离散型随机变量的均值与方差(一)
第二章 5离散型随机变量的均值与方差(一)
![第二章 5离散型随机变量的均值与方差(一)](https://img.taocdn.com/s3/m/4335f572af1ffc4ffe47ac22.png)
§5离散型随机变量的均值与方差(一)[学习目标]1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.会利用离散型随机变量的均值,反映离散型随机变量取值水平,解决一些相关的实际问题.[知识链接]1.某商场要将单价分别为18元/kg、24元/kg、36元/kg的3种糖果按3∶2∶1的比例混合销售,如何对混合糖果定价才合理?答由于平均在每1 kg的混合糖果中,3种糖果的质量分别是12kg、13kg和16kg,所以混合糖果的合理价格应该是18×12+24×13+36×16=23(元/kg).这里的23元/kg就是混合糖果价格的均值.2.已知随机变量ξ的分布列为则x=________,P(1≤ξ<3)=________.答x=1-(0.1+0.2+0.3+0.1)=0.3;P(1≤ξ<3)=P(ξ=1)+P(ξ=2)=0.2+0.3=0.5.[预习导引]1.离散型随机变量的均值或数学期望一般地,设一个离散型随机变量X所有可能取的值是x1,x2,…,x n,这些值对应的概率是p1,p2,…,p n,则E(X)=x1p1+x2p2+…+x i p i+…+x n p n叫作这个离散型随机变量X的均值或数学期望(简称期望),它反映了离散型随机变量取值的平均水平.2.离散型随机变量的性质如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是(离散型)随机变量,且P(X=x i)=P(Y=ax i+b),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.3.三种常见的分布的数学期望(1)如果随机变量X服从二项分布,即X~B(n,p),则E(X)=np.(2)若离散型随机变量X服从参数为N,M,n的超几何分布,则E(X)=nM N.要点一利用定义求离散型随机变量的数学期望例1袋中有4只红球,3只黑球,今从袋中随机取出4只球,设取到一只红球得2分,取得一只黑球得1分,试求得分X的数学期望.解取出4只球颜色及得分分布情况是4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,因此,P(X=5)=C14C33C47=435,P(X=6)=C24C23C47=1835,P(X=7)=C34C13C47=1235,P(X=8)=C44C03C47=135,故X的分布列如下:∴E(X)=5×435+6×1835+7×1235+8×135=447(分).规律方法求随机变量的期望关键是写出分布列,一般分为四步:(1)确定ξ的可能取值;(2)计算出P(ξ=k);(3)写出分布列;(4)利用E(ξ)的计算公式计算E(ξ).跟踪演练1在10件产品中,有3件一等品、4件二等品、3件三等品.从这10件产品中任取3件,求取出的3件产品中一等品件数X的分布列和数学期望.解从10件产品中任取3件,共有C310种结果.从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k7,其中k =0,1,2,3. ∴P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列为∴E (X )=0×724+1×2140+2×740+3×1120=910. 要点二 二项分布、超几何分布的数学期望例2 某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为ξ,当这4盏装饰灯闪烁一次时:(1)求ξ=2时的概率;(2)求ξ的数学期望.解 (1)依题意知:ξ=2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是23,故ξ=2时的概率P =C 24(23)2(13)2=827. (2)法一 ξ的所有可能取值为0,1,2,3,4, 依题意知:P (ξ=k )=C k 4(23)k (13)4-k (k =0,1,2,3,4). ∴ξ的概率分布列为∴E (ξ)=0×18+1×881+2×2481+3×3281+4×1681=83.法二 ∵ξ服从二项分布,即ξ~B (4,23),∴E (ξ)=4×23=83.规律方法 将实际问题转化为独立重复试验的概率问题是解决二项分布问题的关键.二项分布满足的条件①每次试验中,事件发生的概率是相同的; ②每次试验中的事件是相互独立的;③每次试验只有两种结果:事件要么发生,要么不发生; ④随机变量ξ是这n 次独立重复试验中某事件发生的次数.跟踪演练2 从4名男生和2名女生中任选3人参加纪念新中国成立65周年演讲活动,设随机变量X 表示所选3人中女生的人数. (1)求X 的分布列; (2)求X 的数学期望.解 (1)X 可能取的值为0,1,2.P (X =k )=C k 2·C 3-k4C 36,k =0,1,2.∴X 的分布列为(2)法一 该题服从超几何分布,则EX =nM N =6=1. 法二 由(1)知,X 的均值为 EX =0×15+1×35+2×15=1.要点三 离散型随机变量均值的应用例3 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P (A );(2)求η的分布列及期望E (η).解 (1)由题意可知每一位顾客不采用1期付款的概率为0.6,记A 的对立事件“购买该商品的3位顾客中,都不采用1期付款”为A -,则P (A )=0.6=0.216,∴P (A )=1-P (A -)=0.784.(2)由题意可知η可以取200,250,300,分布列如下∴E (η)=200×0.4+250×0.4+300×0.2=240.规律方法 解答此类题目时,应首先把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并列出分布列,最后利用公式求出相应数学期望.跟踪演练3 据统计,一年中一个家庭万元以上的财产被盗的概率为0.01.保险公司开办一年期万元以上家庭财产保险,参加者需交保险费100元,若在一年以内,万元以上财产被盗,保险公司赔偿a 元(a >100).问a 如何确定,可使保险公司期望获利?解 设X 表示“保险公司在参加保险人身上的收益”, 则X 的取值为X =100和X =100-a , 则P (X =100)=0.99. P (X =100-a )=0.01,所以E (X )=0.99×100+0.01×(100-a )=100-0.01a >0, 所以a <10 000.又a >100,所以100<a <10 000.即当a 在100和10 000之间取值时保险公司可望获利.1.随机抛掷一枚骰子,则所得骰子点数ξ的期望为( ) A .0.6 B .1 C .3.5 D .2解析 抛掷骰子所得点数ξ的分布列为所以,E (ξ)=1×16+2×16+3×16+4×16+5×16+6×16=(1+2+3+4+5+6)×16=3.5.2.若随机变量ξ~B (n ,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.64 答案 C解析 ∵ξ~B (n ,0.6),E (ξ)=3,∴0.6n =3,即n =5.故P (ξ=1)=C 15×0.6×(1-0.6)4=3×0.44.3.设随机变量X 的分布列为P (X =k )=C k 300·(13)k ·(23)300-k (k =0,1,2,…,300),则E (X )=________. 答案 100解析 由P (X =k )=C k 300·(13)k ·(23)300-k , 可知X ~B (300,13),∴E (X )=300×13=100.4.A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1、A 2、A 3,B 队队员是B 1、B 2、B 3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:现按表中对阵方式出场胜队得1分,负队得0分,设A 队,B 队最后所得总分分别为X ,Y .(1)求X ,Y 的分布列;(2)求E (X ),E (Y ).解(1)X,Y的可能取值分别为3,2,1,0.P(X=3)=23×25×25=875,P(X=2)=23×25×35+13×25×25+23×35×25=2875,P(X=1)=23×35×35+13×25×35+13×35×25=25,P(X=0)=13×35×35=325;根据题意X+Y=3,所以P(Y=0)=P(X=3)=875,P(Y=1)=P(X=2)=2875;P(Y=2)=P(X=1)=25,P(Y=3)=P(X=0)=325.X的分布列为Y的分布列为(2)E(X)=3×875+2×2875+1×25+0×325=2215;因为X+Y=3,所以E(Y)=3-E(X)=23 15.1.求离散型随机变量均值的步骤:(1)确定离散型随机变量X的取值;(2)写出分布列,并检查分布列的正确与否;(3)根据公式求出均值.2.若X,Y是两个随机变量,且Y=aX+b,则E(Y)=aE(X)+b;如果一个随机变量服从超几何分布或二项分布,可直接利用公式计算均值.一、基础达标1.(2013·广东理)已知离散型随机变量X的分布列为则X 的数学期望E (X )等于( )A.32B .2C.52D .3答案 A解析 E (X )=1×35+2×310+3×110=1510=32,故选A.2.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球的命中率是0.7,则他罚球6次的总得分的均值是 ( )A .0.7B .6C .4.2D .0.42答案 C解析 总得分X ~B (6,0.7),E (X )=6×0.7=4.2.3.