江西省2013届高三数学 周六考试试题1(学生版) 新人教A版
江西省2013届高三数学 周六考试试题6(教师版) 新人教A版
2012~2013(上)宜丰中学高三(7)数学周六考试试题6(答案)姓名:一.选择题:本大题共10小题,每小题5分,共50分1. 对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如右图所示),则改样本的中位数、众数、极差分别是 ( A ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,532. 某几何体的三视图如右图所示,则它的体积是( A )A.283π-B.83π-C.82π-D.23π3. 在某种新形材料的研制中,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 ( B )A .y =2x -2B .21(1)2y x =- C .2log y x = D .12xy ⎛⎫=⎪⎝⎭4. 过点()1,1-和()0,3的直线在x 轴上的截距为 ( A ) A.32-B.32C.3D.3- 5. 已知等差数列{}n a 的前n 项和为n S ,且17812215a a a a +++=,则13S =( D ) A.104B.78C.52D.39 6. 若变量,x y 满足约束条件102y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =-的最大值为 ( C )A.1B.2C.3D.47. 若函数1y =与函数()1y f x =-互为反函数,则()f x = ( D ) A.22x e- B.22x e+ C.21x e- D.2xe8. 直三棱柱111ABC A B C -中,若1,2BAC AB AC AA π∠===,则异面直线1A B 与1C A 所成的角等于 ( C )A.6π B.4π C.3π D.2π 9 已知(),2,2a b ∈-,且1a b ⋅=-,则224949a b +--的最小值是 ( B ) A.85 B.125 C.127 D.241110. 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的概率是 ( A ) A.827 B.427 C.38 D.316二.填空题:本大题共5小题,每小题5分,共25分11. 211i i +⎛⎫= ⎪-⎝⎭-112. 已知函数2log ,0()2,0x x x f x x >⎧=⎨≤⎩,若1()2f a =,则a 13. 已知:函数()f x =的定义域为A ,2∉A ,则a 的取值范围是31<<a14. 已知数列{}n a 中,()11112,21n n n a a a n a --+==≥-,且3690共有m 个正约数(包含1和自身), 则ma = .1315. 已知球O 的表面积为8π,A B C ,,是球面上的三点,点M 是AB 的中点,2AB =,1BC =, 3ABC π∠=,则二面角M OC B --的正切值为 . 三.解答题:共75分16. (本小题满分12分) 在ABC ∆中, 312cos ,cos ,21513A B AB ===,求ABC ∆的面积. 解:0,,A B C π<<,312cos ,cos 513A B ==,则45sin ,in 513A sB ==,2分()()sin sin C A B π=-+()sin A B =+sin cos cos in A B As B =+6365=由正弦定理sin sin sin AC BC ABB A C==得,BPBPsin sin ,sin sin B AAC AB BC AB C C == 1sin 2ABCS AC BC C ∆=⋅⋅ 1sin sin 2sin sin B A AB AB C C=⋅ 70=17. (本小题满分12分) 如图,四棱锥P ABCD -中,侧面PCD 是边长为2的正三角形,且与底面ABCD 垂直,底面ABCD 是面积为ADC ∠为锐角,M 为PB 的中点. (Ⅰ)求证:PA CD ⊥;(Ⅱ)求PD 与平面CDM 所成的角的正弦值. 解:(Ⅰ)过P 作PE CD ⊥于E 连接AE侧面,P D C AB C DP⊥⊂∴⊥底面侧面,底面 2ABCD 底面是边长为,面积为。
2013学年高一数学上学期期末考试试题及答案(新人教A版 第102套)
嘉峪关市一中2012—2013学年第一学期期末考试试卷高一数学第I 卷一、选择题(每小题5分,共计60分) 1.cos690=( )A .21 B. 21- C. 23 D. 23- 2.已知集合{}5<∈=x Z x M ,则下列式子正确的是( )A .M ∈5.2B .M ⊆0C .{}M ∈0D .{}M ⊆03.已知集合M={(x ,y )|4x +y =6},P={(x ,y )|3x +2y =7},则M∩P 等于( ) A .(1,2) B .{(1,2)} C .{1,2} D .{1}∪{2}4.函数31)2lg()(-+-=x x x f 的定义域是( )A .)3,2(B .),3(+∞C .),3()3,2(+∞⋃D .[),3()3,2+∞⋃5.函数[]1,1,342-∈+-=x x x y 的值域为 ( ) A .[-1,0]B .[ 0,8]C .[-1,8]D .[3,8]6.已知角α的终边经过点P(4,-3),则ααcos sin 2+ 的值等于( )A .-53 B .-52 C .52D .54 7.ooo osin71cos26-sin19sin26的值为( )A B .1 C D .128.设函数f (x )=sin(2x --2π),x ∈R,则f (x )是( ) A .最小正周期为π的奇函数B .最小正周期为2π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数9.在△ABC 中,若0<tan Α·tan B <1,那么△ABC 一定是( )A .钝角三角形B .直角三角形C .锐角三角形D .形状不确定10.已知sin cos αβ+13=,sin cos βα-12=,则sin()αβ-=( ) A .7213 B . 7213- C .7259D .7259-11. 若(0,)απ∈,且1cos sin 3αα+=-,则cos 2α=( )A B C 917 D 31712.若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25,则()f x 可以是( )A .()41f x x =-B .()2(1)f x x =-C .()1xf x e =-D .()12f x In x ⎛⎫=-⎪⎝⎭第II 卷二、填空题(每小题5分,共计20分)13.已知扇形的圆心角为0150,半径为4,则扇形的面积是14.函数tan()4y x π=+的定义域为 .15.已知f (n )=sin4n π,n ∈Z ,则f (1)+ f (2)+ f (3)+……+f (2012)=_____ _____________ 16.已知定义在R 上的偶函数()f x 对任意的1212,[0,)()x x x x ∈+∞≠,有,0)()(1212>--x x x f x f则满足(21)f x -<1()3f 的x 取值范围是_____ _____________三、解答题(本大题有6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)若cos α=32,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.18. (12分)已知434π<α<π,40π<β<,53)4cos(-=+απ,135)4sin(=-βπ,求()βα+sin的值.19.(12分) 函数)sin(ϕω+=x A y (0,0,)2A πωϕ>><一段图象如图所示。
高中数学 模块1 高考真题(含解析)新人教A版必修1-新人教A版高一必修1数学试题
模块1高考真题对应学生用书P81剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是由教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.但在难度上会有一些差异,但在试卷结构、命题方向上基本上都是相同的.“稳定”是高考的主旋律.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低.“创新”是高考的生命线.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心去理解归纳,是难以拿到高分的.在数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.全国Ⅰ、Ⅱ、Ⅲ卷对必修1集合与函数知识的考查,相对来说比较常规,难度不大,变化小,综合性低,属于基础类必得分试题,主要考查集合的概念及运算,函数的图象及定义域、值域、单调性、奇偶性、对称性、周期、最值等基本性质.做题时若能熟练应用概念及性质,掌握转化的技巧和方法,基本不会丢分。
