最新定积分在物理学上的应用

合集下载

试论定积分在物理及其他领域的应用

试论定积分在物理及其他领域的应用

试论定积分在物理及其他领域的应用定积分是微积分学中的一个重要概念,也是一种有效地描述物理现象的数学工具。

在物理领域中,定积分常常用来描述物体的位移、速度、加速度等重要物理量,可以通过积分的方法求出质点在一段时间内的位移、速度、加速度及其他物理量。

此外,在工程、经济、生物学等领域中,定积分也是重要的数学工具。

在物理学中,定积分可以用来计算物体的位移。

当一个物体从时刻t1到时刻t2移动了一个距离,我们可以用一个定义在时间间隔 [t1,t2] 上的函数来表示这个位移量。

将这个函数积分会得到整个时间间隔内的总位移。

相应地,速度是位移的导数,加速度是速度的导数。

因此,定积分可以用来计算质点在一段时间内的速度和加速度。

这些物理量对于研究运动学和动力学是非常重要的。

例如,在弹道学中,球的轨迹可以表示为一个函数。

利用定积分,我们可以求出球在一段时间内的速度和位移以及在这段时间内所受的总力。

在静力学和动力学研究中,定积分也是重要的数学工具。

许多力学公式都可以用积分的方式表示出来。

同时,在物理学中,定积分除了用来计算位移、速度、加速度之外,还可以求解质量、能量、功率等其他重要物理量。

这些物理量对于研究能量守恒、动量守恒等定理是非常有用的。

在工程领域中,定积分也是一种重要的数学工具。

例如,计算机科学中,我们可以利用积分来求解图像的面积和体积,以及计算信号处理和图像处理中的信号。

同样,在电子、机械和土木工程中也可以利用积分来描绘设备或结构的运动或振动特性。

在经济学领域中,定积分也被广泛应用。

例如,货币总量的积分等于总体的价格总和,积分也可以用来解决经济学中的一些重要问题,如财务管理和金融计算等。

在生物学中,定积分的应用也非常广泛。

例如,在细胞生物学中,定积分可以用来表示半衰期的生物学衰变速度。

在生物工程学中,积分被用于物种数量的增长和衍生速度的计算。

此外,在生物化学中,定积分也被用来解决化学反应速率、底物浓度和时间以及酶催化的问题。

定积分在物理学上的应用

定积分在物理学上的应用

详细描述
热量传递是热力学中的基本过程,包括热传 导、热对流和热辐射。在这些过程中,热量 传递的速率通常与温度梯度、物质属性以及 边界条件等因素有关。定积分可以用来求解 这些因素对热量传递速率的影响。
热力学第一定律的推导
总结词
定积分在推导热力学第一定律中具有重要应用,通过能量守恒原理和热力学基本方程, 可以建立热力学第一定律的数学表达式。
详细描述
在推导电磁感应定律的过程中,我们需要考虑磁场的变化对导体中电子运动的影响。通过定积分,我们可以计算 出导体中的电动势,从而理解电磁感应现象的本质。定积分的应用使得我们能够准确地描述和预测电磁感应现象 。
04
定积分在热学中的应用
温度分布的计算
总结词
定积分在计算温度分布问题中具有广泛应用,通过求解偏微分方程,可以得到物体内部和表面的温度 分布情况。
此外,定积分还在相对论中的质能关系推导、引力场中的时空几何结构分析等方面发挥着重要作用。
混沌理论中的分形结构描述
混沌理论是研究非线性系统中复杂行为和现象的学科,分形结构是混沌 理论中的重要概念。分形结构具有自相似性和无穷嵌套的特点,通常用 于描述复杂系统的结构和行为。
定积分在分形结构的描述中起到关键作用。通过定积分,可以计算分形 结构的维数和面积、体积等几何属性,从而更好地理解和描述混沌系统
VS
详细描述
磁场强度是由电流产生的,而电流分布又 是随空间变化的。通过使用定积分,我们 可以计算出任意形状导电物体在空间中任 意一点的磁场强度。这对于理解和预测磁 场的行为至关重要。
电磁感应定律的推导
总结词
电磁感应定律的推导过程中,定积分起到了核心作用,该定律描述了磁场变化时会在导体中产生电动势的现象。

