知数;二看整理化简后的方程是否具备两个未知数的系数都不为0,且含未知数的项的次数都是1.典例精析例 1. 已知|m-1|x|m|+y2n-1=3是二元一次方程,则m+n=________.方法总结:未知数的次数都是1,未知数的系数不为0。

针对训练1.若x2m-1+5y3n-2m =7是二元一次方程,则m=____,n=____.2.下列方程组是二元一次方程组的是()探究点2:二元一次方程组的解问题1:什么叫二元一次方程的解?问题2:你已知下面三对数值:0,2,xy2,3,xy1,5,xy哪几对是方程2x-y=7的解?哪几对是方程x+2y=-4的解?问题3:方程组,2742x yx y的解是什么?问题4:由此归纳总结出二元一次方程组的解的定义典例精析例2.若2,3xy是方程x-ky=1的解,则k的值为.例3.加工某种产品须经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、二道工序所完成的件数相等?请列出符合题意的二元一次方程组.方法总结:读懂题意,结合实际,找到等量关系,根据等量关系设未知数列方程。

针对训练根据以下对话,可以求得小红所买的笔和笔记本的价格分别是()A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本课堂练习1.下列不是二元一次方程组的是( )2.二元一次方程组的解是( )3.关于x、y的方程ax2+bx+2y=3是一个二元一次方程,则a、b的值分别为()A.a=0且b=0B.a=0或b=0C.a=0且b≠0D.a≠0且b≠04.小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x张,2元的贺卡y张,那么可列方程组()5.已知,13xy是方程2x-4y+2a=3的一组解,则a=____.6.若方程2x2m+3+3y3n-7=0 是关于x、y的二元一次方程,则m=______,n=______.方法总结:紧扣二元一次方程的概念解题。

人教版七年级数学下册8.1二元一次方程(教案)

人教版七年级数学下册8.1二元一次方程(教案)
人教版七年级数学下册8.1二元一次方程(教案)
一、教学内容
人教版七年级数学下册8.1节,本节课主要围绕二元一次方程展开,内容包括:
1.理解二元一次方程的概念,能够识别方程中的未知数和常数。
2.学会使用代入法解决简单的二元一次方程问题。
3.学会使用消元法解决简单的二元一次方程问题。
4.能够根据实际问题列出二元一次方程,并解决实际问题。
2.逻辑推理:通过代入法、消元法等解方程的方法,培养学生的逻辑思维能力,学会运用数学语言进行逻辑推理。
3.数学建模:引导学生从实际情境中建立二元一次方程模型,体会数学在解决实际问题中的应用,提高学生的数学建模能力。
4.数学运算:通过具体的例题和练习,让学生掌握二元一次方程的运算方法和技巧,提高学生的数学运算能力。
-熟练进行代入和消元的运算过程。
举例说明:
(1)代入法与消元法的应用场景:让学生通过对比不同类型的题目,理解何时使用代入法,何时使用消元法更为合适。例如,当方程组中有一个方程已经表示出一个未知数时,使用代入法较为简便。
(2)实际问题抽象:指导学生从实际问题中抓住关键信息,如两个变量的关系,列出方程。如火车行程问题,要让学生理解速度和时间的关系,并将其抽象为方程。
在学生小组讨论环节,ቤተ መጻሕፍቲ ባይዱ发现同学们对于二元一次方程在实际生活中的应用有很多自己的想法。但在引导和启发学生思考方面,我觉得自己还有待提高。今后,我将更加关注学生的个体差异,针对不同学生的需求,提出更有针对性的问题,激发他们的思维。
总之,这节课的教学让我深刻认识到,作为一名教师,要时刻关注学生的学习情况,及时调整教学方法和策略。在今后的教学中,我将努力改进,力求让每个学生都能学好二元一次方程,为他们的数学学习打下坚实的基础。