已知ξ~B (n ,12),η~B (n ,13),且E (ξ)=15,则E (η)等于 ( )A .5B .10C .15D .20答案 B解析 ∵E (ξ)=12n =15,∴n =30, ∴η~B (30,13),∴E (η)=30×13=10.4.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为 ( )A.13B.23C .2D.83答案 D解析 X =2,3.P (X =2)=1C 23=13,P (X =3)=C 12C 23=23.故E (X )=2×13+3×23=83.5.设15 000件产品中有1 000件次品,从中抽取150件进行检查,由于产品数量较大,每次检查的次品率看作不变,则查得次品数的数学期望为________. 答案 10解析 次品率为p =1 00015 000=115,由于产品数量特别大,次品数服从二项分布,由公式,得E (X )=np =150×115=10.6.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X ,则E (X )=________. 答案 1.75解析 P (X =0)=(1-0.9)×(1-0.85)=0.1×0.15=0.015; P (X =1)=0.9×(1-0.85)+0.85×(1-0.9)=0.22; P (X =2)=0.9×0.85=0.765.∴E (X )=0×0.015+1×0.22+2×0.765=1.75.7.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和. (1)求X 的分布列; (2)求X 的数学期望E (X ).解 (1)X =3,4,5,6,P (X =3)=C 35C 39=542,P (X =4)=C 25C 14C 39=1021,P (X =5)=C 15C 24C 39=514,P (X =6)=C 34C 39=121,所以X 的分布列为(2)X 的数学期望E (X )=42=9121.二、能力提升8.某人进行一项试验,若试验成功,则停止试验,若试验失败,再重新试验一次,若试验3次均失败,则放弃试验.若此人每次试验成功的概率为23,则此人试验次数ξ的期望是( )A.43B.139C.53D.137答案 B解析 试验次数ξ的可能取值为1,2,3, 则P (ξ=1)=23,P (ξ=2)=13×23=29, P (ξ=3)=13×13×(23+13)=19. 所以ξ的分布列为∴E (ξ)=1×23+2×29+3×19=139.9.(2013·湖北理)如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X ,则X 的均值E (X )等于( )A.126125B.65C.168125D.75答案 B解析 根据题意易知X =0,1,2,3.分布列如下所以E (X )=0×27125+1×54125+2×36125+3×8125 =150125=65.故选B.10.某电视台开展有奖答题活动,每次要求答30个选择题,每个选择题有4个选项,其中有且只有一个正确答案,每一题选对得5分,选错或不选得0分,满分150分,规定满100分拿三等奖,满120分拿二等奖,满140分拿一等奖,有一选手选对任一题的概率是0.8,则该选手可望能拿到________等奖.答案二解析选对题的个数X~B(30,0.8),所以E(X)=30×0.8=24,由于24×5=120(分),所以可望能得到二等奖.11.春节期间,小王用私家车送4位朋友到三个旅游景点去游玩,每位朋友在每一个景点下车的概率均为13,用ξ表示4位朋友在第三个景点下车的人数,求:(1)随机变量ξ的分布列;(2)随机变量ξ的均值.解法一(1)ξ的所有可能值为0,1,2,3,4.由等可能性事件的概率公式得P(ξ=0)=(23)4=1681,P(ξ=1)=C14·2334=3281,P(ξ=2)=C24·2234=827,P(ξ=3)=C34·234=881,P(ξ=4)=(13)4=181.从而ξ的分布列为(2)由(1)得ξ的均值为E(ξ)=0×1681+1×3281+2×827+3×881+4×181=43.法二(1)考察一位朋友是否在第三个景点下车为一次试验,这是4次独立重复试验.故ξ~B(4,13),即有P(ξ=k)=Ck4(13)k(23)4-k,k=0,1,2,3,4.ξ的分布列如法一.(2)E(ξ)=4×13=43.12.(2013·天津理)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率.(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望.解 (1)设“取出的4张卡片中,含有编号3的卡片”为事件A ,则P (A )=C 12C 35+C 22C 25C 47=67. 所以,取出的4张卡片中,含有编号3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4.P (X =1)=C 33C 47=135,P (X =2)=C 34C 47=435,P (X =3)=C 35C 47=27,P (X =4)=C 36C 47=47.所以随机变量X 的分布列是随机变量X 的数学期望E (X )=1×135+2×435+3×27+4×47=175. 三、探究与创新13.(2013·福建理)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?解 (1)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X ≤3”的事件为A , 则A 事件的对立事件为“X =5”,∵P(X=5)=23×25=415,∴P(A)=1-P(X=5)=11 15,所以这两人的累计得分X≤3的概率为11 15.(2)设小明、小红都选择方案甲抽奖中奖的次数为X1,都选择方案乙抽奖中奖的次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2)由已知:X1~B(2,23),X2~B(2,25)∴E(X1)=2×23=43,E(X2)=2×25=45,∴E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.∵E(2X1)>E(3X2)他们都选择方案甲进行抽奖时,累计得分的数学期望最大.。
离散型随机变量的分布列、均值与方差
![离散型随机变量的分布列、均值与方差](https://img.taocdn.com/s3/m/03ed893a1eb91a37f0115c03.png)
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量的均值与方差
![离散型随机变量的均值与方差](https://img.taocdn.com/s3/m/e3ef81cceff9aef8951e06a7.png)
课堂互动讲练
(3)设技术革新后的三等品率为x, 则此时1件产品的平均利润为 Ex=6×0.7+2×(1-0.7-0.01-x)+ x+(-2)×0.01 =4.76-x(0≤x≤0.29),9分 依题意,Ex≥4.73, 即4.76-x≥4.73, 解得x≤0.03. 所以三等品率最多为3%. 12分
课堂互动讲练
(2)EY=E(2X+3)=2EX+3 =2×(-13)+3=73; DY=D(2X+3)=4DX=4×59=290. 【名师点评】 ξ是一个随机变 量,则η=f(ξ)一般仍是一个随机变 量,在求η的期望和方差时,要应用期 望和方差的性质.
课堂互动讲练
考点四 均值与方差的实际应用
利用期望和方差比较随机变量的 取值情况,一般是先比较期望,期望 不同时,即可比较出产品的优劣或技 术水平的高低,期望相同时,再比较 方差,由方差来决定产品或技术水平 的稳定情况.
课堂互动讲练
P(X≥7)=P(X≤3) =12×[1-P(3<X<7)], =12×(1-0.9544)=0.0228, ∵P(4<X<6)=0.6826, ∴P(5<X<6)=12P(4<X<6) =0.3413.
课堂互动讲练
考点二 求离散型随机变量的期记与方差
求离散型随机变量X的均值与方差 的步骤:
课堂互动讲练
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投 篮得分超过3分与选择上述方式投篮 得分超过3分的概率的大小.
课堂互动讲练
【思路点拨】 首先由P(ξ=0)= 0.03计算出q2,从而可写出分布 列.本题便可求解.
【解】 (1)由题设知,“ξ=0”对 应的事件为“在三次投篮中没有一次投 中”,由对立事件和相互独立事件性质 可知
离散型随机变量的均值与方差
![离散型随机变量的均值与方差](https://img.taocdn.com/s3/m/2907b34c53d380eb6294dd88d0d233d4b14e3f9d.png)
解 (1)甲、乙、丙三名学生每人选择五个社团的方
法数是5种,故共有5×5×5=125(种).
(2)三名学生选择三个不同社团的概率是
A
3 5
53
12 . 25
∴三名学生中至少有两人选择同一个社团的概率为
1 12 13 . 25 25
解 (1)ξ的所有可能取值有6,2,1,-2.
P( 6) 126 0.63, P( 2) 50 0.25,
200
200
P( 1) 20 0.1, P( 2) 4 0.02.
200
200
故ξ的分布列为
6
2
1
-2
P 0.63 0.25 0.1 0.02
(2)E(ξ)=6×0.63+2×0.25+1×0.1+(-2)×0.02
125 125 125 125 5
题型二 均值与方差性质的应用
【例2】设随机变量ξ具有分布P(ξ=k)= 1 , k=1,2,3,
5
4,5,求E(ξ+2)2,D(2ξ-1), D( 1).
思维启迪 利用性质E(aξ+b)=aE(ξ)+b,
D(aξ+b)=a2D(ξ).
解 ∵ E( ) 1 1 2 1 3 1 4 1 5 1 15 3.
9 16
X ~ B(3, 1), D(X ) 3 1 3 9 .
