2018高中数学人教a版选修4-1学案创新应用:第一讲 知识归纳与达标验收 含解析

合集下载

【高中教学案】4-1:第二讲 知识归纳与达标验收 - 2018数学人教A版选修4-1创新应用教学案

【高中教学案】4-1:第二讲 知识归纳与达标验收 - 2018数学人教A版选修4-1创新应用教学案

[对应学生用书P35]近两年高考中,主要考查圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对于与圆有关的比例线段问题通常要考虑利用相交弦定理、割线定理、切割线定理、相似三角形的判定和性质等;弦切角是沟通圆内已知和未知的桥梁,它在解决圆内有关等角问题中可以大显身手;证明四点共圆也是常见的考查题型,常见的证明方法有:①到某定点的距离都相等;②如果某两点在一条线段的同侧时,可证明这两点对该线段的张角相等;③证明凸四边形的内对角互补(或外角等于它的内对角)等.1.(湖南高考)如图,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.解析:设AO ,BC 的交点为D ,由已知可得D 为BC 的中点,则在直角三角形ABD 中,AD =AB 2-BD 2=1,设圆的半径为r ,延长AO 交圆O 于点E ,由圆的相交弦定理可知BD ·CD =AD ·DE ,即(2)2=2r -1,解得r =32.答案:322.(新课标全国卷Ⅱ)如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:(1)BE =EC ; (2)AD ·DE =2PB 2.证明:(1)连接AB ,AC .由题设知P A =PD ,故∠P AD =∠PDA .因为∠PDA =∠DAC +∠DCA ,∠P AD =∠BAD +∠P AB ,∠DCA =∠P AB ,所以∠DAC =∠BAD ,从而 BE = EC .因此BE =EC .(2)由切割线定理得P A 2=PB ·PC .因为P A =PD =DC ,所以DC =2PB ,BD =PB . 由相交弦定理得AD ·DE =BD ·DC , 所以AD ·DE =2PB 2.3.(新课标全国卷Ⅱ)如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值. 解:(1)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DCEA ,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°.所以∠CBA = 90°,因此CA 是△ABC 外接圆的直径. (2)连接CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE . 由BD =BE ,有CE =DC . 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.[对应学生用书P35]接四边形的判定和性质.[例1] 已知四边形ABCD 为平行四边形,过点A 和点B 的圆与AD 、BC 分别交于E 、F.求证:C、D、E、F四点共圆.[证明]连接EF,因为四边形ABCD为平行四边形,所以∠B+∠C=180°.因为四边形ABFE内接于圆,所以∠B+∠AEF=180°.所以∠AEF=∠C.所以C、D、E、F四点共圆.[例2]如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD∶∠ECD=3∶2,那么∠BOD等于()A.120°B.136°C.144°D.150°[解析]由圆内接四边形性质知∠A=∠DCE,而∠BCD∶∠ECD=3∶2,且∠BCD+∠ECD=180°,∠ECD=72°.又由圆周角定理知∠BOD=2∠A=144°.[答案] C要,结合此知识点所设计的有关切线的判定与性质、弦切角的性质等问题是高考选做题热点之一,解题时要特别注意.[例3]如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,P A切⊙O于点A,且P A=PB.(1)求证:PB是⊙O的切线;(2)已知P A=3,BC=1,求⊙O的半径.[解](1)证明:如图,连接OB.∵OA=OB,∴∠OAB=∠OBA.∵P A=PB,∴∠P AB=∠PBA.∴∠OAB+∠P AB=∠OBA+∠PBA,即∠P AO=∠PBO.又∵P A是⊙O的切线,∴∠P AO=90°.∴∠PBO=90°.∴OB⊥PB.又OB 是⊙O 半径,∴PB 是⊙O 的切线. (2)连接OP ,交AB 于点D .如图.∵P A =PB ,∴点P 在线段AB 的垂直平分线上. ∵OA =OB ,∴点O 在线段AB 的垂直平分线上. ∴OP 垂直平分线段AB . ∴∠P AO =∠PDA =90°.又∵∠APO =∠OP A ,∴△APO ∽△DP A . ∴AP DP =POP A.∴AP 2=PO ·DP . 又∵OD =12BC =12,∴PO (PO -OD )=AP 2.即PO 2-12PO =(3)2,解得PO =2.在Rt △APO 中,OA =PO 2-P A 2=1, 即⊙O 的半径为1.圆的切线、到一些比例式、乘积式,在解题中,多联系这些知识,能够计算或证明角、线段的有关结论.[例4] 如图,A ,B 是两圆的交点,AC 是小圆的直径,D 和E 分别是CA 和CB 的延长线与大圆的交点,已知AC =4,BE =10,且BC =AD ,求DE 的长.[解] 设CB =AD =x ,则由割线定理得:CA ·CD =CB ·CE ,即4(4+x )=x (x +10), 化简得x 2+6x -16=0, 解得x =2或x =-8(舍去), 即CD =6,CE =12.连接AB ,因为CA 为小圆的直径, 所以∠CBA =90°,即∠ABE =90°,则由圆的内接四边形对角互补,得∠D =90°, 则CD 2+DE 2=CE 2, 所以62+DE 2=122, 所以DE =6 3.[例5] △ABC 中,AB =AC ,以AB 为直径作圆,交BC 于D ,O 是圆心,DM 是⊙O 的切线交AC 于M (如图).求证:DC 2=AC ·CM .[证明] 连接AD 、OD . ∵AB 是直径,∴AD ⊥BC .∵OA =OD , ∴∠BAD =∠ODA . 又AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .则∠CAD =∠ODA ,OD ∥AC . ∵DM 是⊙O 切线,∴OD ⊥DM . 则DM ⊥AC ,DC 2=AC ·CM .[对应学生用书P43] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆内接四边形的4个角中,如果没有直角,那么一定有( ) A .2个锐角和2个钝角 B .1个锐角和3个钝角 C .1个钝角和3个锐角D .都是锐角或都是钝角解析:由于圆内接四边形的对角互补,圆内接四边形的4个角中若没有直角,则必有2个锐角和2个钝角.答案:A2.如图,在⊙O 中,弦AB 长等于半径,E 为BA 延长线上一点,∠DAE =80°,则∠ACD 的度数是( )A .60°B .50°C .45°D .30°解析:∠BCD =∠DAE =80°, 在Rt △ABC 中,∠B =90°,AB =12AC ,∴∠ACB =30°.∴∠ACD =80°-30°=50°. 答案:B3.如图所示,在半径为2 cm 的⊙O 内有长为2 3 cm 的弦AB .则此弦所对的圆心角∠AOB 为( )A .60°B .90°C .120°D .150°解析:作OC ⊥AB 于C ,则BC =3,在Rt △BOC 中cos ∠B =BO OB =32.∴∠B =30°.∴∠BOC =60°.∴∠AOB =120°. 答案:C4.如图,已知⊙O 的半径为5,两弦AB 、CD 相交于AB 的中点E ,且AB =8,CE ∶ED =4∶9,则圆心到弦CD 的距离为( )A.2143B.289 C.273D.809解析:过O 作OH ⊥CD ,连接OD ,则DH =12CD ,由相交弦定理知, AE ·BE =CE ·DE .设CE =4x ,则DE =9x , ∴4×4=4x ×9x ,解得x =23,∴OH =OD 2-DH 2= 52-(133)2=2143.答案:A5.如图,P A 切⊙O 于A ,PBC 是⊙O 的割线,且PB =BC ,P A =32,那么BC 的长为( )A. 3 B .2 3 C .3D .3 3解析:根据切割线定理P A 2=PB ·PC , 所以(32)2=2PB 2.所以PB =3=BC . 答案:C6.两个同心圆的半径分别为3 cm 和6 cm ,作大圆的弦MN =6 3 cm ,则MN 与小圆的位置关系是( )A .相切B .相交C .相离D .不确定 解析:作OA ⊥MN 于A .连接OM .则MA =12MN =3 3.在Rt △OMA 中,OA =OM 2-AM 2=3(cm). ∴MN 与小圆相切. 答案:A7.如图,P AB ,PDC 是⊙O 的割线,连接AD ,BC ,若PD ∶PB =1∶4,AD =2,则BC 的长是( )A .4B .5C .6D .8解析:由四边形ABCD 为⊙O 的内接四边形可得∠P AD =∠C ,∠PDA =∠B . ∴△P AD ∽△PCB .∴PD PB =AD CB =14.又AD =2,∴BC =8. 答案:D8.已知⊙O 的两条弦AB ,CD 交于点P ,若P A =8 cm ,PB =18 cm ,则CD 的长的最小值为( )A .25 cmB .24 cmC .20 cmD .12 cm解析:设CD =a cm ,CD 被P 分成的两段中一段长x cm ,另一段长为(a -x ) cm.则x (a -x )=8×18,即8×18≤(x +a -x 2)2=14a 2.所以a 2≥576=242,即a ≥24.当且仅当x =a -x ,即x =12a =12时等号成立.所以CD 的长的最小值为24 cm. 答案:B9.如图,点C 在以AB 为直径的半圆上,连接AC 、BC ,AB =10,tan ∠BAC =34,则阴影部分的面积为( )A.252πB.252π-24 C .24D.252π+24 解析:∵AB 为直径,∴∠ACB =90°,∵tan ∠BAC =34,∴sin ∠BAC =35.又∵sin ∠BAC =BCAB ,AB =10,∴BC =35×10=6.AC =43×BC =43×6=8,∴S 阴影=S 半圆-S △ABC =12×π×52-12×8×6=252π-24. 答案:B10.在Rt △ABC 中,∠ACB =90°,以A 为圆心、AC 为半径的圆交AB 于F ,交BA 的延长线于E ,CD ⊥AB 于D ,给出四个等式:①BC 2=BF ·BA ;②CD 2=AD ·AB ; ③CD 2=DF ·DE ;④BF ·BE =BD ·BA . 其中能够成立的有( ) A .0个 B .2个 C .3个D .4个解析:①②不正确,由相交弦定理知③正确, 又由BC 2=BE ·BF ,BC 2=BD ·BA , 得BE ·BF =BD ·BA ,故④正确. 答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把正确答案填写在题中的横线上)11.四边形ABCD 内接于⊙O ,若∠BOD =120°,OB =1,则∠BAD =________,∠BCD=________, BCD的长=________. 解析:∠BAD =∠12BOD =60°,∠BCD =180°-∠BAD =120°, 由圆的半径OB =1,∠BOD =2π3,∴ BCD 的长为2π3. 答案:60° 120°2π312.(陕西高考)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF·DB=________.解析:由相交弦定理可知ED2=AE·EB=1×5=5,又易知△EBD与△FED相似,得DF·DB=ED2=5.答案:513.如图,⊙O为△ABC的内切圆,AC,BC,AB分别与⊙O切于点D,E,F,∠C=90°,AD=3,⊙O的半径为2,则BC=________.解析:如图所示,分别连接OD,OE,OF.∵OE=OD,CD=CE,OE⊥BC,OD⊥AC,∴四边形OECD是正方形.设BF=x,则BE=x.∵AD=AF=3,CD=CE=2,∴(2+x)2+25=(x+3)2,解得x=10,∴BC=12.答案:1214.如图,AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交AB的延长线于E,若EA=1,ED=2,则BC=________.解析:∵CE为⊙O的切线,D为切点,∴ED2=EA·EB.又∵EA=1,ED=2,得EB=4,又∵CB、CD均为⊙O的切线,∴CD=CB.在Rt△EBC中,设BC=x,则EC=x+2.由勾股定理得EB2+BC2=EC2.∴42+x2=(x+2)2,得x=3,∴BC=3.答案:3三、解答题(本大题共4个小题,满分50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:(1)l是⊙O的切线;(2)PB平分∠ABD.证明:(1)连接OP,因为AC⊥l,BD⊥l,所以AC∥BD.又OA =OB ,PC =PD , 所以OP ∥BD ,从而OP ⊥l .因为P 在⊙O 上,所以l 是⊙O 的切线. (2)连接AP ,因为l 是⊙O 的切线, 所以∠BPD =∠BAP . 又∠BPD +∠PBD =90°, ∠BAP +∠PBA =90°, 所以∠PBA =∠PBD , 即PB 平分∠ABD .16.(本小题满分12分)(2012·辽宁高考)如图,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交⊙O 于点E .证明:(1)AC ·BD =AD ·AB ; (2)AC =AE .证明:(1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB , 同理∠ACB =∠DAB ,所以△ACB ∽△DAB .从而AC AD =AB BD ,即AC ·BD =AD ·AB .(2)由AD 与⊙O 相切于A ,得∠AED =∠BAD , 又∠ADE =∠BDA ,得 △EAD ∽△ABD .从而AE AB =AD BD ,即AE ·BD =AD ·AB . 结合(1)的结论,AC =AE .17.(本小题满分12分)如图,AB 为圆O 的直径,CD 为垂直于AB 的一条弦,垂足为E ,弦BM 与CD 交于点F .(1)证明:A ,E ,F ,M 四点共圆; (2)证明:AC 2+BF ·BM =AB 2. 证明:(1)连接AM ,则∠AMB =90°.∵AB ⊥CD ,∴∠AEF =90°. ∴∠AMB +∠AEF =180°,即A,E,F,M四点共圆.(2)连接CB,由A,E,F,M四点共圆,得BF·BM=BE·BA.在Rt△ACB中,BC2=BE·BA,AC2+CB2=AB2,∴AC2+BF·BM=AB2.18.(辽宁高考)(本小题满分14分)如图,EP交圆于E,C两点,PD 切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.由于AF⊥EP,所以∠PF A=90°,于是∠BDA=90°.故AB是直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.。

高中数学人教A版选修4-1 (18)

高中数学人教A版选修4-1 (18)

堂互动探究
课时作
菜 单
SJ · 数学
选修4-4
点与曲线的位置
x=3t, 2 y=2t +1
前自主导学
当堂双基
已知曲线C的参数方程是 数).
(t为参
(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系; (2)已知点M3(6,a)在曲线C上,求a的值.
堂互动探究
课时作
菜 单
SJ · 数学
x=t+ y=t
当堂双基
a2-t2,
堂互动探究
(0<t<a).
课时作
菜 单
SJ · 数学
选修4-4
法二
设点P的坐标为(x,y),过点P作x轴的垂线交x轴
于点Q,如图所示. 取∠QBP=¸ , À ¸ 为参数(0<¸ <2), À 则∠ABO=2-¸ . 在Rt△OAB中, À OB=acos(2-¸ )=asin ¸ .
堂互动探究
课时作
查逻辑思维能力和运算求解能力.
菜 单
SJ · 数学
选修4-4
【解】 2sin 2±),
(1)依题意有P(2cos ±,2sin ±),Q(2cos 2 ±,
前自主导学
因此M(cos ±+cos 2±,sin ±+sin 2±).
+cos 2±, x=cos ± M的轨迹的参数方程为 +sin 2± y=sin ±
【答案】
x=2+2cos y=sin ¸
菜 单
SJ · 数学
选修4-4
前自主导学
2 x = cos ¸, 4.参数方程 2 y = sin ¸
(¸ 为参数)表示的曲线是
当堂双基
________. 【答案】 线段

