2015年广东省中考数学专题复习----式的运算部分
(南粤专用)2015中考数学+第一部分+第三章+第4讲+二次函数复习课件
1.通过对实际问题情境的分析确定二次函数的表达式,并
体会二次函数的意义. 2.会用描点法画出二次函数的图象,能通过图象了解二次 函数的性质. 3.知道给定不共线三点的坐标可以确定一个二次函数.
4.会用配方法将数字系数的二次函数的表达式化为y=a(x -h)2 +k(a≠0)的形式,并能由此得到二次函数图象的顶点坐
二次函数的图象和性质 1.(2014 年陕西)二次函数y=ax2+bx+c(a≠0)的图象如图
3-4-1,则下列结论中正确的是( D )
A.c>-1 B.b>0 C.2a+b≠0 D.9a+c>3b 图3-4-1
2.(2013 年湖北鄂州)小轩从如图 3-4-2 所示的二次函数 y
=ax2+bx+c(a≠0)的图象中,观察得出了下面信息:①ab>0;
y=a(x-x1)(x-x2)(a≠0) 交点式③____________________
2.二次函数的平移与解析式的关系. 左
y=ax2 的图象
y=a(x-h)2 的图象
上
y=a(x-h)2+k 的图象.
考点 4 二次函数的综合运用 1.从实际问题中抽象出二次函数,并能利用二次函数的最
值问题解决实际问题中的最值问题.
y=ax2+bx+c(a≠0) a>0 a<0
图象
开口 对称轴 顶点 坐标
向上 ①________ b x=-2a ③________
2 b 4ac-b -2a, 4a ④________________
向下 ②________
b x=-2a
2 4 ac - b b - , 2a 4a
3 ②a+b+c<0;③b+2c>0;④a-2b+4c>0;⑤a=—b.你认为 2 其中正确信息的个数有( D )
最新2015广东省中考数学复习配套课件:实数的运算
(三)实数乘法法则 1.两数相乘,同号___,异号___,并把 得 _________相乘. 得正 负 2.绝对值 任何数同0相乘,都得____.
0
练一练 计算:(-2)×3=____; - 6 (-7)=____. (-5) ×
35
引导学生读懂数学书课题研究成果配套课件 课件制作:程罗剑
(四)实数除法法则 0 的数,等于乘以这个数的 除以一个不是___ 倒数 ___ .两数相除,同号得正 ___ ,异号得负 ___ , 并把 绝对值相除 ________ ;0除以任何一个不等于 0 . ___ 0 的数,都得___ 练一练 1 1 4 1.计算:( )÷(— )=___
引导学生读懂数学书课题研究成果配套课件 课件制作:程罗剑
二、强化训练
1. 计算:22+(-1)4+( 5-2)0-|-3|. 温馨提示:解题时注意符号. 1 +_____ 1 -_____ 3 解:原式=4+_____ =_____. 3 2.计算: 1 (-1)2- 16 +(-2)0 +( 2 )-2 . 解:原式=1-4+1+4
=2
引导学生读懂数学书课题研究成果配套课件 课件制作:程罗剑
二、强化训练
3.计算:22- 9 +(-3)0-(-2). 解:原式=4-3+1+2 =4
4.计算:|-2|-2sin 30°+4 +(2 -π )0.
(一)实数加法法则
练一练 - 3 1.计算:(-1)+(-2)=_____;-6+ 3 9= _____ . 0 -7 2.计算:-5+5=_____ ;-7+0=_____ .
(二)实数减法法则 相反数 . 减去一个数,等于加上这个数的_____ 即a-b=a+(-b).
广东中考数学第一轮复习第一章数与式课时4 整式的运算与因式分解
中考考题精练
解:原式=a2-b2+a2+2ab+b2=2a2+2ab.
当a=-1,b=
1=1.
时,原式=2×(-1)2+2×(-1)× =2-
考点3 因式分解
8. 把式子:-6x2+12x-6因式分解,正确的是 ( A )
A. -6(x-1)2
B. -6(x+1)2
C. -6x(x-2)
D. -6x(x+2)
5. 因式分解:就是把一个多项式化为几个整式的 ____积______的形式. 分解因式要进行到每一个因式都 __不__能__再__分__解___为止. 6. 公因式:一个多项式各项都含有的___公__共_____的因式,叫 做这个多项式各项的___公__因__式___.
7. 提取公因式法:一般地,如果多项式的各项都有公因式, 可以把这个公因式提到括号外面,将多项式写成因式的
9. 把代数式ax2-4ax+4a分解因式,下列结果正确的是( A )
A. a(x-2)2
B. a(x+2)2
C. a(x-4)2
D. a(x+2)(x-2)
10. 把多项式4x2y-4xy2-x3分解因式的结果是 A. 4xy(x-y)-x3 B. -x(x-2y)2 C. x(4xy-4y2-x2) D. -x(-4xy+4y2+x2) 11. 分解因式:ax2-ay2=_a_(__x_+_y_)__(__x_-_y_)_____. 12. 分解因式:4x2-6x=__2_x_(__2_x_-_3_)_________.