4
4 4 16
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 【例1】 (2009·湖南理,17)为拉动经济增长,某市决
定新建一批重点工程,分为基础设施工程、民生工程 和产业建设工程三类,这三类工程所含项目的个数分 别占总数的 1 , 1 , 1 , 现有3名工人独立地从中任选一
人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版
![人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版](https://img.taocdn.com/s3/m/6e4fa3ce9b89680202d82505.png)
2.3 离散型随机变量的均值与方差(第1课时)一、教学目标1.核心素养通过对离散型随机变量的均值的学习,更进一步提高了学生的数学建模能力和数学运算能力.2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的均值的概念;(2)能计算简单离散型随机变量的期望,并能解决一些实际问题.3.学习重点离散型随机变量的期望的概念、公式及其应用.4.学习难点灵活利用公式求期望.二、教学设计1.预习任务任务1阅读教材P60-P63,思考:何为加权平均、权数?随机变量的均值(数学期望)的定义是什么?它反应了什么?任务2根据数学期望的计算过程,可得到它的什么性质?任务3何为两点分布?如果随机变量服从两点分布,则其数学期望有什么特点?任务4随机变量均值与样本的平均值有何联系与区别?2.预习自测1.已知X的分布列为则E(X)等于()A.0.7 B.0.61 C.-0.3 D.02.设E(X)=10,E(Y)=3,则E(3X+5Y)=()A.45 B.40 C.30 D.153.若X ~B (4,12),则E (X )的值为( )A .4B .2C .1 D.12 (二)课堂设计 1.知识回顾(1)何为离散型随机变量. (2)离散型性随机变量的分布列. (3)何为样本平均值?怎么计算?.(4)我们预习本课的数学期望是怎么定义的?怎么计算? 2.创设情境 引入新知前面我们学习了离散性随机变量分布列的概念,研究了一些简单离散型随机变量的分布,建立了二项分布、超几何分布等应用广泛的概率模型.离散型随机变量的分布列刻画了随机变量取值的概率规律,但往往还需要进一步了解离散型随机变量取值的特征.比如:某商店为了满足市场需求,要将单价分别为18元/kg ,24元/kg 、36元/kg ,如果按照3:2:1的比例对糖果进行混合销售,其中混合糖果中每颗质量都相等,如何对每千克糖果定价才合理?通过师生探究发现:当定价为混合糖果的平均价格时才合理.进而求混合糖果的平均价格,从而得出如下结论:根据混合糖果中3种糖果的比例可知在1kg 的混合糖果中,3种糖果的质量分别是63kg ,62 kg 和61kg ,则混合糖果的合理价格应该是18×63+24×62+36×61=23(元/kg ). 问题1:上述分式中36,26和61的意义是什么?在学生思考后,教师指出:上面的平均值其实是一种加权平均数,其中36,26和61表示一种权重系数,简称为权数.在计算平均数时,权数可以表示总体中的各种成分所占的比例.权数越大的数据在总体中所占的比例越大,它对加权平均数的影响越大.加权平均数是不同比重数据的平均数.加权平均数就是把原始数据按照合理的比例来计算.通过交流,使学生达成共识:36,26和61分别表示价格为18元/kg 、24元/kg 何36元/kg 的糖果在混合糖果中所占的比例.问题2:如果每一颗糖果的质量都相等,则在搅拌均匀的混合糖果中, 任取一颗恰好是18元/kg 的糖果的概率是多少?恰好是24元/kg 的糖果的概率是多少?恰好是36元/kg 的糖果的概率是多少?学生讨论,得出共识:在混合糖果中,任取一颗恰好是18元/kg 的糖果的概率是36,恰好是24元/kg 的糖果的概率是26,恰好是36元/kg 的糖果的概率是61.问题3:假如从混合糖果中随机的选取一颗,记X 为该糖果原来的单价,你能写出X 的分布列吗?学生不难得出随机变量X 的分布列为:问题4:能否将混合糖果的平均价格用X 的取值及其相应的概率来表示呢?由之前的知识,学生得出: 每千克混合糖果的平均价格为:18×63+24×62+36×61=23(元/kg ) 即18×P(X=18)+24×P(X=24)+36×P(X=36)=23(元/kg ) 教师总结:这里混合糖果的平均价格为随机变量X 的取值与其相应概率乘积之和.混合糖果的平均价格既为随机变量X 的均值.(设计意图:用实际问题为背景,从求学生熟悉的样本平均数为出发点,设置问题串,层层递进,逐步深入,最终得出结论:离散型随机变量X 取值的平均值为离散型随机变量X 的所有取值与其相应概率乘积之和.这样不但可以使学生直观感受到数学与生活的联系,而且可以激发学生的学习兴趣与热情.同时有利于学生进行知识迁移,为下面概括抽象得出科学定义做好铺垫.) 3.概括抽象 构建概念问题5:能否用数学语言表述离散型随机变量的均值这一概念的定义? 可以使学生自行定义,教师作出修正,最终形成正式的定义:若离散型随机变量X 的分布列为:则称E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望.数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.(设计意图:使学生经历离散型随机变量均值概念的形成过程,体验从具体问题中概括、抽象,形成定义的思想方法,体会概括、抽象是一种常用的数学逻辑方法,使学生学会科学定义的方法.这里渗透了从特殊到一般的数学思想方法)问题6:离散型随机变量ξ的期望与ξ可能取值的算术平均数相同吗?通过师生共同分析得出结论,期望的计算是从概率分布出发,因而它是概率意义下的平均值.随机变量ξ取每个值时概率不同导致了期望不同于初中所学的算术平均数.(设计意图:期望源于平均值,但又不同于平均值,通过比较,进一步加深对数学期望的理解.)问题7:能给出两点分布与二项分布的均值吗?根据均值的计算公式,学生不难得出:4.例题分析应用新知例1:设随机变量X的分布列如下所示,已知E(X)=1.6,则a-b=()A.0.2B.0.1 C【知识点:期望】详解:a+b=0.8,且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.即a+b=0.8,且a+2b=1.3,∴a=0.3,b=0.5,a-b=-0.2.点拨:本题主要考查离散型随机变量的均值的计算公式,且要熟知离散型随机变量的概率之和为1.例2:有一批数量很大的产品,其次品率是15℅.对这批产品进行抽查,每次抽出1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽到次品,但抽查次数最多不超过10次.求抽查次数ξ的期望.【知识点:期望】详解:解决这个实际问题的难点是求ξ的分布列,一般地,在产品抽查中已说明产品数量很大时,各次抽查结果可以认为是相互独立的.并且取1~10的整数,前k-1次取到正品,而第k 次取到次品的概率是P (ξ=k )=15.085.01⨯-k (k=1,2,3,…,9),P (ξ=10)=185.09⨯.然后学生运用数学期望的定义来解题点拨:求离散型随机变量期望的步骤: (1)确定离散型随机变量ξ的取值.(2)写出分布列,并检查分布列的正确与否. (3)求出期望.例3:某同学代表班级参加设计比赛,每连续设计10次,其中有3次中10环,5次中9环,2次中8环.①求次同学射击一次中靶的环数的均值是多少?②如果把该同学射击一次所得的环数的2倍再加上5记为该同学的设计成绩Y ,即Y=2X+5,那么试求Y 的均值. 【知识点:分布列、期望及性质】详解:(1)击靶数的分布列,根据期望的计算公式可得出E(X)=9.1(2)写出得分Y 的分布列,并求出E (Y )=23.2点拨:当X 为随机变量时,若Y=aX+b(a,b 为常数),则Y 也为随机变量,并称随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(X)+b 练习:设E (X )=10,E (Y )=3,则E (3X +5Y )=( ) A .45 B .40 C .30 D .15【知识点:离散型随机变量期望的性质】 详解:E(3X+5Y)=3E(X)+5E(Y)=45.点拨:随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(x)+b 5.课堂总结均值或数学期望:一般地,若离散型随机变量ξ的概率分布为则称=ξE 为ξ的均值或数学期望,简称期望.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量,且有()()E aX b aE X b +=+.(1)当0=a 时,()E b b =,即常数的数学期望就是这个常数本身;(2)当1=a 时,()()E X b E X b +=+,即随机变量X 与常数之和的期望等于X 的期;(3)当0=b 时,E aX aE X =()(),即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.①若X 服从两点分布,则)(X E =p ; ②若ξ~),,(p n B 则)(X E =np . 6. 随堂检测1.随机抛掷一个骰子,所得点数η的均值为( ) A.16 B.13 C.12 D.3.52.若X ~B (4,12),则E (X )的值为( ) A .4 B .2 C .1 D .123.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (三)课后作业 (一)基础型1.若随机变量ξ~B (n,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.642.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达数为ξ,则E (ξ)的值为( ) A .0.765 B .1.75 C .1.765 D .0.223.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为ξ,则ξ的期望是( ) A .7.8 B .8 C .16 D .15.64.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (二)能力型5.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数ξ的数学期望是( )A.13 B.23 C.43 D.346.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.某一供电网络,有n个用电单位,每个单位在一天中使用电的机会是p,供电网络中一天平均用电的单位个数是()A.np(1-p) B.Np C.n D.p(1-p)8.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定9.在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率.10.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率.11.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检),若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8.计算(结果精确到0.01):(1)恰好有两家煤矿必须整改的概率;(2)平均有多少家煤矿必须整改;(3)至少关闭一家煤矿的概率.12.为了拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16.现有3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及数学期望.(三)探究型13.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离,则随机变量ξ的数学期望E(ξ)=________.14.马老师从课本上抄录一个随机变量ξ的概率分布如下表:请小牛同学计算ξ“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.15.某企业2014年工作计划中,对每位员工完成工作任务的奖励情况作出如下规定:有一季度完成任务者得奖金300元;有两季度完成任务者得奖金750元;有三季度完成任务者得奖金1 260元;对四个季度均完成任务的员工,奖励 1 800元;若四个季度均未完成任务则没有奖金.假若每位员工在每个季度里完成任务与否都是等可能的,求企业每位员工在2014年所得奖金的数学期望.(四)自助餐1.已知某一随机变量X的概率分布列如下表,E(X)=6.3,则a值为()A.5 B.6 C.7 D.82.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花销售情况需求量X(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则期望利润是()A.706元B.690元3.如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续摸取4次,设ξ为取得红球的次数,那么ξ的期望E(ξ)=()A.34 B.125 C.197 D.134.