人教A版高中数学选修4-1 本讲整合1 (共20张PPT)

人教A版高中数学选修4-1 本讲整合1 (共20张PPT)

知识网络
专题归纳
高考体验
【例1】 如图,在四边形ABCD中,AC,BD交于点O,过点O作AB的 ������������2 平行线,与AD,BC分别交于点E,F,与CD的延长线交于点K,则 ������������· ������������ = .
解析:延长CK,BA,设它们交于点H,
因为 KO∥HB,
知识网络
专题归纳
高考体验
专题二:相似三角形的判定与性质 1.相似三角形的定义 对应角相等,对应边成比例的两个三角形叫做相似三角形.相似 三角形对应边的比值叫做相似比(或相似系数). 2.相似三角形的判定 (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交, 所构成的三角形与原三角形相似. (2)两角对应相等的两个三角形相似. (3)两边对应成比例且夹角相等的两个三角形相似. (4)三边对应成比例的两个三角形相似.
知识网络
专题归纳
高考体验
1 变式训练1如图,已知AE∥BF∥CG∥DH,AB= BC=CD ,AE=12, 2
DH=16,AH交BF于M,求BM和CG的长.
������������ 1 ������������ ������������ = , = . ������������ 4 ������������ ������������ ������������ 1 所以 = ,即 BM=4.取 BC 16 4
������������ ������������ 同理可得������������ = ������������, ������������ ������������ ������������2 2 所以������������ = ������������,即 KO =KE· KF,故������������· =1. ������������

高中数学人教A版选修4-1配套课件1章 本讲归纳整合

高中数学人教A版选修4-1配套课件1章 本讲归纳整合

等于相似比,外接圆或内切圆的面积比等于相似比的平方.
5.直角三角形的射影定理 (1)射影的概念
从一点向一条直线作垂线,垂足称作这点在这条直线上的正
射影,简称射影. 一般地,一个点集(如线段或其他几何图形 )中所有的点在某 条直线上的射影集合,称这个点集在这条直线上的射影.如一条 线段在一条直线上的射影就是线段的两个端点在这条直线上的射 影间的线段.
(1)证明 ∵∠BDE=60° ,∴∠ADB=60° +∠DBC,∠DEC=60° +∠DBC, ∴∠ADB=∠DEC, 又∵∠A=∠C=60° ,∴△DEC∽△BDA. DC EC (2)解 ∵△DEC∽△BDA,∴ BA =DA. x 6-y 1 2 ∴ = ,即 y= x -x+6 (0<x<6). 6 6-x 6
和另一个三角形的三条边对应成比例 ,那么这两个三角形相
似.即:三边对应成比例,两三角形相似.
利用本定理可以证明相似三角形的判定定理.
(4)直角三角形相似的判定定理
定理 1 :如果两个直角三角形有一个锐角相等,那么它们相
似. 定理2:如果两个直角三角形的两条直角边对应成比例,那么 它们相似. 定理3:如果一个直角三角形的斜边和一条直角边与另一个直
(3)相似三角形判定定理 判定定理1:对于任意两个三角形,如果一个三角形的两个角
与另一个三角形的两个角对应相等,那么这两个三角形相似.即:
两角对应相等,两个三角形相似.
判定定理2:对于任意两个三角形,如果一个三角形的两边和 另一个三角形的两边对应成比例,并且夹角相等,那么,这两个 三角形相似.即:两对应边成比例且夹角相等,两三角形相似. 判定定理3:对于任意两个三角形,如果一个三角形的三条边
1 9 2 配方得 y= (x-3) + , 6 2 9 ∴当 x=3 时,y 最小= , 2 9 即 D 为 AC 的中点时,BE 最短,其长度为2. 3 3 在△BDE 中,BE 边上的高为 4 ×6=2 3. 1 9 3 27 3 ∴S△BDE=2×2×2 3= 8 .

2018-2019学年高中数学人教A版选修4-1创新应用课件:第一讲 三 1.相似三角形的判定

2018-2019学年高中数学人教A版选修4-1创新应用课件:第一讲 三 1.相似三角形的判定

3.如图,D 在 AB 上,且 DE∥BC 交 AC 于 E,F 在 AD 上, 且 AD2=AF· AB,求证:△AEF∽△ACD.
AC AB 证明:∵DE∥BC,∴AE=AD.① AD AB ∵AD =AF· AB,∴AF =AD.②
2
AC AD 由①②两式得AE=AF , 又∠A 为公共角,∴△AEF∽△ACD.
第三边 . _________
(3)判定定理 3:对于任意两个三角形,如果一个三角形 的三条边和另一个三角形的三条边对应成比例,那么这两个
三边 对应成比例,两三角形相似. 三角形相似,简述为:______
[说明]
1.在这些判定方法中,应用最多的是判定定理 1,
即两角对应相等, 两三角形相似. 因为它的条件最容易寻求. 在 实际证明当中,要特别注意两个三角形的公共角.判定定理 2 则常见于连续两次证明相似时,在证明时第二次使用此定理的 情况较多. 2.引理是平行线分线段成比例定理的推论的逆定理,可以 判定两直线平行.
(2)判定定理 2:对于任意两个三角形,如果一个三角形的 两边和另一个三角形的两边对应成比例,并且夹角相等,那么
夹角 相等, 两边 对应成比例且______ 这两个三角形相似, 简述为: ______
两三角形相似.
引理:如果一条直线截三角形的两边(或两边的延长线) 所得的对应线段成比例,那么这条直线平行于三角形的
∠A=36° ,BD 是角平分线,证明:△ABC∽△ BCD. [思路点拨] 已知 AB=AC,∠A=36° ,所
以∠ABC=∠C=72° ,而 BD 是角平分线,因此,可以考虑使 用判定定理 1.
[证明]
∵∠A=36° ,AB=AC,
∴∠ABC=∠C=72° . 又∵BD 平分∠ABC, ∴∠ABD=∠CBD=36° , ∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BCD.

高中数学 全册教案 新人教A版选修4-1

高中数学 全册教案 新人教A版选修4-1

高中数学选修4-1全套教案一 平行线分线段成比例定理教学目的:1.使学生理解平行线分线段成比例定理及其初步证明; 2.使学生初步熟悉平行线分线段成比例定理的用途、用法; 3.通过定理的教学,培养学生的联想能力、概括能力。

教学重点:取得“猜想”的认识过程,以及论证思路的寻求过程。

教学难点:成比例的线段中,对应线段的确认。

教学用具:圆规、三角板、投影仪及投影胶片。

教学过程:(一)旧知识的复习利用投影仪提出下列各题使学生解答。

1.求出下列各式中的x :y 。

(1)3x =5y ; (2)x=y 32; (3)3:2=γ:χ; (4)3:χ=5:γ。

2.已知γχχγχ+=求,27。

3.已知zy x z y x z -+++==32,432求γχ。

其中第1题以学生分别口答、共同核对的方式进行;第2、3题以学生各自解答,指定2人板演,而后共同核对板演所述,并追问理论根据的方式进行。

(二)新知识的教学1.提出问题,使学生思考。

在已学过的定理中,有没有包含两条线段的比是1:1的? 而后使学生试答,如果答出定理——过三角形一边的中点与另一边平行的直线,必平分第三边,那么追问理由,如果答不出,那么利用图1(若E 是AB 中点,EF//BC ,交AC 于F 点,则AF=FC )使学生观察,并予以分析而得出11==FC AF EB AE ,并指出此定理也可谓:如果E 是△ABC 的AB 边上一点,且11=EB AE ,EF//BC 交AC 于F 点,那么11==FC AE EB AE 。

2.引导学生探索与讨论。

就着上述结论提出,在△ABC 中,EF//BC 这个条件不变,但EB AE 不等于11,譬如EB AE =32时,FCAF应等于“几比几”?并使学生各自画图、进行度量,得出“猜想”——配合着黑板上画出的相应图观察、明确。

而后使学生试证,如能证明,则让学生进行证明,并明确论证的理论根据,如果学生不会证明,那么以“可否类比着平行线等分线段定理的证法?”引导,而后指定学生进行证明。

高中数学人教A版选修-创新应用教学案: 第一讲 第节 第课时 圆的极坐标方程含答案

高中数学人教A版选修-创新应用教学案: 第一讲 第节 第课时 圆的极坐标方程含答案
2
角形中实现,找出这样的三角形便形成了解题的关键.
1.设 M 是定圆 O 内一定点,任作半径 OA,连接 MA,过 M 作 MP⊥MA 交 OA 于 P, 求 P 点的轨迹方程.
解:
以 O 为极点,射线 OM 为极轴,建立极坐标系,如图. 设定圆 O 的半径为 r,OM=a,P(ρ,θ)是轨迹上任意一点. ∵MP⊥MA,∴|MA|2+|MP|2= |PA|2.由余弦定理,可知|MA|2=a2+r2-2arcos θ,|MP|2=a2+ρ2-2aρcos θ.而|PA|=r -ρ,由此可得 a2+r2-2arcos θ+a2+ρ2-2aρcos θ=(r-ρ)2.
π 答案:ρ2-4ρcos (θ- )-1=0
3
7. (天 津 高 考 )已 知 圆 的 极 坐 标 方 程 为 ρ= 4cos θ , 圆 心 为 C, 点 P 的 极 坐 标 为
( )π
4, 3 ,则|CP|=________. 解析:圆 ρ=4cos θ的直角坐标方程为 x2+y2=4x,圆心 C(2,0).点 P 的直角坐标为
构造形如 ρcos θ,ρsin θ,ρ2 的形式,进行整体代换.其中方程的两边同乘以(或同除
以)ρ 及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注
意对变形过程的检验.
( )π
3.把极坐标方程 ρcos θ- 6 =1 化为直角坐标方程.
π
3
1
解:由 ρcos (θ- 6 )=1 得
(3)ρcos2 =1;(4)ρ2cos 2θ=4;(5)ρ=
2
2-cos
θ.
[精讲详析] 本题考查极坐标与直角坐标的互化公式.
(1)将 x=ρcos θ,y=ρsin θ代入 y2=4x,

高中数学人教A版选修4-1 (18)

高中数学人教A版选修4-1 (18)