8.1 二元一次方程组教案

8.1 二元一次方程组教案

教学设计案例一、内容和内容解析1.内容二元一次方程、二元一次方程组;二元一次方程的解、二元一次方程组的解。

2.内容解析方程思想是重要的数学模型之一,实际生活中涉及多个未知数的应用广泛存在,而二元一次方程组是解决含有两个未知数的问题的有效方法,在义务教育阶段的数学课程中占有重要地位.本节内容是在学生学习了方程、方程的解、一元一次方程、一元一次方程的解这些概念的基础上,对二元一次方程、二元一次方程组、二元一次方程的解、二元一次方程组的解的概念进行探究.同时,对二元一次方程组的认识为学习三元一次方程组和函数特别是一次函数提供运算工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点坐标等.本章的内容是在前面的基础上进一步发展,即由”一元”向”多元”发展,为学习后续知识奠定基础.本节教学重点:让学生通过观察、比较、分析、归纳二元一次方程、二元一次方程的解、二元一次方程组、、二元一次方程组的解的概念,经历和感受这些概念的形成过程.二、目标和目标解析1.目标(1) 知识目标:让学生经历和感受二元一次方程(组)、二元一次方程(组)的解这四个概念的形成过程,能判断一个方程组是不是二元一次方程(组),一对数值是不是二元一次方程(组)的解.(2) 技能目标:让学生通过观察、比较、分析、归纳二元一次方程(组)、二元一次方程(组)的解的概念,培养学生分析问题、解决问题和归纳概括的能力.(3) 情感与态度目标:培养学生探究问题的兴趣与合作交流的意识,感受数学的实用性,体验自己探索出知识的成就感.2.目标解析达成目标(1)的标志:学生理解二元一次方程的定义,可以区分与一元一次方程的联系与区别,能判断方程是不是二元一次方程及二元一次方程组;能判断某一对数值是不是二元一次方程的解及是不是二元一次方程组的解。

达成目标(2)的标志:学生能够根据实际问题情境,列出简单的二元一次方程(组),并能尝试的找出简单问题的解。

人教版七年级数学下册8.1《二元一次方程组》教学设计

人教版七年级数学下册8.1《二元一次方程组》教学设计

人教版七年级数学下册8.1《二元一次方程组》教学设计一. 教材分析《二元一次方程组》是人教版七年级数学下册第八章第一节的内容。

本节课主要让学生掌握二元一次方程组的定义、解法和应用。

通过学习,学生能够理解二元一次方程组的概念,掌握解二元一次方程组的方法,并能运用所学知识解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了整式的加减、一元一次方程的知识。

但二元一次方程组涉及到了两个未知数,解法上也有一定的复杂性。

因此,在教学过程中,要关注学生的学习难点,引导学生逐步理解并掌握二元一次方程组的相关知识。

三. 教学目标1.了解二元一次方程组的定义和特点。

2.掌握解二元一次方程组的方法。

3.能够运用二元一次方程组解决实际问题。

4.培养学生的合作交流能力和解决问题的能力。

四. 教学重难点1.重难点:二元一次方程组的定义和解法。

2.难点:如何引导学生理解并掌握解二元一次方程组的方法。

五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。

2.合作学习法:分组讨论,引导学生共同探索解二元一次方程组的方法。

3.案例教学法:分析实际问题,培养学生运用所学知识解决实际问题的能力。

4.板书演示法:通过板书,清晰展示解题过程,帮助学生理解和掌握解题方法。

六. 教学准备1.教学课件:制作课件,展示二元一次方程组的定义、解法和应用。

2.练习题:准备一些练习题,用于巩固所学知识。

3.教学板书:设计好板书,突出解题过程的关键步骤。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二元一次方程组的概念,激发学生的学习兴趣。