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的个数,则E(X)等于()A.35 B.815 C.1415 D.15.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为()A.0.4 B.1.2 C.0.43 D.0.66.袋子装有5只球,编号为1,2,3,4,5,从中任取3个球,用X表示取出的球的最大号码,则E(X)=()A.4 B.5 C.4.5 D.4.757.设15 000件产品中有1 000件次品,从中抽取150件进行检查,由于产品数量较大,每次检查的次品率看作不变,则查得次品数的数学期望为()A.15 B.10 C.20 D.58.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B(5,14),则E(-X)的值为()A.14B.-14C.54D.-549.设随机变量X的分布列为P(X=k)=p k(1-p)1-k(k=0,1,0<p<1),则E(X)=________.10.一个人有n把钥匙,其中只有一把能打开他的房门,他随意地进行试开,并将试开不对的钥匙除去,则打开房门所试开次数ξ的数学期望是________.11.某公司有5万元资金用于投资开发项目,如果成功,一年后可获得12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:12.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是________.13.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________. (四)参考答案 预习自测 1.C 2.A 3.B 随堂检测 1.D 2.B 3.B 课后作业 基础型 1.C 2.B 3.A 4.B 能力型 5.B 6.B 7.B 8.A9.解:(1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k 7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为 P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是X 的数学期望E (X )=0×724+1×2140+2×740+3×1120=910.(2)设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为 P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. ∴σ(X 3)=D X 3=10×12×12= 2.5.10. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1),ξ的数学期望为 E (ξ)=0×15+1×35+2×15=1.(3)由(1),“所选3人中女生人数ξ≤1”的概率为 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.11. 解:(1)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的,所以恰好有两家煤矿必须整改的概率是P 1=C 25×(1-0.5)2×0.53=516≈0.31.(2)由题设,必须整改的煤矿数ξ服从二项分布B (5,0.5),从而ξ的数学期望E (ξ)=5×0.5=2.50,即平均有2.50家煤矿必须整改.(3)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是P 2=(1-0.5)×(1-0.8)=0.1,从而该煤矿不被关闭的概率是0.9.由题意可知,每家煤矿是否被关闭是相互独立的,故至少关闭一家煤矿的概率是P 3=1-0.95≈0.41.12. 解:记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件A i ,B i ,C i ,i =1,2,3,由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3,且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13, P (C i )=16.(1)他们选择的项目所属类别互不相同的概率 P =3!P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=6×12×13×16=16.(2)解法一 设3名工人中选择的项目属于民生工程的人数为η, 由已知,η~B (3,13),且ξ=3-η, 所以P (ξ=0)=P (η=3)=C 33(13)3=127, P (ξ=1)=P (η=2)=C 23(13)2(23)=29, P (ξ=2)=P (η=1)=C 13(13)(23)2=49, P (ξ=3)=P (η=0)=C 03(23)3=827. 故ξ的分布列是ξ的数学期望E (ξ)=0×127+1×29+2×49+3×827=2.解法二 记第i 名工人选择的项目属于基础设施工程或产业建设工程分别为事件D i ,i =1,2,3. 由已知,D 1,D 2,D 3相互独立,且 P (D i )=P (A i +C i )=P (A i )+P (C i )=12+16=23.所以ξ~B (3,23),即P (ξ=k )=C k 3(23)k (13)3-k,k =0,1,2,3. 故ξ的分布列是ξ的数学期望E (ξ)=3×23=2. 探究型 13.47 14.215.解:P (X =0)=C 04(12)0(12)4=116;P (X =300)=C 14(12)1(12)3=14; P (X =750)=C 24(12)2(12)2=38;P (X =1 260)=C 34(12)3(12)1=14;P (X =1 800)=C 44(12)4(12)0=116. 故X 的分布列为E (X )=0×116+300×14+750×38+1 260×14+1 800×116=783.75(元). 自助餐 1.C 2.A 3.B 4.A 5.B 6.C 7.B 8.D 9.p 10.n +12 11.4 760 12.49 13.0.5。
离散型随机变量的均值、方差和正态分布
![离散型随机变量的均值、方差和正态分布](https://img.taocdn.com/s3/m/e1324457a417866fb84a8e44.png)
10.9 离散型随机变量的均值、方差和正态分布[知识梳理]1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2D(X )(a ,b为常数).3.两点分布与二项分布的均值、方差4.正态曲线(1)正态曲线的定义 函数φμ,σ(x )=12π·σe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线(μ是正态分布的期望,σ是正态分布的标准差).(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.5.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x (即x=a ,x =b ,正态曲线及x 轴围成的曲边梯形的面积),则称随机变量X 服从正态分布,记作X ~N (μ,σ2).(2)正态分布的三个常用数据 ①P (μ-σ<X <μ+σ)=0.6826; ②P (μ-2σ<X <μ+2σ)=0.9544; ③P (μ-3σ<X <μ+3σ)=0.9974.[诊断自测] 1.概念思辨(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数.( )(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(选修A2-3P 68T 1)已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73 B .4 C .-1 D .1 答案 A解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.故选A. (2)(选修A2-3P 75A 组T 1)正态分布密度函数为 φμ,σ(x )=18πe -x 28,x ∈(-∞,+∞),则总体的平均数和标准差分别为()A .0和8B .0和4C .0和2D .0和 2答案 C解析 根据已知条件可知μ=0,σ=2,故选C.3.小题热身(1)(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 答案 B解析 P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,则P (3<ξ<6)=12×(95.44%-68.26%)=13.59%.故选B.(2)(2018·张掖检测)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75 答案 B解析 设涂0个面的小正方体有x 个,涂1个面的小正方体有y 个,涂2个面的小正方体有z 个,涂3个面的小正方体有w 个,则有0·x +1·y +2·z +3·w =25×6=150,所以E (X )=0·x 125+1·y 125+2·z125+3·w 125=150125=65.故选B.题型1 与二项分布有关的期望与方差典例(2017·山西太原模拟)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种,方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖?解 (1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝ ⎛⎭⎪⎫3,110.设所得奖金为w 1元,则E (w 1)=3×110×30=9. 即顾客A 所奖资金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎪⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎪⎫1,310,设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5. 若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝⎛⎭⎪⎫2,310.设所得奖金为w3元,则E(w3)=2×310×15=9.结合(1)可知,E(w1)=E(w3)<E(w2).所以顾客A应该按方案a抽奖两次,按方案b抽奖一次.方法技巧与二项分布有关的期望、方差的求法1.求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B(n,p),则用公式E(ξ)=np,D(ξ)=np(1-p)求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).冲关针对训练(2014·辽宁高考)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216.分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72.题型2 离散型随机变量的均值与方差角度1 求离散型随机变量的均值与方差典例(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×( 14×23×34×23+34×13×34×23 )=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×( 34×13×14×13+14×23×14×13 )=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×( 34×23×34×13+34×23×14×23 )=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 角度2 均值与方差的应用问题典例(2016·全国卷Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16、17、18、19、20、21、22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n =19.方法技巧1.求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ可能的全部值.(2)求ξ取每个值的概率.(3)写出ξ的分布列.(4)由均值的定义求E(ξ).(5)由方差的定义求D(ξ).2.由均值与方差情况求参数问题的求解思路先根据题设条件将均值、方差用待求参数表示,再由已知均值与方差构建关于参数的方程(组),然后求解.3.利用均值、方差进行决策的方法:均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两个随机变量均值相同或相差不大,则可通过分析两个变量的方差来研究随机变量的离散程度或者稳定程度,方差越小,则偏离均值的平均程度越小,进而进行决策.提醒:均值E(X)由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值的平均水平.