若综合其他省市自主命题卷研究,必修1的知识又能与命题、不等式、导数、分段函数等知识综合,强化了数形结合思想、分类讨论思想、转化与化归的数学思想的运用,提高了试题的难度,所以作为高一学生来说,从必修1就应该打好牢固的基础,培养最基本的能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及其他自主命题省市试卷必修1所考查的全部试题,请同学们根据所学必修1的知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学习内容的小综合试题,同学们可根据目前所学内容,有选择性地试做!)穿越自测一、选择题1.(2018·全国卷Ⅰ,文1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}答案A解析根据集合交集中元素的特征,可以求得A∩B={0,2},故选A.2.(2018·全国卷Ⅱ,文2)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( ) A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}答案C解析∵A={1,3,5,7},B={2,3,4,5},∴A∩B={3,5},故选C.3.(2018·某某卷,1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}答案C解析因为全集U={1,2,3,4,5},A={1,3},所以根据补集的定义得,∁U A={2,4,5},故选C.4.(2018·全国卷Ⅲ,文1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2}答案C解析由集合A={x∈R|x≥1},所以A∩B={1,2},故选C.5.(2018·某某卷,文1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}答案 C解析由并集的定义可得,A∪B={-1,0,1,2,3,4},结合交集的定义可知,(A∪B)∩C ={-1,0,1}.故选C.6.(2018·某某卷,理1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}答案 B解析由题意可得,∁R B={x|x<1},结合交集的定义可得,A∩(∁R B)={x|0<x<1}.故选B.7.(2018·卷,文1)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2} D .{-1,0,1,2} 答案 A解析 A ={x ||x |<2}={x |-2<x <2},B ={-2,0,1,2},∴A ∩B ={0,1}.故选A. 8.(2018·全国卷Ⅰ,理2)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 解不等式x 2-x -2>0,得x <-1或x >2,所以A ={x |x <-1或x >2},于是∁R A ={x |-1≤x ≤2},故选B.9.(2018·全国卷Ⅲ,文7)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x ) 答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于x =1对称的点还是(1,0),只有y =ln (2-x )过此点.故B 正确.10.(2018·某某卷,理5)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b 答案 D解析 由题意结合对数函数的性质可知,a =log 2e>1,b =ln 2=1log 2e ∈(0,1),c =log1213=log 23>log 2e ,据此可得,c >a >b .故选D.11.(2018·全国卷Ⅱ,文3)函数f (x )=e x -e-xx2的图象大致为( )答案 B解析 ∵x ≠0,f (-x )=e -x-e xx2=-f (x ), ∴f (x )为奇函数,排除A ,∵f (1)=e -e -1>0,∴排除D ;∵f (2)=e 2-e -24=4e 2-4e 216;f (4)=e 4-e-416=e 2·e 2-1e 416,∴f (2)<f (4),排除C.因此选B.12.(2018·全国卷Ⅰ,理9)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值X 围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞) D.[1,+∞) 答案 C解析 画出函数f (x )的图象,再画出直线y =-x ,之后上下移动,可以发现当直线过点A 时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程f (x )=-x -a 有两个解,也就是函数g (x )有两个零点,此时满足-a ≤1,即a ≥-1,故选C.13.(2018·全国卷Ⅰ,文12)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值X 围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案 D解析 将函数f (x )的图象画出来,观察图象可知⎩⎪⎨⎪⎧2x <0,2x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值X 围是(-∞,0),故选D.14.(2018·全国卷Ⅲ,理12)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b 答案 B解析 ∵a =log 0.20.3,b =log 20.3,∴1a =log 0.30.2,1b =log 0.32,∴1a +1b=log 0.30.4,∴0<1a +1b <1,即0<a +b ab<1.又∵a >0,b <0,∴ab <0,即ab <a +b <0,故选B.二、填空题15.(2018·某某卷,1)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 答案 {1,8}解析 由题设和交集的定义可知,A ∩B ={1,8}.16.(2018·某某卷,5)函数f (x )=log 2x -1的定义域为________. 答案 [2,+∞)解析 要使函数f (x )有意义,则log 2x -1≥0,解得x ≥2,即函数f (x )的定义域为[2,+∞).17.(2018·全国卷Ⅰ,文13)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2018·全国卷Ⅲ,文16)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=________.答案 -2解析 f (x )+f (-x )=ln (1+x 2-x )+1+ln (1+x 2+x )+1=ln (1+x 2-x 2)+2=2,∴f (a )+f (-a )=2,则f (-a )=-2.19.(2018·卷,理13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 y =sin x (答案不唯一)解析 令f (x )=⎩⎪⎨⎪⎧0,x =0,4-x ,x ∈0,2],则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.20.(2018·某某卷,9)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,x +12,-2<x ≤0,则f [f (15)]的值为________.答案22解析 由f (x +4)=f (x )得函数f (x )的周期为4,所以f (15)=f (16-1)=f (-1)=-1+12=12,因此f [f (15)]=f 12=cos π4=22. 21.(2018·某某卷,15)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值X 围是________.答案 (1,4) (1,3]∪(4,+∞)解析 由题意,得⎩⎪⎨⎪⎧x ≥2,x -4<0或⎩⎪⎨⎪⎧x <2,x 2-4x +3<0,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f (x )=x -4>0,此时f (x )=x 2-4x +3=0,x =1,3,即在(-∞,λ)上有两个零点;当λ≤4时,f (x )=x -4=0,x =4,由f (x )=x 2-4x +3在(-∞,λ)上只能有一个零点,得1<λ≤3.综上,λ的取值X 围为(1,3]∪(4,+∞).22.(2018·某某卷,理14)已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x的方程f (x )=ax 恰有2个互异的实数解,则a 的取值X 围是________.答案 (4,8)解析 当x ≤0时,方程f (x )=ax ,即x 2+2ax +a =ax ,整理可得,x 2=-a (x +1),很明显x =-1不是方程的实数解,则a =-x 2x +1,当x >0时,方程f (x )=ax ,即-x 2+2ax -2a =ax ,整理可得,x 2=a (x -2),很明显x =2不是方程的实数解,则a =x 2x -2,令g (x )=⎩⎪⎨⎪⎧-x 2x +1,x ≤0,x 2x -2,x >0,其中-x 2x +1=-x +1+1x +1-2,x 2x -2=x -2+4x -2+4,原问题等价于函数g (x )与函数y =a 有两个不同的交点,求a 的取值X 围.结合对勾函数和函数图象平移的规律绘制函数g (x )的图象,同时绘制函数y =a 的图象如图所示,考查临界条件,结合a >0观察可得,实数a 的取值X 围是(4,8).。
江西省2013届高三数学12月联考试题 文 新人教A版