三相似三角形的判定及性质1 相似三角形的判定课标解读1.了解三角形相似的定义.2.掌握相似三角形的判定定理,以及直角三角形相似的判定方法.1.相似三角形的有关概念(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.(2)相似比:相似三角形对应边的比值叫做相似比(或相似系数).2.预备定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3.相似三角形的判定定理名称定理内容判定定理1对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.两角对应相等,判定定理2对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.两边对应成比例似.判定对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条三边对应成比例如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.5.直角三角形相似的判定(1)上述所有的任意三角形相似的判定适用于直角三角形.(2)定理1:如果两个直角三角形有一个锐角对应相等,那么它们相似.(3)定理2:如果两个直角三角形的两条直角边对应成比例,那么它们相似.(4)定理3:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.1.用符号表示相似三角形时,应注意哪些问题?【提示】 (1)用符号表示相似三角形时,在两个相似三角形中,三边对应成比例,即==,每个比的前项是同一个三角形的三条边,而比的后项分别是另一个三角形的对应边,它们的位置不能写错.(2)用符号表示相似三角形时,对应顶点的字母写在对应的位置上,这样可以很快地找到相似三角形的对应角或对应边.如若△ABC∽△DEF,则∠A=∠D,∠B=∠E,∠C=∠F,==.2.三角形相似的判定定理一是最常用的判断方法,使用此判定方法解题的常用基本图形有哪几种?【提示】 (1)平行线型:(2)相交线型:(3)旋转型:3.直角三角形斜边上的高分成的两个直角三角形与原三角形是什么关系?【提示】 分成的两个直角三角形与原三角形相似.相似三角形的判定 如图1-3-1,已知==,求证:△ABD∽△ACE.图1-3-1【思路探究】 由于已知=,得=,则要证明△ABD∽△ACE,只需证明∠DAB=∠EAC即可.【自主解答】 因为==,所以△ABC∽△ADE.所以∠BAC=∠EAD,∠BAC-∠DAC=∠EAD-∠DAC,即∠DAB=∠EAC.又=,即=,所以△ABD∽△ACE.1.本题中,∠DAB与∠EAC的相等关系不易直接找到,这里用∠BAC=∠EAD,在∠BAC和∠EAD中分别减去同一个角∠DAC,间接证明.2.判定两个三角形相似时,关键是分析已知哪些边对应成比例,哪些角对应相等,根据三角形相似的判定定理,还缺少什么条件就推导出这些条件.图1-3-2 如图1-3-2,已知在△ABC中,AB=AC,∠A=36°,BD是角平分线,证明:△ABC∽△BCD.【证明】 ∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°∴∠A=∠CBD.又∵∠C=∠C,∴△ABC∽△BCD.证明线段成比例 如图1-3-3,已知△ABC中,∠BAC=90°,AD⊥BC于D,E是AC的中点,连接ED并延长与AB的延长线交于F.求证:=.图1-3-3【思路探究】 由条件知:AB∶AC=BD∶AD,转证BD∶AD=DF∶AF,变为证△FAD∽△FDB.其中BD∶AD正是两对相似三角形的中间比.【自主解答】 ∵∠BAC=90°,AD⊥BC,∴∠C=∠BAD,Rt△ADB∽Rt△CDA.∴AB∶AC=BD∶AD.又∵E是AC的中点,∴AE=DE=EC,∴∠DAE=∠ADE,∴∠BAD=∠BDF.又∠F=∠F,∴△FDB∽△FAD.∴BD∶AD=DF∶AF,即AB∶AC=DF∶AF.1.本题根据=,把欲证明的问题转化为证明=是解题的关键.2.求证的成比例线段所在的三角形不相似时,应考虑用中间比过渡,也就是转证其他三角形相似,得到比例线段,最后得证结论.(2013·郑洲模拟)已知如图1-3-4,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.图1-3-4【证明】 在正方形ABCD中,∵Q是CD的中点,∴=2.∵=3,∴=4.又BC=2DQ,∴=2.在△ADQ和△QCP中,=,∠C=∠D=90°,∴△ADQ∽△QCP.证明两直线平行 如图1-3-5,D为△ABC的边AB上一点,过D点作DE∥BC,DF∥AC,AF交DE于G,BE交DF于H,连接GH.图1-3-5求证:GH∥AB.【思路探究】 结合图形的特点可以先证比例式=成立,再证△EGH∽△EDB,由此得∠EHG=∠EBD即可.【自主解答】 ∵DE∥BC,∴==,即=,又∵DF∥AC,∴=.∵=,∴=,又∠GEH=∠DEB,∴△EGH∽△EDB,∴∠EHG=∠EBD,∴GH∥AB.1.由平行线可以得到比例式,由比例式也可以确定两直线的平行关系.2.证明平行关系时,可以由引理找到比例式得证,也可以使用平行线的其他判定方法.图1-3-6 如图1-3-6,在平行四边形ABCD中,直线EF∥AB,在EF上任取两点E、F,连接AE、BF、DE、CF,分别交于G、H,连接GH.求证:GH∥BC.【证明】 ∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD.又∵EF∥AB,∴AB∥EF∥CD,∴△BAG∽△FEG,△DCH∽△EFH,∴=,=,∴=,∴GH∥BC.(教材第19页习题1.3第7题)如图1-3-7,△ABC是钝角三角形,AD、BE、CF分别是△ABC的三条高,求证:AD·BC=BE·AC.图1-3-7(2011·陕西高考)如图1-3-8,∠B=∠D,AE⊥BC,∠ACD =90°,且AB=6,AC=4,AD=12,则AE=________.图1-3-8【命题意图】 本题依托三角形求值问题,主要考查相似三角形的判定,同时考查了学生的计算能力.【解析】 由∠B=∠D,AE⊥BC及∠ACD=90°可以推得:Rt△ABE∽Rt△ADC,故=∴AE==2.【答案】 2图1-3-91.如图1-3-9所示,在△ABC中,FD∥GE∥BC,则与△AFD相似的三角形有( ) A.1个 B.2个C.3个D.4个【解析】 ∵FD∥GE∥BC,∴△AFD∽△AGE∽△ABC.【答案】 B2.给出下列四个命题:①三边对应成比例的两个三角形相似;②一个角对应相等的两个直角三角形相似;③一个锐角对应相等的两个直角三角形相似;④一个角对应相等的两个等腰三角形相似.其中正确的命题是( )A.①③B.①④C.①②④D.①③④【解析】 ①③都是判定定理,显然正确,②中若相等的角是直角,则不一定相似,故不正确.④中,若相等的角在一个三角形中是顶角,在另一个三角形中是底角,则不一定相似,故不正确.【答案】 A3.如图1-3-10所示,DE与BC不平行,当=________时,△ABC∽△AED.图1-3-10【解析】 △ABC与△AED有一个公共角∠A,当∠A的两夹边对应成比例,即=时,这两个三角形相似.【答案】 4.如图1-3-11所示,在△ABC中,∠ACB=90°,CD⊥AB,AC=6,AD=3,则AB =________.图1-3-11【解析】 在△ACD和△ABC中,∠A=∠A,∠ADC=∠ACB=90°.∴△ACD∽△ABC,∴=,∴=,∴AB=12.【答案】 12一、选择题1.图1-3-12如图1-3-12,每个大正方形均由边长为1的小正方形组成,则下列图中的三角形(阴影部分)与△ABC相似的是( )【解析】 △ABC中,AB=,BC=2,∠ABC=135°.选项A的三角形,有一个内角为135°,且该角的两边长分别为1和,根据相似三角形的判定定理2知,两三角形相似,故选A.【答案】 A图1-3-132.如图1-3-13,在△ABC中,M在BC上,N在AM上,CM=CN,且=,下列结论中正确的是( )A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA【解析】 ∵CM=CN,∴∠CMN=∠CNM,∵∠AMB=∠CNM+∠MCN,∠ANC=∠CMN+∠MCN,∴∠AMB=∠ANC.又=,∴△ANC∽△AMB.【答案】 B图1-3-143.如图1-3-14,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于( )A. B.C. D.【解析】 ∵AF⊥DE,∴Rt△DAO∽Rt△DEA,∴==.【答案】 D图1-3-154.如图1-3-15所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=2,则CF的长为( )A.4 B.4.5C.5 D.6【解析】 ∵E、F分别是△ABC中AC、AB边的中点,∴FE∥BC,由相似三角形的预备定理,得△FEG∽△CBG,∴==.又FG=2,∴GC=4,∴CF=6.【答案】 D二、填空题图1-3-165.(2013·洛阳模拟)如图1-3-16,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=________.【解析】 由于∠B=∠D,∠AEB=∠ACD,所以△AEB∽△ACD,从而得=,所以AE==2.【答案】 2图1-3-176.如图1-3-17,在平行四边形ABCD中,E在DC上,若DE∶EC=1∶2,则BF∶BE =________.【解析】 ∵DE∶EC=1∶2,∴DC∶EC=3∶2,∴AB∶EC=3∶2.∵AB∥EC,∴△ABF∽△CEF,∴==,∴=.【答案】 3∶5图1-3-18三、解答题7.如图1-3-18所示,四边形ABCD是平行四边形,AE⊥BC于E,AF⊥CD于F.求证:(1)△ABE∽△ADF;(2)△EAF∽△ABC.【证明】 (1)由题意可知,∠D=∠B,∠AEB=∠AFD=90°,∴△ABE∽△ADF.(2)由(1)知△ABE∽△ADF,∴=,∠BAE=∠DAF,又AD=BC,∴=.∵AF⊥CD,CD∥AB,∴AB⊥AF.∴∠BAE+∠EAF=90°.又∵AE⊥BC,∴∠BAE+∠B=90°∵∠EAF=∠B,∴△ABC∽△EAF.图1-3-198.已知如图1-3-19,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF ∥AB,延长BP交AC于E,交CF于点F.求证:BP2=PE·PF.【证明】 连接PC.∵AB=AC,∴∠ABC=∠ACB.∵AD是中线,∴AD垂直平分BC,∴PB=PC,∴∠PBD=∠PCD.∴∠ABP=∠ACP.又∵CF∥AB,∴∠ABP=∠F=∠ACP,而∠CPE=∠FPC.∴△PCE∽△PFC.∴=,∴PC2=PE·PF,即BP2=PE·PF.图1-3-209.如图1-3-20,某市经济开发区建有B、C、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,B、C两厂之间的公路与自来水主管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负责修建,每米造价800元.(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计?并在图中画出该路线;(2)求出各厂所修建的自来水管道的最低造价各是多少元?【解】 (1)如图,过B,C,D分别作AN的垂线段BH,CF,DG交AN于H,F,G,BH,CF,DG即为所求的造价最低的管道路线.(2)在Rt△ABE中,AB=900米,BE=1 700-500=1 200米,∴AE==1 500(米),由△ABE∽△CFE,得到=,即=,可得CF=300(米).由△BHE∽△CFE,得=,即=,可得BH=720(米).由△ABE∽△DGA,得=,即=,可得DG=1020(米).所以,B,C,D三厂所建自来水管道的最低造价分别是720×800=576 000(元),300×800=240 000(元),1 020×800=816 000(元).10.如图,△ABC中,D是BC的中点,M是AD上一点,BM,CM的延长线分别交AC,AB于F,E两点.求证:EF∥BC.【证明】 法一 延长AD至G,使DG=MD,连接BG,CG,如右图所示.∵BD=DC,MD=DG,∴四边形BGCM为平行四边形.∵EC∥BG,FB∥CG.∴=,=.∴=,∵EF∥BC.法二 过点A作BC的平行线,与BF,CE的延长线分别交于G,H两点,如图所示.∵AH∥DC,AG∥BD,∴=,=.∴=.∵BD=DC,∴AH=AG.∵HG∥BC,∴=,=.∵AH=AG,∴=.∴EF∥BC.法三 过点M作BC的平行线,分别与AB,AC交于G,H两点,如右图所示.则=,=.∴=.∵BD=DC,∴GM=MH.∵GH∥BC,∴=,=.∵GM=MH,∴=.∴EF∥BC.。

2017-2018学年高中数学人教A版选修4-1创新应用教学案:第一讲 知识归纳与达标验收 Word版含答案

2017-2018学年高中数学人教A版选修4-1创新应用教学案:第一讲 知识归纳与达标验收 Word版含答案

【人教A 版】2017-2018学年高中数学选修4-1创新应用教学案[对应学生用书P16]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.1.如图,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E ,F 分别为AD ,BC 上的点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.解析:由CD =2,AB =4,EF =3, 得EF =12(CD +AB ),∴EF 是梯形ABCD 的中位线,则梯形ABFE 与梯形EFCD 有相同的高,设为h , 于是两梯形的面积比为 12(3+4)h ∶12(2+3)h =7∶5. 答案:7∶52.如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB=3AD ,则CEEO的值为________.解析:连接AC ,BC ,则∠ACB =90°. 设AD =2,则AB =6,于是BD =4,OD =1.如图,由射影定理得CD 2=AD ·BD =8,则CD =2 2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=223.则CE =DC 2-DE 2= 8-89=83, EO =OC -CE =3-83=13.因此CE EO =8313=8.答案:8[对应学生用书P16]平行线分线段相关定理线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC . 求证:EG ∥BH . [证明] ∵DE ∥BC , ∴AE AC =AD AB. ∵DH ∥GC ,∴AH AC =ADAG .∴AE ·AB =AC ·AD =AH ·AG . ∴AE AH =AGAB.∴EG ∥BH . [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且AF =13AB ,BD =52BC ,试求ECAE.[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC 于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =ECAE, 两式相乘,得BF CN ·CN AF =DB DC ·ECAE ,即EC AE =BF AF ·DC DB. 又由AF =13AB ,得BFAF =2,由BD =52BC ,得DC DB =35,所以EC AE =2×35=65.相似三角形的判定与性质常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例3] 如图所示,AD 、CF 是△ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线与AC 交于点Q .求证:PQ =CF .[证明] ∵AD 、CF 是△ABC 的两条高线, ∴∠ADB =∠BFC =90°. 又∠B =∠B ,∴△ABD ∽△CBF . ∴AD CF =ABCB. 又∵PQ ∥BC ,∴△APQ ∽△ABC . ∴PQ BC =AP AB .∴AP PQ =AB BC .∴AD CF =AP PQ. 又∵AP =AD ,∴CF =PQ .[例4] 四边形ABCD 中,AB ∥CD ,CE 平分∠B CD ,CE ⊥AD 于点E ,DE =2AE ,若△CED 的面积为1,求四边形ABCE 的面积.[解] 如图,延长CB 、DA 交于点F ,又CE 平分∠BCD ,CE ⊥AD .∴△FCD 为等腰三角形,E 为FD 的中点. ∴S △FCD =12FD ·CE=12×2ED ·CE =2S △CED =2, EF =ED =2AE . ∴F A =AE =14FD .又∵AB ∥CD , ∴△FBA ∽△FCD . ∴S △FBA S △FCD =(F A FD)2=(14)2=116.∴S △FBA =116×S △FCD =18. ∴S 四边形ABCE =S △FCD -S △CED -S △FBA =2-1-18=78.射影定理为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错.[例5] 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC 于E ,EF ⊥AB于F .求证:CE 2=BD ·DF .[证明] ∵∠ACB =90°,DE ⊥AC , ∴DE ∥BC .∴BD CE =AB AC .同理:CD ∥EF ,∴CE DF =ACAD .∵∠ACB =90°,CD ⊥AB , ∴AC 2=AD ·AB . ∴AC AD =ABAC . ∴CE DF =BD CE. ∴CE 2=BD ·DF .[对应学生用书P41] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥BB ′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A .AB =2A ′B ′ B .3A ′B ′=B ′C ′ C .BC =B ′C ′D .AB =A ′B ′解析:∵AA ′∥BB ′∥CC ′,∴AB BC =A ′B ′B ′C ′=13.∴3A ′B ′=B ′C ′. 答案:B2.如图,∠ACB =90°.CD ⊥AB 于D ,AD =3、CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4C.3∶ 2D.2∶ 3解析:Rt △ACD ∽Rt △CBD ,∴AC BC =AD CD =32.答案:A3.在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC = 2 cm ,则CD 和BC的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm 解析:设AD =x ,则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm). 答案:D4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC=5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2= 2524-52=5212. ∵DE AB =DC BC ,∴DE =2215. 答案:A5.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC ;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .4解析:①由∠B =∠ACD ,再加上公共角∠A =∠A ,可得两个三角形相似;②由∠ADC =∠ACB ,再加上公共角∠A =∠A ,可得两个三角形相似;③AC CD =ABBC ,而夹角不一定相等,所以两个三角形不一定相似;④AC 2=AD ·AB 可得AC AD =ABAC,再加上公共角∠A =∠A ,可得两个三角形相似.答案:C6.如图,DE ∥BC ,S △ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:由S △ADE ∶S 四边形DBCE =1∶8 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴(ADAB )2=S △ADE S △ABC =19. ∴AD AB =13,AD DB =12. 答案:C7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( ) A .∠A =∠D =45°38′,∠C =26°22′,∠E =108° B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =c D .AB =AC ,DE =DF ,∠A =∠D =40° 解析:A 中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ; D 中AB AC =DEDF,∠A =∠D , ∴△ABC ∽△DEF ;而C 中不能保证三边对应成比例. 答案:C8.在Rt △ACB 中,∠C =90°.CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( ) A.14B.13C.12D .2解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶4. 令BD =x ,则AD =4x (x >0), ∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12. 答案:C9.在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE 、BE 、BD 且AE 、BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25解析:∵AB ∥CD , ∴△ABF ∽△EDF . ∴DE AB =DF FB =25. ∴S △DEF S △ABF =(25)2=425.又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. 答案:A10.如图,已知a ∥b ,AF BF =35,BCCD =3.则AE ∶EC =( )A.125 B.512 C.75D.57解析:∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125. ∴AE EC =AG CD =125. 答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.如图,D ,E 分别是△ABC 边AB ,AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE 的周长∶△ABC 的周长等于________.解析:∵DE ∥BC ,∴△ADE ∽△ABC . ∵BD =2AD ,∴AB =3AD .∴AD AB =13. ∴△ADE 的周长△ABC 的周长=AD AB =13.答案:1312.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析:∵DE ∥BC , ∴DE BC =AE AC ,∴BC =DE ·AC AE =6×53=10, 又DF ∥AC ,∴DE =FC =6. ∴BF =BC -FC =4. 答案:413.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO 与DE 、BC 分别交于N 、M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:OD OC =DN MC =14,∴OE OB =OD OC =14. ∴NE BM =OE OB =14. 又DE BC =OD OC =14, ∴AE AC =DE BC =14. ∴AE ∶EC =1∶3. 答案:1∶4 1∶314.阳光通过窗口照到室内,在地面上留下2.7 m 宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE =8.7 m ,窗口高AB =1.8 m ,那么窗口底边离地面的高BC 等于________m.解析:∵BD ∥AE ,∴BCAB =CDDE .∴BC =AB ·CDDE.∵AB =1.8 m ,DE =2.7 m ,CE =8.7 m , ∴CD =CE -DE =8.7-2.7=6(m). ∴BC =1.8×62.7=4(m).答案:4三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB 和∠ADC 的平分线分别交AB 、AC 于点M 、N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC .∵BD =DC , ∴AM MB =AD BD =AD DC =AN NC. ∴MN ∥BC .16.(本小题满分12分)如图,已知:△ABC 中,AB =AC ,AD 是中线,P 是AD上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F ,求证:BP 2=PE ·PF .证明:连接PC ,∵AB =AC ,AD 是中线, ∴AD 是△ABC 的对称轴, 故PC =PB , ∠PCE =∠ABP . ∵CF ∥AB , ∴∠PFC =∠ABP , 故∠PCE =∠PFC ,∵∠CPE =∠FPC , ∴△EPC ∽△CPF , 故PC PF =PE PC, 即PC 2=PE ·PF , ∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB 、DC 于E 、F ,交DA 、BC 的延长线于G 、H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F 、H 、C 重合时,请判断PE 、PC 、PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD .∵AD ∥BC ,∴PH PG =PBPD ,∴PE PF =PHPG.∴PE ·PG =PH ·PF . (2)关系式为PC 2=PE ·PG .证明:由题意可得到右图, ∵AB ∥CD , ∴PE PC =PBPD. ∵AD ∥BC ,∴PC PG =PBPD .∴PE PC =PCPG,即PC 2=PE ·PG . 18.(本小题满分14分)某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 m 、20 m 的梯形空地上种植花木(如图).(1)他们在△AMD 和△BMC 地带上种植太阳花,单位为8元/m 2,当△AMD 地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC 地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?解:(1)∵四边形ABCD 为梯形,∴AD ∥BC . ∴△AMD ∽△CMB ,∴S △AMD S △CMB =(AD BC )2=14.∵种植△AMD 地带花费160元, ∴S △AMD =1608=20(m 2).∴S △CMB =80(m 2).∴△CMB地带的花费为80×8=640元.(2)S△ABMS△AMD =BMDM=BCAD=2,∴S△ABM=2S△AMD=40(m2).同理:S△DMC=40(m2).所剩资金为:1600-160-640=800元,而800÷(S△ABM+S△DMC)=10(元/m2).故种植茉莉花刚好用完所筹集的资金.11。