冲关针对训练(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×0.4+(1200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.题型3正态分布典例(2015·湖南高考)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为() (附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544) A.2386 B.2718 C.3413 D.4772答案 C解析由曲线C为正态分布N(0,1)的密度曲线可知题图中阴影部分的面积为P(0<X≤1)=12×0.6826=0.3413,又题图中正方形面积为1,故它们的比值为0.3413,故落入阴影部分的点的个数的估计值为0.3413×10000=3413.故选C.[条件探究]若将本典例中条件“曲线C为正态分布N(0,1)的密度曲线”变为“曲线C为正态分布N(-1,1)的密度曲线”,则结果如何?解对于正态分布N(-1,1),可知μ=-1,σ=1,正态曲线关于直线x=-1对称,故题图中阴影部分的面积为12×[P(-3<X≤1)-P(-2<X≤0)]=12×[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12×(0.9544-0.6826)=0.1359,所以点落入题图中阴影部分的概率P=0.13591=0.1359,投入10000个点,落入阴影部分的个数约为10000×0.1359=1359.方法技巧正态分布下两类常见的概率计算1.利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,曲线与x轴之间的面积为1.2.利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.冲关针对训练(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)=0.6826,P(μ-2σ<Z≤μ+2σ)=0.9544.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B (100,0.6826),所以E (X )=100×0.6826=68.26.1.(2017·浙江高考)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2) 答案 A解析 ∵E (ξ1)=0×(1-p 1)+1×p 1=p 1, 同理,E (ξ2)=p 2,又0<p 1<p 2, ∴E (ξ1)<E (ξ2).D (ξ1)=(0-p 1)2(1-p 1)+(1-p 1)2·p 1=p 1-p 21,同理,D (ξ2)=p 2-p 22.D (ξ1)-D (ξ2)=p 1-p 2-(p 21-p 22)=(p 1-p 2)(1-p 1-p 2).∵0<p 1<p 2<12,∴1-p 1-p 2>0, ∴(p 1-p 2)(1-p 1-p 2)<0. ∴D (ξ1)<D (ξ2).故选A.2.(2015·湖北高考)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t ) 答案 C解析 由题图可知μ1<0<μ2,σ1<σ2,∴P (Y ≥μ2)<P (Y ≥μ1),故A 错误;P (X ≤σ2)>P (X ≤σ1),故B 错误;当t 为任意正数时,由题图可知P (X ≤t )≥P (Y ≤t ),而P (X ≤t )=1-P (X ≥t ),P (Y ≤t )=1-P (Y ≥t ),∴P (X ≥t )≤P (Y ≥t ),故C 正确,D 错误.故选C.3.(2018·安徽模拟)某小区有1000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .46 答案 B解析 P (ξ>320)=12×[1-P (280<ξ≤320)] =12×(1-95.44%)=0.0228, 0.0228×1000=22.8≈23,∴用电量在320度以上的户数约为23.故选B.4.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.答案 1.96解析由题意得X~B(100,0.02),∴D(X)=100×0.02×(1-0.02)=1.96.[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝⎛⎭⎪⎫-1+132×12+⎝⎛⎭⎪⎫0+132×13+⎝⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a = -2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =a b 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B.10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.故选B. 二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元).故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x、y的值,并补全频率分布直方图;(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.解(1)由题意知,[25,30)内的频率为0.01×5=0.05,故x=100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y=100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7.X可取0,1,2,P(X=0)=C213C220=78190,P(X=1)=C113C17C220=91190,P(X=2)=C27C220=21 190,故X的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar 评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分, 评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar 评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X 表示抽到评分不低于9分的新生儿数,求X 的分布列及数学期望.解 (1)设A i 表示所抽取的3名新生儿中有i 名的评分不低于9分, “至多有1名新生儿的评分不低于9分”记为事件A ,则由表格中数据可知P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=14,由题意知随机变量X 的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164. 所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710. (2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35,方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974. 解 (1)由频率分布直方图可知[125,135)的频率为 1-10×(0.01+0.024+0.03+0.016+0.008)=0.12, 该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分). (2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13, 所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12,P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130,X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。
高考理科复习课件(10.9离散型随机变量的均值与方差)
![高考理科复习课件(10.9离散型随机变量的均值与方差)](https://img.taocdn.com/s3/m/97e6182eccbff121dd36834e.png)
【解析】(1)错误.期望是算术平均值概念的推广,是概率意义
下的平均值,反映了离散型随机变量取值的平均水平.
(2)正确.由于随机变量的取值是确定值,而每一个随机变量的
概率也是确定的,因此随机变量的均值是定值,即为常数;而
样本数据随着抽样的次数不同而不同,因此其平均值也不相同.
(3)正确.随机变量的方差反映了随机变量取值偏离均值的平均
15
2 C5 C1 C1 C1 C 2 22 4 P X 1 2 2 2 4 5 2 , 2 C6 C6 C6 C6 45
C1 1 1 P X 3 5 2 , 2 C6 C6 45
P(X=2)=1-P(X=0)-P(X=1)-P(X=3)= 2 , X的分布列为
程度,方差越小,则偏离变量平均程度越小;方差越大,则偏 离变量平均程度越大.
(4)错误.均值与方差都是从整体上刻画离散型随机变量的情况, 均值反映了平均水平,而方差则反映它们与平均值的偏离情况. 答案:(1)× (2)√ (3)√ (4)×
1.设投掷1颗骰子的点数为X,则(
)
(A)EX=3.5,DX=3.52
解得:m= 1 ,因此EX = 1 2 1 1 1 0 1 1 1 2
6
4 3 5 6 20 17 - , 30
E(2X-3)= 2EX 3=2 (-17 ) 3=- 62 .
30 15
答案: 17 -
30
62 - 15
(3)①设“从第一小组选出的2人选《数学解题思想与方法》” 为事件A,“从第二小组选出的2人选《数学解题思想与方法》” 为事件B.由于事件A,B相互独立,
2 4
②设“这4个人中去参加甲游戏的人数大于去参加乙游戏的 人数”为事件B,则B=A3∪A4, 由于A3与A4互斥,
离散型随机变量的分布列、均值与方差
![离散型随机变量的分布列、均值与方差](https://img.taocdn.com/s3/m/03ed893a1eb91a37f0115c03.png)
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
12.5 离散型随机变量的均值与方差
![12.5 离散型随机变量的均值与方差](https://img.taocdn.com/s3/m/92713fab2cc58bd63186bd83.png)
考点1
考点2
考点3
-12-
参考公式:χ2=(������+������)(������������+(������������������)-(���������������+���)2������)(������+������),其中 n=a+b+c+d. 参考临界值:
P(χ2>k0) k0
0.05 3.841
考点1
考点2
考点3
-22-
思考如何求离散型随机变量X的均值与方差? 解题心得1.求离散型随机变量X的均值与方差的步骤: (1)理解X的意义,写出X的全部可能取值. (2)求X取每个值的概率. (3)写出X的分布列. (4)由均值的定义求EX. (5)由方差的定义求DX. 2.注意性质的应用:若随机变量X的均值为EX,则对应随机变量 aX+b的均值是aEX+b,方差为a2DX.
种子发芽这株豆苗就能有效成活,每株豆成活苗可以收成大豆
2.205
kg.已知每粒豆苗种子成活的概率为
1 2
(假设种子之间及外部
条件一致,发芽相互没有影响).
(1)求恰好有3株成活的概率;
(2)记成活的豆苗株数为ξ,收成为η(kg),求随机变量ξ的分布列及η
的均值Eη.
考点1
考点2
考点3
-17-
解 (1)设每株豆子成活的概率为 P0,
女
40
50
90
合计
120
80
200
又 χ2=20102×0(8×08×05×01-1300××9400)2≈16.498>6.635, 所以有 99%的把握认为性别与“为 A 类学生”有关.
高中数学第2章概率5离散型随机变量的均值与方差第1课时离散型随机变量的均值课件北师大版选修2_3
![高中数学第2章概率5离散型随机变量的均值与方差第1课时离散型随机变量的均值课件北师大版选修2_3](https://img.taocdn.com/s3/m/b0f6669ff90f76c661371a8a.png)
x(0≤x≤0.29).
依题意,EX≥4.73,即 4.76-x≥4.73,
解得 x≤0.03,所以三等品率最多为 3%.
1.实际问题中的均值问题 均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测, 消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等 方面,都可以通过随机变量的均值来进行估计.
0.2
Eη=200×0.4+250×0.4+300×0.2=240(元).
1.求随机变量的数学期望的方法步骤: (1)写出随机变量所有可能的取值. (2)计算随机变量取每一个值对应的概率. (3)写出分布列,求出数学期望.
2.离散型随机变量均值的性质 (1)Ec=c(c 为常数); (2)E(aX+b)=aEX+b(a,b 为常数); (3)E(aX1+bX2)=aEX1+bEX2(a,b 为常数).