2012-2013学年宜春中学、新余一中高三联考数学试题(文科)2012年12月6日一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.设集合}31|{},23|{≤<-∈=<<-∈=n N n B m Z m A ,则=B A ( ) A. {-1,0,1} B. {0,1} C.{0,1,2} D.{-1,0,1,2}2.不等式21π<<x 成立是不等式0tan )1(>-x x 成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.非充分非必要条件3.在ABC ∆中,点M 满足0=++MC MB MA ,若0=++AM m AC AB ,则实数m 的值为( )A.3B.2C.-3D.-2 4.设等差数列{}n a 的前n 项和为n S ,若,则9S 的值等于( )A .54 B.45 C.36 D.27 5.函数sin()(0)y x ϕϕ=π+>的部分图象如右图所示,设P 是图象的最高点,,AB 是图象与x 轴的交点,则tan APB ∠= ( )A.10B.8C.87D.476.已知c b a ,,为ABC ∆的三个内角C B A ,,的对边,向量),1,3(-=m ),sin ,(cos A A n = 若n m ⊥,且C c A b B a sin cos cos =+则角B A ,的大小分别为( )A .3,6ππ B .6,32ππ C .6,3ππ D .3,3ππ 7.定义一种运算bc ad d c b a -=*),(),(,若函数))51(,413(tan )log 1()(3xx x f π*=,,0x 是方程0)(=x f 的解,且010x x <<,则)(1x f 的值( )A .恒为负值B .等于0C .恒为正值D .不大于08.现有四个函数①x x y sin ⋅= ②x x y cos ⋅= ③|cos |x x y ⋅= ④xx y 2⋅=的部分图象如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )OxyOxy OxyOxyA.①④②③B.①④③②C.④①②③D.③④②①9.函数393)(23+--=x x x x f 若函数m x f x g -=)()(在[]5,2-∈x 上有3个零点,则m 的取值范围为( )A. )8,24(-B. ]1,24(-C.]8,1[D. [)8,110.已知数列54321,,,,a a a a a 的各项均不等于0和1,此数列前n 项的和为n S ,且满足)51(22≤≤-=n a a S n n n ,则满足条件的数列共有( )A. 2个B. 6个C. 8个D.16个二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则12.已知线段AB 的长度为2,它的两个端点在圆o (o 为圆心)的圆周上运动,则=⋅AO AB ________.13.若函数)cos(2)sin()(αα--+=x x x f 是奇函数,则ααcos sin ⋅ . 14.设等比数列{}n a 的前n 项和为n S 且,4184=S S 则=1612S S15.设奇函数)(x f 在]1,1[-上是单调函数,且1)1(-=-f ,若函数≤)(x f122+-at t 对所有的]1,1[-∈x 都成立,当]1,1[-∈a 时,则t 的取值范围是三、解答题:(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分12分)已知集合}02|{},,116|{2<--=∈≥+=m x x x B R x x x A (1)当3=m 时,求)(B C A R ;(2)若},41|{<<-=x x B A 求实数m 的值.17、(本小题满分12分)xA BPy O已知数列{}n a 是首项为1公差为正的等差数列,数列{}n b 是首项为1的等比数列,设n n n b a c =(*N n ∈),且数列{}n c 的前三项依次为1,4,12,(1)求数列{}n a ,{}n b 的通项公式;(2)若等差数列{}n a 的前n 项和为n S ,求数列⎭⎬⎫⎩⎨⎧n S n 的和。
2013年江西省高考理科数学试题及参考答案(完整word版)
准考证号 姓名(在此卷上答题无效)绝密★启用前2013年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页。
满分150分,考试时间120分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与本人的准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他的答案标号。
第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答。
若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷 选择题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1.已知集合{}=1,2,M zi ,i 为虚数单位,{}3,4N =,{}4MN =,则复数z =A.2i -B.2iC.4i -D.4i2.函数()1y x =-的定义域为A.()0,1B.[)0,1C.(]0,1D.[]0,1 3.等比数列,33,66,x x x ++…的第四项等于A.24-B.0C.12D.244.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始从左到右依次选取两个数字,则选出来的第5个个体的编号为A.08 5.5232x x ⎛⎫- ⎪⎝⎭展开式中的常数项为A.80B.80-C.40D.40- 6.若2211S x dx =⎰,2211S dx x=⎰,231x S e dx =⎰,则123,,S S S 的大小关系为A. 123S S S <<B.213S S S <<C.231S S S <<D.321S S S <<7.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为A. 2*2S i =-B.2*1S i =-C. 2*S i =D. 2*4S i =+8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线,CE EF 相交的平面个数分别记为,m n ,那么mn +=A.8B.9C.10D.119.过点)引直线l 与曲线y =,A B 两点,O 为坐标原点,当AOB ∆的面积取最大值时,直线l 的斜率等于A.B. C. 10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线12,l l 之间,1l ∥2l ,l 与半圆相交于,F G 两点,与三角形ABC 两边相交于,E D 两点。
2013年高考理科数学江西卷-答案
2531055()522()()r r r r r r rx x C x ----=-,令1050r -=41040⨯=,故选C .25()52(r r x--322111k k -=+246t t -+-,2ω=,∴【提示】函数解析式第二项利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的最小正周期2【解析】1e 、2e 为单位向量,且1e 和2e 的夹角1211e e ∴=⨯⨯.123a e e =+,12b e =,2121112(3)(2)26235a b e e e e e e ∴=+=+=+=.a ∴在b 上的射影为52||a b b =,故答案为2.【提示】根据题意求得12e e 的值,从而求得a b 的值,再根据a 在b 上的射影为||a bb ,运算求得结果sin 0A ≠(2)1a c +=cos ac B ,即222a c ac +-,01a <<14b ≤<,则)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据为三角形的内角,利用特殊角的三角函数值即可求出正项数列2211416n ⎡+=⎢⎣2111n n ++-+(-)(+)21⎤⎛< ⎥2211416n ⎡+=⎢⎣)在DAB △≌△EDA ∴∠=又PAD △中,PA ⊥平面,AD ⊂平面又EF 、FG (2)以点A x 轴、y 轴、1,2BC ⎛∴= ,32CP ⎛=- ,32CD ⎛=- 的法向量1(1,,m y =1232m BC m CP ⎧=+⎪⎪⎨⎪=--⎪⎩2,可得21,,33m ⎛⎫- ⎪ ⎪=⎭, 的法向量22(1,,n y z =3232n CD n CP ⎧=-+⎪⎪⎨⎪=--⎪⎩,可得(1,3,2)n =11,||||411349m n m n m n ⨯+<>=++的夹角的余弦值等于2,4m n <>=.ππ为原点,AB 、AD 、P A 分别为的坐标,从而得到BC 、CP 、CD 的坐标,利用垂直向量数量积为零的方法建立方程组,解出1,m ⎛=- 和(1,3,2)n =m 、n 夹角的余弦,即可得到平面20.【答案】(1)1212132(x x x x x +-+④代入⑤得k k +)证明:12f x ⎛+ ⎝12x a ⎫-=⎪⎭2x为函数当31 4xa =12a>,从而有∴当a⎛∈ ⎝。
2013年江西省高考数学试卷(理科)附送答案