广东省各市2015年中考数学试题分类汇编(解析版)专题3:方程(组)问题
广东省各市2015年中考数学试题分类解析汇编(20专题)专题3:方程(组)问题1. (2015年广东佛山3分)若()()221x x x mx n +-=++,则m n +=【 】A. 1B. 2-C. 1-D. 2 【答案】C.【考点】求代数式的值;整体思想的应用.【分析】∵()()221x x x mx n +-=++,即222x x x mx n +-=++,∴2mx n x +=-. 令1x =得1m n +=-. 故选C.2. (2015年广东佛山3分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为202m 的矩形空地,则原正方形空地的边长是【 】A. 7mB. 8mC. 9mD. 10m 【答案】A.【考点】一元二次方程的应用(几何问题). 【分析】设原正方形空地的边长是xm ,根据题意,得()()3220x x --=,化简,得25140x x --=,解得127,2x x ==- (不合题意,舍去).∴原正方形空地的边长是7m . 故选A.3. (2015年广东广州3分)已知,a b 满足方程组51234a b a b +=⎧⎨-=⎩,则a b +的值为【 】A. 4-B. 4C. 2-D. 2 【答案】B.【考点】解二元一次方程组;求代数式的值;整体思想的应用.【分析】由51234a b a b +=⎧⎨-=⎩两式相加,得4416a b +=,∴4a b +=. 故选B.4. (2015年广东广州3分)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为【 】A. 10B. 14C. 10或14D. 8或10 【答案】B.【考点】一元二次方程的解和解一元二次方程;确定三角形的条件.【分析】∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =.∴方程为28120x x -+=,解得122,6x x == .∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2. ∴三角形ABC 的周长为14. 故选B.5. (2015年广东深圳3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为【 】元.A. 140B. 120C. 160D. 100 【答案】B.【考点】一元一次方程的应用(销售问题). 【分析】设商品进价为x 元,根据题意,得2000.840x ⋅-=,解得120x =. ∴商品进价为120元. 故选B.6. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】 A. 2a ≥ B. 2a ≤ C. 2a > D. 2a < 【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a .故选C.7. (2015年广东珠海3分)一元二次方程2104x x ++=的根的情况是【 】 A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 无法确定根的情况【答案】B.【考点】一元二次方程根的判别式. 【分析】∵对于方程2104x x ++=有2114104D =-创=, ∴方程2104x x ++=有两个相等的实数根. 故选B.1. (2015年广东佛山3分)分式方程132x x=-的解是 ▲ . 【答案】3x =. 【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是()2x x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:()1332362632x x x x x x x x=⇒=-⇒=-⇒-=-⇒=-, 经检验,3x =是原方程的解, ∴原方程的解是3x =.2. (2015年广东4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x ,解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .1. (2015年广东梅州9分)已知关于x 的方程2220x x a ++-=. (1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a .(2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.2. (2015年广东佛山8分)某景点的门票价格如下表:购票人数/人 1-50 51-100 100以上每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【答案】解:(1)设七年级(1)有x 名学生,七年级(2)有y 名学生,若两班人数多于50人且少于100人,有()1210111810816x y x y +=⎧⎪⎨+=⎪⎩,解得15169.4x y =⎧⎨=⎩,不合题意,舍去.若两班人数多于100人,有()121011188816x y x y +=⎧⎪⎨+=⎪⎩,解得4953x y =⎧⎨=⎩.答:七年级(1)有49名学生,七年级(2)有53名学生. (2)∵()()49128196,53108106⨯-=⨯-= ,∴团体购票与单独购票相比较,七年级(1)节约了196元,七年级(2)节约了106元.【考点】二元一次方程组的应用;分类思想的应用.【分析】(1)方程组的应用解题关键是找出等量关系,列出方程级求解. 本题设七年级(1)有x 名学生,七年级(2)有y 名学生,等量关系为:“两班都以班为单位单独购票,一共支付1118元”和“两班联合起来作为一个团体购票,需花费816元”.注意,就分两班人数多于50人且少于100人和两班人数多于100人两种情况讨论.(2)分别计算出两个班单独购票与团体购票费用之差即可.3. (2015年广东广州9分)解方程:()534x x =-.【答案】解:去括号,得5312x x =-,移项,得5312x x -=-, 合并同类项,得212x =-, 化x 的系数为1,得6x =-, ∴原方程的解为6x =-.【考点】解一元一次方程.【分析】按去括号、移项、合并同类项、化x 的系数为1的步骤循序进行.4. (2015年广东广州12分)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 【答案】解:(1)设2013年至2015年该地区投入教育经费的年平均增长率为x ,根据题意,得()2250013025x +=, 解得,120.1, 2.1x x ==- (舍去), ∴年平均增长率为0.110%=.答:2013年至2015年该地区投入教育经费的年平均增长率为10%. (2)()3025110%3327.5+=,答:2016年该地区将投入教育经费3327.5万元.【考点】一元二次方程的应用(增长率问题).【分析】(1)设2013年至2015年该地区投入教育经费的年平均增长率为x ,2014年该地区投入教育经费为()25001x +,2015年该地区投入教育经费为()()()225001125001x x x ++=+. 据此列出方程求解.(2)根据()3025110%+计算即可.5. (2015年广东广州12分)4件同型号的产品中,有1件不合格品和3件合格品. (1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回, 多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少? 【答案】解:(1)∵从4件产品中随机抽取1件进行检测,∴抽到的是不合格品的概率是11134=+. (2)记不合格品为B ,合格品为1,2,3A A A ,画树状图如下:∵随机抽取2件进行检测的所有等可能结果有12种,抽到的都是合格品的情况有6种,∴抽到的都是合格品的概率为61122=. (3)根据题意,得30.954xx+=+, 解得16x =,经检验,合适. 答:x 的值大约是16.【考点】画树状图法或列表法;概率;频数、频率和总量的关系;方程思想的应用.【分析】(1)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.(2)画树状图或列表,求出随机抽取2件进行检测的所有等可能结果和抽到的都是合格品的情况,二者的比值就是其发生的概率.(3)根据频数、频率和总量的关系列方程求解.6. (2015年广东深圳6分)解方程:542332x x x +=--. 【答案】解:去分母,得()()()()3252342332x x x x x -+-=--,去括号,得22321015245224x x x x x -+-=-+, 移项、合并同类项,得2720130x x -+=, 因式分解,得()()17130x x --=,解得12131,7x x ==. 经检验,12131,7x x == 是原方程的解,∴原方程的解为12131,7x x == .【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是()()2332x x --,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元二次方程,最后检验即可求解.7. (2015年广东深圳8分)下表为深圳市居民每月用水收费标准,(单位:元/m 3).用水量单价剩余部分(1)某用户用水10立方米,共交水费23元,求a 的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米? 【答案】解:(1)由题意,得1023a =,解得 2.3a =,∴a 的值为2.3.(2)设该用户用水x 立方米备,若22x ≤,则2.371x =,解得2030>2223x =,舍去. 若>22x ,则()()2.322 2.3 1.12271x ⨯++-=,解得28x =,适合. 答:用户用水28立方米.【考点】一元一次方程的应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题等量关系为:⨯=用水量单价水费.(2)分22x ≤和>22x 两种情况列方程求解. 8. (2015年广东6分)解方程:2320x x -+=. 【答案】解:(1)(2)0--=x x ,∴10-=x 或20-=x . ∴11=x ,22=x .【考点】因式分解法解一元二次方程.【分析】因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想).9. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元. (2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.10. (2015年广东汕尾9分)已知关于x 的方程2220x x a ++-=. (1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a .(2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.11. (2015年广东珠海6分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012年至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷? 【答案】解:(1)设该镇2012年至2014年绿地面积的年平均增长率为x ,根据题意,得()257.5182.8x+=,解得,120.2, 2.2x x ==- (不合题意,舍去).答:该镇2012年至2014年绿地面积的年平均增长率为20%. (2)∵()82.8120%99.36<100?=,∴年增长率保持不变,2015年该镇绿地面积不能达到100公顷.【考点】一元二次方程的应用(增长率问题).【分析】(1)设该镇2012年至2014年绿地面积的年平均增长率为x ,2013年该镇绿地面积为()57.51x +,2014年该镇绿地面积为()()()257.51157.51x x x++=+,又2014年该镇绿地面积82.8公顷,据此列出方程求解.(2)由(1)得到的年平均增长率,计算出2015年该镇绿地面积,与100公顷比较即可.12. (2015年广东珠海9分)阅读材料:善于思考的小军在解方程组2534115 ①②x y x y ì+=ïí+=ïî时,采用了一种“整体代换”的解法:解:将方程②变形:4105x y y ++= 即()2255x y y ++= ③把方程①代入③得:235y ?= ∴1y =-把1y =-代入①得,4x =,∴方程组的解为41x y ì=ïí=-ïî.请你解决一下问题:(1)模仿小军的“整体代换”法解方程组3259419①②x y x y ì-=ïí-=ïî;(2)已知,x y 满足方程组22223212472836①②x xy y x xy y ì-+=ïíï++=î (i )求224x y +的值; (ii )求112x y+的值. 【答案】解:(1)将方程②变形:96219x y y -+= 即()332219x y y -+= ③ ,把方程①代入③得:35219y ?=,∴2y = 把2y =代入①得,3x =,∴方程组的解为32x y ì=ïí=ïî.(2)(i )由①得:()2234472x yxy +=+,即2247243xyx y ++=③ , 把方程③代入②得:4722363xyxy +?=,解得,2xy =.∴把2xy =代入③得,22417x y +=.(ii )∵2xy =,22417x y +=,∴()22224417825x y x y xy +=++=+=.∴25x y +=?.∴1125224x y x y xy ++==?. 【考点】阅读理解型问题;解二元方程组;求代数式的值;整体思想的应用. 【分析】(1)模仿小军的“整体代换”法解方程组即可.(2)(i )模仿小军的“整体代换”法求出2xy =和22417x y +=.(ii )由22417x y +=求出25x y +=?,从而根据11222x yx y xy++=求解即可.。
广东省2015年数学九年级中考冲刺试题汇编课件 第14课时
第14课时 一次函数的应用
拔高题
8.四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排, 某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两 家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质 量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠 条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男 女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女 生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人. (1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生 人数x之间的函数关系式; (2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
数学
第14课时 一次函数的应用Leabharlann 第14课时 一次函数的应用
• 知识考点•对应精练
• 考点分类一 一次函数与一次方程、一次不等式的关系 对应精练 知识考点 一般地,方程ax+b=0的 解是x=m,则一次函数y=ax+b 与x 轴的交点坐标就是(m, 0);不等式ax+b>0或者 ax+b<0的解集,就是与其对 应的一次函数y=ax+b 的值大 于是0或者小于0时,求自变 量的取值范围. 一般地,如果一个二元 一次方程组有唯一的解 ,那么,以这二个方程对应 的两条直线的交点坐标就是 (a,b)
2015年广东省中考数学试题(Word版,含答案解析),推荐文档
2015年广东省初中毕业生学业考试数学一、选择题 1.21 1 A.2B. 2C.D.-22【答案】A.【解析】由绝对值的意义可得,答案为 A 。
2.据国家统计局网站 2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573000用科学记数法表示为A. 1.3573 106B.1.3573 107C. 1.3573 108D.1.3573 109【答案】B.【解析】科学记数法的表示形式为 aX10n 的形式,其中1W |齐10, n 为整数•确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13 573 000=1.3573 107 ; 3.一组数据2, 6, 5, 2, 4,则这组数据的中位数是 A.2B.4C.5D.6【答案】B.【解析】由小到大排列,得:2, 2, 4, 5, 6,所以,中位数为 4,选B 。
4.如图,直线 a // b ,/仁75 °,/ 2=35°,则/ 3的度数是 A.75 ° B.55 ° C.40 °D.35 ° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻 的两个内角之和,所以,75°=/ 2+Z 3,所以,/ 3 = 40°,选 G 5.下列所述图形中,既是中心对称图形,又是轴对称图形的是 A.矩形 B.平行四边形 C.正五边形【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.( 4x)2【答案】D.【解析】原式=(-4)2x 2 = 16x 2 7.在0, 2, ( 3)0 , 5这四个数中,最大的数是D.正三角形A. 8x 22 2 2B.8xC. 16xD.16xA.0B.2C. ( 3)0D. 5【答案】B.【解析】(—3) 0= 1,所以,最大的数为2,选B。
最新人教版八年级数学上册 专题复习:整式的运算
专题 整式的运算☞2年中考【2015年题组】 1.(2015北海)下列运算正确的是( )A .3412a b a +=B .326()ab ab = C .222(5)(42)3a ab a ab a ab --+=- D .1262x x x ÷=【答案】C . 【解析】试题分析:A .3a 与4b 不是同类项,不能合并,故错误;B .3226()ab a b =,故错误; C .正确;D .1266x x x ÷=,故错误;故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.去括号与添括号;4.同底数幂的除法. 2.(2015南宁)下列运算正确的是( )A .ab a ab 224=÷B .6329)3(x x =C .743a a a =•D .236=÷【答案】C .考点:1.整式的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的乘除法. 3.(2015厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .22xy -B .23xC .32xyD .32x【答案】D . 【解析】试题分析:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A .22xy -系数是﹣2,错误;B .23x 系数是3,错误;C .32xy 次数是4,错误;D .32x 符合系数是2,次数是3,正确; 故选D .考点:单项式.4.(2015厦门)32-可以表示为( )A .2522÷ B .5222÷ C .2522⨯ D .(2)(2)(2)-⨯-⨯-【答案】A . 【解析】试题分析:A .2522÷=252-=2522÷,故正确;B .5222÷=32,故错误; C .2522⨯=72,故错误;D .(2)(2)(2)-⨯-⨯-=3(2)-,故错误;故选A .考点:1.负整数指数幂;2.有理数的乘方;3.同底数幂的乘法;4.同底数幂的除法. 5.(2015镇江)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y + C .2x y -- D .2x y -+ 【答案】A .考点:整式的加减. 6.(2015广元)下列运算正确的是( )A .23222()()ab ab ab -÷=-B .2325a a a +=C .22(2)(2)2a b a b a b +-=-D .222(2)4a b a b +=+【答案】A . 【解析】试题分析:A .23222()()ab ab ab -÷=-,正确;B .325a a a +=,故错误;C .22(2)(2)4a b a b a b +-=-,股错误; D .222(2)44a b a b ab +=++,故错误. 故选A .考点:1.平方差公式;2.合并同类项;3.同底数幂的除法;4.完全平方公式.7.(2015十堰)当x=1时,1ax b ++的值为-2,则()()11a b a b +---的值为的值为( )A .﹣16B .﹣8C .8D .16 【答案】A . 【解析】试题分析:∵当x=1时,1ax b ++的值为﹣2,∴12a b ++=-,∴3a b +=-,∴()()11a b a b +---=(﹣3﹣1)×(1+3)=﹣16.故选A .考点:整式的混合运算—化简求值. 8.(2015黄冈)下列结论正确的是( )A .2232a b a b -= B .