4.已知 X~B100,12,则 E(2X+3)=________. 103 [EX=100×12=50,E(2X+3)=2EX+3=103.]
5.某运动员投篮投中的概率 P=0.6.
(1)求一次投篮时投中次数 ξ 的均值;
(2)求重复 5 次投篮时投中次数 η 的均值.
[解] (1)ξ 的分布列为:
2.均值的性质 (1)若 X 为常数 C,则 EX=_C_. (2)若 Y=aX+b,其中 a,b 为常数,则 Y 也是随机变量,且 EY =E(aX+b)=__a_E_X_+__b___.
(3)常见的离散型随机变量的均值
分布名称
参数
超几何分布
N,M,n
二项分布
n,p
均值 M nN
_n_p__
思考:两点分布与二项分布有什么关系?
[母题探究 1] 本例条件不变,若 Y=2X-3, 求 EY.
离散型随机变量的期望及方差
![离散型随机变量的期望及方差](https://img.taocdn.com/s3/m/3bf6be863186bceb19e8bb86.png)
3.一个均匀小正方体的六个面中,三个面上标以数0,两个 面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上 的数之积的数学期望________.
解析:随机变量 ξ 的取值为 0,1,2,4,P(ξ=0)=34,P(ξ=1)=19,P(ξ =2)=19,P(ξ=4)=316,因此 Eξ=49.
(1)X的概率分布;
(2)X的数学期望.
解:摸球的情形有以下5种:甲1白,乙2白(0元);甲1红,乙2 白或甲1白,乙1红1白(10元);甲1红,乙1红1白(20元);甲1白,乙 2红(50元);甲1红,乙2红(60元).
(1)X的所有可能的取值为0,10,20,50,60, P(X=0)=(190)3=1702090; P(X=10)=110×(190)2+190×11082=1204030; P(X=20)=110×11082=110800;
[例1] 袋中有20个大小相同的球,其中记上0号的有10个,记 上n号的有n个(n=1,2,3,4).现从袋中任取一个,ξ表示所取球的标 号.
(1)求ξ的分布列、期望和方差;
(2)若η=aξ+b,Eη=1,Dη=11,试求a,b的值. [课堂记录] (1)ξ 的分布列为
ξ0 1 2 3 4
P
1 2
P(X=50)=190×1102=10900; P(X=60)=1103=10100; ∴X 的概率分布为
(2)EX=0×1702090+10×1204030+20×110800+50×10900+60×10100= 3.3(元).
热点之二 期望与方差的性质及应用 利用均值和方差的性质,可以避免复杂的运算.常用性质 有: (1)EC=C(C为常数); (2)E(aX+b)=aEX+b(a,b为常数); (3)E(X1+X2)=EX1+EX2;E(aX1+bX2)=aE(X1)+bE(X2);
离散型随机变量的均值与方差、正态分布
![离散型随机变量的均值与方差、正态分布](https://img.taocdn.com/s3/m/b0d7c50510a6f524ccbf855e.png)
p; (3)①若 X 服从两点分布,则 EX=__ np ②若 X~B(n,p),则 EX=____.
③若 X 服从参数为 N,M,n 的超几何 nM 分布,则 E(X)= N .
2.方差 (1)设离散型随机变量X的分布列为
X P
x1 p1
x2 p2
… …
xi piຫໍສະໝຸດ … …xn pn则称 DX= (xi-EX) pi 为随机变量 X
ξ P
0 1 6 a 125
2
3 24 b 125
(1)求该生至少有1门课程取得优秀成 绩的概率; (2)求p,q的值; (3)求数学期望Eξ.
6 【思路分析】 利用 P(ξ=0)= ,P(ξ 125 24 =3)= ,求 p,q 的值. 125 【解】 记事件 Ai 表示“该生第 i 门课
程取得优秀成绩”, i= 1,2,3. 由题意知 4 P(A1)= ,P(A2)=p,P(A3)=q. 5
DX 越大表明平均偏离程度越大, 说明 X 的取值越分散;反之,DX 越小,X 的 取值越集中在 EX 附近,统计中常用 DX来描述 X 的分散程度. (2)DX 与 EX 一样, 也是一个实数, 由X 的分布列唯一确定.
失误防范
1 .对于应用问题,必须对实际问题进行 具体分析,一般要先将问题中的随机变量 设出来,再进行分析,求出随机变量的概 率分布列,然后按定义计算出随机变量的
【思路分析】
性,P(6<X<7)=P(3<X<4). 【解】 由已知μ=5,σ=1.
∵P(4<X<6)=0.6826,
P(3<X<7)=0.9544.
∴P(3<X<4)+P(6<X<7)
=0.9544-0.6826=0.2718.
如图,由正态曲线的对称性可得 P(3<X<4)=P(6<X<7) 0.2718 ∴P(6<X<7)= =0.1359. 2
离散型随机变量的均值与方差
![离散型随机变量的均值与方差](https://img.taocdn.com/s3/m/0fafe5e5856a561252d36f91.png)
5 0.8
8 0.5
10 0.2
12 0.3
E(Y1)=5×0.8+10×0.2=6, D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4, E(Y2)=2×0.2+8×0.5+12×0.3=8, D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3 =12.
3.正态曲线的特点: (1)曲线位于x轴 (3)曲线在
x= μ 上方 ,与x轴不相交; x= μ
(2)曲线是单峰的,它关于直线 处达到峰值
1
对称; ;
(4)曲线与x轴之间的面积为
;
(5)当σ一定时,曲线随着μ的变化而沿x轴平移
(6)当μ一定时,曲线的形状由σ确定.σ越小曲线
越“ ”瘦高 ,表示总体的分布越集中;σ越大,曲
离散型随机变量的均值方差
一、均值
1.一般地,若离散型随机变量X的分布列为
X P x1 p1 x2 p2 … … xi pi … … xn Pn
则称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为
随机变量X的均值或数学期望,它反映了离散
型随机变量取值的 平均水平 .
2.若Y=aX+b,其中a,b为常数,则Y也 是随机变量,且E(aX+b)=
(2) f ( x ) D
[ x 2 3(100 x )2 ]
(4 x 2 600 x 3 1002 ).
当 x= =75时,f(x)=3为最小值.
正态分布下的概率计算常见的有两类: 1.利用正态分布密度曲线的对称性研究相关概 率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x轴之间的面积为1. 2.利用3σ原则求概率问题时,要注意把给出的 区间或范围与正态变量的μ,σ进行对比联系,
2023年高考数学(理科)一轮复习—— 离散型随机变量的均值与方差
![2023年高考数学(理科)一轮复习—— 离散型随机变量的均值与方差](https://img.taocdn.com/s3/m/63f66b3da9114431b90d6c85ec3a87c241288a73.png)
P(X=100)=21×14×14=312,
∴X 的分布列为
X 20 40 50 70 100
P
3 8
9 32
1 8
3 16
1 32
∴E(X)=20×38+40×392+50×18+70×136+100×312=1465.
索引
考点二 二项分布的均值与方差
例2 (2021·东北三省三校联考)随着经济的发展,轿车已成为人们上班代步的一 种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.
第十一章 计数原理、概率、随机变量及其分布
考试要求 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算 简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
内容 索引
知识诊断 基础夯实
考点突破 题型剖析
分层训练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
话费,求 X 的分布列与数学期望.
索引
解 ①由题意知 P(ξ<μ)=P(ξ≥μ)=12,获赠话费 X 的可能取值为 20,40,50,
70,100, P(X=20)=12×34=38,P(X=40)=21×34×34=392,
P(X=50)=12×14=18,P(X=70)=21×34×14+12×14×43=136,
索引
P(X=4)=1304=1080100. 故 X 的分布列为
X0
1
2
3
4
P
2 401 10 000
1 029 2 500
1 323 5 000
189 2 500
81 10 000
故 E(X)=0×120400010+1×12 052090+2×15 302030+3×2158090+4×1080100 =65或E(X)=4×130=65.
高三一轮复习离散型随机变量的均值与方差、正态分布要点
![高三一轮复习离散型随机变量的均值与方差、正态分布要点](https://img.taocdn.com/s3/m/7b1de3f3dd3383c4bb4cd2d8.png)
第九章 计数原理、概率、随机变量及其分布
1.(2014·北京东城区统一检测)为迎接 6 月 16 日的“全国爱 眼日”,某高中学校学生会随机抽取 16 名学生,经校医用对 数视力表检查得到每个学生的视力状况的茎叶图(以小数点 前的一位数字为茎,小数点后的一位数字为叶)如图,若视 力测试结果不低于 5.0,则称为“好视力”.
E(Y)=51×125+48×145+45×25+42×15 =34+64+5 90+42=46.