试论定积分在物理及其他领域的应用

试论定积分在物理及其他领域的应用

试论定积分在物理及其他领域的应用1. 引言1.1 定积分的基本概念定积分是微积分的一个重要概念,它在数学中有着广泛的应用。

定积分的基本概念可以简单地理解为一个函数在一定区间内的累积效果。

在几何学中,定积分可以用来计算曲线下面积,图形的面积和体积等问题。

在数学上,定积分可以看作是不定积分的反运算,通过定积分我们可以求解函数的定积分值。

在实际应用中,定积分被广泛运用于物理、工程、经济等领域。

它的应用使得复杂问题的计算变得简单清晰。

通过定积分,我们可以计算出物体的质量、力的大小、功的大小等物理量。

在力学中,定积分可以用来描述物体的运动规律,计算出物体的位置、速度和加速度等。

在电磁学中,定积分常常用来计算电场强度、磁场强度等问题。

在热力学中,定积分可以用来计算热量、熵等热力学量。

在工程学中,定积分可以帮助工程师计算出工程设计中的各种参数。

在经济学中,定积分在求解供求关系、成本、收益等问题上起着重要作用。

定积分在各个领域中都有着重要的应用价值。

它的基本概念对于理解定积分的应用具有重要意义。

通过深入研究定积分的基本概念,可以更好地理解其在不同领域中的具体应用。

1.2 定积分在物理领域的重要性定积分在物理领域的重要性体现在多个方面,首先在力学中,定积分可以用来描述物体的质量、速度、加速度、力和能量等物理量随时间的变化,从而帮助解决力学中的各种问题。