示例:某商店进行促销活动,一件商品原价50元,现在优惠价40元。

如果购买两件商品,则可以获得10元的优惠。

求购买两件商品的实际支付价格。

2.呈现(15分钟)介绍二元一次方程组的定义和特点,展示解二元一次方程组的方法。

示例:解方程组通过引导学生讨论、分析,帮助他们理解并掌握解题方法。

8.1二元一次方程组教案

8.1二元一次方程组教案

8.1 二元一次方程组教课任务剖析知识技术深刻理解方程组解的意义,并会利用解的观点解决问题.在解决问题的过程中,领会方程是刻画现实世界的一个比较有效的模教数学思虑学型,从而感觉方程思想.目能够判断一个方程组是不是二元一次方程组;标解决问题能够利用二元一次方程组解的观点解决有关问题.感情态度培育学生研究问题的兴趣,调换学习数学的踊跃性.要点对二元一次方程组解的意义的理解和运用.难点对二元一次方程组解的观点的理解和转变能力.教课流程安排活动流程图活动内容和目的活动 1鸡兔同笼问题.创建情境、主体研究,指引学生议论二元一次方程、活动 2体验二元一次方程组二元一次方程组和它的解等观点.的长处.活动 3稳固练习.活动4解决问题应用提升、拓展创新,指引学生进一步对二元一次方程(组)的知识进行研究,培育学生应用知识的能力以及创新能力.小结与作业复习稳固、概括总结.教课过程设计一、创建情境、主体研究,指引学生议论二元一次方程、二元一次方程组和它的解等观点活动 1问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和 140只脚,问鸡和兔子各多少只?教师提出:这是一个特别存心思的问题,它曾在好几个世纪里惹起过人们的兴趣,我想这个问题也必定会使每一名同学感兴趣.那么,此刻我们如何来解答这个问题呢?先让学生思虑一下,自己做出解答,教师巡视.最后,在学生着手动脑的基础上,教师指引给出各种解法.解法一:在剖析时,可提出以下问题:1. 50只动物都是鸡,对吗?( 不对,由于 50只鸡有 100只脚,脚数少了.)2. 50只动物都是兔子对吗?( 不对,由于 50只兔子共有 200只脚,脚数多了.)3.一半是鸡,一半是兔子对吗?( 不对,由于 25只鸡, 25只兔共有 150只脚,多 10只脚. )怎么办? ( 在学生思虑后,教师指出:我们可采纳逐渐伐整,验算的方法来加以解决.) 4.若增添一只鸡,减少一只兔,那么动物总只数,脚数分别如何变化?( 当增添一只鸡,减少一只兔时,动物的总只数不变,脚数比本来少两只.)5.此刻你能否知道有几个鸡、几个兔?( 若学生回答仍是感觉困难,教师应指引学生依据一半是鸡,一半是兔时多10只脚,做出5次如问题 4所述的方法进行调整,即增添5只鸡,减少 5只兔,则多出的10只脚就没有了,故答案是 30只鸡、 20只兔. )此时,教师指出:这个问题是解决了,但它在很大程度上依靠于数字50和 140比较小,比较简单,若它们相当大且又很复杂,那么像上述方法这样一次次的试算就很麻烦了.而后提出问题:能否有其余方法来解决这个问题呢?( 若学生在思虑后,还很茫然,则教师指引学生试试可否用一元一次方程来解.由一名学生板演,其余学生自行达成)解法二:设有x只鸡,则有(50- x)只兔.依据题意,得2x+ 4(50- x)=140 .( 解方程略 )追问:关于上边的问题用一元一次方程可解,能否还有其余方法可解?