栏目 导引
第九章 计数原理、概率、随机变量及其分布
(1)求离散型随机变量的均值与方差关键是确定随机变量的 所有可能值,写出随机变量的分布列,正确运用均值、方差 公式进行计算. (2)要注意观察随机变量的概率分布特征,若属二项分布的, 可用二项分布的均值与方差公式计算,则更为简单.
栏目 导引
第九章 计数原理、概率、随机变量及其分布
2.两点分布与二项分布的均值、方差
均值
方差
变量X服从 两点分布
E(X)=p
D(X)=_p_(_1_-__p_)_
X~B(n, p)
E(X)=___n_p____
D(X)=np(1-p)
栏目 导引
第九章 计数原理、概率、随机变量及其分布
3.正态曲线的特点 (1)曲线位于 x 轴__上__方____,与 x 轴不相交; (2)曲线是单峰的,它关于直线__x_=__μ___对称; (3)曲线在 x=μ 处达到峰值 1 ;
第九章 计数原理、概率、随机变量及其分布
第9课时 离散型随机变量的均值 与方差、正态分布
第九章 计数原理、概率、随机变量及其分布
1.离散型随机变量的均值与方差 (1)离散型随机变量X的分布列
选修2-3离散型随机变量的均值与方差第1课时教案新部编本
![选修2-3离散型随机变量的均值与方差第1课时教案新部编本](https://img.taocdn.com/s3/m/a9accb3ea22d7375a417866fb84ae45c3b35c2c4.png)
教师学科教案[ 20–20学年度第__学期]任教学科: _____________任教年级: _____________任教老师: _____________xx市实验学校§2.3 离散型随机变量的均值与方差§2.3.1 离散型随机变量的均值教学目标:知识与技能:了解离散型随机量的均或期望的意,会根据离散型随机量的分布列求出均或期望.过程与方法:理解公式“ E( aξ +b) =aEξ +b”,以及“若ξ: B( n,p ), Eξ =np” . 能熟地用它求相的离散型随机量的均或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和之美, 体数学的文化功能与人文价。
教学重点:离散型随机量的均或期望的概念教学难点:根据离散型随机量的分布列求出均或期望授课类型:新授课时安排: 1教学过程:一、复习引入:1.离散型随机量的二分布: 在一次随机中,某事件可能生也可能不生,在 n 次独立重复中个事件生的次数ξ 是一个随机量.如果在一次中某事件生的概率是P,那么在 n 次独立重复中个事件恰好生k 次的概率是P n (k) C n k p k q n k,(k=0,1,2,⋯, n,q 1 p).于是得到随机量ξ 的概率分布如下:ξ01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0称的随机量ξ 服从二分布,作ξ~ B(n , p) ,其中n, p 参数,并C n k p k q n k=b(k;n,p).二、讲解新课:根据已知随机量的分布列,我可以方便的得出随机量的某些制定的概率,但分布列的用途不止于此,例如:已知某射手射所得数ξ 的分布列如下ξ45678910P0.020.040.060.090.280.290.22在 n 次射之前,可以根据个分布列估n 次射的平均数.就是我今天要学的离散型随机量的均或期望根据射手射所得数ξ 的分布列,我可以估,在 n 次射中,大有P(4)n0.02n次得 4;P(5)n0.04n次得 5;⋯⋯⋯⋯P(10) n 0.22n次得10.故在 n 次射的数大4 0.02 n5 0.04 n10 0.22n(4 0.02 5 0.0410 0.22) n ,从而,n 次射的平均数4 0.025 0.0410 0.22 8.32 .是一个由射手射所得数的分布列得到的,只与射数的可能取及其相的概率有关的常数,它反映了射手射的平均水平.于任一射手,若已知其射所得数ξ的分布列,即已知各个P(i ) (i=0,1,2,⋯, 10),我可以同他任意n 次射的平均数:0 P(0) 1 P(1)⋯10 P(10).1.均或数学期望 :一般地,若离散型随机量ξ 的概率分布ξx1x2⋯x n⋯P p1p⋯pn⋯2称 Ex1 p1 x2 p2⋯x n p n⋯ξ 的均或数学期望,称期望.2.均或数学期望是离散型随机量的一个特征数,它反映了离散型随机量取的平均水平3.平均数、均 :一般地,在有限取离散型随机量ξ的概率分布中,令 p1p2⋯ p n,有p1 p2⋯ p n 11,E( x1x2⋯ x n ),所以ξ 的数学期望又称平均数、n n均4.均或期望的一个性 :若a b (a、b是常数),ξ 是随机量,η也是随机量,它的分布列ξx1x2⋯x n⋯ηax1b ax2b⋯ax n b⋯P p1p2⋯p n⋯于是 E(ax1b) p1(ax2b) p2⋯(ax n b) p n⋯= a( x1 p1x2 p2⋯x n p n⋯)b( p1p2⋯p n⋯)= aE b ,由此,我得到了期望的一个性: E(a b) aE b5. 若ξ: B(n,p ), Eξ=np明如下:∵P(k) C n k p k (1 p)n k C n k p k q n k,∴E0×C n0p0q n+ 1×C1n p1q n 1+ 2×C n2p2q n 2+⋯+ k×C n k p k q n k+⋯+ n ×C n n p n q0.又∵kC n k k n!k)! (k n(n1)!nC n k11,k!(n1)![( n1)( k1)]!∴E np(C n01 p0q n 1+ C n11 p1q n2+⋯+ C n k11 p k 1 q( n 1) (k 1)+⋯ +C n n11 p n 1q 0 )np ( p q) n1np .故若ξ~ B(n , p) ,E np.三、讲解范例:例 1.球运在比中每次球命中得 1 分,不中得0 分,已知他命中的概率0.7 ,求他球一次得分的期望解:因 P(1)0.7, P(0) 0.3 ,所以 E10.70 0.30.7例 2.一次元由 20 个构成,每个有 4 个,其中有且有一个是正确答案,每正确答案得 5 分,不作出或不得分,分100 分学生甲任一的概率0.9 ,学生乙在中每都从 4 个中随机地一个,求学生甲和乙在次英元中的成的期望解:学生甲和乙在次英中正确答案的个数分是,,~B (20,0.9 ),~ B(20,0.25) ,E200.918, E200.25 5由于答对每题得 5 分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:E(5 ) 5E( ) 5 18 90,E(5 ) 5E( ) 5 5 25例 3.随机抛掷一枚骰子,求所得骰子点数的期望解:∵ P(i )1/ 6,i 1,2,,6 ,E11/ 621/ 6 6 1/ 6 =3.5例 4.随机的抛掷一个骰子,求所得骰子的点数ξ 的数学期望.解:抛掷骰子所得点数ξ的概率分布为ξ123456P 111111 666666所以E1×1+2×1+3×1+4×1+5×1+6×1 666666=(1 +2+3+4+5+6) ×1= 3.5 .6抛掷骰子所得点数ξ 的数学期望,就是ξ 的所有可能取值的平均值.四、课堂练习:1.口袋中有 5 只球,编号为1,2, 3,4,5,从中任取 3 球,以表示取出球的最大号码,则E()A. 4;B. 5;C.4.5 ;D. 4.75答案: C2.篮球运动员在比赛中每次罚球命中的 1 分,罚不中得 0 分.已知某运动员罚球命中的概率为 0.7 ,求⑴他罚球 1 次的得分ξ的数学期望;⑵他罚球 2 次的得分η的数学期望;⑶他罚球 3 次的得分ξ的数学期望.3.设有 m升水,其中含有大肠杆菌 n 个.今取水 1 升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ 的数学期望.五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出 Eξ公式 E(aξ +b) = aEξ +b,以及服从二项分布的随机变量的期望 Eξ =np六、布置作业:练习册七、板书设计(略)八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ +b)= aEξ +b,以及服从二项分布的随机变量的期望Eξ =np 。
第十章第九节离散型随机变量的均值与方差、正态分布1
![第十章第九节离散型随机变量的均值与方差、正态分布1](https://img.taocdn.com/s3/m/5c09064d48d7c1c708a1459d.png)
2.设两个正态分布N(μ1,σ )(21σ1>0)和N
(μ2,σ )(22σ2>0)的密度函数图像如图
所示,则有
()
A.μ1<μ2,σ1<σ2 B.μ1<μ2,σ1>σ2 C.μ1>μ2,σ1<σ2 D.μ1>μ2,σ1>σ2
返回
解析:由概率密度曲线的性质可知N(μ1,σ
2 1
)、N(μ2,σ
2 2
[答案] C
返回
[巧练模拟]—————(课堂突破保分题,分分必保!) 5.(2019·朝阳区调研)设随机变量ξ~N(1,4),若P(ξ≥a
+b)=P(ξ≤a-b),则实数a的值为__________.