推荐学习K122018-2019学年高中数学人教A版选修4-4学案:第一讲本讲知识归纳与达标验收-含

推荐学习K122018-2019学年高中数学人教A版选修4-4学案:第一讲本讲知识归纳与达标验收-含

[对应学生用书P13]考情分析通过对近几年新课标区高考试题的分析可知,高考对本讲的考查集在考查极坐标方程、极坐标与直角坐标的互化等.预计今后的高考中,仍以考查圆、直线的极坐标方程为主.真题体验1.(安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcos θ=2B.θ=π2(ρ∈R)和ρcos θ=2C.θ=π2(ρ∈R)和ρcos θ=1D.θ=0(ρ∈R)和ρcos θ=1解析:由题意可知,圆ρ=2cos θ可化为普通方程为(x-1)2+y2=1.所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=π2(ρ∈R)和ρcos θ=2,故选B.答案:B2.(安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R)的距离是________.解析:将ρ=4sin θ化成直角坐标方程为x2+y2=4y,即x2+(y-2)2=4,圆心为(0,2).将θ=π6(ρ∈R)化成直角坐标方程为x-3y=0,由点到直线的距离公式可知圆心到直线的距离d =|0-23|2= 3.答案: 33.(江西高考)若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.解析:∵ρ=2sin θ+4cos θ,∴ρ2=2ρsin θ+4ρcos θ, ∴x 2+y 2=2y +4x ,即x 2+y 2-4x -2y =0. 答案:x 2+y 2-4x -2y =0.[对应学生用书P13]利用问题的几何特征,建立适当坐标系,主要就是兼顾到它们的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 已知正三角形ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值.[解] 以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立平面直角坐标系,如图,则A ⎝⎛⎭⎪⎫0,32a ,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0.设P (x ,y ),则|P A |2+|PB |2+|PC |2=x 2+⎝ ⎛⎭⎪⎫y -32a 2+⎝ ⎛⎭⎪⎫x +a 22+y 2+⎝ ⎛⎭⎪⎫x -a 22+y 2=3x 2+3y 2-3ay +5a 24=3x 2+3⎝⎛⎭⎪⎫y -36a 2+a 2≥a 2,当且仅当x =0,y =36a 时,等号成立.∴所求的最小值为a 2,此时P 点的坐标为P ⎝ ⎛⎭⎪⎫0,36a ,即为正三角形ABC的中心.设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0)y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.[解] 将⎩⎪⎨⎪⎧x ′=2x ,y ′=2y 代入(x ′-5)2+(y ′+6)2=1中,得(2x -5)2+(2y +6)2=1. 化简,得(x -52)2+(y +3)2=14.该曲线是以(52,-3)为圆心,半径为12的圆.θ)=0如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F (ρ,θ)=0为曲线C 的极坐标方程.由于平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处,一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.求轨迹方程的方法有直接法、定义法、相关点代入法,在极坐标中仍然适用,注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC 底边BC =10,∠A =12∠B ,以B 为极点,BC 为极轴,建立极坐标系,求顶点A 的轨迹的极坐标方程.[解] 如图:令A (ρ,θ), △ABC 内,设∠B =θ,∠A =θ2, 又|BC |=10,|AB |=ρ. 由正弦定理,得ρsin (π-3θ2)=10sin θ2, 化简,得A 点轨迹的极坐标方程为ρ=10+20cos θ.互化的前提依旧是把直角坐标系的原点作为极点,x 轴的正半轴作为极轴并在两种坐标系下取相同的单位长度.互化公式为x =ρcos θ,y =ρsin θρ2=x 2+y 2,tan θ=yx (x ≠0)直角坐标方程化极坐标方程可直接将x =ρcos θ,y =ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x ,y 代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] (天津高考)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.[解析] 由于圆和直线的直角坐标方程分别为x 2+y 2=4y 和y =a ,它们相交于A ,B 两点,△AOB 为等边三角形,所以不妨取直线OB 的方程为y =3x ,联立⎩⎪⎨⎪⎧x 2+y 2=4y ,y =3x ,消去y ,得x 2=3x ,解得x =3或x =0,所以y =3x =3,即a =3.[答案] 3[例5] 在极坐标系中,点M 坐标是(2,π3),曲线C 的方程为ρ=22sin(θ+π4); 以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 经过点M 和极点.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (2)直线l 和曲线C 相交于两点A 、B ,求线段AB 的长. [解] (1)∵直线l 过点M (2,π3)和极点, ∴直线l 的直角坐标方程是θ=π3(ρ∈R ). ρ=22sin(θ+π4)即ρ=2(sin θ+cos θ), 两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ), ∴曲线C 的直角坐标方程为x 2+y 2-2x -2y =0. (2)点M 的直角坐标为(1,3),直线l 过点M 和原点, ∴直线l 的直角坐标方程为y =3x .曲线C 的圆心坐标为(1,1),半径r =2,圆心到直线l 的距离为d =3-12,∴|AB |=3+1.[对应学生用书P35] (时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M 的极坐标为(1,π),则它的直角坐标是( ) A .(1,0) B .(-1,0) C .(0,1)D .(0,-1)解析:x =1×cos π=-1,y =1×sin π=0, 即直角坐标是(-1,0). 答案:B2.已知曲线C 的极坐标方程ρ=2cos 2θ,给定两点P (0,π2),Q (2,π),则有( )A .P 在曲线C 上,Q 不在曲线C 上B .P 、Q 都不在曲线C 上C .P 不在曲线C 上,Q 在曲线C 上D .P 、Q 都在曲线C 上解析:当θ=π2时,ρ=2cos π=-2≠0,故点P 不在曲线上;当θ=π时,ρ=2cos 2π=2,故点Q 在曲线上.答案:C3.点P 的柱坐标为⎝ ⎛⎭⎪⎫16,π3,5,则其直角坐标为( )A.()5,8,83B.()8,83,5C.()83,8,5D.()4,83,5解析:∵ρ=16,θ=π3,z =5,∴x =ρcos θ=8,y =ρsin θ=83,z =5, ∴点P 的直角坐标是(8,83,5). 答案:B4.在同一坐标系中,将曲线y =2sin 3x 变为曲线y =sin x 的伸缩变换是( ) A.⎩⎪⎨⎪⎧x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12y C.⎩⎨⎧x =3x ′y =2y ′D.⎩⎨⎧x ′=3x y ′=2y解析:将⎩⎪⎨⎪⎧x ′=λxy ′=μy 代入y =sin x ,得μy =sin λx ,即y =1μsin λx ,与y =2sin 3x 比较,得μ=12,λ=3,即变换公式为⎩⎨⎧x ′=3x ,y ′=12y .答案:B5.曲线ρ=5与θ=π4的交点的极坐标写法可以有( ) A .1个 B .2个 C .4个D .无数个解析:由极坐标的定义易知有无数个. 答案:D6.在极坐标系中,过点A (6,π)作圆ρ=-4cos θ的切线,则切线长为( ) A .2 B .6 C .2 3D .215解析:圆ρ=-4cos θ化为(x +2)2+y 2=4,点(6,π)化为(-6,0),所以切线长=42-22=12=2 3.答案:C7.极坐标方程ρ=cos θ与ρcos θ=12的图形是( )解析:把ρcos θ=12化为直角坐标方程,得x =12,把ρ=cos θ代为直角坐标方程,得x 2+y 2-x =0,即其圆心为⎝ ⎛⎭⎪⎫12,0,半径为12,故选项B 正确.答案:B8.极坐标方程θ=π3,θ=23π(ρ>0)和ρ=4所表示的曲线围成的图形面积是( )A.163πB.83πC.43πD.23π解析:三条曲线围成一个扇形, 半径为4,圆心角为2π3-π3=π3. ∴扇形面积为:12×4×π3×4=8π3. 答案:B9.在极坐标系中,曲线ρ=4sin(θ-π3)关于( ) A .线θ=π3轴对称B .线θ=5π6轴对称C .(2,π3)中心对称D .极点中心对称解析:ρ=4sin(θ-π3)可化为ρ=4cos(θ-5π6),可知此曲线是以(2,5π6)为圆心的圆,故圆关于θ=5π6对称.答案:B10.在极坐标系中有如下三个结论:①点P 在曲线C 上,则点P 的极坐标满足曲线C 的极坐标方程;②tan θ=1与θ=π4表示同一条曲线;③ρ=3与ρ=-3表示同一条曲线.在这三个结论中正确的是( )A .①③B .①C .②③D .③解析:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,但在极坐标系内,曲线上所有点的坐标不一定适合方程,故①是错误的;tan θ=1不仅表示θ=π4这条射线,还表示θ=5π4这条射线,故②亦不对;ρ=3与ρ=-3差别仅在于方向不同,但都表示一个半径为3的圆,故③正确.答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.(天津高考)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP |=________. 解析:由圆的极坐标方程为ρ=4cos θ,得圆心C 的直角坐标为(2,0),点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 312.点A 的直角坐标为⎝ ⎛⎭⎪⎫332,92,3,则它的球坐标为________.解析:r =⎝ ⎛⎭⎪⎫3322+⎝ ⎛⎭⎪⎫922+32=6.cos φ=36=12,∴φ=π3. tan θ=92332=3,∴θ=π3.∴它的球坐标为⎝ ⎛⎭⎪⎫6,π3,π3.答案:⎝ ⎛⎭⎪⎫6,π3,π313.在极坐标系中,点A ⎝ ⎛⎭⎪⎫2,π2关于直线l :ρcos θ=1的对称点的一个极坐标为________.解析:由直线l 的方程可知直线l 过点(1,0)且与极轴垂直,设A ′是点A 关于l 的对称点,则四边OBA ′A 是正方形,∠BOA ′=π4,且OA ′=22,故A ′的极坐标可以是⎝ ⎛⎭⎪⎫22,π4. 答案:⎝ ⎛⎭⎪⎫22,π414.从极点作圆ρ=2a cos θ的弦,则各条弦中点的轨迹方程为________. 解析:数形结合,易知所求轨迹是以⎝ ⎛⎭⎪⎫a 2,0为圆心,a 2为半径的圆,求得方程是ρ=a cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2. 答案:ρ=a cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)(辽宁高考改编)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1, 即曲线C 的方程为x 2+y 24=1. 由⎩⎨⎧ x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ. 16.(本小题满分12分)极坐标方程ρ=-2cos θ与ρcos(θ+π3)=1表示的两个图形的位置关系是什么?解:ρ=-2cos θ可变为ρ2=-2ρcos θ,化为普通方程为x 2+y 2=-2x即(x +1)2+y 2=1它表示圆,圆心为(-1,0),半径为1.将ρcos(θ+π3)=1化为普通方程为x -3y -2=0.∵圆心(-1,0)到直线的距离为|-1-2|1+3=32>1 ∴直线与圆相离.17.(本小题满分12分)把下列极坐标方程化为直角坐标方程并说明表示什么曲线.(1)ρ=2a cos θ(a >0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.解:(1)ρ=2a cos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x 2+y 2=2ax .整理得x 2+y 2-2ax =0,即(x -a )2+y 2=a 2.是以(a,0)为圆心,a 为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x 2+y 2=9x +9y ,又可化为(x -92)2+(y -92)2=812,是以(92,92)为圆心,922为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x 2+y 2=16.是以原点为圆心,4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x -3y =5,是一条直线.18.(本小题满分14分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,得M (2,0);当θ=π2时,ρ=233,得N ⎝ ⎛⎭⎪⎫233,π2. (2)M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝ ⎛⎭⎪⎫233,π6. 所以直线OP 的极坐标方程为θ=π6,ρ∈R .。