( 若学生想不到,教师可指引学生注意,要求的是两个未知数,可否设两个未知数列方程求解呢?让学生自己设未知数,列方程.而后请一名学生板演解所列的方程.)解法三:设有x只鸡, y只兔,依题意得x+ y=50,2x+4y=140.针对学生列出的这两个方程,提出以下问题:1.联合前面的复习发问,这两个方程应当叫几元几次方程呢?2.为何叫二元一次方程呢?3.什么样的方程叫二元一次方程呢?联合学生的回答,教师板书二元一次方程的定义:含有两个未知数,且未知项次数是 1 的方程,叫做二元一次方程.使二元一次方程两边的值相等的两个未知数的值叫二元一次方程的解.从而概括二元一次方程组的定义以及二元一次方程组的解的定义.两个二元一次方程和在一同,就构成了 二元一次方程组.从解法一,我们还知道,x =30, y =20,使方程组中每一个方程建立.因此我们把x 30x y 50y叫做二元一次方程组2x 4y的解.20140一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解.活动 2问题将上述问题的三种解法进行好坏对照,你有哪些想法呢?( 若学生回答得不全面,不切实,教师可增补概括以下:当我们运用代数知识将问题翻译成代数语言列方程时, 就能够借助代数运算来求解, 从上边的问题能够看到, 列二元一次方程组比列一元一次方程简单,进一步领会二元一次方程的长处.)活动 3 稳固练习(教材)此活动的设计企图是让学生进一步稳固对二元一次方程(组)的认识,加深方程意识 .二、应用提升、拓展创新,指引学生进一步对二元一次方程(组)的知识进行研究,培育学生的应用知识的能力以及创新能力活动4 解决问题.问题 1 现有一些边长相等的正三角形、正方形瓷砖,用这两种瓷砖环绕一点拼地板,有几种拼法?说说你的见解.学生活动设计:小组议论,分组研究,而后每组派一人进行沟通.学生依据思虑、议论能够发现,环绕一点拼地板,一定知足在这个点四周的正多边形的各个内角的度数和是 360°,于是能够设环绕一点的正三角形有x 个、正方形有 y 个,获得二元一次方程60x +90y = 360,即 2x + 3y=12,进一步研究这个二元一次方程的解(正整数解),经过议论能够获得这个二元一次方x 3 3 个正程的正整数解是,即环绕一点用正三角形、正方形拼地板只有一种状况:用y2三角形、 2 个正方形教师活动设计: 参加学生的议论,在学生找不到等量关系(这个点四周的正多边形的各个内角的度数和是 360°)时,进行适合启迪和指引,在学生沟通时,可能会出现“试出来”的状况,此时能够让学生议论如何用数学的知识进行解说.〔解答〕设环绕一点有 x 个正三角形, y 个正方形,则 60x + 90y = 360, 即: 2x + 3y = 12.x 3 这个二元一次方程的正整数解只有,y 2环绕一点只好用 3 个正三角形、 2 个正方形拼地板.x 4 问题 2 写出一个二元一次方程组使它的解是y1学生活动设计:学生疏组议论进行研究, 充足发挥学生的主体性, 利用学生的智慧编出各种各种的二元一次方程,而后进行沟通.教师活动设计:赐予学生充足的思虑问题的时间和空间,这样才能充足展现学生的创新能力.三、概括小结、部署作业小结:让学生回答以下问题:1.本节课学习了哪些内容?2.什么叫二元一次方程?3.什么叫二元一次方程组?4.什么叫二元一次方程组的解?作业:习题8.1。