在电磁学中,定积分可以用来描述电流、电荷、电场、磁场等物理量在空间中的分布和变化规律,从而帮助解决电磁学中的各种问题。

在热力学中,定积分可以用来描述热量、温度、熵等热力学量在空间中的分布和变化规律,从而帮助解决热力学中的各种问题。

在工程学和经济学中,定积分也有着重要的应用,可以用来描述工程和经济系统中的各种物理量的变化规律,从而帮助解决工程和经济学中的各种问题。

定积分在物理领域中的重要性不可忽视,它为我们理解和应用物理定律提供了重要的数学工具和方法。

2. 正文2.1 定积分在力学中的应用在力学中,定积分是一个非常重要的数学工具,它可以用来描述物体在运动过程中的各种性质和运动规律。

定积分的应用于物理学

定积分的应用于物理学

定积分的应用于物理学定积分是微积分中一个极为重要的概念,它可以描述一个函数在一定区间内的面积。

除了数学上的应用之外,定积分在物理学中也有广泛的应用。

一、定积分在物理学中的应用1.速度和加速度在物理学中,速度和加速度是两个基本的物理量。

对于一个以某个加速度运动的物体,我们可以通过求解其速度关于时间的定积分来得到运动过程中的位移。

而得到位移后,我们还可以对它进行求导来获得速度和加速度的函数式。

2.质量和质心质量是物理学中另外一个基本的物理量,而质心则是一个系统的重心。

对于一个由若干个质点组成的系统,我们可以将每个质点的质量加起来,然后用质心的坐标来描述整个系统。

这个质心的坐标可以用各个质点坐标的定积分来求解。

3.力和功在物理学中,力是另一个基本的物理量。

对于一个物体在某个力场中做功,我们可以通过对力在某段距离上的积分来得到。

与此同时,我们也可以通过对某个物体所受多个力的叠加效应进行积分来得到最终的合力。

二、例子:牛顿第二定律牛顿第二定律是经典力学中的一个基本法则,它表明力等于物体质量乘以物体的加速度。

具体而言,我们可以用定积分来解决一个常见的牛顿第二定律问题。

假设一个物体受到一个恒定的力F作用,那么根据牛顿第二定律,我们可以得到以下方程:F = ma其中,a是物体的加速度,m是物体的质量。

为了求解这个方程,我们需要将其改写为以下形式:a = F/m这个定理告诉我们,当一个物体受到一个力的作用时,它的加速度是与它的质量成反比例的。

因此,我们可以用定积分来求解运动过程中的位移。

假设我们知道物体的初始速度v0和它所受的力F(t)关于时间t 的函数式,我们可以求出物体在某段时间内的加速度函数a(t)。

一旦我们知道了加速度函数,我们就可以将它关于时间的定积分求解出来,得到物体在受到力的作用下所走过的位移。

这个过程可以用以下公式来描述:x(t) = v0t + ∫0t a(t)dt其中,v0是物体的初始速度,a(t)是物体在受到力的作用下的加速度函数。

定积分在物理上的应用举例

定积分在物理上的应用举例
1 2
浅谈定积分的意义
纯粹几何图形而言,定积分的意义是由曲线、x轴,区间起点的垂直线x=a、
区间终点的垂直线x=b,所围成的面积。
也可以广义而言,定积分的几何意义就是“抽象的面积”。例如:如果横 轴是体积,纵轴是压强,“抽象面积”的意义是热力学系统对外做功; 如果横轴是时间,纵轴是电流,“抽象面积”的意义是电源对外放出的电 量、、、、、、 定积分是一种重要的数学思想,如今定积分思想广泛应用于物理、医学、 经济学、化工等领域,具有极大的应用价值。
上述公式计算,而是应用定积分思想,采用元素法来计算。
例.有一长度为L,密度为ρ的均匀细棒,在其中垂线上距棒a单位处有一质量为m
的质点M,计算该棒对质点M的引力。
解:建立坐标系
取y为积分变量,y∈[这一区间对应
y+dy],
的棒上小段可近似看成质点,
质量为ρdy,小段与质点的距 离为
定积分在物理上的应用举例
目录
1.用定积分求解平均功率问题 2.用定积分求解引力问题
一、平均功率问题
二、引力问题
质量分别为M、m的质点,相距r,两者间引力: 大小:
F K
Mm
方向:沿两质点的连线
r
2
如果要计算一根细棒对一个质点的引力,那么,由于细棒上各点与该
点的距离是变化的,且各点对该点的引力方向也是变化的,故不能用
THANK YOU
r
a
2

y
2
细杆对质点的引力:
dF k mρdy
a
2

y
2
水平方向的分力:
dFx dF cos( π - ) -dF cos a amρdy
a

定积分在物理上的应用

定积分在物理上的应用

连线方向.
如果要计算一根细棒对一个质点的引力, 那么,由于细棒上各点与该质点的距离是变化 的,且各点对该质点的引力方向也是变化的, 就不能用此公式计算.
例 3 有一长度为 l 、线密度为 r 的均匀细棒,
在其中垂线上距棒 a 单位处有一质量为 m 的质点
M ,计算该棒对质点 M 的引力.

建立坐标系如图
(k 是常数),当这个单位正电荷在电场中从
r a 处沿 r 轴移动到 r b 处时,计算电场力F 对
它所作的功.
解 取r 为积分变量,
q
•o
a•
1
•r•

r


dr
•b
r
r [a,b],
取任一小区间[r, r dr], 功元素
dw
kq r2
dr,
所如求果功要为考w虑将ab单krq2位dr电荷k移q到 1r无ba穷远kq处 a1
o
x
x dx
x
小矩形片的压力元素为 dP 2x R2 x2dx
端面上所受的压力
P
R
0
2x
R2 x2dx
R
0
R2 x2d(R2 x2)
2 3
R2 x2
3
R 0
2
3
R3.
例 2 将直角边各为 a 及 2a 的直角三角形薄板
垂直地浸人水中,斜边朝下,长直角边与水面 平行,且该边到水面的距离恰等于该边的边 长,求薄板所受的侧压力.
压力
由 物 理 学 知 道 , 在 水 深 为h 处 的 压 强 为
p h,这里 是水的比重.如果有一面积为A
的平板水平地放置在水深为h 处,那么,平板一 侧所受的水压力为P p A.

定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用
定积分是一种常见的数学工具,用来解决许多几何和物理问题。