单项式2x -的系数是1-C .使式子2+x 有意义的x 的取值范围是2x >-D .若分式112+-a a 的值等于0,则1a =±【答案】B .考点:1.合并同类项;2.单项式;3.分式的值为零的条件;4.二次根式有意义的条件.9.(2015佛山)若n mx x x x ++=-+2)1()2(,则m n +=( ) A .1 B .﹣2 C .﹣1 D .2【答案】C . 【解析】试题分析:∵(2)(1)x x +-=2+2x x -=2x mx n ++,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选C .考点:多项式乘多项式. 10.(2015天水)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 【答案】A .考点:1.整式的混合运算;2.有理数的混合运算;3.新定义. 11.(2015邵阳)已知3a b +=,2ab =,则22a b +的值为( ) A .3 B .4 C .5 D .6 【答案】C . 【解析】试题分析:∵3a b +=,2ab =,∴22a b +=2()2a b ab +-=9﹣2×2=5,故选C .考点:完全平方公式.12.(2015临沂)观察下列关于x 的单项式,探究其规律: x ,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( )A .2015x2015B .4029x2014C .4029x2015D .4031x2015 【答案】C . 【解析】 试题解析:系数的规律:第n 个对应的系数是2n ﹣1.指数的规律:第n 个对应的指数是n .故第2015个单项式是4029x2015.故选C . 考点:1.单项式;2.规律型. 13.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .66【答案】B .考点:1.完全平方公式;2.规律型;3.综合题.14.(2015连云港)已知m n mn +=,则(1)(1)m n --= . 【答案】1. 【解析】试题分析:(1)(1)m n --=mn ﹣(m+n )+1,∵m+n=mn ,∴(m ﹣1)(n ﹣1)=mn ﹣(m+n )+1=1,故答案为:1.考点:整式的混合运算—化简求值.15.(2015珠海)填空:2+10x x + =2(_____)x +.【答案】25;5. 【解析】试题分析:∵10x=2×5x ,∴2+1025x x +=2(5)x +.故答案为:25;5.考点:完全平方式. 16.(2015郴州)在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为 .【答案】12.考点:1.列表法与树状图法;2.完全平方式.17.(2015大庆)若若52=n a ,162=n b ,则()nab = . 【答案】45±. 【解析】试题分析:∵52=n a ,162=n b ,∴2280n na b ⋅=,∴2()80nab =,∴()n ab =45±,故答案为:45±.考点:幂的乘方与积的乘方.18.(2015牡丹江)一列单项式:2x -,33x ,45x -,57x ,…,按此规律排列,则第7个单项式为 . 【答案】213x -.【解析】试题分析:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x 的指数为8,所以,第7个单项式为213x -.故答案为:213x -.考点:1.单项式;2.规律型.19.(2015安顺)计算:201320111(3)()3-⋅-= .【答案】9.考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2015铜仁)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则6()a b += .【答案】654233245661520156a a b a b a b a b ab b ++++++. 【解析】试题分析:6()a b +=654233245661520156a a b a b a b a b ab b ++++++.故本题答案为:654233245661520156a a b a b a b a b ab b ++++++.考点:1.完全平方公式;2.规律型:数字的变化类;3.综合题. 21.(2015南宁)先化简,再求值:(1)(1)(2)1x x x x +-++-,其中12x =.【答案】2x ,1. 【解析】试题分析:先利用乘法公式展开,再合并得到答案,然后把12x =代入计算即可.试题解析:原式=22121x x x -++-=2x ,当12x =时,原式=2×12=1.考点:整式的混合运算—化简求值. 22.(2015无锡)计算: (1)02(5)3)3--+-;(2)2(1)2(2)x x +--. 【答案】(1)1;(2)25x +.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.23.(2015内江)填空:()()a b a b -+= ;22()()a b a ab b -++= ; 3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+. 【答案】(1) 22a b -,33a b -,44a b -;(2) n na b -;(3)342. 【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可; (2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果. 试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -; 3223()()a b a a b ab b -+++=44a b -;故答案为:22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=nna b -,故答案为:nna b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型;3.阅读型;4.综合题.24.(2015咸宁)(1)计算:0 128(2)-++-;(2)化简:2232(2)()a b ab b b a b--÷--.【答案】(1)32;(2)22b-.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.25.(2015随州)先化简,再求值:5322(2)(2)(5)3()a a a ab a b a b+-+-+÷-,其中12ab=-.【答案】42ab-,5.【解析】试题分析:利用平方差公式、单项式乘以多项式法则、单项式除法运算,合并得到最简结果,把ab的值代入计算即可求出值.试题解析:原式=22453a a ab ab-+-+=42ab-,当12ab=-时,原式=4+1=5.考点:整式的混合运算—化简求值.26.(2015北京市)已知22360a a+-=.求代数式3(21)(21)(21)a a a a+-+-的值.【答案】7.【解析】试题分析:利用单项式乘以多项式法则、平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:∵22360a a+-=,即2236a a+=,∴原式=226341a a a+-+=2231a a++=6+1=7.考点:整式的混合运算—化简求值.27.(2015茂名)设y ax=,若代数式()(2)3()x y x y y x y+-++化简的结果为2x,请你求出满足条件的a 值. 【答案】a=﹣2或0. 【解析】试题分析:因式分解得到原式=2()x y +,再把当y ax =代入得到原式=22(1)a x +,所以当2(1)1a +=满足条件,然后解关于a 的方程即可.试题解析:原式=2()x y +,当y ax =时,代入原式得222(1)a x x +=,即2(1)1a +=,解得:a=﹣2或0.考点:1.整式的混合运算;2.平方根. 28.(2015河北省)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式; (2)若16+=x ,求所捂二次三项式的值.【答案】(1)221x x -+;(2)6.考点:整式的混合运算—化简求值.【2014年题组】 1.(2014年百色中考) 下列式子正确的是( ) A .(a ﹣b )2=a2﹣2ab+b2 B . (a ﹣b )2=a2﹣b2 C .(a ﹣b )2=a2+2ab+b2 D .(a ﹣b )2=a2﹣ab+b2 【答案】A . 【解析】试题分析:A .(a ﹣b )2=a2﹣2ab+b2,故A 选项正确;B .(a ﹣b )2≠a2﹣b2,故B 选项错误;C .(a ﹣b )2≠a2+2ab+b2,故C 选项错误;D .(a ﹣b )2≠a2﹣ab+b2,故D 选项错误;故选A .考点:完全平方公式.A.()339x x = B.()332x 6x -=- C.22x x x -= D.632x x x ÷=【答案】A .考点:1.幂的乘方和积的乘方;2.合并同类项;3.同底幂乘除法. 3.(2014年常州中考)下列运算正确的是( ) A. 33a a a⋅= B.()33ab a b= C.()236a a = D. 842a a a ÷=【答案】C .【解析】试题分析:根据同底幂乘法,同底幂乘除法,幂的乘方和积的乘方运算法则逐一计算作出判断: A. 31343a a aa a+⋅==≠,选项错误; B.()3333ab a b a b=≠,选项错误;C.()23326a a a ⨯==,选项正确; D. 848442a a aa a -÷==≠,选项错误.故选C .考点:1.同底幂乘法;2.同底幂乘除法;3.幂的乘方和积的乘方. 4.(2014年抚顺中考)下列运算正确的是( ) A .-2(a-1)=-2a-1B .(-2a )2=-2a2C .(2a+b )2=4a2+b2 D . 3x2-2x2=x2 【答案】D . 【解析】 试题分析:A 、-2(a-1)=-2a+2,故A 选项错误;B 、(-2a )2=4a2,故B 选项错误;C 、(2a+b )2=4a2+4ab+b2,故C 选项错误;D 、3x2-2x2=x2,故D 选项正确. 故选D .考点:1.完全平方公式;2.合并同类项;3.去括号与添括号;4.幂的乘方与积的乘方. 5.(2014年眉山中考)下列计算正确的是( )A .235x x x +=B .236x x x ⋅=C .236()x x =D .632x x x ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.A.a3+a4=a7 B. 2a3•a4=2a7 C.