七年级下册数学《8.1二元一次方程组》教学设计

七年级下册数学《8.1二元一次方程组》教学设计

二元一次方程组教学目标(一)知识与技能1、掌握二元一次方程及二元一次方程组的概念;2、理解二元一次方程的解及二元一次方程组的解;3、会用列表尝试的方法找二元一次方程组的解。

(二)过程与方法通过尝试求解,培养学生的探索能力。

(三)情感、态度与价值观渗透把实际问题抽象成数学模型的思想。

教学重点二元一次方程组及其解的概念。

教学难点用列表尝试的方法求出方程组的解。

教学准备:多媒体课件教法:启发式教学、讲练结合学法:小组合作探究、练习法备课资源:教师用书、百度文库教学课时:1课时教学过程:一、提出问题,创设情境中韩军事演习中,每场演习都要分出胜负,胜一场得2分,负一场得1分。

在演习中,中国部队狂虐韩国部队。

在10场演习中获得19分的好成绩。

那么中国部队胜负场数分别是多少学生活动:学生独立思考完成,并小组交流教师指导并点评:解:设中国部队胜了场,负了场。

等量关系胜的场数负的场数=总场数胜场积分负场积分=总积分=102=19思考:方程中,什么是元什么叫次[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]二、新课讲授(一)活动1 二元一次方程的概念1、观察上面两个方程,是否为一元一次方程这两个方程有什么共同的特点判断点:①未知数几个 (2个)判断点:②每个未知数项的次数是几次 (1次)判断点:③等式两边都是 (整式)师生共同归纳总结:方程中含有两个未知数,并且未知数的次数都是1的整式方程,叫做二元一次方程。

2、请帮下列各等式找到自己的家。

11)1(=+y x 21)2(=+m 5)3(2=+y x 113)4(=-πx 245)5(+=-xy xc b a 1127)6(+=+ 1327)7(=+yx 二元一次方程有:不是二元一次方程的有:3、试一试(1)你能自己编一个二元一次方程吗(2)如果10051=+-y x a 是二元一次方程,求a 的值学生活动:自己独立思考完成,再小组合作交款教师巡视、指导并总结。

人教初中数学七下 8.1 二元一次方程组教案

人教初中数学七下  8.1 二元一次方程组教案
胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.
这两个条件可以用方程
x+y=22
2x+y=40
表示.
师生共同得出答案引出新知。
情境问题引起学生的兴趣,调动学生的学习积极性,
要给学生适当的时间思考交流,观察交流。
理解概念合作
探究
10分钟
创设合作探索情境
理解概念:
布置学生自学,检测自学效果,师生共同探究。
4二元一次方程组的解(一个):
教学反思
1、学生自主完成,小组评价.
2、规范语言。
拓展提升能力
4分钟
创设探究提高情境
议一议:
1.已知方程2Xm+2+3Y1-2n= 17是一个二元一次方程,则m=___,n=___.
2.求二元一次方程2X+Y=10的所有正整数解.
学生小组交流。使学生认识到:二元一次中的“元”和“次”的意义;还有二元一次方程的解有无数组,而二元一次方程组的解只有一组。
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
思考: 这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
1.二元一次方程
2.二元一次方程组
3.二元一次方程的解4.二元 Nhomakorabea次方程组的解
概念的叙述结合概念的辨析,每一个问题都要理解清楚。
1.学生先自学教材内容,思考老师提出的问题,小组讨论并回答问题。
2.关注学生是否正确理解二元一次方程(组)及其解的概念。
巩固概念全班

人教版七年级数学下册:8.1二元一次方程组 教案

人教版七年级数学下册:8.1二元一次方程组 教案
二元一次方程是一元一次方程,到二元一次方程组的重要纽带,承上启下, 过度自然,解应用题的重要工具
二、教学目标
:1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式 表示另一个未知数的形式.
2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个 数是它的解。
注意:(1)定义中未知数的项(单项式)的次数是 1,而不是指两个未知数的次数都是 1;
(2)二元一次方程的左边和右边都应是整式;
2、二元一次方程的解:
使二元一次方程两边的值_____的两个未知数的_______叫做二元一次方程的解。
3.________________________________________叫做二元一次方程组。 4.使二元一次方程组的两个方程左右两边的值__________的两个未知数的_______叫做二
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
课题名称:二元一次方程组
年级学科 初一数学
教材版本 人教版
一、教学难点内容分析
教学难点;二元一次方程组的解的概念,二元一次方程的解,一个字母的代数式表示 另一个字母
学习内容:具体问题引入二元一次方程组,具体问题中的二元一次方程的解,学会一个 字母的代数式表示另一个字母
六、教学板书 板书:标题:二元一次方程 二元一次方程的概念、方程的解的概念, 实际问题示范解答, 学生演版,课堂反思 应用等
3/3
元一次方程组的解.即:二元一次方程组的两个方程的________解叫做二元一次方程组的
解。
(二)应用例举 例一、判断下列方程是否为二元一次方程?并说明理由。
① 3x + 2y
② 4x − y = 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