它可以在几何学、物理学中解决积分、面积和容积计算题中应用。

首先,定积分在几何学中的简单应用。

比如,如果我们要计算一个几何图形的面积,则可以通过定积分来计算。

它可以计算任意形状的几何图形的面积,比如三角形、椭圆、圆形等。

它的应用范围非常广泛,比如可以用它来计算面积、周长、体积等。

其次,定积分也可以用在物理学中。

比如,如果我们要计算一个物体在多次不同力作用之下移动的路程,可以用定积分来计算。

它可以帮助我们精确地计算物体受力作用前后的距离,也可以帮助我们精确计算弹性作用力等。

最后,定积分也可以应用于物理学的温度问题中。

比如,我们可以通过定积分求出一个物体在单位温差下的热量传递,也可以求出一个物体的总热量。

还可以用它求解温度场、热传导率、热导率等问题。

以上是定积分在几何、物理学中的简单应用。

定积分是一种通用而有效的数学工具,在几何、物理学中都有着广泛的应用,不仅可以用来解决相关的面积、容积计算题,而且还可以用来解决物理热力学、温度等问题。

只要我们掌握它的基本使用方法以及它的一些特性和用途,就可以在几何、物理学中更好地应用它来解决其它问题。

- 1 -。

定积分在物理中的应用上

定积分在物理中的应用上
定积分的应用可以帮助我们更好地理解物体的运动规律,为解决物理问题 提供了重要的数学工具。
03
CHAPTER
动能与势能的定积分表示
动能的定积分表示
总结词
动能的定积分表示是物体在某段时间内通过的路径与该路径上的力的乘积的积分。
详细描述
根据牛顿第二定律,物体的动能为物体质量与速度平方的一半的乘积。在定积分形式下,动能的表示为 ∫F·dx,其中F是作用在物体上的力,dx是物体在该力作用下的位移。
瞬时加速度表示物体在某一时刻的速 度变化快慢,而平均加速度表示物体 在某段时间内速度变化的平均快慢。
速度与加速度的连续变化
在物理中,物体的速度和加速度通常都是随时间连续变化的。定积分可以 用来描述这种连续变化的过程。
通过定积分,我们可以计算物体在任意时间段内的速度和加速度的变化量, 以及物体在任意时刻的速度和加速度的大小。
详细描述
在热力学中,温度场是一个连续变化的物理量,它描述 了物体内部各点的温度分布。通过定积分,可以将温度 场表示为一个连续的函数,从而方便地计算物体内部各 点的温度值。
热量传递的定积分表示
总结词
热量传递的过程可以通过定积分来描述,包括热传导、热对流和热辐射等。
详细描述
热量传递是热力学中的重要过程,包括热传导、热对流和热辐射等。这些过程都可以通过定积分来描 述。通过定积分,可以计算热量传递的速率、方向和分布,从而更好地理解和控制热量传递的过程。
VS
详细描述
在匀速直线运动中,物体的速度是恒定的 ,因此物体的位移量可以通过速度与时间 的乘积来计算。定积分可以用来计算在一 段时间内物体的总位移量。
匀加速直线运动的定积分表示
总结词
定积分在匀加速直线运动中可以表示物体的 速度和位移量。

定积分在物理上的应用-文档资料

定积分在物理上的应用-文档资料
如 果 物 体 在 运 动 的 过 程 中 所 受 的 力 是 变 化 的 , 就 不 能 直 接 使 用 此 公 式 , 而 采 用 “ 元 素 法 ” 思 想 .
例 4 把一个带 q 电量的点电荷放在r 轴上坐标原点
物理学知道,如果一个单位正电荷放在这个电场中距离原 点为 r 的地方,那么电场对它的作用力的大小为
端 面 上 所 受 的 压 力
2 2 P 2 x R x dx 0 R
2 2 2 2 R x d ( R x ) 0 R
2 2 2 3 2 3 R x R . 3 3 0


R
例 2 将直角边各为 a 及 2 a 的直角三角形薄板 垂直地浸人水中,斜边朝下,长直角边与水面 平行,且该边到水面的距离恰等于该边的边 长,求薄板所受的侧压力.
连 线 方 向 .
m 由 物 理 学 知 道 , 质 量 分 别 为 距 为 1, m 2相
如 果 要 计 算 一 根 细 棒 对 一 个 质 点 的 引 力 , 那 么 , 由 于 细 棒 上 各 点 与 该 质 点 的 距 离 是 变 化 的 , 且 各 点 对 该 质 点 的 引 力 方 向 也 是 变 化 的 , 就 不 能 用 此 公 式 计 算 .
1
功元素 dw [ r , r dr ] 取 任 一 小 区 间 ,
b
b
kq dr, 2 r
kq 1 1 1 kq 所求功为 w a 2 dr kq . r r a a b
如果要考虑将单位电荷移到无穷远处

w a
kq 1 kq dr kq . 2 a r r a
解 在端面建立坐标系如图

定积分在物理学上的应用

定积分在物理学上的应用
一、直径为 20厘米,高为 80 厘米的圆柱体内充满压强 为10牛厘米3 的蒸汽,设温度保持不变,要使蒸汽 体积缩小一半,问需要作多少功?
二、一物体按规律x c t 3 作直线运动,媒质的阻力与 速度的平方成正比,计算物体由 x 0 移至x a 时,克服媒质阻力所作的功 .
三、有一等腰梯形闸门,它的两条底边各长10 米和 6 米,高为20 米,较长的底边与水面相齐.计算闸门 的一侧所受的水压力 .
七、 油类通过直油管时,中间流速大,越靠近管壁流 速越小,实验测定,某处的流速 v 与 流处到管子 中心的距离 r 之间 有关系式v k ( a2 r 2 ) ,其中 k 为比例 常数, a 为油管 半径.求通过油管的流 量(注:当流速为常量时,流量 = 流速 截面积).
练习题答案
一、800 ln 2(焦耳).
四、半径为 r 的球沉 入水中,球的上部与水面相切, 球的比重与水相同,现将球从水中取出,需要作 多少功?
五、一块高为 a ,底为 b 的等腰三角形薄板,垂直地 沉没在水中,顶在下,底与水面相齐,试计算薄 板每面所受的压力 .
六、设有一半径为 R ,中心角为 的圆弧形细棒,其 线密度为常数 ,在圆心处有一质量为 m 的 质点 M ,试求这细棒对质点 M 的引力 .
o x Rx
故圆盘对y 轴的转动惯量为
细条质量:
I y 2
R x2
R
R2 x2 dx 4 R x2
0
R2 x22dxy dx
4 02 R4 sin2 t cos2 t d t
(令 x R sin t)
1 R4 1 M R2
4
4
(
M
R2
)
五、小结
1.用定积分求一个分布在某区间上的整体量 Q 的步骤: (1) 先用微元分析法求出它的微分表达式 dQ 一般微元的几何形状有: 条、段、环、带、 扇、片、壳 等. (2) 然后用定积分来表示整体量 Q , 并计算之.