(2a4)3=8a7 D. a8÷a2=a4【答案】B.【解析】试题分析:A、a3和a4不能合并,故A错误;B、2a3•a4=2a7,故B正确;C、(2a4)3=8a12,故C错误;D、a8÷a2=a6,故D错误;故选B.考点:整式的运算.7.(2014年镇江中考)化简:()()x1x11+-+=.【答案】2x.【解析】试题分析:第一项利用平方差公式展开,去括号合并即可得到结果:()()22x1x11x11x+-+=-+=.考点:整式的混合运算.8.(2014年吉林中考)先化简,再求值:x(x+3)﹣(x+1)2,其中x=+1.【答案】x﹣1;2.【解析】试题分析:先利用整式的乘法和完全平方公式计算,再进一步合并化简,最后代入数值即可.试题解析:原式=x2+3x﹣x2﹣2x﹣1=x﹣1,当x=2+1时,原式=2+1﹣1=2.考点:1.整式的运算;2.化简求值.9.(2014年绍兴中考)先化简,再求值:()()()2a a3b a b a a b-++--,其中1a1b2 ==-,.【答案】a2+b2,5 4.考点:整式的混合运算—化简求值.10.(2014年杭州中考)设y kx=,是否存在实数k,使得代数式2222222(x y )(4x y )3x (4x y )--+-能化简为4x ?若能,请求出所有满足条件的k 值,若不能,请说明理由. 【答案】能. 【解析】试题分析:化简代数式,根据代数式恒等的条件列关于k 的方程求解即可 试题解析:∵y kx =,∴222222222222222(x y )(4x y )3x (4x y )(4x y )(x y 3x )(4x y )--+-=--+=- ()2222242(4x k x )x 4k =-=-.∴要使代数式22222224(x y )(4x y )3x (4x y )x --+-=,只要()224k1-=.∴24k 1-=±,解得k=±3或k=±5.考点:1. 代数式的化简;2. 代数式恒等的条件;3.解高次方程.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:整式:单项式与多项式统称整式. (1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数. 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项.2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同. 【例1】下列式子中与3m2n 是同类项的是( ) A.3mn B.3nm2 C.4m D.5n 【答案】B .考点:同类项. 归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:am ·an =am +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(am )n =amn (m ,n 都是整数,a ≠0)(3)积的乘方:(ab )n =an ·bn (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:am ÷an =am -n (m ,n 都是整数,a ≠0) 注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】下列运算正确的是( ) A. 33a a a⋅= B.()33ab a b= C.()236a a = D. 842a a a ÷=【答案】C .考点:幂的运算.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:,实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma+mb ; ②多项式乘多项式:(a +b )(c +d )=ac+ad+bc+bd ③乘法公式:平方差公式:(a+b )(a-b )=a2-b2;完全平方公式:(a ±b )2=a2±2ab+b2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】下列计算正确的是( ) A .2x -x =x B .a3·a2=a6 C .(a -b )2=a2-b2 D .(a +b )(a -b )=a2+b2 【答案】A .【解析】A 、原式=x ,正确;B 、原式=x5,错误;C 、原式=a2-2ab+b2,错误;D 、原式=a2-b2,故选A .考点:整式的运算.【例4】先化简,再求值:()()()22a b a b b a b b +-++-,其中1a =、2b =-.【答案】-1.【解析】原式222222a b ab b b a ab =-++-=+;当1a =、2b =-时,原式()2112121=+⨯-=-=-.考点:整式的混合运算—化简求值.【例5】计算21()(21)(41)2x x x +-÷-【答案】12.【解析】原式=12(2x+1)(2x ﹣1)÷[(2x ﹣1)(2x+1)]=12.考点:整式的混合运算. ☞1年模拟 1、(2015届云南省剑川县九上第三次统一模拟考试数学试卷)下列运算正确的是( )A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=【答案】C .考点:整式的运算. 2.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)下列运算正确的是( ).A .623a a a =⋅ B .6223)(b a ab = C .222)(b a b a -=- D .235=-a a【答案】B . 【解析】试题分析:因为32235a a a a +⋅==,所以A 错误;因为6223)(b a ab =,所以B 正确;因为222()2a b a ab b -=-+,所以C 错误;因为532a a a -=,所以D 错误;故选B .考点:1.幂的运算;2.整式的加减. 3.(2015届重庆市合川区清平中学等九年级模拟联考数学试卷)下列运算正确的是( )A .23a a ⋅=6aB .33()y y x x = C .55a a a ÷= D .326()a a =【答案】D .考点:1.同底数幂的除法;2.幂的乘方与积的乘方;3.同底数幂的乘法. 4.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)下列运算正确的是( )A .642a a a =+ B .523)(a a =C .2328=+D .222))((b ab a b a b a ---=---【答案】C .【解析】试题分析:A .2a 和4a 不能合并,故错误;B .3265()a a a =≠,故错误;C 8222232==D .2222()()()a b a b a b a b ---=--=-+,故错误;故选C .考点:1.二次根式的混合运算;2.整式的混合运算. 5.(2015届山东省日照市中考一模)观察下列各式及其展开式: (a+b )2=a2+2ab+b2(a+b )3=a3+3a2b+3ab2+b3(a+b )4=a4+4a3b+6a2b2+4ab3+b4(a+b )5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 …请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45 C .55 D .66 【答案】B .考点:完全平方公式.6.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)若3223y x mm -与3852y x m +-能够进行加减运算,则21m +=_________________;【答案】-1或9.【解析】试题分析:∵3223y x mm -与3852y x m +-能够进行加减运算,∴2258m m m -=+,即:2340m m --=,解得:1m =-或4m =,①当1m =-时,21m +=-1,②当4m =时,21m +=9.故答案为:-1或9.考点:1、同类项;2、解一元二次方程-因式分解法;3、分类讨论.7.(2015届广东省佛山市初中毕业班综合测试)已知a2-2a-3=0,求代数式2a (a-1)-(a+2)(a-2)的值. 【答案】7.考点:整式的混合运算—化简求值.。
初三中考数学数与式
第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。
中考数学专题复习2整式的运算(解析版)
整式的运算复习考点攻略考点01 整式的有关概念1.整式:单项式和多项式统称为整式.2.单项式:单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数. 【注意】单项式的系数包括它前面的符号3.多项式:几个单项式的和叫做多项式;多项式中.每一个单项式叫做多项式的项.其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项叫做同类项. 【例1】单项式3212a b 的次数是_____. 【答案】5 【解析】单项式3212a b 的次数是325+=.故答案为5. 【例2】下列说法中正确的是( )A .25xy -的系数是–5 B .单项式x 的系数为1.次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15.则A 错误;B.单项式x 的系数为1.次数为1.则B 错误;C.222xyz -的次数是1+1+2=4.则C 错误;D.xy +x –1是二次三项式.正确.故选D.【例3】若单项式32m x y 与3m nxy +是同类项.2m n +_______________.【答案】2【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩221242m n +=⨯+==故答案为:2.【例4】按一定规律排列的单项式:a .2a -.4a .8a -.16a .32a -.….第n 个单项式是( )A .()12n a --B .()2na -C .12n a -D .2n a【答案】A 【解析】解:a .2a -.4a .8a -.16a .32a -.….可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a -- 故选A .【例5】如图.图案均是用长度相等的小木棒.按一定规律拼搭而成.第一个图案需4根小木棒.则第6个图案需小木棒的根数是( )A .54B .63C .74D .84【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒. 拼搭第2个图案需10=2×(2+3)根小木棒. 拼搭第3个图案需18=3×(3+3)根小木棒. 拼搭第4个图案需28=4×(4+3)根小木棒. …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时.n 2+3n =62+3×6=54. 故选A.考点02 整式的运算1.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -. 2. 整式的加减:几个整式相加减.如有括号就先去括号.然后再合并同类项。