[推荐学习]2018-2019学年高中数学人教A版选修4-1学案创新应用:第一讲四直角三角形的射影定

[推荐学习]2018-2019学年高中数学人教A版选修4-1学案创新应用:第一讲四直角三角形的射影定

四直角三角形的射影定理[对应学生用书P14]1.射影(1)点在直线上的正射影:从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影.(2)线段在直线上的正射影:线段的两个端点在这条直线上的正射影间的线段.(3)射影:点和线段的正射影简称为射影.2.射影定理(1)文字语言:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.(2)图形语言:如图,在Rt△ABC中,CD为斜边AB上的高,则有CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.[对应学生用书P14][例1]如图,在Rt△ABC中,CD为斜边AB上的高,若AD=2 cm,DB=6 cm,求CD,AC,BC的长.[思路点拨]在直角三角形内求线段的长度,可考虑使用勾股定理和射影定理.[解]∵CD2=AD·DB=2×6=12,∴CD=12=23(cm).∵AC2=AD·AB=2×(2+6)=16,∴AC=16=4(cm).∵BC 2=BD ·AB =6×(2+6)=48, ∴BC =48=43(cm).故CD 、AC 、BC 的长分别为2 3 cm,4 cm,4 3 cm.(1)在Rt △ABC 中,共有AC 、BC 、CD 、AD 、BD 和AB 六条线段,已知其中任意两条,便可求出其余四条.(2)射影定理中每个等积式中含三条线段,若已知两条可求出第三条.1.如图,在Rt △ABC 中,∠C =90°,CD 是AB 上的高.已知BD=4,AB =29,试求出图中其他未知线段的长.解:由射影定理,得BC 2=BD ·AB , ∴BC =BD ·AB =4×29=229. 又∵AD =AB -BD =29-4=25. 且AC 2=AB 2-BC 2, ∴AC =AB 2-BC 2=292-4×29=529.∵CD 2=AD ·BD ,∴CD =AD ·BD =25×4=10.2.已知:CD 是直角三角形ABC 斜边AB 上的高,如果两直角边AC ,BC 的长度比为AC ∶BC =3∶4.求:(1)AD ∶BD 的值; (2)若AB =25 cm ,求CD 的长. 解:(1)∵AC 2=AD ·AB , BC 2=BD ·AB , ∴AD ·AB BD ·AB =AC 2BC 2. ∴AD BD =(AC BC )2=( 34)2=916. (2)∵AB =25 cm ,AD ∶BD =9∶16, ∴AD =99+16×25=9(cm),BD=169+16×25=16(cm).∴CD=AD·BD=9×16=12(cm).[例2]DG⊥BE,F、G分别为垂足.求证:AF·AC=BG·BE.[思路点拨]先将图分解成两个基本图形(1)(2),再在简单的图形中利用射影定理证明所要的结论.[证明]∵CD垂直平分AB,∴△ACD和△BDE均为直角三角形,且AD=BD.又∵DF⊥AC,DG⊥BE,∴AF·AC=AD2,BG·BE=DB2.∵AD2=DB2,∴AF·AC=BG·BE.将原图分成两部分来看,就可以分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的.在求解此类问题时,关键就是把握基本图形,从所给图形中分离出基本图形进行求解或证明.3.如图所示,设CD是Rt△ABC的斜边AB上的高.求证:CA·CD=BC·AD.证明:由射影定理知:CD2=AD·BD,CA2=AD·AB,BC 2=BD ·AB .∴CA ·CD =AD 2·BD ·AB =AD ·BD ·AB , BC ·AD =AD ·AB ·BD . 即CA ·CD =BC ·AD .4.Rt △ABC 中有正方形DEFG ,点D 、G 分别在AB 、AC 上,E 、F 在斜边BC 上.求证:EF 2=BE ·FC .证明:过点A 作AH ⊥BC 于H .则DE ∥AH ∥GF . ∴DE AH =BE BH ,GF AH =FC CH . ∴DE ·GF AH 2=BE ·FC BH ·CH . 又∵AH 2=BH ·CH , ∴DE ·GF =BE ·FC . 而DE =GF =EF , ∴EF 2=BE ·FC .[对应学生用书P15]一、选择题1.已知Rt △ABC 中,斜边AB =5 cm ,BC =2 cm ,D 为AC 上一点,DE ⊥AB 交AB 于E ,且AD =3.2 cm ,则DE =( )A .1.24 cmB .1.26 cmC .1.28 cmD .1.3 cm解析:如图,∵∠A =∠A ,∴Rt △ADE ∽Rt △ABC , ∴AD AB =DE BC, DE =AD ·BC AB =3.2×25=1.28.答案:C2.已知直角三角形中两直角边的比为1∶2,则它们在斜边上的射影比为( ) A .1∶2 B .2∶1 C .1∶4D .4∶1解析:设直角三角形两直角边长分别为1和2,则斜边长为5,∴两直角边在斜边上的射影分别为15和45. 答案:C3.一个直角三角形的一条直角边为3 cm ,斜边上的高为2.4 cm ,则这个直角三角形的面积为( )A .7.2 cm 2B .6 cm 2C .12 cm 2D .24 cm 2解析:长为3 cm 的直角边在斜边上的射影为32-2.42=1.8(cm),由射影定理知斜边长为321.8=5(cm),∴三角形面积为12×5×2.4=6(cm 2).答案:B4.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若CD =6 cm ,AD ∶DB =1∶2,则AD 的值是( )A .6 cmB .3 2 cmC .18 cmD .3 6 cm解析:∵AD ∶DB =1∶2, ∴可设AD =t ,DB =2t . 又∵CD 2=AD ·DB ,∴36=t ·2t ,∴2t 2=36,∴t =32(cm),即AD =3 2 cm. 答案:B 二、填空题5.若等腰直角三角形的一条直角边长为1,则该三角形在直线l 上的射影的最大值为________.解析:射影的最大值即为等腰直角三角形的斜边长. 答案: 26.如图所示,四边形ABCD 是矩形,∠BEF =90°,①②③④这四个三角形能相似的是________.解析:因为四边形ABCD 为矩形, 所以∠A =∠D =90°.因为∠BEF =90°,所以∠1+∠2=90°. 因为∠2+∠3=90°,所以∠1=∠3. 所以△ABE ∽△DEF . 答案:①③7.在△ABC 中,∠A =90°,AD ⊥BC 于点D ,AD =6,BD =12,则CD =__________,AC =__________,AB 2∶AC 2=__________.解析:如图,AB 2=AD 2+BD 2,又AD =6,BD =12, ∴AB =6 5.由射影定理可得,AB 2=BD ·BC , ∴BC =AB 2BD=15.∴CD =BC -BD =15-12=3. 由射影定理可得,AC 2=CD ·BC , ∴AC =3×15=3 5. ∴AB 2AC 2=BD ·BC CD ·BC =BD CD =123=4. 答案:3 35 4∶1 三、解答题8.如图:在Rt △ABC 中,CD 是斜边AB 上的高,DE 是Rt △BCD 斜边BC 上的高,若BE =6,CE =2.求AD 的长是多少.解:因为在Rt △BCD 中,DE ⊥BC ,所以由射影定理可得:CD 2=CE ·BC , 所以CD 2=16,因为BD2=BE·BC,所以BD=6×8=4 3.因为在Rt△ABC中,∠ACB=90°,CD⊥AB,所以由射影定理可得:CD2=AD·BD,所以AD=CD 2BD =1643=433.9.如图,在△ABC中,CD⊥AB于D,且CD2=AD·BD,求证:∠ACB=90°.证明:∵CD⊥AB,∴∠CDA=∠BDC=90°.又∵CD2=AD·BD,即AD∶CD=CD∶BD,∴△ACD∽△CBD.∴∠CAD=∠BCD.又∵∠ACD+∠CAD=90°,∴∠ACB=∠ACD+∠BCD=∠ACD+∠CAD=90°.10.已知直角三角形周长为48 cm,一锐角平分线分对边为3∶5两部分.(1)求直角三角形的三边长;(2)求两直角边在斜边上的射影的长.解:(1)如图,设CD=3x,BD=5x,则BC=8x,过D作DE⊥AB,由题意可得,DE=3x,BE=4x,∴AE+AC+12x=48.又AE=AC,∴AC=24-6x,AB=24-2x.∴(24-6x)2+(8x)2=(24-2x)2,解得:x1=0(舍去),x2=2.∴AB=20,AC=12,BC=16,∴三边长分别为:20 cm,12 cm,16 cm.(2)作CF⊥AB于F点,∴AC2=AF·AB.∴AF=AC 2AB =12220=365(cm);同理:BF=BC 2AB =16220=645(cm).∴两直角边在斜边上的射影长分别为365cm,645cm.[对应学生用书P16]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.1.如图,在梯形ABCD中,AB∥CD,AB=4,CD=2,E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为________.解析:由CD=2,AB=4,EF=3,得EF=12(CD+AB),∴EF是梯形ABCD的中位线,则梯形ABFE与梯形EFCD有相同的高,设为h,于是两梯形的面积比为 12(3+4)h ∶12(2+3)h =7∶5. 答案:7∶52.如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为________.解析:连接AC ,BC ,则∠ACB =90°. 设AD =2,则AB =6, 于是BD =4,OD =1.如图,由射影定理得CD 2=AD ·BD =8,则CD =2 2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=223.则CE =DC 2-DE 2=8-89=83, EO =OC -CE =3-83=13.因此CE EO =8313=8.答案:8[对应学生用书P16]的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC . 求证:EG ∥BH .[证明] ∵DE ∥BC , ∴AE AC =AD AB. ∵DH ∥GC ,∴AH AC =ADAG .∴AE ·AB =AC ·AD =AH ·AG . ∴AE AH =AGAB.∴EG ∥BH . [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且AF =13AB ,BD =52BC ,试求EC AE.[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC 于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =EC AE,两式相乘,得BF CN ·CN AF =DB DC ·ECAE ,即EC AE =BF AF ·DC DB. 又由AF =13AB ,得BFAF =2,由BD =52BC ,得DC DB =35,所以EC AE =2×35=65.角关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例3] 如图所示,AD 、CF 是△ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线与AC 交于点Q .求证:PQ =CF .[证明] ∵AD 、CF 是△ABC 的两条高线, ∴∠ADB =∠BFC =90°. 又∠B =∠B ,∴△ABD ∽△CBF . ∴AD CF =AB CB. 又∵PQ ∥BC ,∴△APQ ∽△ABC . ∴PQ BC =AP AB .∴AP PQ =AB BC .∴AD CF =AP PQ . 又∵AP =AD ,∴CF =PQ .[例4] 四边形ABCD 中,AB ∥CD ,CE 平分∠BCD ,CE ⊥AD 于点E ,DE =2AE ,若△CED 的面积为1,求四边形ABCE 的面积.[解] 如图,延长CB 、DA 交于点F ,又CE 平分∠BCD ,CE ⊥AD .∴△FCD 为等腰三角形,E 为FD 的中点. ∴S △FCD =12FD ·CE=12×2ED ·CE =2S △CED =2, EF =ED =2AE . ∴F A =AE =14FD .又∵AB ∥CD , ∴△FBA ∽△FCD .∴S △FBAS △FCD =(F A FD )2=(14)2=116.∴S △FBA =116×S △FCD =18. ∴S 四边形ABCE =S △FCD -S △CED -S △FBA=2-1-18=78.系,此定理常作为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错.[例5] 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC于E ,EF ⊥AB 于F .求证:CE 2=BD ·DF .[证明] ∵∠ACB =90°,DE ⊥AC , ∴DE ∥BC .∴BD CE =AB AC .同理:CD ∥EF ,∴CE DF =AC AD. ∵∠ACB =90°,CD ⊥AB , ∴AC 2=AD ·AB . ∴AC AD =AB AC . ∴CE DF =BD CE . ∴CE 2=BD ·DF .[对应学生用书P41] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥BB ′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A .AB =2A ′B ′ B .3A ′B ′=B ′C ′ C .BC =B ′C ′D .AB =A ′B ′解析:∵AA ′∥BB ′∥CC ′,∴AB BC =A ′B ′B ′C ′=13.∴3A ′B ′=B ′C ′. 答案:B2.如图,∠ACB =90°.CD ⊥AB 于D ,AD =3、CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4 C.3∶ 2D.2∶ 3解析:Rt △ACD ∽Rt △CBD ,∴AC BC =AD CD =32.答案:A3.在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC =2 cm ,则CD 和BC 的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm 解析:设AD =x ,则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm).答案:D4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC =5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2=2524-52=5212. ∵DE AB =DC BC ,∴DE =2215. 答案:A5.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC ;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .4解析:①由∠B =∠ACD ,再加上公共角∠A =∠A ,可得两个三角形相似;②由∠ADC =∠ACB ,再加上公共角∠A =∠A ,可得两个三角形相似;③AC CD =ABBC ,而夹角不一定相等,所以两个三角形不一定相似;④AC 2=AD ·AB 可得AC AD =ABAC,再加上公共角∠A =∠A ,可得两个三角形相似.答案:C6.如图,DE ∥BC ,S △ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:由S △ADE ∶S 四边形DBCE =1∶8 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴(AD AB )2=S △ADE S △ABC =19. ∴AD AB =13,AD DB =12. 答案:C7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( )A .∠A =∠D =45°38′,∠C =26°22′,∠E =108°B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =cD .AB =AC ,DE =DF ,∠A =∠D =40° 解析:A 中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ; D 中AB AC =DEDF,∠A =∠D , ∴△ABC ∽△DEF ;而C 中不能保证三边对应成比例. 答案:C8.在Rt △ACB 中,∠C =90°.CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( ) A.14 B.13 C.12D .2解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶4. 令BD =x ,则AD =4x (x >0), ∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12.答案:C9.在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE 、BE 、BD 且AE 、BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25 解析:∵AB ∥CD , ∴△ABF ∽△EDF .∴DE AB =DF FB =25. ∴S △DEF S △ABF =(25)2=425.又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. 答案:A10.如图,已知a ∥b ,AF BF =35,BCCD =3.则AE ∶EC =( )A.125 B.512 C.75D.57解析:∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125. ∴AE EC =AG CD =125. 答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.如图,D ,E 分别是△ABC 边AB ,AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE 的周长∶△ABC 的周长等于________.解析:∵DE ∥BC ,∴△ADE ∽△ABC . ∵BD =2AD ,∴AB =3AD .∴AD AB =13.∴△ADE 的周长△ABC 的周长=AD AB =13.答案:1312.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5, DE =6,则BF =________.解析:∵DE ∥BC ,∴DE BC =AE AC ,∴BC =DE ·AC AE =6×53=10, 又DF ∥AC ,∴DE =FC =6. ∴BF =BC -FC =4. 答案:413.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO 与DE 、BC 分别交于N 、M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:OD OC =DN MC =14,∴OE OB =OD OC =14. ∴NE BM =OE OB =14. 又DE BC =OD OC =14, ∴AE AC =DE BC =14. ∴AE ∶EC =1∶3. 答案:1∶4 1∶314.阳光通过窗口照到室内,在地面上留下2.7 m 宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE =8.7 m ,窗口高AB =1.8 m ,那么窗口底边离地面的高BC 等于________m.解析:∵BD ∥AE ,∴BCAB =CDDE .∴BC =AB ·CD DE.∵AB =1.8 m ,DE =2.7 m ,CE =8.7 m , ∴CD =CE -DE =8.7-2.7=6(m). ∴BC =1.8×62.7=4(m).答案:4三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB和∠ADC 的平分线分别交AB 、AC 于点M 、N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC .∵BD =DC ,∴AM MB =AD BD =AD DC =AN NC . ∴MN ∥BC .16.(本小题满分12分)如图,已知:△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F ,求证:BP 2=PE ·PF .证明:连接PC , ∵AB =AC ,AD 是中线,∴AD 是△ABC 的对称轴, 故PC =PB , ∠PCE =∠ABP . ∵CF ∥AB ,∴∠PFC =∠ABP , 故∠PCE =∠PFC , ∵∠CPE =∠FPC , ∴△EPC ∽△CPF , 故PC PF =PE PC, 即PC 2=PE ·PF , ∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB 、DC 于E 、F ,交DA 、BC 的延长线于G 、H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F 、H 、C 重合时,请判断PE 、PC 、PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD .∵AD ∥BC ,∴PH PG =PBPD ,∴PE PF =PHPG.∴PE ·PG =PH ·PF . (2)关系式为PC 2=PE ·PG .证明:由题意可得到右图, ∵AB ∥CD , ∴PE PC =PB PD . ∵AD ∥BC ,∴PC PG =PB PD. ∴PE PC =PCPG,即PC 2=PE ·PG . 18.(本小题满分14分)某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 m 、20 m 的梯形空地上种植花木(如图).(1)他们在△AMD 和△BMC 地带上种植太阳花,单位为8元/m 2,当△AMD 地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC 地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?解:(1)∵四边形ABCD 为梯形,∴AD ∥BC . ∴△AMD ∽△CMB ,∴S △AMD S △CMB =(AD BC )2=14.∵种植△AMD 地带花费160元, ∴S △AMD =1608=20(m 2). ∴S △CMB =80(m 2).∴△CMB 地带的花费为80×8=640元. (2)S △ABMS △AMD =BM DM =BCAD =2, ∴S △ABM =2S △AMD =40(m 2). 同理:S △DMC =40(m 2).所剩资金为:1600-160-640=800元, 而800÷(S △ABM +S △DMC )=10(元/m 2). 故种植茉莉花刚好用完所筹集的资金.。