数学分析10.5定积分在物理中的某些应用

数学分析10.5定积分在物理中的某些应用

第十章 定积分的应用 5 定积分在物理中的某些应用一、液体静压力例1:如图所示为一管道的圆形闸门(半径为3米). 问水平面齐及直径时,闸门所受到的水的静压力为多大? 解:圆的方程记为:x 2+y 2=9.由相同深度的静压强等于水的比重(v)与深度(x)的乘积,当△x 很小时,闸门上从深度x 到x+△x 的狭条△A 所受的静压力为: △P ≈dP=2vx 2x 9-dx. 闸门上所受的总压力为: P=⎰-302x 9vx 2dx=18v.二、引力例2:一根长为l 的均匀细杆,质量为M ,在其中垂线上相距细杆为a 处有一质量为m 的质点。

试求细杆对质点的万有引力。

解:如图,细杆位于x 轴上的[-2l ,2l ], 质点位于y 轴上的点a.任取[x, x+△x]⊂[-2l ,2l ],当△x 很小时, 把这一小段细杆看作一质点, 其质量为dM=lMdx. 于是它对质点m 的引力为: dF=2r kmdM =l Mx a km 22⋅+dx. 又dF x =dFsin θ, dF y =dFcos θ, 且F x =⎰-22x dF ll =0;F y =⎰-22y dF l l =-2θcos M x a km 2022⎰⋅⋅+l l dx=-2⎰+2022 )x a (kmMa 23ll dx=-a 4a 2kmMa 22l +.例3:设有一半径为r 的圆弧形导线,均匀带电,电荷密度为δ,在圆心正上方距圆弧所在平面为a 的地方有一电量为q 的点电荷. 试求圆弧形导线与点电荷之间作用力(引力或斥力)的大小.解:把中心角为d φ的一小段导线圆弧看作一点电荷,其电量为dQ=δrd φ. 它对点电荷q 的作用力为: dF=2ρkqdQ =22r a kqr δ+d φ. dF z =dFcos θ=dF ·22r a a +=23)r a (akqr δ22+d φ. ∴它们之间的作用力为:F z =⎰π20z dF =⎰+π202223)r a (akqr δd φ=23)r a (πakqrδ222+.三、功与平均功率例4:一圆锥形水池,池口直径30米,深10米,池中盛满了水。

定积分在物理学中的应用

定积分在物理学中的应用

这功是由火箭上的动能转化而来,若火箭 离开地面时的初速度为
则动能为
因此要使火箭脱离地球引力范围,须有
代入上式得
——第二宇宙速度
例3 半径为R,高为H 的圆柱形贮水桶,盛满了水, 问将水桶中的水全部吸出须作多少功?
解 这个问题虽然不是变力作功问题,但是由于吸 出同样重量不同深度的水时所作的功是不同的,所 以也要用定积分来计算。可以理解水是一层一层地 被吸到桶口的
例1 已知弹簧每伸长 0.02 m 要用 9,8 N 的力, 求把弹簧拉长 0,1 m 需作多少功
解 当我们拉长弹簧时,需要克服弹性力 作功,由 Hoke 定律,弹性力F与伸长 量 x 之间有函数关系: F=kx k ——弹性系数 由题设 9.8=0.02k k= 490 F=490x
要求的是变力所作的功 用微元法 取 x 为积分变量 积分区间为 [0 ,0.1] 弹簧由 x 处拉到 x +dx 处,由 F (x ) 的连续性,当 dx 很小时,弹性力F (x) 变 化很小,可近似地看作是不变的(常力)
一、变力沿直线作功
由物理学知道,如果一个物体在常力F 作用下,使得物体沿力的方向作直线运动 , 物体有位移 s 时,力F对物体所作的功为: W=F*s
ቤተ መጻሕፍቲ ባይዱ
这个公式只有在力F是不变的情况下才 适用,但在实际问题中,物体在运动过程中 所受到的力是变化的。下面我们通过例子来 说明如何利用微元法来求变力所作的功。
四、平均值和均方根
关于定积分的应用说明三点:
1。选择合适的坐标系 2。善于根据问题的性质和要求构造积 分元素,主要是选择好参数,并能正 确地确定出积分限, 3。具体计算定积分时,要特别注意和 充分并且慎重应用对称性及等量关系 以简化定积分的计算,对此,熟悉区 域或曲线的形状,对于解决问题是十 分有益的。