2015年广州中考数学试题(含解析与答案)
2015年广东省广州市中考数学试卷(含解析与答案)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2015•广州)四个数﹣3.14,0,1,2中为负数的是()A ﹣3.14B 0C 1D 2考点:正数和负数.分析:根据负数是小于0的数,可得答案.解答:解:四个数﹣3.14,0,1,2中为负数的是﹣3.14,故选:A.点评:本题考查了正数和负数,解决本题的关键是小于0的数是负数.2.(3分)(2015•广州)将图中所示的图案以圆心为中心,旋转180°后得到的图案是()A. B. C. D.考点:生活中的旋转现象.分析:根据旋转的性质,旋转前后图形不发生任何变化,绕中心旋转180°,即是对应点绕旋转中心旋转180°,即可得出所要图形.解答:解:将图中所示的图案以圆心为中心,旋转180°后得到的图案是.故选:D.点评:此题主要考查了旋转中,中心旋转180°后图形的性质,此题应注意图形的旋转变换.3.(3分)(2015•广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A .2.5 B.3 C.5 D.10考点:切线的性质.分析:根据直线与圆的位置关系可直接得到点O到直线l的距离是5.解答:解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.点评:本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;当直线l和⊙O相离⇔d>r.4.(3分)(2015•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A .众数B.中位数C.方差D.以上都不对考点:统计量的选择.分析:根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.解答:解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.点评:本题考查方差的意义以及对其他统计量的意义的理解.它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.5.(3分)(2015•广州)下列计算正确的是()A .ab•ab=2ab B.(2a)3=2a3C .3﹣=3(a≥0)D.•=(a≥0,b≥0)考点:二次根式的加减法;幂的乘方与积的乘方;单项式乘单项式;二次根式的乘除法.分析:分别利用积的乘方以及二次根式的乘法运算法则化简求出即可.解答:解:A、ab•ab=a2b2,故此选项错误;B、(2a)3=8a3,故此选项错误;C、3﹣=2(a≥0),故此选项错误;D、•=(a≥0,b≥0),正确.故选:D.点评:此题主要考查了二次根式的加减运算以及积的乘方运算等知识,正确掌握相关性质是解题关键.6.(3分)(2015•广州)如图是一个几何体的三视图,则该几何体的展开图可以是()A .B.C.D.考点:由三视图判断几何体;几何体的展开图.分析:由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱,再根据圆柱展开图的特点即可求解.解答:解:∵主视图和左视图是长方形,∴该几何体是柱体,∵俯视图是圆,∴该几何体是圆柱,∴该几何体的展开图可以是.故选:A.点评:此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.同时考查了几何体的展开图.7.(3分)(2015•广州)已知a,b满足方程组,则a+b的值为()A .﹣4 B.4 C.﹣2 D.2考点:解二元一次方程组.专题:计算题.分析:求出方程组的解得到a与b的值,即可确定出a+b的值.解答:解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,故选B.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(3分)(2015•广州)下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A .3个B.2个C.1个D.0个考点:命题与定理;平行四边形的判定.分析:分别利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形,进而得出即可.解答:解:①对角线互相平分的四边形是平行四边形,正确,符合题意;②两组对角分别相等的四边形是平行四边形,正确,符合题意;③一组对边平行,另一组对边相等的四边形是平行四边形,说法错误,例如等腰梯形,也符合一组对边平行,另一组对边相等.故选:B.点评:此题主要考查了命题与定理,正确把握相关定理是解题关键.9.(3分)(2015•广州)已知圆的半径是2,则该圆的内接正六边形的面积是()A .3B.9C.18D.36考点:正多边形和圆.分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.解答:解:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C.点评:本题考查了正多边形和圆,正六边形被它的半径分成六个全等的等边三角形,这是需要熟记的内容.10.(3分)(2015•广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A .10 B.14 C.10或14 D.8或10考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.分析:先将x=2代入x2﹣2mx+3m=0,求出m=4,则方程即为x2﹣8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.解答:解:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=6.①当6是腰时,2是等边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B.点评:此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2015•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为50°.考点:平行线的性质.分析:根据平行线的性质得出∠1=∠2,代入求出即可.解答:解:∵AB∥CD,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故答案为:50°.点评:本题考查了平行线的性质的应用,能求出∠1=∠2是解此题的关键,注意:两直线平行,内错角相等.12.(3分)(2015•广州)根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是机动车尾气.(填主要来源的名称)考点:扇形统计图.分析:根据扇形统计图即可直接作出解答.解答:解:所占百分比最大的主要来源是:机动车尾气.故答案是:机动车尾气.点评:本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.13.(3分)(2015•广州)分解因式:2mx﹣6my=2m(x﹣3y).考点:因式分解-提公因式法.专题:计算题.分析:原式提取公因式即可得到结果.解答:解:原式=2m(x﹣3y).故答案为:2m(x﹣3y).点评:此题考查了因式分解﹣提公因式法,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2015•广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为y=6+0.3x.考点:根据实际问题列一次函数关系式.分析:根据高度等于速度乘以时间列出关系式解答即可.解答:解:根据题意可得:y=6+0.3x(0≤x≤5),故答案为:y=6+0.3x.点评:此题考查函数关系式,关键是根据题中水位以每小时0.3米的速度匀速上升列出关系式.15.(3分)(2015•广州)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=.考点:线段垂直平分线的性质;解直角三角形.分析:根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.解答:解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.点评:本题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.16.(3分)(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N 分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.考点:三角形中位线定理;勾股定理.专题:动点型.分析:根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.解答:解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.点评:本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(9分)(2015•广州)解方程:5x=3(x﹣4)考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,把x系数化为1,即可求出解.解答:解:方程去括号得:5x=3x﹣12,移项合并得:2x=﹣12,解得:x=﹣6.点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.(9分)(2015•广州)如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等证明即可.解答:证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.点评:本题考查了正方形的性质,全等三角形的判定与性质,以及垂直的定义,求出两三角形全等,从而得到BE=AF是解题的关键.19.