2018-2019学年高中数学人教A版选修4-4学案:第一讲 本讲知识归纳与达标验收 Word版含答案

2018-2019学年高中数学人教A版选修4-4学案:第一讲 本讲知识归纳与达标验收 Word版含答案

[对应学生用书P13]考情分析通过对近几年新课标区高考试题的分析可知,高考对本讲的考查集在考查极坐标方程、极坐标与直角坐标的互化等.预计今后的高考中,仍以考查圆、直线的极坐标方程为主.真题体验1.(安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcos θ=2B.θ=π2(ρ∈R)和ρcos θ=2C.θ=π2(ρ∈R)和ρcos θ=1D.θ=0(ρ∈R)和ρcos θ=1解析:由题意可知,圆ρ=2cos θ可化为普通方程为(x-1)2+y2=1.所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=π2(ρ∈R)和ρcos θ=2,故选B. 答案:B2.(安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R)的距离是________.解析:将ρ=4sin θ化成直角坐标方程为x2+y2=4y,即x2+(y-2)2=4,圆心为(0,2).将θ=π6(ρ∈R)化成直角坐标方程为x-3y=0,由点到直线的距离公式可知圆心到直线的距离d=|0-23|2= 3.答案: 33.(江西高考)若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.解析:∵ρ=2sin θ+4cos θ,∴ρ2=2ρsin θ+4ρcos θ, ∴x 2+y 2=2y +4x ,即x 2+y 2-4x -2y =0. 答案:x 2+y 2-4x -2y =0.[对应学生用书P13]利用问题的几何特征,建立适当坐标系,主要就是兼顾到它们的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 已知正三角形ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值.[解] 以BC 所在直线为x 轴,BC 的垂直平分线为y 轴,建立平面直角坐标系,如图,则A ⎝⎛⎭⎪⎫0,32a ,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0.设P (x ,y ),则|P A |2+|PB |2+|PC |2=x 2+⎝⎛⎭⎪⎫y -32a 2+⎝ ⎛⎭⎪⎫x +a 22+y 2+⎝ ⎛⎭⎪⎫x -a 22+y2=3x 2+3y 2-3ay +5a 24=3x 2+3⎝⎛⎭⎪⎫y -36a 2+a 2≥a 2,当且仅当x =0,y =36a 时,等号成立.∴所求的最小值为a 2,此时P 点的坐标为P ⎝⎛⎭⎪⎫0,36a ,即为正三角形ABC的中心.设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0)y ′=μ·y (μ>0)的作用下,点P (x ,y )对应点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.[解] 将⎩⎨⎧x ′=2x ,y ′=2y 代入(x ′-5)2+(y ′+6)2=1中,得(2x -5)2+(2y +6)2=1. 化简,得(x -52)2+(y +3)2=14.该曲线是以(52,-3)为圆心,半径为12的圆.θ)=0如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F (ρ,θ)=0为曲线C 的极坐标方程.由于平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处,一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.求轨迹方程的方法有直接法、定义法、相关点代入法,在极坐标中仍然适用,注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC 底边BC =10,∠A =12∠B ,以B 为极点,BC 为极轴,建立极坐标系,求顶点A 的轨迹的极坐标方程.[解] 如图:令A (ρ,θ), △ABC 内,设∠B =θ,∠A =θ2, 又|BC |=10,|AB |=ρ.由正弦定理,得ρsin (π-3θ2)=10sin θ2, 化简,得A 点轨迹的极坐标方程为ρ=10+20cos θ.互化的前提依旧是把直角坐标系的原点作为极点,x 轴的正半轴作为极轴并在两种坐标系下取相同的单位长度.互化公式为x =ρcos θ,y =ρsin θρ2=x 2+y 2,tan θ=yx (x ≠0)直角坐标方程化极坐标方程可直接将x =ρcos θ,y =ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x ,y 代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] (天津高考)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.[解析] 由于圆和直线的直角坐标方程分别为x 2+y 2=4y 和y =a ,它们相交于A ,B 两点,△AOB 为等边三角形,所以不妨取直线OB 的方程为y =3x ,联立⎩⎨⎧x 2+y 2=4y ,y =3x ,消去y ,得x 2=3x ,解得x =3或x =0,所以y =3x =3,即a =3.[答案] 3[例5] 在极坐标系中,点M 坐标是(2,π3),曲线C 的方程为ρ=22sin(θ+π4); 以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 经过点M和极点.(1)写出直线l的极坐标方程和曲线C的直角坐标方程;(2)直线l和曲线C相交于两点A、B,求线段AB的长.[解](1)∵直线l过点M(2,π3)和极点,∴直线l的直角坐标方程是θ=π3(ρ∈R).ρ=22sin(θ+π4)即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),∴曲线C的直角坐标方程为x2+y2-2x-2y=0.(2)点M的直角坐标为(1,3),直线l过点M和原点,∴直线l的直角坐标方程为y=3x.曲线C的圆心坐标为(1,1),半径r=2,圆心到直线l的距离为d=3-1 2,∴|AB|=3+1.[对应学生用书P35](时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点M的极坐标为(1,π),则它的直角坐标是()A.(1,0)B.(-1,0)C.(0,1) D.(0,-1)解析:x=1×cos π=-1,y=1×sin π=0,即直角坐标是(-1,0).答案:B2.已知曲线C 的极坐标方程ρ=2cos 2θ,给定两点P (0,π2),Q (2,π),则有( )A .P 在曲线C 上,Q 不在曲线C 上B .P 、Q 都不在曲线C 上C .P 不在曲线C 上,Q 在曲线C 上D .P 、Q 都在曲线C 上解析:当θ=π2时,ρ=2cos π=-2≠0,故点P 不在曲线上;当θ=π时,ρ=2cos 2π=2,故点Q 在曲线上.答案:C3.点P 的柱坐标为⎝ ⎛⎭⎪⎫16,π3,5,则其直角坐标为( )A.()5,8,83B.()8,83,5C.()83,8,5D.()4,83,5解析:∵ρ=16,θ=π3,z =5,∴x =ρcos θ=8,y =ρsin θ=83,z =5, ∴点P 的直角坐标是(8,83,5). 答案:B4.在同一坐标系中,将曲线y =2sin 3x 变为曲线y =sin x 的伸缩变换是( ) A.⎩⎪⎨⎪⎧x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12y C.⎩⎨⎧x =3x ′y =2y ′D.⎩⎨⎧x ′=3x y ′=2y解析:将⎩⎨⎧x ′=λxy ′=μy 代入y =sin x ,得μy =sin λx ,即y =1μsin λx ,与y =2sin 3x 比较,得μ=12,λ=3,即变换公式为⎩⎪⎨⎪⎧x ′=3x ,y ′=12y .答案:B5.曲线ρ=5与θ=π4的交点的极坐标写法可以有( ) A .1个 B .2个 C .4个D .无数个解析:由极坐标的定义易知有无数个. 答案:D6.在极坐标系中,过点A (6,π)作圆ρ=-4cos θ的切线,则切线长为( ) A .2 B .6 C .2 3D .215解析:圆ρ=-4cos θ化为(x +2)2+y 2=4,点(6,π)化为(-6,0),所以切线长=42-22=12=2 3.答案:C7.极坐标方程ρ=cos θ与ρcos θ=12的图形是( )解析:把ρcos θ=12化为直角坐标方程,得x =12,把ρ=cos θ代为直角坐标方程,得x 2+y 2-x =0,即其圆心为⎝ ⎛⎭⎪⎫12,0,半径为12,故选项B 正确.答案:B8.极坐标方程θ=π3,θ=23π(ρ>0)和ρ=4所表示的曲线围成的图形面积是()A.163π B.83πC.43π D.23π解析:三条曲线围成一个扇形,半径为4,圆心角为2π3-π3=π3.∴扇形面积为:12×4×π3×4=8π3.答案:B9.在极坐标系中,曲线ρ=4sin(θ-π3)关于()A.线θ=π3轴对称B.线θ=5π6轴对称C.(2,π3)中心对称D.极点中心对称解析:ρ=4sin(θ-π3)可化为ρ=4cos(θ-5π6),可知此曲线是以(2,5π6)为圆心的圆,故圆关于θ=5π6对称.答案:B10.在极坐标系中有如下三个结论:①点P在曲线C上,则点P的极坐标满足曲线C的极坐标方程;②tan θ=1与θ=π4表示同一条曲线;③ρ=3与ρ=-3表示同一条曲线.在这三个结论中正确的是()A.①③B.①C.②③D.③解析:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,但在极坐标系内,曲线上所有点的坐标不一定适合方程,故①是错误的;tan θ=1不仅表示θ=π4这条射线,还表示θ=5π4这条射线,故②亦不对;ρ=3与ρ=-3差别仅在于方向不同,但都表示一个半径为3的圆,故③正确.答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.(天津高考)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP |=________. 解析:由圆的极坐标方程为ρ=4cos θ,得圆心C 的直角坐标为(2,0),点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 312.点A 的直角坐标为⎝ ⎛⎭⎪⎫332,92,3,则它的球坐标为________.解析:r =⎝ ⎛⎭⎪⎫3322+⎝ ⎛⎭⎪⎫922+32=6. cos φ=36=12,∴φ=π3.tan θ=92332=3,∴θ=π3.∴它的球坐标为⎝ ⎛⎭⎪⎫6,π3,π3.答案:⎝ ⎛⎭⎪⎫6,π3,π313.在极坐标系中,点A ⎝ ⎛⎭⎪⎫2,π2关于直线l :ρcos θ=1的对称点的一个极坐标为________.解析:由直线l 的方程可知直线l 过点(1,0)且与极轴垂直,设A ′是点A 关于l 的对称点,则四边OBA ′A 是正方形,∠BOA ′=π4,且OA ′=22,故A ′的极坐标可以是⎝ ⎛⎭⎪⎫22,π4.答案:⎝ ⎛⎭⎪⎫22,π414.从极点作圆ρ=2a cos θ的弦,则各条弦中点的轨迹方程为________. 解析:数形结合,易知所求轨迹是以⎝ ⎛⎭⎪⎫a 2,0为圆心,a 2为半径的圆,求得方程是ρ=a cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2.答案:ρ=a cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)(辽宁高考改编)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎨⎧x =x 1,y =2y 1. 由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎨⎧ x =1,y =0或⎩⎨⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.16.(本小题满分12分)极坐标方程ρ=-2cos θ与ρcos(θ+π3)=1表示的两个图形的位置关系是什么?解:ρ=-2cos θ可变为ρ2=-2ρcos θ, 化为普通方程为x 2+y 2=-2x 即(x +1)2+y 2=1它表示圆,圆心为(-1,0),半径为1.将ρcos(θ+π3)=1化为普通方程为x -3y -2=0.∵圆心(-1,0)到直线的距离为|-1-2|1+3=32>1 ∴直线与圆相离.17.(本小题满分12分)把下列极坐标方程化为直角坐标方程并说明表示什么曲线.(1)ρ=2a cos θ(a >0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.解:(1)ρ=2a cos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x 2+y 2=2ax .整理得x 2+y 2-2ax =0,即(x -a )2+y 2=a 2.是以(a,0)为圆心,a 为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x 2+y 2=9x +9y ,又可化为(x -92)2+(y -92)2=812,是以(92,92)为圆心,922为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x 2+y 2=16.是以原点为圆心,4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x -3y =5,是一条直线.18.(本小题满分14分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,得M (2,0);当θ=π2时,ρ=233,得N ⎝ ⎛⎭⎪⎫233,π2. (2)M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233. 所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝ ⎛⎭⎪⎫233,π6. 所以直线OP 的极坐标方程为θ=π6,ρ∈R .。