定积分在物理学上的应用

定积分在物理学上的应用

1.3 引力
例 4 设有一长度为 l、线密度为 的均匀细直棒,在其垂线上距棒 a 单位处有
一质量为 m 的质点 M,试计算该棒对质点 M 的引力.
解 取如图所示坐标系,使细棒位于 y 轴,质点 M 位于 x 轴,棒的中点为原点
O,由对称性知,引力在垂直方向上的分量为零,所以只需求引力在水平方向的分
G
amdy
(a2 y2 )
3 2
2Gml
a
1. 4a2 l2
高等数学
高等数学
1.1 变力沿直线所做的功
许多物理量的计算可以根据微元法思想,利用定积分计算解决.下面介绍 几个定积分在物理学上应用的实例.
从物理学知道,当物体在恒力 F 的作用下,沿力的方向做直线运动,将物 体移动了距离 s 时,力 F 所做的功为
W Fs .
但在实际问题中,常常需要计算变力所做的功,下面我们通过举例来说明 如何计算变力沿直线所做的功.
W
5
88.2xdx
0
88.2
x2 2
5
0
1102.5
(kJ)
1.2 水压力
由物理学知识可知:在水深为 h 处点的压强为 p gh ,这里 是水的密度,如
果有一面积为 A 的平板水平地放置在水深 h 处,那么平板一侧所受的水压力为 F pA .
如果这个平板铅直放置在水中,那么由于水深不同,平板上各点处的压强 p 也 不相等,所以平板所受水的压力就不能用上述方法计算.
因有 F(0.05) 40 ,即 0.05k 40 ,故得 k 800 .于是可得到 F(x) 800x ,
则功元素为
dW 800xdx. 于是,弹簧从 15 cm 拉长到 18 cm,所做的功为

5.6定积分在物理上的应用

5.6定积分在物理上的应用


_
1
y
1 (1 x 2 )dx 2
1 (1) 1
3
例6 胰岛素平均浓度的测定
由实验测定患者的胰岛素浓度,先让病人禁食,以降低
体内血糖水平,然后通过注射给病人大量的糖.假定由实验
测得患者的血液中的胰岛素的浓度C(t)(单位/ml)为
10t t 2 0 t 5 c
C(t
)
25e
k
(
60 0
5
1 (5t 2 1 t 3 ) 5 5 ek(t5) 60
60
3 0 12k
5
11.63(单位 / ml )
三、平均速度
在变速直线运动中, 已知位置函数 与速度函数
之间有关系:
s(t) v(t)
物体在时间间隔
内经过的路程为
T2 T1
v(t)
d
t
s(T2
)
s(T1)
故作用在活塞上的
力为 功元素为 所求功为
S
o a xx dx b x
例3. 一蓄满水的圆柱形水桶高为 5 m, 底圆半径为3m,
试问要把桶中的水全部吸出需作多少功 ?
解: 建立坐标系如图. 在任一小区间
o
[x , x dx] 上的一薄层水的重力为
g 32 dx (KN)
这薄层水吸出桶外所作的功(功元素)为
kq
1 r
b a
k
q
(
1 a
1 b
)
说明:
kq a
例2. 在底面积为 S 的圆柱形容器中盛有一定量的气 体, 由于气体的膨胀, 把容器中的一个面积为S 的活塞从 点 a 处移动到点 b 处 (如图), 求移动过程中气体压力所 作的功 .

定积分的物理应用

定积分的物理应用

定积分的物理应用定积分是微积分中的重要概念,它在物理学中有着广泛的应用。

本文将探讨定积分在物理学中的几个主要应用领域。

一、质点运动的位移与速度质点在一定时间内的位移可以通过定积分来计算。

假设质点在时间区间[a, b]内的速度函数为v(t),则质点在该时间区间内的位移可以用定积分表示为:S = ∫[a,b] v(t) dt其中,S表示质点的位移量。

这个定积分表示了质点在从a时刻到b时刻的速度变化的累积效果,即位移量。

二、质点运动的加速度与速度速度的变化率称为加速度。

根据牛顿第二定律,质点的加速度可以表示为质点所受的力对质点质量的比值。

因此,如果我们知道质点在某个时间区间内的加速度函数a(t),那么质点在该时间区间内的速度变化可以用定积分表示为:Δv = ∫[a,b] a(t) dt其中,Δv表示速度的变化量。

这个定积分表示了质点在从a时刻到b时刻的加速度变化的累积效果,即速度的变化量。

三、质点受力的功与能量在物理学中,功可以理解为力对质点产生的能量转移。

假设一个质点在沿着一个直线运动,并受到一个作用力F(x)的作用。

则质点在从点a到点b的位移过程中所受到的力的功可以用定积分表示:W = ∫[a,b] F(x) dx其中,W表示受力的功。

这个定积分表示了力F(x)对质点在从点a 到点b的位移过程中所作的功。

四、连续介质的质量与密度在连续介质力学中,定积分也有着重要的应用。

考虑一个线密度为ρ(x)的连续介质,它在区间[a, b]中的质量可以用以下定积分表示:m = ∫[a,b] ρ(x) dx其中,m表示连续介质的质量。

这个定积分表示了在区间[a, b]中,密度函数ρ(x)所围成的面积,即连续介质的质量。

五、物体的质心与力矩物体的质心是物体质量均匀分布时的平衡点。

对于一个质量为m(x)的物体,可以用定积分来求解其质心位置:x_c = ∫[a,b] x * m(x) dx / ∫[a,b] m(x) dx其中,x_c表示物体的质心位置。