(10分)(2015•广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.考点:分式的化简求值;一元一次不等式组的整数解.分析:(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.解答:解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.点评:(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.20.(10分)(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.考点:反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.分析:(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.解答:解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.点评:本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.21.(12分)(2015•广州)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.考点:一元二次方程的应用.专题:增长率问题.分析:(1)一般用增长后的量=增长前的量×(1+增长率),2014年要投入教育经费是2500(1+x)万元,在2014年的基础上再增长x,就是2015年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求2016年该地区将投入教育经费.解答:解:设增长率为x,根据题意2014年为2500(1+x)万元,2015年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元.点评:本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.22.(12分)(2015•广州)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?考点:利用频率估计概率;概率公式;列表法与树状图法.分析:(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值;解答:解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=;(2)这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率=×=;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=16.点评:本题考查了概率的公式、列表法与树状图法及用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.23.(12分)(2015•广州)如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.考点:作图—复杂作图;圆周角定理.分析:(1)①以点B为圆心,以任意长为半径画弧,两弧交角ABC两边于点M,N;②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于一点;③作射线BE交AC与E,交⊙O于点D,则线段BD为△ABC的角平分线;(2)连接OD,设⊙O的半径为r,证得△ABE∽△DCE,在R t△ACB中,∠ABC=90°,∠ACB=30°,得到AB=AC=r,推出△ADC是等腰直角三角形,在R t△ODC中,求得DC==r,于是问题可得.解答:(1)如图所示;(2)如图2,连接OD,设⊙O的半径为r,∵∠BAE=∠CDE,∠AEB=∠DEC,∴△ABE∽△DCE,在R t△ACB中,∠ABC=90°,∠ACB=30°,∴AB=AC=r,∵∠ABD=∠ACD=45°,∵OD=OC,∴∠ABD=∠ACD=45°,∴∠DOC=90°,在R t△ODC中,DC==r,∴===.点评:本题主要考查基本作图,圆周角定理,勾股定理,作一个角的平分线,牢记一些基本作图是解答本题的关键.24.(14分)(2015•广州)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8 ①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.考点:四边形综合题.分析:(1)证明△OMP≌△ONP,即可证得MN⊥OT,且OT平分MN;(2)①若经过A,B,C,D四个点的圆存在,则圆心一定是AC和BD的中垂线的交点,即AC和BD互相平分,据此即可判断;②已知FM⊥AB,作EG⊥AB于G,根据菱形的面积公式求得GE的长,然后根据△BNE∽△BFD求得BF的长,再根据△BEG∽△BFM求得FM的长.解答:解:(1)MN⊥OT,且OT平分MN.理由是:连接MN、OT相交于点P.在△OMT和△ONT中,,∴△OMT≌△ONT,∴∠MOT=∠NPT,∴在△OMP和△ONP中,,∴△OMP≌△ONP,∴MP=NP,∠OPM=∠OPN=90°,即MN⊥OT;(2)①经过A,B,C,D四个点的圆不一定存在,理由是:若经过A,B,C,D四个点的圆存在,则圆心一定是AC和BD的中垂线的交点,根据(1)可得AC垂直平分BD,而垂足不一定是AC的中点;②作FM⊥AB,作EG⊥AB于G.∵四边形ABED是菱形,∴AE⊥BD,且BN=BD=4,∴AN=NE===3,AE=6.∴S菱形ABED=AE•BD=×6×8=24,又∵S菱形ABED=AB•EG,∴EG=.∵∠DBF=∠DBF,∠BNE=∠BFD,∴△BNE∽△BFD,∴,即,∴BF=.∵GE⊥AB,FM⊥AB,∴GE∥FM,∴△BEG∽△BFM,∴,即,解得:FM=.点评:本题考查了菱形的判定与性质,以及相似三角形的判定与性质,正确作出辅助线是关键,在初中范围内求线段长的基本方法是解直角三角形和利用三角形相似求解.25.(14分)(2015•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.考点:二次函数综合题.分析:(1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;(2)分别利用①若C(0,3),即c=3,以及②若C(0,﹣3),即c=﹣3,得出A,B点坐标,进而求出函数解析式,进而得出答案;(3)利用①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,得出y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值.解答:解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,﹣3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,∴y2=﹣3x+3,把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1﹣x2=4,解得:x2=﹣3,则B(﹣3,0),代入y1=ax2+bx+3得,,解得:,∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,则当x≤﹣1时,y随x增大而增大.②若C(0,﹣3),即c=﹣3,把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,把A(x1,0),代入y2=﹣3x﹣3,则﹣3x1﹣3=0,即x1=﹣1,∴A(﹣1,0),∵x1,x2异号,x1=﹣1<0,∴x2>0∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,,解得:,∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤﹣1;若c=﹣3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,则当x≤﹣1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1,∵n>0,∴n≤﹣1不符合条件,应舍去;②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,2n2﹣5n=2(n﹣)2﹣,∴当n=时,2n2﹣5n的最小值为:﹣.点评:此题主要考查了二次函数综合以及二次函数的平移以及二次函数增减性等知识,利用分类讨论得出n的取值范围是解题关键.。
备战2015年广东数学中考————中考数学常用公式和定理大全
2015年数学中考重要考点及较易遗忘的公式理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2、绝对值:a ≥0丨a 丨=a ; a ≤0丨a 丨=-a .4、把一个数写成±a ×10n 的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105, 0.000043=4.3×10-5. 5、乘法公式(反过来就是因式分解的公式):①(a +b )(a -b )=a 2-b 2. ②(a ±b )2=a 2±2ab +b 2. ③ a 2+b 2=(a +b )2-2ab ,④(a -b )2=(a +b )2-4ab .6、幂的运算性质:①a m ×a n =a m +n .②a m ÷a n =a m -n .③(a m )n =a mn .④(ab )n=a n b n.⑤()n=n n ab .⑥a -n=1n a (a ≠0), ⑦a 0=1(a ≠0).特别要注意指数是负的幂等于底数的倒数的正次幂 7、二次根式:①()2=a (a ≥0),②=丨a 丨,③=×,④=-(a >0,b ≥0).如:①(3)2=45.②=6.③a <0时,=-a.④-的平方根=4的平方根=±2.(注意平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax 2+bx +c =0:①求根公式是x =24b b ac-±-,其中△=b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根. 注意:当△≥0时,方程有实数根. ②若方程有两个实数根x 1和x 2,并且二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2).9、一次函数y =kx +b (k ≠0)的图象是一条直线当b>0时 直线交于y 轴的正半轴;当b=0时直线过原点;当b <0时 直线交于y 轴的负半轴.当k >0时,y 随x 的增大而增大(直线过一、三象限);当k <0时,y 随x 的增大而减小(直线过二、四象限).特别:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例,其中y 与x 都可以是一个整体),图象必过原点. 10、反比例函数y =(k ≠0)的图象叫做双曲线.当k >0时,双曲线在一、三象限(在每一象限内,y 随x 的增大而减小); 当k <0时,双曲线在二、四象限(在每一象限内,y 随x 的增大而增大).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:①平均数为:12......nx x x x n+++=;③方差:数据1x 、2x ……, n x 的方差为2s,则2s =()()()222121.....nx x xx xx n 轾-+-++-犏臌一组数据的方差越小,这组数据的波动越小,越稳定。