x y 3
x y 5

y 7 z 5 y 15

3x 2 y 18
利用前面所列表 4、 二元一次方程组 的解 问题 1:请找出同 时满足方程 x y 10 与 问题 2:方程组的 解。 格,学生能够很快解决 问题,在此基础上学习 学生结合表格获得 很容易理解“公共解”
1 x
(5) 2a 3b 5 (6) 2 x 10xy 0
问题与情境 2、 二元一次方程的 解: 程 x+y=10 符合问题的 实际意义的 x、 y 的值有 哪些?(填表) 一元一次方程的解?
师生行为 学生思考后作答可
设计意图 用填表的方式容易 用类比的方法学习二元 一次方程解的意义,结
8.1 二元一次方程组
第一课时教学设计 23 中宋运美
知识技能
1、使学生掌握二元一次方程、二元一次方程组的概念。 2、使学生了解二元一次方程、二元一次方程组的解的含义。
教 学 目 标
数学思考
重 点
1、通过学习二元一次方程、二元一次方程组的概念让学生体验 方程组的特征。 2、了解二元一次方程、二元一次方程组的解的含义同时学会探 究问题的方法。 解决问题 1、会把二元一次方程化为用一个未知数的代数式表示另一个未 知数的形式。 2、会检验一对数是不是方程组的解。 情感态度 通过探究实际问题,体会数学的应用价值,提高分析问题、解决 问题的能力。 是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次 方程组的解。掌握检验一对数是否是某个二元一次方程的解的书写格式。
问题与情境
师生行为
设计意图
三、巩固训练、熟 练技能 出示练习: 1 、 若 方 程
6kx 2 y 8 的一个解是
x 3 , y 2 ,则 k 的
值为( A、 C、
2 3

1 6
B、
1 6
D、
2 3
x y 3
x 1
2、 二元一次方程组 的解是 (
x 1
1 题巩固对二元一 次方程解的理解。 2 题要求能根据二 元一次方程组的解的定 学生先独立思考完 义判断一对数据是否是 成题目。 然后相互交流,பைடு நூலகம்方程组的解。 教师参与活动。得出题 目答案。 3 题加深对二元一 次方程的意义的认识。 4 题要求通过对具 体问题的分析能建立二 元一次方程的模型描述 数量关系。
x 6 ,y 4 总结出二元 的含义,从而理解二元
y 的值。 一次方程组的解。 2 x y 16 的 x 、
一次方程组的解,突出 难点,并且认识到可以 通过列表的方法寻找二 元一次方程组的解。
适归梳理,对所学 让学生回忆刚才所 习 的 知 识 进 行 归 纳 整 5、小结。 学习的概念,体会类比 理,加深对概念的理解 法在学习中的作用。 与记忆,突出本节课的 重点。
支,请猜一猜,红色、 题中的未知量用未知数 方程的解的不唯一性作 2、 篮球联赛中每场 程?
一次比赛中,甲队共参 方 程 是 一 元 一 次 方 程 一次方程的特点。 加了 10 场比赛, 你知道 吗?与一元一次方程比 甲队胜、负场数分别是 较有何异同?你给它起 多少吗? 二、探索新识,解 决问题 二元一次方程的概 念: ( 1 ) 结 合 方 程 由实际问题引导学 对“元”及“次”的理 x y 10 , x y 22 的 生开始对二元一次方程 解。 命名,理解并掌握二元 概念的探索,自己归纳 一次方程的概念。 (2)练一练: 判断下列方程中,哪一 些是二元一次方程,哪 一些不是?并说明理由 (1) 2 x 5 y 10 (2) 2 x y z 1 (3) y 20 (4) x x 2 x 0
2
个什么名字较合适?
学生重点关注学生
总结出方程的特点之后 得出概念,比直接定义 印象会更深刻,有助于 学生对概念的理解。 学生独立思考,然 后再分组交流,教师深 入小组,参与活动,关 注、 学生能否理解概念, 并紧扣概念解决问题。 通过小练习,让学 生应用所学知识解决问 题,进一步巩固对定义 的理解。
2 x y 16 的 解 填 入 表 考:问题 3 中有什么未
次方程的解,同时为下 面探究方程组及方程组 的解作好准备。
问题(3) :篮球联 系?
出胜负, 胜一场得 2 分, 程, x+y=10 2 x y 16 。 组 的 定 义 变 得 十 分 容 在全部 10 场比赛中得 个方程中含义相同吗?
2x y 0