定积分在物理学的应用

定积分在物理学的应用

定积分在物理学的应用定积分在物理学中有着广泛而重要的应用,它不仅是解决复杂物理问题的有力工具,而且在物理学的理论建立和实验研究中发挥着不可替代的作用。

首先,定积分在描述物理过程和现象中起到了至关重要的作用。

从力学到光学,从电磁场到热力学,定积分在物理学的各个领域中都有广泛的应用。

例如,通过对运动路径上速度函数进行定积分,我们可以获得物体的位移,并进一步了解物体的运动规律。

在光学中,我们可以通过对光强度分布进行定积分,计算出照射在某一表面上的总光能。

此外,在热力学中,定积分可以帮助我们计算物体受热过程中的总能量变化。

因此,定积分为我们建立物理模型和理论提供了强有力的数学工具。

其次,定积分在物理学的实验研究中也具有重要价值。

在实验中,我们常常需要通过对物理量的测量来获取数据,并进一步进行分析和验证理论。

而定积分可以帮助我们对实验数据进行处理和求解。

例如,在测量一个物体受力过程中的功率时,我们可以通过对功率密度函数进行定积分,得到物体所受到的总功率。

此外,在核物理的实验研究中,我们也可以利用定积分来计算粒子在电子束中的散射截面,从而得到粒子相互作用的特性。

因此,定积分在解决实际物理问题和验证理论的实验研究中具有不可或缺的作用。

定积分的应用还可以帮助我们解决复杂的物理问题。

物理学中的很多问题,如能量守恒、动量守恒、电荷守恒等,都可以通过定积分来进行求解。

例如,在电磁场理论中,我们可以通过对电场或磁场的闭合曲面进行定积分,获得电场或磁场的总通量。

同时,我们也可以通过对电荷或电流密度分布进行定积分,计算出电荷或电流所产生的总电荷量或电流量。

这些定积分的结果,能够帮助我们理解物理学中的诸多基本定律,进而解决一系列与能量、动量、电荷等相关的物理问题。

总而言之,定积分在物理学中具有广泛的应用和重要的意义。

它不仅为我们理解物理现象和建立物理模型提供了有力的数学工具,而且在实验研究和解决复杂物理问题中发挥着不可替代的作用。

例谈定积分在物理学中的简单应用

例谈定积分在物理学中的简单应用

例谈定积分在物理学中的简单应用
定积分是物理学中重要的数学概念,它在物理学中有着广泛的应用。

首先,定积分可以用来求解复杂的物理问题。

例如,许多物理问题可以通过定积分的方法解决,如求曲线上的积分,计算面积,等等。

这些物理问题的解决方法是用定积分的原理推导出的,从而使用定积分可以解决这些复杂的物理问题。

其次,定积分可以用来研究弹力学。

弹力学是一门物理学的分支学科,它研究的是弹性物体的力学行为。

在弹力学中,我们需要计算物体的位移,速度和加速度,这些变量都可以通过定积分获得。

例如,我们可以用定积分来计算物体在某一时刻的位移,并用它来研究物体加速度的变化过程。

最后,定积分可以用来研究热物理学中的问题。

热物理学是一门研究物体的温度变化过程的学科,它涉及物体的热力学性质。

在热物理学中,我们可以使用定积分来研究物体温度变化的过程,例如,我们可以用定积分来计算物体在不同温度下的能量变化,从而研究物体在不同温度情况下的物理性质。

总之,定积分在物理学中有着广泛的应用。

它可以用来求解复杂的物理问题,研究弹力学,以及研究热物理学中的问题。

定积分的应用可以帮助我们更好地理解物理现象的本质,从而更好地应用物理学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分在物理学上的
应用
第五章第六节定积分在物理学上的应用
教学目的:理解和掌握用定积分的元素法,解决物理上的实际问题
功,水压力和引力
教学重点:如何将物理问题抽象成数学问题
教学难点:元素法的正确运用
教学内容:
一、变力沿直线所作的功
例1 半径为«Skip Record If...»的球沉入水中,球的上部与水面相切,球的比重为 1 ,现将这球从水中取出,需作多少功?
解:建立如图所示的坐标系
将高为«Skip Record If...»的球缺取出水面,所需的力«Skip Record If...»为:«Skip Record If...»
其中:«Skip Record If...»是球的重力,«Skip Record If...»表示将球缺取出之后,仍浸在水中的另一部分球缺所受的浮力。