2015年中考数学考点专项一:数与式-整式的乘除
知识点:积得乘方
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:单项式除以单项式
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:单项式与单项式相乘
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:同底数幂的除法
知识点:多项式与多项式相乘
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:幂的乘方
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:整数指数幂法则
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:多项式除以单项式
专项一
数与式
2015年考点:整式的乘除
【难易度】
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:单项式与多项式相乘
专项一
数ቤተ መጻሕፍቲ ባይዱ式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:同底数幂的乘法
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
知识点:整式的混合运算-化简
专项一
数与式
2015年考点:整式的乘除
【难易度】
□已掌握
2015年中考数学考点专项一:数与式-有理数的运算
□已掌握
知识点:有理数的除法
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:加法运算律
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:倒数
专项一
数与式
2015年考点:有理数的有理数的加法
专项一
数与式
2015年考点:有理数的运算
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:有理数的乘法
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:有理数中解决实际问题
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:有理数的乘除混合运算
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:有理数的减法
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:加减法统一成加法
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:乘法运算律
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:有理数的乘方
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
知识点:非负数的性质:偶次方
专项一
数与式
2015年考点:有理数的运算
【难易度】
□已掌握
广东省各市2015年中考数学试题分类汇编 专题2 代数式问题
专题2:代数式问题1.(2015年广东梅州3分)下列计算正确的是【】A.23x x x+= B.236·x x x = C.()236x x = D.933x x x ÷=【答案】C.【考点】合并同类项;同底幂的乘法;幂的乘方;同底幂的除法;.【分析】根据合并同类项,同底幂的乘法,幂的乘方,同底幂的除法运算法则逐一计算作出判断:A.x 与2x 不是同类项,不能合并,故本选项运算错误;B.根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:323256x x xx x +⋅==≠,故本选项运算错误;C.据“幂的乘方,底数不变,指数相乘”的幂的乘方法则得()23326x x x ⨯==,故本选项运算正确;D.根据“同底数幂相除,底数不变,指数相减”的除法法则得:939363x x xx x -÷==≠,故本选项运算错误.故选C .2.(2015年广东佛山3分)下列计算正确的是【】A.x y xy+= B.220y y --= C.221a a ÷= D.752x x -=【答案】C.【考点】合并同类项;同底幂除法.【分析】根据合并同类项,同底幂除法运算法则逐一计算作出判断:A.x 与y 不是同类项,不能合并,故本选项计算错误;B.2y 与2y 是同类项,能合并,因此,()22221120y y y y --=--=-≠,故本选项计算错误;C.根据“同底数幂相除,底数不变,指数相减”的除法法则得:222201a a a a -÷===,故本选项计算正确;D.7x 与5x 是同类项,能合并,因此,()757522x x x x -=-=≠,故本选项计算错误.故选C.。
广东省2015年数学九年级中考冲刺试题汇编课件 第4课时
第4课时 分式及其运算
• 考点分类四 分式求值 分式的求值方法很多,主要有三种:(1)先化简,后求值;(2)由值的形式 直接转化成所求的代数式的值;(3)式中字母表示的数未明确告知,而是隐含 在方程等题设条件中.解这类题,一方面从方程中求出未知数或未知代数式 的值;另一方面把所求代数式适当地化简变形.两种方法同时用有时能获得 简易的解法.
1
三、解答题
第4课时 分式及其运算课时作业
结束
谢谢!
第4课时 分式及其运算
• 真题演练•层层推进
• 基础题
AADFra bibliotek第4课时 分式及其运算
B
A
·提高题 D
第4课时 分式及其运算
·拔高题
第4课时 分式及其运算课时作业
一、选择题 B
B
A
B
第4课时 分式及其运算课时作业
B
二、填空题 3
提示:将分式的分子、分母同时乘以30即可.
第4课时 分式及其运算课时作业
数学
第4课时 分式及其运算
第4课时 分式及其运算
• 知识考点•对应精练
• 考点分类一 分式的定义 知识考点 对应精练 C
D
4
第4课时 分式及其运算
• 考点分类二 分式的基本性质 知识考点
对应精练
C
A
第4课时 分式及其运算
知识考点 对应精练
·考点分类三 分式的运算
第4课时 分式及其运算
知识考点 对应精练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年广东省中考数学专题复习
----式的运算部分
式的运算
1. 计算3
2x x ÷= ;
2. 计算3a-2a 的结果正确的是( )
A 、1
B 、a
C 、-a
D 、-5a
3. 计算
32()a 结果是( ) A .6
a
B .9
a
C .5
a
D .8
a
4. 按下面程序计算:输入3=x ,则输出的答案是_______________.
5. 若x 、y 为实数,且满足,则的值是 。
6. 若实数a 、b 满足0
42=-++b a ,则=b a 2________.
7.从三个代数式:①222b ab a +-,②b a 33-,③2
2b a -中任意选择两8.个代数式构造
成分式,然后进行化简,并求当3,6==b a 时该分式的值.
8.按下列程序计算,把答案写在表格内:
(1)
(2)请将题中计算程序用代数式表达出来,并给予化简.
33=++-y x 2012
⎪⎪⎭
⎫
⎝
⎛y x
9.已知a 、b 互为相反数,并且3a -2b =5,则a2+b2=___________。
10.先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭
,其中
x =
11.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖________块(用含n 的代数式表示).
……
(1) (2) (3) 12.阅读下列材料:
1×2 = 31
(1×2×3-0×1×2), 2×3 = 31
(2×3×4-1×2×3), 3×4 = 31
(3×4×5-2×3×4),
由以上三个等式相加,可得
1×2+2×3+3×4= 31
×3×4×5 = 20.
读完以上材料,请你计算下列各题:
1×2+2×3+3×4+···+10×11(写出过程);
1×2+2×3+3×4+···+n ×(n +1) = _________;
1×2×3+2×3×4+3×4×5+···+7×8×9 = _________.
13.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答. 1
2 3 4
第10题图
5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 …………………………
(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;
(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是 ________________,第n 行共有_______________个数; (3)求第n 行各数之和.
14.观察下列等式:
第1个等式:
; 第2个等式:
; 第3个等式:
; 第4个等式:
;
……………………………… 请解答下列问题:
(1)按以上规律列出第5个等式:a5 = = ;
(2)用含n 的代数式表示第n 个等式:an = = (n 为正整数); (3)求a1 + a2 + a3 + a4 + … + a100的值。
⎪⎭⎫ ⎝⎛-⨯=⨯=
311213111a ⎪⎭⎫ ⎝⎛-⨯=⨯=
5131215312a ⎪⎭⎫
⎝⎛-⨯=⨯=
7151217513a ⎪⎭⎫
⎝⎛-⨯=⨯=
9171219714a。