2017-2018学年高中数学人教A版选修4-1创新应用教学案:第二讲 知识归纳与达标验收

2017-2018学年高中数学人教A版选修4-1创新应用教学案:第二讲 知识归纳与达标验收

[对应学生用书P35]近两年高考中,主要考查圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对于与圆有关的比例线段问题通常要考虑利用相交弦定理、割线定理、切割线定理、相似三角形的判定和性质等;弦切角是沟通圆内已知和未知的桥梁,它在解决圆内有关等角问题中可以大显身手;证明四点共圆也是常见的考查题型,常见的证明方法有:①到某定点的距离都相等;②如果某两点在一条线段的同侧时,可证明这两点对该线段的张角相等;③证明凸四边形的内对角互补(或外角等于它的内对角)等.1.(湖南高考)如图,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.解析:设AO ,BC 的交点为D ,由已知可得D 为BC 的中点,则在直角三角形ABD 中,AD =AB 2-BD 2=1,设圆的半径为r ,延长AO 交圆O 于点E ,由圆的相交弦定理可知BD ·CD =AD ·DE ,即(2)2=2r -1,解得r =32.答案:322.(新课标全国卷Ⅱ)如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:(1)BE =EC ; (2)AD ·DE =2PB 2.证明:(1)连接AB ,AC .由题设知P A =PD ,故∠P AD =∠PDA .因为∠PDA =∠DAC +∠DCA ,∠P AD =∠BAD +∠P AB ,∠DCA =∠P AB , 所以∠DAC =∠BAD ,从而BE =EC . 因此BE =EC .(2)由切割线定理得P A 2=PB ·PC .因为P A =PD =DC ,所以DC =2PB ,BD =PB . 由相交弦定理得AD ·DE =BD ·DC , 所以AD ·DE =2PB 2.3.(新课标全国卷Ⅱ)如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值. 解:(1)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DC EA ,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°.所以∠CBA = 90°,因此CA 是△ABC 外接圆的直径. (2)连接CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE . 由BD =BE ,有CE =DC . 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为12.[对应学生用书P35]接四边形的判定和性质.[例1]已知四边形ABCD为平行四边形,过点A和点B的圆与AD、BC分别交于E、F.求证:C、D、E、F四点共圆.[证明]连接EF,因为四边形ABCD为平行四边形,所以∠B+∠C=180°.因为四边形ABFE内接于圆,所以∠B+∠AEF=180°.所以∠AEF=∠C.所以C、D、E、F四点共圆.[例2]如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD∶∠ECD=3∶2,那么∠BOD等于()A.120°B.136°C.144°D.150°[解析]由圆内接四边形性质知∠A=∠DCE,而∠BCD∶∠ECD=3∶2,且∠BCD+∠ECD=180°,∠ECD=72°.又由圆周角定理知∠BOD=2∠A=144°.[答案] C要,结合此知识点所设计的有关切线的判定与性质、弦切角的性质等问题是高考选做题热点之一,解题时要特别注意.[例3] 如图,⊙O 是Rt △ABC 的外接圆,∠ABC =90°,点P 是圆外一点,P A 切⊙O 于点A ,且P A =PB .(1)求证:PB 是⊙O 的切线;(2)已知P A =3,BC =1,求⊙O 的半径.[解] (1)证明:如图,连接OB . ∵OA =OB ,∴∠OAB =∠OBA . ∵P A =PB ,∴∠P AB =∠PBA . ∴∠OAB +∠P AB = ∠OBA +∠PBA , 即∠P AO =∠PBO .又∵P A 是⊙O 的切线,∴∠P AO =90°. ∴∠PBO =90°.∴OB ⊥PB .又OB 是⊙O 半径,∴PB 是⊙O 的切线. (2)连接OP ,交AB 于点D .如图.∵P A =PB ,∴点P 在线段AB 的垂直平分线上. ∵OA =OB ,∴点O 在线段AB 的垂直平分线上. ∴OP 垂直平分线段AB . ∴∠P AO =∠PDA =90°.又∵∠APO =∠OP A ,∴△APO ∽△DP A . ∴AP DP =POP A.∴AP 2=PO ·DP . 又∵OD =12BC =12,∴PO (PO -OD )=AP 2.即PO 2-12PO =(3)2,解得PO =2.在Rt △APO 中,OA =PO 2-P A 2=1,即⊙O 的半径为1.圆的切线、割线、相交弦可以构成许多相似三角形,结合相似三角形的性质,又可以得到一些比例式、乘积式,在解题中,多联系这些知识,能够计算或证明角、线段的有关结论.[例4]如图,A,B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.[解]设CB=AD=x,则由割线定理得:CA·CD=CB·CE,即4(4+x)=x(x+10),化简得x2+6x-16=0,解得x=2或x=-8(舍去),即CD=6,CE=12.连接AB,因为CA为小圆的直径,所以∠CBA=90°,即∠ABE=90°,则由圆的内接四边形对角互补,得∠D=90°,则CD2+DE2=CE2,所以62+DE2=122,所以DE=6 3.[例5]△ABC中,AB=AC,以AB为直径作圆,交BC于D,O是圆心,DM是⊙O的切线交AC于M(如图).求证:DC2=AC·CM.[证明]连接AD、OD.∵AB是直径,∴AD⊥BC.∵OA=OD,∴∠BAD=∠ODA.又AB=AC,AD⊥BC,∴∠BAD=∠CAD.则∠CAD=∠ODA,OD∥AC.∵DM是⊙O切线,∴OD⊥DM.则DM⊥AC,DC2=AC·CM.[对应学生用书P43] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆内接四边形的4个角中,如果没有直角,那么一定有( ) A .2个锐角和2个钝角 B .1个锐角和3个钝角 C .1个钝角和3个锐角D .都是锐角或都是钝角解析:由于圆内接四边形的对角互补,圆内接四边形的4个角中若没有直角,则必有2个锐角和2个钝角.答案:A2.如图,在⊙O 中,弦AB 长等于半径,E 为BA 延长线上一点,∠DAE =80°,则∠ACD 的度数是( )A .60°B .50°C .45°D .30°解析:∠BCD =∠DAE =80°, 在Rt △ABC 中,∠B =90°,AB =12AC ,∴∠ACB =30°.∴∠ACD =80°-30°=50°. 答案:B3.如图所示,在半径为2 cm 的⊙O 内有长为2 3 cm 的弦AB .则此弦所对的圆心角∠AOB 为( )A .60°B .90°C .120°D .150° 解析:作OC ⊥AB 于C ,则BC =3,在Rt △BOC 中cos ∠B =BO OB =32.∴∠B =30°.∴∠BOC =60°.∴∠AOB =120°. 答案:C4.如图,已知⊙O 的半径为5,两弦AB 、CD 相交于AB 的中点E ,且AB =8,CE ∶ED =4∶9,则圆心到弦CD 的距离为( )A.2143B.289 C.273D.809解析:过O 作OH ⊥CD ,连接OD ,则DH =12CD ,由相交弦定理知, AE ·BE =CE ·DE .设CE =4x ,则DE =9x , ∴4×4=4x ×9x ,解得x =23,∴OH =OD 2-DH 2=52-(133)2=2143.答案:A5.如图,P A 切⊙O 于A ,PBC 是⊙O 的割线,且PB =BC ,P A =32,那么BC 的长为( )A. 3 B .2 3 C .3D .3 3解析:根据切割线定理P A 2=PB ·PC , 所以(32)2=2PB 2.所以PB =3=BC . 答案:C6.两个同心圆的半径分别为3 cm 和6 cm ,作大圆的弦MN =6 3 cm ,则MN 与小圆的位置关系是( )A .相切B .相交C .相离D .不确定 解析:作OA ⊥MN 于A .连接OM .则MA =12MN =3 3.在Rt △OMA 中, OA =OM 2-AM 2=3(cm).∴MN 与小圆相切. 答案:A7.如图,P AB ,PDC 是⊙O 的割线,连接AD ,BC ,若PD ∶PB =1∶4,AD =2,则BC 的长是( )A .4B .5C .6D .8解析:由四边形ABCD 为⊙O 的内接四边形可得∠P AD =∠C ,∠PDA =∠B . ∴△P AD ∽△PCB .∴PD PB =AD CB =14.又AD =2,∴BC =8. 答案:D8.已知⊙O 的两条弦AB ,CD 交于点P ,若P A =8 cm ,PB =18 cm ,则CD 的长的最小值为( )A .25 cmB .24 cmC .20 cmD .12 cm解析:设CD =a cm ,CD 被P 分成的两段中一段长x cm ,另一段长为(a -x ) cm.则x (a -x )=8×18,即8×18≤(x +a -x 2)2=14a 2.所以a 2≥576=242,即a ≥24.当且仅当x =a -x ,即x =12a =12时等号成立.所以CD 的长的最小值为24 cm. 答案:B9.如图,点C 在以AB 为直径的半圆上,连接AC 、BC ,AB =10,tan ∠BAC =34,则阴影部分的面积为( )A.252πB.252π-24 C .24D.252π+24 解析:∵AB 为直径,∴∠ACB =90°, ∵tan ∠BAC =34,∴sin ∠BAC =35.又∵sin ∠BAC =BCAB ,AB =10,∴BC =35×10=6.AC =43×BC =43×6=8,∴S 阴影=S 半圆-S △ABC =12×π×52-12×8×6=252π-24. 答案:B10.在Rt △ABC 中,∠ACB =90°,以A 为圆心、AC 为半径的圆交AB 于F ,交BA 的延长线于E ,CD ⊥AB 于D ,给出四个等式:①BC 2=BF ·BA ;②CD 2=AD ·AB ; ③CD 2=DF ·DE ;④BF ·BE =BD ·BA . 其中能够成立的有( ) A .0个 B .2个 C .3个D .4个解析:①②不正确,由相交弦定理知③正确, 又由BC 2=BE ·BF ,BC 2=BD ·BA , 得BE ·BF =BD ·BA ,故④正确. 答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把正确答案填写在题中的横线上)11.四边形ABCD 内接于⊙O ,若∠BOD =120°,OB =1,则∠BAD =________,∠BCD =________,BCD 的长=________.解析:∠BAD =∠12BOD =60°,∠BCD =180°-∠BAD =120°, 由圆的半径OB =1,∠BOD =2π3,∴BCD 的长为2π3.答案:60°120°2π312.(陕西高考)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF·DB=________.解析:由相交弦定理可知ED2=AE·EB=1×5=5,又易知△EBD与△FED相似,得DF·DB=ED2=5.答案:513.如图,⊙O为△ABC的内切圆,AC,BC,AB分别与⊙O切于点D,E,F,∠C=90°,AD=3,⊙O的半径为2,则BC=________.解析:如图所示,分别连接OD,OE,OF.∵OE=OD,CD=CE,OE⊥BC,OD⊥AC,∴四边形OECD是正方形.设BF=x,则BE=x.∵AD=AF=3,CD=CE=2,∴(2+x)2+25=(x+3)2,解得x=10,∴BC=12.答案:1214.如图,AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交AB的延长线于E,若EA=1,ED=2,则BC=________.解析:∵CE为⊙O的切线,D为切点,∴ED2=EA·EB.又∵EA=1,ED=2,得EB=4,又∵CB、CD均为⊙O的切线,∴CD=CB.在Rt△EBC中,设BC=x,则EC=x+2.由勾股定理得EB2+BC2=EC2.∴42+x2=(x+2)2,得x=3,∴BC=3.答案:3三、解答题(本大题共4个小题,满分50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,设AB 为⊙O 的任一条不与直线l垂直的直径,P 是⊙O 与l 的公共点,AC ⊥l ,BD ⊥l ,垂足分别为C ,D ,且PC =PD ,求证:(1)l 是⊙O 的切线;(2)PB 平分∠ABD .证明:(1)连接OP ,因为AC ⊥l ,BD ⊥l ,所以AC ∥BD .又OA =OB ,PC =PD ,所以OP ∥BD ,从而OP ⊥l .因为P 在⊙O 上,所以l 是⊙O 的切线.(2)连接AP ,因为l 是⊙O 的切线,所以∠BPD =∠BAP .又∠BPD +∠PBD =90°,∠BAP +∠PBA =90°,所以∠PBA =∠PBD ,即PB 平分∠ABD .16.(本小题满分12分)(2012·辽宁高考)如图,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交⊙O 于点E .证明:(1)AC ·BD =AD ·AB ;(2)AC =AE .证明:(1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB ,同理∠ACB =∠DAB ,所以△ACB ∽△DAB .从而AC AD =AB BD, 即AC ·BD =AD ·AB .(2)由AD 与⊙O 相切于A ,得∠AED =∠BAD ,又∠ADE =∠BDA ,得△EAD ∽△ABD .从而AE AB =AD BD, 即AE ·BD =AD ·AB .结合(1)的结论,AC =AE .17.(本小题满分12分)如图,AB 为圆O 的直径,CD 为垂直于AB 的一条弦,垂足为E ,弦BM 与CD 交于点F .(1)证明:A ,E ,F ,M 四点共圆;(2)证明:AC 2+BF ·BM =AB 2.证明:(1)连接AM ,则∠AMB =90°.∵AB ⊥CD ,∴∠AEF =90°.∴∠AMB +∠AEF =180°,即A ,E ,F ,M 四点共圆.(2)连接CB ,由A ,E ,F ,M 四点共圆,得BF ·BM =BE ·BA .在Rt △ACB 中,BC 2=BE ·BA ,AC 2+CB 2=AB 2,∴AC 2+BF ·BM =AB 2.18.(辽宁高考)(本小题满分14分)如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC =BD ,求证:AB =ED .证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .由于AF ⊥EP ,所以∠PF A =90°,于是∠BDA =90°.故AB 是直径.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB. 由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.。