A
y2
x 1
B
y 1
x 2
C
y 2
D
y 1
3、 若 x 2m1 5 y 3n2 7 是二元一次方程,则 m= ,n= 4、文具盒中有红黄 彩笔共 10 支, 红色比黄 色的多 2 支,红色与黄 色各多少支?(列方程 组)
问题与情境
师生行为
设计意图
交流补充,教师引导学 让学生找到 x、y 的值, 问题(1) :满足方 生填表。
引导学生复习一元 合表格体会二元一次方 一次方程解的概念,类 程解的不唯一性,在正 的概念。 解决问题的一般方法。
问题(2) :什么是 比得出二元一次方程解 确理解的基础上归纳出
问题(3) :什么是 二元一次方程的解? 3、 二元一次方程组 学生独立思考,结 问题 1、 2 让学生进 问题(1) :篮球联 合前面所学知识,解决 一步熟悉如何列二元一 赛中,每场比赛都要分 问题 1、2 师巡视指导。 次方程,如何找二元一 出胜负,每队胜一场得 2 分,负一场得 1 分, 已知甲队在一次比赛中 共得 16 分,若用 x 、 y 表示甲队胜负场数,可 以得出怎样的方程? 问题(2) :将方程 格中。 赛中,每场比赛都要分 负一场得 1 分,某队想 到 16 分, 那么这个队胜 负场数分别是多少? 念。 教师引导学生思 知量?有什么等量关 在前面问题的铺垫 下,利用问题 3,学生 引 导 学 生 列 出 方 对于理解二元一次方程 讨论: x 、 y 在两 易。 学生作答后总结出 二元一次方程组的概
四、反思总结,情 意发展 1、 本节课你学到了 什么? 2、 本节课你有哪些 收获? 3 、通过今天的学 习,你还要探究的问题 是什么? 教师提出问题,学 生归纳总结,可相互交 流补充。 教师关注: 充分调运学生积极 性,加深对所学的概念 的理解与记忆。 通过三个问题的思 考引导学生回顾学习历 程,梳理主要知识、方 法、构建知识体系。
问题与情境
师生行为
设计意图
问题(4) :已知 x 、
y 为未知数,下列方程
组是二元一次方程组 吗? ①
x 3y 4 2x 5 y 7 x y 2
学生应用所学定义
通过训练使学生加
进行判断,教师关注其 深对二元一次方程定义 结论更应关注得到结论 的理解及记忆,不断完 的理由。 善认知结构。
五、分层作业,各 有所获 必做题:P951、2。 选做题: 1、方程
x
a 1
通过作业及时了解 学生的学习效果。分层 教师布置作业,学 布置,使全体学生获得 生独立完成。 必要的发展, 体现让 “不 同的人在数学上获得不 同的发展” 的教学理念。
a 2y 2
是二元一次方程,则 a= 。 2、P90 5
难 点
理解二元一次方程组的解的含义。
教学过程:
问题与情境 一、提出问题 黄两种颜色彩笔共 10 黄色彩笔各多少支? 比赛都要分出胜负,在 师生行为 由学生独立思考 设计意图 学生对这两个问题 的猜想会有多种答案,
1、文具盒中有红、 后,回答问题:
(1) 提问: 如果将 为下一步理解二元一次 表 示 可 以 得 到 什 么 方 准备。 思考中的两个问题 (2) 你得到的两个 引导学生初步体会二元
相关文档
最新文档