2013年江西省高考数学试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.﹣2i B.2i C.﹣4i D.4i2.(5分)函数y=ln(1﹣x)的定义域为()A.(0,1) B.[0,1) C.(0,1]D.[0,1]3.(5分)等比数列x,3x+3,6x+6,…的第四项等于()A.﹣24 B.0 C.12 D.244.(5分)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481 A.08 B.07 C.02 D.015.(5分)(x2﹣)5的展开式中的常数项为()A.80 B.﹣80 C.40 D.﹣406.(5分)若S1=x2dx,S2=dx,S3=e x dx,则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S17.(5分)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为()A.S=2*i﹣2 B.S=2*i﹣1 C.S=2*i D.S=2*i+48.(5分)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A.8 B.9 C.10 D.119.(5分)过点()引直线l与曲线y=相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于()A.B.C.D.10.(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A.B.C.D.二.第Ⅱ卷填空题:本大题共4小题,每小题5分,共20分11.(5分)函数y=sin2x+2sin2x最小正周期T为.12.(5分)设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为.13.(5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=.14.(5分)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=.三.第Ⅱ卷选做题:请在下列两题中任选一题作答,若两道题都做,按第一题评卷计分.本题共5分.15.(5分)(坐标系与参数方程选做题)设曲线C的参数方程为(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.16.(不等式选做题)在实数范围内,不等式||x﹣2|﹣1|≤1的解集为.四.第Ⅱ卷解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA ﹣sinA)cosB=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.18.(12分)正项数列{a n}的前n项和S n满足:S n2(1)求数列{a n}的通项公式a n;(2)令b,数列{b n}的前n项和为T n.证明:对于任意n∈N*,都有T.19.(12分)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X的分布列和数学期望.20.(12分)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F (1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.21.(13分)如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.22.(14分)已知函数f(x)=,a为常数且a>0.(1)f(x)的图象关于直线x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S (a)的单调性.2013年江西省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•江西)已知集合M={1,2,zi},i为虚数单位,N={3,4},M ∩N={4},则复数z=()A.﹣2i B.2i C.﹣4i D.4i【分析】根据两集合的交集中的元素为4,得到zi=4,即可求出z的值.【解答】解:根据题意得:zi=4,解得:z=﹣4i.故选C2.(5分)(2013•江西)函数y=ln(1﹣x)的定义域为()A.(0,1) B.[0,1) C.(0,1]D.[0,1]【分析】由函数的解析式可直接得到不等式组,解出其解集即为所求的定义域,从而选出正确选项【解答】解:由题意,自变量满足,解得0≤x<1,即函数y=的定义域为[0,1)故选B3.(5分)(2013•江西)等比数列x,3x+3,6x+6,…的第四项等于()A.﹣24 B.0 C.12 D.24【分析】由题意可得(3x+3)2=x(6x+6),解x的值,可得此等比数列的前三项,从而求得此等比数列的公比,从而求得第四项.【解答】解:由于x,3x+3,6x+6是等比数列的前三项,故有(3x+3)2=x(6x+6),解x=﹣3,故此等比数列的前三项分别为﹣3,﹣6,﹣12,故此等比数列的公比为2,故第四项为﹣24,故选A.4.(5分)(2013•江西)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481 A.08 B.07 C.02 D.01【分析】从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论.【解答】解:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01,故第5个数为01.故选:D.5.(5分)(2013•江西)(x2﹣)5的展开式中的常数项为()A.80 B.﹣80 C.40 D.﹣40=•x2(5﹣r)•(﹣2)r•x﹣3r,【分析】利用(x)5展开式中的通项公式T r+1令x的幂指数为0,求得r的值,即可求得(x)5展开式中的常数项.,【解答】解:设(x)5展开式中的通项为T r+1则T r=•x2(5﹣r)•(﹣2)r•x﹣3r=(﹣2)r••x10﹣5r,+1令10﹣5r=0得r=2,∴(x)5展开式中的常数项为(﹣2)2×=4×10=40.故选C.6.(5分)(2013•江西)若S1=x2dx,S2=dx,S3=e x dx,则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1【分析】先利用积分基本定理计算三个定积分,再比较它们的大小即可.【解答】解:由于S1=x2dx=|=,S2=dx=lnx|=ln2,S3=e x dx=e x|=e2﹣e.且ln2<<e2﹣e,则S2<S1<S3.故选:B.7.(5分)(2013•江西)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为()A.S=2*i﹣2 B.S=2*i﹣1 C.S=2*i D.S=2*i+4【分析】题目给出了输出的结果i=5,让我们分析矩形框中应填的语句,根据判断框中内容,即s<10,我们模拟程序执行的过程,从而得到答案.【解答】解:当空白矩形框中应填入的语句为S=2*I时,程序在运行过程中各变量的值如下表示:i S 是否继续循环循环前1 0/第一圈2 5 是第二圈3 6 是第三圈4 9 是第四圈5 10 否故输出的i值为:5,符合题意.故选C.8.(5分)(2013•江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A.8 B.9 C.10 D.11【分析】判断CE与EF与正方体表面的关系,即可推出正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,求出m+n的值.【解答】解:由题意可知直线CE与正方体的上底面平行在正方体的下底面上,与正方体的四个侧面不平行,所以m=4,直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以n=4,所以m+n=8.故选A.9.(5分)(2013•江西)过点()引直线l与曲线y=相交于A,B 两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于()A.B.C.D.【分析】由题意可知曲线为单位圆在x轴上方部分(含与x轴的交点),由此可得到过C点的直线与曲线相交时k的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.【解答】解:由y=,得x2+y2=1(y≥0).所以曲线y=表示单位圆在x轴上方的部分(含与x轴的交点),设直线l的斜率为k,要保证直线l与曲线有两个交点,且直线不与x轴重合,则﹣1<k<0,直线l的方程为y﹣0=,即.则原点O到l的距离d=,l被半圆截得的半弦长为.则===.令,则,当,即时,S有最大值△ABO为.此时由,解得k=﹣.故答案为B.10.(5分)(2013•江西)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A.B.C.D.【分析】由题意可知:随着l从l1平行移动到l2,y=EB+BC+CD越来越大,考察几个特殊的情况,计算出相应的函数值y,结合考查选项可得答案.【解答】解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG为正三角形,此时AM=OH=,在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA﹣(AE+AD)=3×﹣2×1=2﹣2.如图.又当x=时,图中y0=+(2﹣)=>2﹣2.故当x=时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选D.二.第Ⅱ卷填空题:本大题共4小题,每小题5分,共20分11.(5分)(2013•江西)函数y=sin2x+2sin2x最小正周期T为π.【分析】函数解析式第二项利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的最小正周期.【解答】解:y=sin2x+2×=sin2x﹣cos2x+=2(sin2x﹣cos2x)+=2sin(2x﹣)+,∵ω=2,∴T=π.故答案为:π12.(5分)(2013•江西)设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为.