【配套K12】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第3节第1课时圆

【配套K12】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第3节第1课时圆

第1课时 圆的极坐标方程[核心必知]1.曲线的极坐标方程在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合f (ρ,θ)=0的点都在曲线C 上,那么方程f (ρ,θ)=0叫做曲线C 的极坐标方程.2.圆的极坐标方程圆心为C (a ,0)(a >0)半径为a 的圆的极坐标方程为ρ=2a cos_θ.[问题思考]1.在直角坐标系中,曲线上每一点的坐标一定适合它的方程.那么,在极坐标系中,曲线上一点的所有极坐标是否一定都适合方程?提示:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程.例如给定曲线ρ=θ,设点P 的一极坐标为(π4,π4),那么点P 适合方程ρ=θ,从而是曲线上的一个点,但点P 的另一个极坐标(π4,9π4)就不适合方程ρ=θ了.所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.2.圆心在极点,半径为r 的圆的极坐标方程是什么?圆心在点⎝⎛⎭⎫a ,π2处且过极点的圆的方程又是什么?提示:圆心在极点,半径为r 的圆的极坐标方程为ρ=r ;圆心在点(a ,π2)处且过极点的圆的方程为ρ=2a sin_θ(0≤θ≤π).设一个直角三角形的斜边长一定,求直角顶点轨迹的极坐标方程.[精讲详析] 本题考查极坐标方程的求法,解答此题需要根据题目特点建立恰当的极坐标系,然后再求直角顶点的轨迹方程.设直角三角形的斜边为OD ,它的长度是2r ,以O 为极点,OD 所在射线为极轴,建立极坐标系,如图所示:设P (ρ,θ)为轨迹上的一点, 则OP =ρ,∠xOP =θ. 在直角三角形ODP 中, OP =OD ·cos θ,∵OP =ρ,OD =2r ,∴ρ=2r cos θ(ρ≠0,ρ≠2r ). 这就是所求轨迹的方程.(1)求曲线的极坐标方程的步骤如下: ①建立适当的极坐标系.②设P (ρ,θ)是曲线上任一点. ③列出ρ,θ的关系式. ④化简整理.(2)极坐标中的坐标是由长度与角度表示的,因此,建立极坐标方程常常可以在一个三角形中实现,找出这样的三角形便形成了解题的关键.1.设M 是定圆O 内一定点,任作半径OA ,连接MA ,过M 作MP ⊥MA 交OA 于P ,求P 点的轨迹方程.解:以O 为极点,射线OM 为极轴,建立极坐标系,如图. 设定圆O 的半径为r ,OM =a ,P (ρ,θ)是轨迹上任意一点. ∵MP ⊥MA ,∴|MA |2+|MP |2=|P A |2.由余弦定理,可知|MA |2=a 2+r 2-2ar cos θ,|MP |2=a 2+ρ2-2aρcos θ.而|P A |=r -ρ,由此可得a 2+r 2-2ar cos θ+a 2+ρ2-2aρcos θ=(r -ρ)2.整理化简,得ρ=a (a -r cos θ)a cos θ-r.求圆心在(ρ0,θ0),半径为r 的圆的方程. [精讲详析]在圆周上任取一点P (如图) 设其极坐标为(ρ,θ).由余弦定理知:CP 2=OP 2+OC 2-2OP ·OC cos ∠COP ,∴r 2=ρ20+ρ2-2ρρ0cos (θ-θ0).故其极坐标方程为r 2=ρ20+ρ2-2ρρ0cos (θ-θ0).(1)圆的极坐标方程是曲线的极坐标方程的一种特殊情况,其求解过程同曲线的极坐标方程的求法.(2)特别地,当圆心在极轴上即θ0=0时,方程为r 2=ρ20+ρ2-2ρρ0cos θ;若再有ρ0=r ,则其方程为ρ=2ρ0cos θ=2r cos θ;若ρ0=r ,θ0≠0,则方程为ρ=2r cos(θ-θ0),这几个方程经常用来判断图形的形状和位置.2.在极坐标系中,已知圆C 的圆心为⎝⎛⎭⎫3,π3,半径为3,Q 点在圆周上运动.(1)求圆C 的极坐标方程; (2)若P 是OQ 中点,求P 的轨迹. 解:(1)如图,设Q (ρ,θ)为圆上任意一点,连接DQ 、OQ , 则|OD |=6, ∠DOQ =π3-θ,或∠DOQ =θ-π3,∠DQO =π2.在Rt △ODQ 中,|OQ |=|OD |cos (θ-π3),即ρ=6cos (θ-π3).(2)若P 的极坐标为(ρ,θ),则Q 点的极坐标为(2ρ,θ).∴2ρ=6cos (θ-π3),∴ρ=3cos (θ-π3).∴P 的轨迹是圆.进行直角坐标方程与极坐标方程的互化 (1)y 2=4x ;(2)y 2+x 2-2x -1=0;(3)ρcos 2θ2=1;(4)ρ2cos 2θ=4;(5)ρ=12-cos θ.[精讲详析] 本题考查极坐标与直角坐标的互化公式. (1)将x =ρcos θ,y =ρsin θ代入y 2=4x , 得(ρsin θ)2=4ρcos θ. 化简,得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0, 得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0, 化简,得ρ2-2ρcos θ-1=0. (3)∵ρcos 2θ2=1,∴ρ·1+cos θ2=1,即ρ+ρcos θ=2.∴x 2+y 2+x =2.化简,得y 2=-4(x -1).(4)∵ρ2cos 2θ=4,∴ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (5)∵ρ=12-cos θ,∴2ρ-ρcos θ=1.∴2x 2+y 2-x =1.化简,得3x 2+4y 2-2x -1=0.直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.3.把极坐标方程ρcos ⎝⎛⎭⎫θ-π6=1化为直角坐标方程.解:由ρcos (θ-π6)=1得32ρcos θ+12ρsin θ=1,将ρcos θ=x ,ρsin θ=y 代入上式,得32x +y2=1, 即3x +y -2=0.利用圆的极坐标方程求圆心、半径,再利用圆心、半径解决问题,是高考命题的重点题型之一.湖南高考以填空题的形式考查了圆的极坐标方程与直角坐标方程的互化,是高考命题的一个新亮点.[考题印证](湖南高考)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.[命题立意] 本题考查将圆的极坐标方程化为直角坐标方程的方法. [解析] ∵ρ=2sin θ, ∴ρ2=2ρsin θ, ∴x 2+y 2=2y ,即曲线C 的直角坐标方程为x 2+y 2-2y =0. 答案:x 2+y 2-2y =0一、选择题1.(北京高考)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.⎝⎛⎭⎫1,π2B.⎝⎛⎭⎫1,-π2C .(1,0)D .(1,π)解析:选B 因为该圆的直角坐标方程为x 2+y 2=-2y ,即为x 2+(y +1)2=1,圆心的直角坐标方程为(0,-1),化为极坐标是(1,-π2).2.极坐标方程ρ=cos ⎝⎛⎭⎫π4-θ所表示的曲线是( )A .双曲线B .椭圆C .抛物线D .圆解析:选D ∵ρ=cos (π4-θ)=22cos θ+22sin θ,ρ2=22ρcos θ+22ρsin θ, ∴x 2+y 2=22x +22y ,这个方程表示一个圆. 3.在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点⎝⎛⎭⎫4,π6作曲线C 的切线,则切线长为( )A .4 B.7 C .22 D .2 3解析:选C ρ=4sin θ化为普通方程为x 2+(y -2)2=4,点(4,π6)化为直角坐标为(23,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理:切线长为(23)2+(2-2)2-22=2 2.4.(安徽高考)在极坐标系中,点⎝⎛⎭⎫2,π3到圆ρ=2cos θ的圆心的距离为( )A .2 B. 4+π29C.1+π29D. 3解析:选D 由⎩⎪⎨⎪⎧x =ρcos θ=2cos π3=1y =ρsin θ=2sin π3=3可知,点(2,π3)的直角坐标为(1,3),圆ρ=2cos θ的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,则圆心到点(1,3)的距离为 3.二、填空题5.(江西高考)若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.解析:∵⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,ρ2=x 2+y 2,∴ρ2=2ρsin θ+4ρcos θ⇒x 2+y 2=2y +4x ⇒x 2+y 2-4x -2y =0.答案:x 2+y 2-4x -2y =06.在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =5,则圆C 的极坐标方程为________.解析:将圆心C (2,π3)化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5. 再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5.化简,得ρ2-4ρcos (θ-π3)-1=0,此即为所求的圆C 的极坐标方程.答案:ρ2-4ρcos (θ-π3)-1=07.(天津高考)已知圆的极坐标方程为ρ=4cos θ, 圆心为C, 点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________.解析:圆ρ=4cos θ的直角坐标方程为x 2+y 2=4x ,圆心C (2,0).点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 38.已知曲线C 与曲线ρ=53cos θ-5sin θ关于极轴对称,则曲线C 的极坐标方程是________.解析:曲线ρ=53cos θ-5sin θ=10cos (θ+π6),它关于极轴对称的曲线为ρ=10cos (-θ+π6)=10cos (θ-π6).答案:ρ=10cos (θ-π6)三、解答题 9.如图,在圆心极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点轨迹的极坐标方程,并将其化为直角坐标方程.解:设M (ρ,θ)是轨迹上任意一点,连接OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ得ρ0=8cos θ0, 所以2ρ=8cos θ, 即ρ=4cos θ,故所求轨迹方程是ρ=4cos θ. 因为x =ρcos θ,y =ρsin θ, 由ρ=4cos θ得ρ2=4ρcos θ, 所以x 2+y 2=4x ,即x 2+y 2-4x =0为轨迹的直角坐标方程.10.指出极坐标方程ρ=2cos ⎝⎛⎭⎫θ+π3,ρ=2cos ⎝⎛⎭⎫θ-π3,ρ=2cos θ代表的曲线,并指出它们之间的关系.解:ρ=2cos (θ+π3)是以点(1,-π3)为圆心,半径为1的圆.ρ=2cos (θ-π3)是以点(1,π3)为圆心,半径为1的圆.ρ=2cos θ是以点(1,0)为圆心,半径为1的圆.因此曲线ρ=2cos (θ+π3),可看成曲线ρ=2cos θ绕极点顺时针旋转π3得到的曲线.ρ=2cos (θ-π3)是由曲线ρ=2cos θ绕极点逆时针旋转π3得到的曲线.11.已知半径为R 的定圆O ′外有一定点O ,|OO ′|=a (a >R ),P 为定圆O ′上的动点,以OP 为边作正三角形OPQ (O 、P 、Q 按逆时针方向排列),求Q 点的轨迹的极坐标方程.解:如图所示,以定点O 为极点,射线OO ′为极轴正向建立极坐标系, 则⊙O ′的极坐标方程是ρ2-(2a cos θ)ρ+a 2-R 2=0. 设Q (ρ,θ),则有P (ρ,θ-π3),又P 在⊙O ′上,∴ρ2-[2a cos (θ-π3)]ρ+a 2-R 2=0.即所求Q 点的轨迹方程是:最新K12教育教案试题 ρ2-2aρcos (θ-π3)+a 2-R 2=0.。

人教A版高中数学选修4-1 第一讲 四 直角三角形的射影定理 课件(共16张PPT)精品课件PPT

人教A版高中数学选修4-1 第一讲  四 直角三角形的射影定理 课件(共16张PPT)精品课件PPT

课堂小结
射影定理 直角三角形斜边上的高是两直角边在斜边上 射影的比例中项;两直角边分别是它们在斜边 上射影与斜边的比例中项.
很重要!
随堂练习
1.已知:Rt△ABC,CD是斜边AB上的高, CD=4,BD=2,
求:AD、AB、AC、BC.
A
解: 根据射影定理:CD2=AD·BD
∴AD=16÷2=8. ∴AB=AD+BD=10.
情感态度与价值观
1.通过直角三角形的射影定理,体会并推 出一般三角形的射影性质.
2.通过课堂学习培养敢于结合以前所学知 识,推导出新的知识或性质,有利于深刻理解.
教学重难点
重点
直角三角形的射影定理.
难点
灵活应用直角三角形的射影定理并能证明.
研讨
A
B
A
M
A′
N M A′
B′ N
A ′是点A在MN上的正射影,A ′ B ′是线段AB 在MN上的正射影.
思考
C
A
DB
找出上图中相似三角 形的个数?
研讨
考察Rt△ACD和Rt △CBD.
ACD 90 BCD,B 90 BCD,
B ACD.
ACD CBD.
A
AD CD .即C D 2 AD BD.(1)
CD BD
CD是AD、BD的比例中项.
C DB
考察Rt△BDC和Rt △BCA. B是公共角.
新课导入
阳光照射下,物体都有影子!
观察
A
M
A′
N
A在MN的射影在哪?
探讨
B
A思M来自N考线段AB在直线MN上的射影又是什么呢?
教学目标
知识与能力
1.掌握直角三角形的射影定理. 2.能够利用射影定理求解线段的长.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[对应学生用书P16]
近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.
1.如图,在梯形ABCD中,AB∥CD,AB=4,CD=2,
E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形
ABFE与梯形EFCD的面积比为________.
解析:由CD=2,AB=4,EF=3,
得EF=1
2
(CD+AB),
∴EF是梯形ABCD的中位线,
则梯形ABFE与梯形EFCD有相同的高,设为h,于是两梯形的面积比为
1 2(3+4)h∶
1
2
(2+3)h=7∶5.
答案:7∶5
2.如图,圆O上一点C在直径AB上的射影为D,点D在
半径OC 上的射影为E.若AB =3AD ,则CE EO
的值为________. 解析:连接AC ,BC ,则∠ACB =90°.
设AD =2,则AB =6,
于是BD =4,OD =1.
如图,由射影定理得CD 2=AD ·BD =8,则CD =2
2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=22
3.
则CE =DC 2-DE 2= 8-89=83
, EO =OC -CE =3-83=13. 因此CE EO =8
3
1
3
=8. 答案:8
[对应学生用书P16]
平行线等分线段定理、平行线分线段成比例定理,其实质是揭示一组平行线在与其相交的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明
直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.
[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC.
求证:EG ∥BH.
[证明] ∵DE ∥BC ,
∴AE AC =AD AB
. ∵DH ∥GC ,∴AH AC =AD AG
. ∴AE ·AB =AC ·AD =AH ·AG.
∴AE AH =AG AB
.∴EG ∥BH. [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且
AF =13AB ,BD =52BC ,试求EC AE .
[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC
于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =EC AE
, 两式相乘,得BF CN ·CN AF =DB DC ·EC AE ,。

相关文档
最新文档