由球缺公式«Skip Record If...»有
«Skip Record If...»
从而«Skip Record If...»
十分明显,«Skip Record If...»表示取出水面的球缺的重力。

即:仅有重力作功,而浮力并未作功,且这是一个变力。

从水中将球取出所作的功等于变力«Skip Record If...»从«Skip Record If...»改变至«Skip Record If...»时所作的功。

取«Skip Record If...»为积分变量,则«Skip Record If...»,对于«Skip Record If...»上的任一小区间«Skip Record If...»,变力«Skip Record If...»从«Skip Record If...»到«Skip Record If...»这段距离内所作的功。

«Skip Record If...»
这就是功元素,并且功为
«Skip Record If...»
另解建立如图所示的坐标系
取«Skip Record If...»为积分变量,则«Skip Record If...»,
在«Skip Record If...»上任取一个小区间«Skip Record If...»,则此小区间对应于球体上的一块小薄片,此薄片的体积为
«Skip Record If...»
由于球的比重为 1 ,故此薄片质量约为
«Skip Record If...»
将此薄片取出水面所作的功应等于克服薄片重力所作的功,而将此薄片取出水面需移动距离为«Skip Record If...»。

故功元素为«Skip Record If...»
«Skip Record If...»
二、水压力
在水深为«Skip Record If...»处的压强为«Skip Record If...»,这里
«Skip Record If...»是水的比重。

如果有一面积为的«Skip Record If...»平板水平地放置在水深«Skip Record If...»处,那未,平板一侧所受的水压力为
«Skip Record If...»
若平板非水平地放置在水中,那么由于水深不同之处的压强不相等。

此时,平板一侧所受的水压力就必须使用定积分来计算。

例2 边长为«Skip Record If...»和«Skip Record If...»的矩形薄板,与水面成«Skip Record If...»角斜沉于水中,长边平行于水面而位于水深«Skip Record If...»处。

设«Skip Record If...»,水的比重为«Skip Record If...»,试求薄板所受的水压力«Skip Record If...»。

解:由于薄板与水面成«Skip Record If...»角斜放置于水中,则它位于水中最深的位置是
«Skip Record If...»
取«Skip Record If...»为积分变量,则«Skip Record If...» (注意:«Skip Record If...»表示水深)
在«Skip Record If...»中任取一小区间«Skip Record If...»,与此小区间相对应的薄板上一个小窄条形的面积是«Skip Record If...»
它所承受的水压力约为«Skip Record If...»
于是,压力元素为«Skip Record If...»
«Skip Record If...»
这一结果的实际意义十分明显
«Skip Record If...»正好是薄板水平放置在深度为«Skip Record If...»的水中时所受到的压力;
而«Skip Record If...»是将薄板斜放置所产生的压力,它相当于将薄板水平放置在深度为«Skip Record If...»处所受的水压力。

三、引力
由物理学知道:质量为«Skip Record If...»、«Skip Record If...»,相距为«Skip Record If...»的两质点间的引力大小为
«Skip Record If...»
«Skip Record If...»为引力系数。

引力的方向沿着两质点的连线方向。

如果要计算一根细棒对一个质点的引力,由于细棒上各点与该质点的距离是变化的,且各点对该质点的引力方向也是变化的,便不能简单地用上述公式来作计算了。

例3 设有一半径为«Skip Record If...»,中心角为«Skip Record If...»的圆弧形细棒,其线密度为常数«Skip Record If...»,在圆心处有一质量为«Skip Record If...»的质点«Skip Record If...»,试求这细棒对质点«Skip Record If...»的引力。

解决这类问题,一般来说,应选择一个适当的坐标系。

解:建立如图所示的坐标系,质点«Skip Record If...»位于坐标原点,该圆弧的参方程为
«Skip Record If...»
在圆弧细棒上截取一小段,其长度为«Skip Record If...»,它的质量为«Skip Record If...»,到原点的距离为«Skip Record If...»,其夹角为«Skip
Record If...»,它对质点«Skip Record If...»的引力«Skip Record If...»的大小约为
«Skip Record If...»
«Skip Record If...»在水平方向(即«Skip Record If...»轴)上的分力«Skip Record If...»的近似值为
«Skip Record If...»
而«Skip Record If...»
于是,我们得到了细棒对质点的引力在水平方向的分力«Skip Record If...»的元素,
«Skip Record If...»
故«Skip Record If...»
类似地«Skip Record If...»
因此,引力的大小为«Skip Record If...»,而方向指向圆弧的中心。

小结:利用“微元法”思想求变力作功、水压力和引力等物理问题
作业:P1572,4,6。

相关文档
最新文档