【分析】根据题意求得的值,从而求得的值,再根据在上的射影为,运算求得结果.【解答】解:∵、为单位向量,且和的夹角θ等于,∴=1×1×cos=.∵=+3,=2,∴=(+3)•(2)=2+6=2+3=5.∴在上的射影为=,故答案为.13.(5分)(2013•江西)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=2.【分析】由题设知,可先用换元法求出f(x)的解析式,再求出它的导数,从而求出f′(1).【解答】解:函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,令e x=t,则x=lnt,故有f(t)=lnt+t,即f(x)=lnx+x,∴f′(x)=+1,故f′(1)=1+1=2.故答案为:2.14.(5分)(2013•江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=6.【分析】求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线与双曲线的交点坐标,利用三角形是等边三角形求出p即可.【解答】解:抛物线的焦点坐标为(0,),准线方程为:y=﹣,准线方程与双曲线联立可得:,解得x=±,因为△ABF为等边三角形,所以,即p2=3x2,即,解得p=6.故答案为:6.三.第Ⅱ卷选做题:请在下列两题中任选一题作答,若两道题都做,按第一题评卷计分.本题共5分.15.(5分)(2013•江西)(坐标系与参数方程选做题)设曲线C的参数方程为(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρcos2θ﹣sinθ=0.【分析】先求出曲线C的普通方程,再利用x=ρcosθ,y=ρsinθ代换求得极坐标方程.【解答】解:由(t为参数),得y=x2,令x=ρcosθ,y=ρsinθ,代入并整理得ρcos2θ﹣sinθ=0.即曲线C的极坐标方程是ρcos2θ﹣sinθ=0.故答案为:ρcos2θ﹣sinθ=0.16.(2013•江西)(不等式选做题)在实数范围内,不等式||x﹣2|﹣1|≤1的解集为[0,4] .【分析】利用绝对值不等式的等价形式,利用绝对值不等式几何意义求解即可.【解答】解:不等式||x﹣2|﹣1|≤1的解集,就是﹣1≤|x﹣2|﹣1≤1的解集,也就是0≤|x﹣2|≤2的解集,0≤|x﹣2|≤2的几何意义是数轴上的点到2的距离小于等于2的值,所以不等式的解为:0≤x≤4.所以不等式的解集为[0,4].故答案为:[0,4].四.第Ⅱ卷解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•江西)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣sinA)cosB=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.【分析】(1)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA不为0求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(2)由余弦定理列出关系式,变形后将a+c及cosB的值代入表示出b2,根据a 的范围,利用二次函数的性质求出b2的范围,即可求出b的范围.【解答】解:(1)由已知得:﹣cos(A+B)+cosAcosB﹣sinAcosB=0,即sinAsinB﹣sinAcosB=0,∵sinA≠0,∴sinB﹣cosB=0,即tanB=,又B为三角形的内角,则B=;(2)∵a+c=1,即c=1﹣a,cosB=,∴由余弦定理得:b2=a2+c2﹣2ac•cosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣)2+,∵0<a<1,∴≤b2<1,则≤b<1.18.(12分)(2013•江西)正项数列{a n}的前n项和S n满足:S n2(1)求数列{a n}的通项公式a n;(2)令b,数列{b n}的前n项和为T n.证明:对于任意n∈N*,都有T.【分析】(I)由S n2可求s n,然后利用a1=s1,n≥2时,a n=s n﹣s n﹣1可求a n(II)由b==,利用裂项求和可求T n,利用放缩法即可证明【解答】解:(I)由S n2可得,[](S n+1)=0∵正项数列{a n},S n>0∴S n=n2+n于是a1=S1=2n≥2时,a n=S n﹣S n﹣1=n2+n﹣(n﹣1)2﹣(n﹣1)=2n,而n=1时也适合∴a n=2n(II)证明:由b==∴]=19.(12分)(2013•江西)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X的分布列和数学期望.【分析】(1)先求出从8个点中任意取两个点为向量的终点的不同取法,而X=0时,即两向量夹角为直角,求出结果数,代入古典概率的求解公式可求(2)先求出两向量数量积的所有可能情形及相应的概率,即可求解分布列及期望值【解答】解:(1)从8个点中任意取两个点为向量的终点的不同取法有=28种X=0时,两向量夹角为直角共有8种情形所以小波参加学校合唱团的概率P(X=0)==(2)两向量数量积的所有可能情形有﹣2,﹣1,0,1X=﹣2时有2种情形X=1时有8种情形X=﹣1时,有10种情形X的分布列为:X ﹣2﹣101PEX==20.(12分)(2013•江西)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD 的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.【分析】(1)利用直角三角形的判定得到∠BAD=,且∠ABE=∠AEB=.由△DAB≌△DCB得到△EAB≌△ECB,从而得到∠FED=∠FEA=,所以EF⊥AD且AF=FD,结合题意得到FG是△PAD是的中位线,可得FG∥PA,根据PA⊥平面ABCD 得FG⊥平面ABCD,得到FG⊥AD,最后根据线面垂直的判定定理证出AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,得到A、B、C、D、P的坐标,从而得到、、的坐标,利用垂直向量数量积为零的方法建立方程组,解出=(1,﹣,)和=(1,,2)分别为平面BCP、平面DCP的法向量,利用空间向量的夹角公式算出、夹角的余弦,即可得到平面BCP与平面DCP的夹角的余弦值.【解答】解:(1)∵在△DAB中,E为BD的中点,EA=EB=AB=1,∴AE=BD,可得∠BAD=,且∠ABE=∠AEB=∵△DAB≌△DCB,∴△EAB≌△ECB,从而得到∠FED=∠BEC=∠AEB=∴∠EDA=∠EAD=,可得EF⊥AD,AF=FD又∵△PAD中,PG=GD,∴FG是△PAD是的中位线,可得FG∥PA∵PA⊥平面ABCD,∴FG⊥平面ABCD,∵AD⊂平面ABCD,∴FG⊥AD又∵EF、FG是平面CFG内的相交直线,∴AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,可得A(0,0,0),B(1,0,0),C(,,0),D(0,,0),P(0,0,)∴=(,,0),=(﹣,﹣,),=(﹣,,0)设平面BCP的法向量=(1,y1,z1),则解得y1=﹣,z1=,可得=(1,﹣,),设平面DCP的法向量=(1,y2,z2),则解得y2=,z2=2,可得=(1,,2),∴cos<,>===因此平面BCP与平面DCP的夹角的余弦值等于﹣cos<,>=﹣.21.(13分)(2013•江西)如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.【分析】(1)由题意将点P (1,)代入椭圆的方程,得到,再由离心率为e=,将a,b用c表示出来代入方程,解得c,从而解得a,b,即可得到椭圆的标准方程;(2)方法一:可先设出直线AB的方程为y=k(x﹣1),代入椭圆的方程并整理成关于x的一元二次方程,设A(x1,y1),B(x2,y2),利用根与系数的关系求得x1+x2=,,再求点M的坐标,分别表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值;方法二:设B(x0,y0)(x0≠1),以之表示出直线FB的方程为,由此方程求得M的坐标,再与椭圆方程联立,求得A的坐标,由此表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值【解答】解:(1)椭圆C:经过点P (1,),可得①由离心率e=得=,即a=2c,则b2=3c2②,代入①解得c=1,a=2,b=故椭圆的方程为(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为y=k(x﹣1)③代入椭圆方程并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0设A(x1,y1),B(x2,y2),x1+x2=,④在方程③中,令x=4得,M的坐标为(4,3k),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k所以k1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k1+k2=2k﹣×=2k﹣1又k3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA的斜率k1=,直线PB的斜率为k2=所以k1+k2=+=2×=2k3,故存在常数λ=2符合题意22.(14分)(2013•江西)已知函数f(x)=,a为常数且a>0.(1)f(x)的图象关于直线x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S (a)的单调性.【分析】(1)只要证明成立即可;(2)对a分类讨论,利用二阶周期点的定义即可得出;(3)由(2)得出x3,得出三角形的面积,利用导数即可得出其单调性.【解答】(1)证明:∵==a(1﹣2|x|),=a(1﹣2|x|),∴,∴f(x)的图象关于直线x=对称.(2)解:当时,有f(f(x))=.∴f(f(x))=x只有一个解x=0又f(0)=0,故0不是二阶周期点.当时,有f(f(x))=.∴f(f(x))=x有解集,{x|x},故此集合中的所有点都不是二阶周期点.当时,有f(f(x))=,∴f(f(x))=x有四个解:0,,,.由f(0)=0,,,.故只有,是f(x)的二阶周期点,综上所述,所求a的取值范围为.(3)由(2)得,.∵x2为函数f(x)的最大值点,∴,或.当时,S(a)=••|﹣|=.求导得:S′(a)=.∴当时,S(a)单调递增,当时,S(a)单调递减.当时,S(a)=,求导得.∵,从而有.∴当时,S(a)单调递增.。