返回
解析:∵P(ξ≥a+b)=P(ξ≤a-b), ∴a+b+2 a-b=1. ∴a=1.
返回
记“该运动员获得第一名”为事件C,依题意得 P(C)=P(AB)+P( A B)=34×34+14×34=34. 该运动员获得第一名的概率为34.
返回
(2)若该运动员选择乙系列,X的可能取值是50,70,90,110,则P(X=50) =110×110=1100, P(X=70)=110×190=1900, P(X=90)=190×110=1900,
返回
1.均值与方差的作用 均值是随机变量取值的平均值,常用于对随机变量平 均水平的估计,方差反映了随机变量取值的稳定与波 动、集中与离散的程度,常用于对随机变量稳定于均 值情况的估计.方差越大表明平均偏离程度越大,说 明随机变量取值越分散.反之,方差越小,随机变量 的取值越集中.
返回
2.服从正态分布的随机变量X的概率特点 若随机变量X服从正态分布,则X在一点上的取值概率 为0,即P(X=a)=0,而{X=a}并不是不可能事件,所 以概率为0的事件不一定是不可能事件,从而P(X<a) =P(X≤a)是成立的,这与离散型随机变量不同.
离散型随机变量的均值与方差详解教师版
![离散型随机变量的均值与方差详解教师版](https://img.taocdn.com/s3/m/3c530c3cd15abe23492f4dbd.png)
离散型随机变量的均值与方差一、考点、热点回顾【学习目标】1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题;2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】要点一、离散型随机变量的期望 1.定义:一般地,若离散型随机变量ξ的概率分布为则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释:(1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值。
(3)随机变量的均值与随机变量本身具有相同的单位. 2.性质:①()E E E ξηξη+=+;②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(;b aE b a E +=+ξξ)(的推导过程如下::η的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++…=+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。
要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念:已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。
2.离散型随机变量的方差:一般地,若离散型随机变量ξ的概率分布为则称ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+2()n i x E p ξ-⋅+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望.ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.要点诠释:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值).⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机变量取值的平均水平.
根据定义可推出下面两个结论:
结论1:若 a b, 则 E aE b ;
结论2:若ξ~B(n,p),则Eξ= np.
练习一
(巩固定义)
结论一证明 结论二证明
结论1:若 a b, 则 E aE b
Q P( axi b) 所以, 的分布列为
P(
xi
), i
1, 2, 3L
在100次射击之前,试估计该射手100次射击的平均环数.
分析:平均环数=总环数100
由概率可知,在 100 次射击之前,估计得i 环的次数为 P( i)100 .
所以,总环数约等于 (4×0.02+5×0.04+6×0.06+ …+10×0.22)× 100. 故100次射击的平均环数约等于
4×0.02+5×0.04+6×0.06+ …+10×0.22=8.32.
思考2. 有场赌博,规则如下:如掷一个骰子,出现1,你赢
10元;出现2或3或4,你输3元;出现5或6,不输不赢.这 场赌博对你是否有利?
E
1 10 1 3 1 0 1
6
2
3
6
.
对你不利!劝君莫参加赌博.
课外思考:
彩球游戏准备一个布袋,内装6个红球与6个白球,除颜色
不同外,六个球完全一样,每次从袋中摸6个球,输赢的
L ax1 b ax2 b
L LL P p1
p2
axipi b
axn b
pn
E (ax1 b) p1 (ax2 b) p2 L (axn b) pn
a( x1 p1 x2 p2 L xn pn ) b( p1 p2 L pn )
aE b
即 E(a b) aE b
期望在生活中的应用广泛,见课本第72页例2.例3
例2.一次单元测验由20个选择题构成,每个选择题有4个
选项,其中有且仅有一个选项正确,每题选对得5分,不选
或选错不得分,满分100分.学生甲选对任一题的概率为
0.9,学生乙则在测验中对每题都从4个选项中随机地选
择一个.求学生甲和学生乙在这次测验中的成绩的均值.
解:因为商场内的促销活动可获效益2万元 设商场外的促销活动可获效益万元,则的分布列
10 -4 P 0.6 0.4 所以E=10×0.6+(-4) ×0.4=4.4
因为4.4>2, 所以商场应选择在商场外进行促销.
学习小结:
1、本节课学习了离散型随机变量ξ的期望及公式: (1)E(aξ+b)=aEξ+b; (2)若ξ~B(n,p),则Eξ=np 2、会根据离散型随机变量的分布列求出期望。
E(5η)=5Eη=5×5=25. 思考:学生甲在这次测试中的成绩一定会是90分吗?他的
均值为90分的含义是什么?
不一定,其含义是在多次类似的测试中,他的平均成
绩大约是90分
思考1
思考2
思考1.某商场的促销决策:
统计资料表明,每年端午节商场内促销活动可获利 2万元;商场外促销活动如不遇下雨可获利10万元; 如遇下雨可则损失4万元。6月19日气象预报端午节下 雨的概率为40%,商场应选择哪种促销方式?
中同时取2个,则其中含红球个数的数学期望是 1.2 .
2.(1)若 E(ξ)=4.5,则 E(-ξ)= -4.5 .
(2)E(ξ-Eξ)= 0
.
3. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0
分.已知某运动员罚球命中的概率为0.7,则他罚球1次
的得分ξ的期望为
.
0.7 (详细解答过程见课本例1)
练机变量ξ的分布列是
ξ
1
3
5
P 0.5 0.3 0.2
(1)则Eξ=
2.4 .
(2)若η=2ξ+1,则Eη=
5.8 .
2、随机变量ξ的分布列是
ξ 4 7 9 10 P 0.3 a b 0.2
Eξ=7.5,则a= 0.1 b= 0.4.
练习二
练习二
1.一个袋子里装有大小相同的3 个红球和2个黄球,从
规则为:
6个全红 赢得100元
5红1白 赢得50元
4红2白 3红3白 2红4白
赢得20元 输100元 赢得20元
你动心了吗?
1红5白 赢得50元
6个全白 赢得100元
∴E ξ =0×Cn0p0qn+ 1×Cn1p1qn-1+ 2×Cn2p2qn-2 +
…+ k×Cnkpkqn-k+…+ n×Cnnpnq0 =np(Cn-10p0qn-1+ Cn-11p1qn-2+ … +
Cn-1k-1pk-1q(n-1)-(k-1) +…+ Cn-1n-1pn-1q0)
=np(p+q)n-1=np
解:设学生甲和学生乙在这次测验中选择正确的选择题
个数分别是 和η,则 ξ~B(20,0.9),η~B(20,0.25),
所以Eξ=20×0.9=18, Eη=20×0.25=5.
由于答对每题得5分,学生甲和学生乙在这次测验
中的成绩分别是5ξ和5η.这样,他们在测验中的成绩
的期望分别是 E(5ξ)=5Eξ=5×18=90,
这是一个特殊的二项分布的随机变量的期望,那
么一般地,若ξ~B(n,p),则Eξ=?
结论2:若ξ~B(n,p),则Eξ= np
ξ01
…k
…n
P Cn0p0qn Cn1p1qn-1 … Cnkpkqn-k … Cnnpnq0
证明:∵P(ξ=k)= Cnkpkqn-k
(∵ k Cnk =n Cn-1k-1)
一般地,
一般地:
对任一射手,若已知他的所得环数 的分布列,即已
知 P( i)(i 0,1, 2,L ,10), 则可以预计他任意n次射击的
平均环数是 0 P( 0)1 P( 1)L 10 P( 10) 记为E
我们称 E 为此射手射击所得环数的期望,它刻划了所 得环数随机变量 所取的平均值。
对于离散型随机变量,确定了它的分布列,就掌握 了随机变量取值的统计规律.但在实际应用中,我们还 常常希望直接通过数字来反映随机变量的某个方面的特 征,最常用的有期望与方差.
思考下面的问题:
某射手射击所得环数 的分布列如下: 4 5 6 7 8 9 10
P 0.02 0.04 0.06 0.09 0.28 0.29 0.22
关于平均的意义,我们再看一个例子,思考:课本第69 页的定价怎样才合理问题?
更一般地
数学期望的定义:
一般地,随机变量 的概率分布列为
L L L L x1 x2
P p1 p2
xi
pi
xpnn
则称E x1 p1 x2 p2 L xi pi L xn pn
为 的数学期望或均值,简称为期望.它反映了离散型随
离散型随机变量的均值与方差(一)
前面,我们认识了随机变量的分布列.
设离散型随机变量 可能取的值为 x1 , x2 ,L , xi ,L ,
取每一个值 xi (i 1, 2,L ) 的概率 P( xi ) pi 则称表
L L x1 x2
xi
L L P p1 p2
pi
为随机变量 的概率分布列,简称为 的分布列.