2013年高考理科数学江西卷试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(江西卷)第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013江西,理1)已知集合M ={1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( ).A .-2iB .2iC .-4iD .4i2.(2013江西,理2)函数yln(1-x )的定义域为( ). A .(0,1) B . [0,1) C .(0,1] D .[0,1] 3.(2013江西,理3)等比数列x,3x +3,6x +6,…的第四项等于( ).A .-24B .0C .12D .244.(2013江西,理4)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5A .5.(2013江西,理5)5232x x ⎛⎫- ⎪⎝⎭展开式中的常数项为( ).A .80B .-80C .40D .-406.(2013江西,理6)若2211d S x x =⎰,2211d S x x =⎰,231e d xS x =⎰,则S 1,S 2,S 3的大小关系为( ).A .S1<S2<S3B .S2<S1<S3C .S2<S3<S1D .S3<S2<S1 7.(2013江西,理7)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( ).A .S =2*i -2B .S =2*i -1C .S=2*iD .S =2*i +48.(2013江西,理8)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m+n =( ).A .8B .9C .10D .119.(2013江西,理9)过点,0)引直线l 与曲线y A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ).A .3B .3-C .3±D .10.(2013江西,理10)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x (0<x <π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图像大致是( ).第Ⅱ卷注意事项: 第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.二、填空题:本大题共4小题,每小题5分,共20分.11.(2013江西,理11)函数y =sin 2x+2x 的最小正周期T 为________.12.(2013江西,理12)设e1,e2为单位向量,且e1,e2的夹角为π3,若a =e1+3e2,b =2e1,则向量a 在b 方向上的射影为________.13.(2013江西,理13)设函数f(x)在(0,+∞)内可导,且f(ex)=x +ex ,则f ′(1)=________.14.(2013江西,理14)抛物线x2=2py(p>0)的焦点为F ,其准线与双曲线22=133x y -相交于A ,B 两点,若△ABF 为等边三角形,则p =________.三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分.15.(2013江西,理15)(1)(坐标系与参数方程选做题)设曲线C 的参数方程为2,x t y t =⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. (2)(不等式选做题)在实数范围内,不等式211x --≤的解集为________.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(2013江西,理16)(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos AA )cosB =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.17.(2013江西,理17)(本小题满分12分)正项数列{a n }的前n 项和S n 满足:2n S -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令221(2)n n n b n a +=+,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564.18.(2013江西,理18)(本小题满分12分)小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.19.(2013江西,理19)(本小题满分12分)如图,四棱锥PABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=32,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值.20.(2013江西,理20)(本小题满分13分)如图,椭圆C:2222=1x ya b+(a>b>0)经过点P31,2⎛⎫⎪⎝⎭,离心率e=12,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.21.(2013江西,理21)(本小题满分14分)已知函数f(x)=1122a x⎛⎫--⎪⎝⎭,a为常数且a>0.(1)证明:函数f(x)的图像关于直线12x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0).记△ABC的面积为S(a),讨论S(a)的单调性.2013年普通高等学校夏季招生全国统一考试数学理工农医类(江西卷)第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:C解析:由M ∩N ={4},得z i =4,∴z =4i=-4i.故选C.2.答案:B解析:要使函数有意义,需0,10,x x ≥⎧⎨->⎩解得0≤x <1,即所求定义域为[0,1).故选B.3.答案:A解析:由题意得:(3x +3)2=x (6x +6),解得x =-3或-1.当x =-1时,3x +3=0,不满足题意.当x =-3时,原数列是等比数列,前三项为-3,-6,-12,故第四项为-24. 4.答案:D解析:选出的5个个体的编号依次是08,02,14,07,01,故选D. 5.答案:C解析:展开式的通项为T r +1=5C r x 2(5-r )(-2)r x -3r=5C r (-2)r x10-5r.令10-5r =0,得r =2,所以T 2+1=25C (-2)2=40.故选C.6.答案:B解析:2211d S x x =⎰=23117|33x =,2211d S x x=⎰=21ln |ln 2x =,231e d x S x =⎰=2217e |e e=(e 1)>e>3x =--,所以S 2<S 1<S 3,故选B. 7.答案:C解析:当i =2时,S =2×2+1=5; 当i =3时,S =2×3+4=10不满足S <10,排除选项D ;当i =4时,S =2×4+1=9;当i =5时,选项A ,B 中的S 满足S <10,继续循环,选项C 中的S =10不满足S <10,退出循环,输出i =5,故选C. 8.答案:A解析:由CE 与AB 共面,且与正方体的上底面平行,则与CE 相交的平面个数m =4.作FO ⊥底面CED ,一定有面EOF 平行于正方体的左、右侧面,即FE 平行于正方体的左、右侧面,所以n =4,m +n =8.故选A.9.答案:B解析:曲线y若直线l 与曲线相交于A ,B 两点,则直线l 的斜率k <0,设l :y =(k x ,则点O 到l 的距离d =又S △AOB =12|AB |·d =22111222d d d -+⨯=≤=,当且仅当1-d 2=d 2,即d 2=12时,S △AOB 取得最大值.所以222112k k =+,∴213k =,∴k =.故选B.10.答案:D二、填空题:本大题共4小题,每小题5分,共20分.11.答案:π解析:∵y =sin 2x -cos 2x )π=2sin 23x ⎛⎫-+ ⎪⎝⎭∴2ππ2T ==.12.答案:52解析:∵a ·b =(e 1+3e 2)·2e 1=212e +6e 1·e 2=2+6×12×πcos 3=5,∴a 在b 上的射影为5||2⋅=a b b .13.答案:2解析:令e x=t ,则x =ln t ,∴f (t )=ln t +t ,∴f ′(t )=11t+,∴f ′(1)=2.14.答案:6解析:抛物线的准线方程为2p y =-,设A ,B 的横坐标分别为x A ,x B ,则|x A |2=|x B |2=234p +,所以|AB |=|2x A |.又焦点到准线的距离为p ,由等边三角形的特点得||p AB =,即2234344p p ⎛⎫=⨯⨯+ ⎪⎝⎭,所以p =6.三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分.15.(2013江西,理15)(1)答案:ρcos 2θ-sin θ=0解析:由参数方程2,x t y t =⎧⎨=⎩得曲线在直角坐标系下的方程为y =x 2.由公式cos ,sin x y ρθρθ=⎧⎨=⎩得曲线C 的极坐标方程为ρcos 2θ=sin θ.(2)答案:[0,4]解析:原不等式等价于-1≤|x -2|-1≤1,即0≤|x -2|≤2,解得0≤x ≤4.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.解:(1)由已知得-cos(A +B )+cos A cos B A cos B =0,即有sin A sin B A cos B =0,因为sin A ≠0,所以sin B B =0,又cos B ≠0,所以tan B,又0<B <π,所以π3B =.(2)由余弦定理,有b 2=a 2+c 2-2ac cos B .因为a +c =1,cos B =12,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有14≤b 2<1,即有12≤b <1.17.(1)解:由2n S -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项a n =2n .(2)证明:由于a n =2n ,221(2)n nn b n a +=+,则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435112n T n n n n ⎡⎤=-+-+-++-+-⎢⎥(-)(+)(+)⎣⎦22221111115111621216264n n ⎡⎤⎛⎫=+--<+= ⎪⎢⎥(+)(+)⎝⎭⎣⎦.18.解:(1)从8个点中任取两点为向量终点的不同取法共有28C =28种,X =0时,两向量夹角为直角共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=82287=.(2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X=-1时,有10种情形. 所以X 的分布列为:EX =152(2)+(1)+0+114147714-⨯-⨯⨯⨯=-.19.解:(1)在△ABD 中,因为E 是BD 中点,所以EA =EB =ED =AB =1,故∠BAD =π2,∠ABE =∠AEB =π3,因为△DAB ≌△DCB ,所以△EAB ≌△ECB ,从而有∠FED =∠BEC =∠AEB =π3,所以∠FED =∠FEA ,故EF ⊥AD ,AF =FD ,又因为PG =GD ,所以FG ∥PA .又PA ⊥平面ABCD , 所以CF ⊥AD ,故AD ⊥平面CFG .(2)以点A 为坐标原点建立如图所示的坐标系,则A (0,0,0),B (1,0,0),C 32⎛⎫⎪ ⎪⎝⎭,D (00),P 30,0,2⎛⎫ ⎪⎝⎭,故1,,022BC ⎛⎫= ⎪ ⎪⎝⎭,33,222CP ⎛⎫=-- ⎪ ⎪⎝⎭,3,22CD ⎛⎫=- ⎪ ⎪⎝⎭.设平面BCP 的法向量n 1=(1,y 1,z 1),则11110,22330,222y y z ⎧+=⎪⎪⎨⎪--+=⎪⎩解得11,32,3y z ⎧=-⎪⎪⎨⎪=⎪⎩即n 1=21,33⎛⎫- ⎪ ⎪⎝⎭. 设平面DCP 的法向量n 2=(1,y 2,z 2),则22230,2330,222y y z ⎧-=⎪⎪⎨⎪--+=⎪⎩解得22 2.y z ⎧=⎪⎨=⎪⎩即n 2=(1,2).从而平面BCP 与平面DCP 的夹角的余弦值为cos θ=21124||||||4⋅==n n n n . 20.解:(1)由P 31,2⎛⎫⎪⎝⎭在椭圆上得,2219=14a b +,①依题设知a =2c ,则b 2=3c 2,②②代入①解得c 2=1,a 2=4,b 2=3.故椭圆C 的方程为22=143x y +.(2)方法一:由题意可设AB 的斜率为k ,则直线AB 的方程为y =k (x -1),③代入椭圆方程3x 2+4y 2=12并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=22843k k +,x 1x 2=224343k k (-)+,④在方程③中令x =4得,M 的坐标为(4,3k ).从而111321y k x -=-,222321y k x -=-,33312412k k k -==--.注意到A ,F ,B 共线,则有k =k AF =k BF ,即有121211y y k x x ==--.所以k 1+k 2=121212121233311221111211y y y y x x x x x x --⎛⎫+=+-+ ⎪------⎝⎭1212122322()1x x k x x x x +-=-⋅-++.⑤④代入⑤得k 1+k 2=222222823432438214343k k k k k k k -+-⋅(-)-+++=2k -1,又k 3=12k -,所以k 1+k 2=2k 3. 故存在常数λ=2符合题意.(2)方法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为:00(1)1y y x x =--,令x =4,求得M 0034,1y x ⎛⎫ ⎪-⎝⎭, 从而直线PM 的斜率为00302121y x k x -+=(-). 联立00221,11,43y y x x x y ⎧=(-)⎪-⎪⎨⎪+=⎪⎩ 得A 0000583,2525x y x x ⎛⎫- ⎪--⎝⎭,则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-, 所以k 1+k 2=00000000225232121211y x y y x x x x -+--++=(-)(-)-=2k 3, 故存在常数λ=2符合题意.21. (1)证明:因为12f x ⎛⎫+ ⎪⎝⎭=a (1-2|x |),12f x ⎛⎫- ⎪⎝⎭=a (1-2|x |), 有1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, 所以函数f (x )的图像关于直线12x =对称. (2)解:当0<a <12时,有f (f (x ))=2214,,2141,.2a x x a x x ⎧≤⎪⎪⎨⎪(-)>⎪⎩所以f (f (x ))=x 只有一个解x =0,又f (0)=0,故0不是二阶周期点. 当12a =时,有f (f (x ))=1,,211,.2x x x x ⎧≤⎪⎪⎨⎪->⎪⎩所以f (f (x ))=x 有解集12x x ⎧⎫≤⎨⎬⎩⎭,又当12x ≤时,f (x )=x ,故12x x ⎧⎫≤⎨⎬⎩⎭中的所有点都不是二阶周期点. 当12a >时,有f (f (x ))=2222214,41124,,421412(12)4,,244144.4a x x a a a x x a a a a a x x a a a a x x a ⎧≤⎪⎪⎪-<≤⎪⎨-⎪-+<≤⎪⎪-⎪>⎩,-,所以f (f (x ))=x 有四个解0,222224,,141214a a a a a a +++,又f (0)=0,22()1212a a f a a =++,22221414a a f a a ⎛⎫≠ ⎪++⎝⎭,2222441414a a f a a ⎛⎫≠ ⎪++⎝⎭,故只有22224,1414a a a a ++是f (x )的二阶周期点.综上所述,所求a 的取值范围为12a >. (3)由(2)得12214a x a=+,222414a x a =+, 因为x 3为函数f (f (x ))的最大值点,所以314x a =,或3414a x a-=. 当314x a=时,221()4(14)a S a a -=+,求导得: S ′(a )=221122214a a a ⎛⎫+-- ⎪⎝⎭⎝⎭-(+),所以当a∈11,22⎛+ ⎝⎭时,S (a )单调递增,当a∈12⎛⎫++∞ ⎪ ⎪⎝⎭时S (a )单调递减; 当3414a x a-=时,S (a )=22861414a a a -+(+),求导得: S ′(a )=2221243214a a a +-(+), 因12a >,从而有S ′(a )=2221243214a a a +-(+)>0, 所以当a ∈1,2⎛⎫-∞ ⎪⎝⎭时S (a )单调递增.。
江西省2013届高三数学 周六考试试题11(教师版) 新人教A版
2012~2013(上)高三(7)数学周六考试试题11(答案)姓名:一.选择题:本大题共10小题,每小题5分,共50分1. 设集合}31|{},23|{≤<-∈=<<-∈=n N n B m Z m A ,则=B A ( B )A. {-1,0,1}B. {0,1}C.{0,1,2}D.{-1,0,1,2} 2. 设复数1(z i i =--为虚数单位),z 的共轭复数为,(1)z z z -⋅则=( A )A .3i -+B .3i --C .1i -+D .1i --3. 右图给出的是计算111124630++++的值的一个框图,其中菱形 判断框内应填入的条件是 ( B ) A .15?i < B .15?i > C .16?i < D .16?i >4. 将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为 ( D )5. 设变量x,y满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数z =2y -3x 的最大值为( C )A .-3B .2C .4D .56. 已知实数1,m ,9依次构成一个等比数列,则圆锥曲线122=+y mx 的离心率为( A ) A .36B . 332C .236或D .332或27. 设a为实数,函数32()(2)(),()f x x ax a x f x f x ''=++-的导数是且是偶函数,则曲线()y f x =在原点处的切线方程为 ( A )A .y=-2xB .y=3xC .y=-3xD .y=4x8. 在△ABC 中,AB =2,AC =4,若点P 为△ABC 的外心,则AP BC ⋅的值为( C )A .2B .4C .6D .89. 定义行列式运算12122112a a ab a b b b =-,将函数 3 sin 2() 1 cos 2xf x x=的图象向左平移t(0t >)个单位,所得图象对应的函数为奇函数,则t 的最小值为( A ) A .6πB .3πC .56πD .23π 10. 函数f(x)的定义域为D ,若存在闭区间[m ,n ]⊆D ,使得函数f(x)满足:①f(x)在[m,n]上是单调函数;②f(x)在[m,n]上的值域为[2m,2n],则称区间[m,n]为y=f(x)的“倍值区间”,以下函数:①2()(0)f x x x =≥;②()()x f x e x R =∈;③24()(0)1xf x x x =≥+;④1()log ()8x a f x a =-(a >0,a ≠1),其中存在“倍值区间”的是 ( C ) A .①② B .②④ C .①③④ D .②③④二.填空题:本大题共5小题,每小题5分,共25分11. 若关于x 的不等式 |x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围(1,4)12. 将一颗骰子先后投掷两次分别得到点数a ,b ,则直线220(2)2ax by x y +=-+=与圆有公共点的概率为 。
2013年江西省高考数学试卷(理科)及解析
2013年江西省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的、1、(5分)已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A、﹣2iB、2iC、﹣4iD、4i2、(5分)函数y=ln(1﹣x)的定义域为()A、(0,1)B、[0,1)C、(0,1]D、[0,1]3、(5分)等比数列x,3x+3,6x+6,…的第四项等于()A、﹣24B、0C、12D、244、(5分)总体由编号为01,02,…,19,20的20个个体组成、利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481A、08B、07C、02D、015、(5分)(x2﹣)5的展开式中的常数项为()A、80B、﹣80C、40D、﹣406、(5分)若S1=x2dx,S2=dx,S3=e x dx,则S1,S2,S3的大小关系为()A、S1<S2<S3B、S2<S1<S3C、S2<S3<S1D、S3<S2<S17、(5分)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为()A、S=2*i﹣2B、S=2*i﹣1C、S=2*iD、S=2*i+48、(5分)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A、8B、9C、10D、119、(5分)过点()引直线l与曲线y=相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于()A、B、﹣C、D、﹣10、(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点、设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A、B、C、D、二、第Ⅱ卷填空题:本大题共4小题,每小题5分,共20分11、(5分)函数y=sin2x+2sin2x最小正周期T为、12、(5分)设,为单位向量、且、的夹角为,若=+3,=2,则向量在方向上的射影为、13、(5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=、14、(5分)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=、三、第Ⅱ卷选做题:请在下列两题中任选一题作答,若两道题都做,按第一题评卷计分、本题共5分、15、(5分)(坐标系与参数方程选做题)设曲线C的参数方程为(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为、16、(不等式选做题)在实数范围内,不等式||x﹣2|﹣1|≤1的解集为、四、第Ⅱ卷解答题:本大题共6小题,共75分、解答应写出文字说明、证明过程或演算步骤、17、(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA ﹣sinA)cosB=0、(1)求角B的大小;(2)若a+c=1,求b的取值范围、18、(12分)正项数列{a n}的前n项和S n满足:S n2(1)求数列{a n}的通项公式a n;(2)令b,数列{b n}的前n项和为T n、证明:对于任意n∈N*,都有T、19、(12分)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X、若X=0就参加学校合唱团,否则就参加学校排球队、(1)求小波参加学校合唱团的概率;(2)求X的分布列和数学期望、20、(12分)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F (1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值、21、(13分)如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4、(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3、问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由、22、(14分)已知函数f(x)=,a为常数且a>0、(1)f(x)的图象关于直线x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S (a)的单调性、2013年江西省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的、1、(5分)已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A、﹣2iB、2iC、﹣4iD、4i【分析】:根据两集合的交集中的元素为4,得到zi=4,即可求出z的值、【解答】:解:根据题意得:zi=4,解得:z=﹣4i、故选:C、【点评】:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键、2、(5分)函数y=ln(1﹣x)的定义域为()A、(0,1)B、[0,1)C、(0,1]D、[0,1]【分析】:由函数的解析式可直接得到不等式组,解出其解集即为所求的定义域,从而选出正确选项【解答】:解:由题意,自变量满足,解得0≤x<1,即函数y=的定义域为[0,1)故选:B、【点评】:本题考查函数定义域的求法,理解相关函数的定义是解题的关键,本题是概念考查题,基础题、3、(5分)等比数列x,3x+3,6x+6,…的第四项等于()A、﹣24B、0C、12D、24【分析】:由题意可得(3x+3)2=x(6x+6),解x的值,可得此等比数列的前三项,从而求得此等比数列的公比,从而求得第四项、【解答】:解:由于x,3x+3,6x+6是等比数列的前三项,故有(3x+3)2=x(6x+6),解x=﹣3,故此等比数列的前三项分别为﹣3,﹣6,﹣12,故此等比数列的公比为2,故第四项为﹣24,故选:A、【点评】:本题主要考查等比数列的通项公式,等比数列的性质,属于基础题、4、(5分)总体由编号为01,02,…,19,20的20个个体组成、利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481 A、08 B、07 C、02 D、01【分析】:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论、【解答】:解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01,故第5个数为01、故选:D、【点评】:本题主要考查简单随机抽样、在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的、5、(5分)(x2﹣)5的展开式中的常数项为()A、80B、﹣80C、40D、﹣40=•x2(5﹣r)•(﹣2)r•x﹣3r,【分析】:利用(x)5展开式中的通项公式T r+1令x的幂指数为0,求得r的值,即可求得(x)5展开式中的常数项、,【解答】:解:设(x)5展开式中的通项为T r+1则T r=•x2(5﹣r)•(﹣2)r•x﹣3r=(﹣2)r••x10﹣5r,+1令10﹣5r=0得r=2,∴(x)5展开式中的常数项为(﹣2)2×=4×10=40、故选:C、【点评】:本题考查二项式定理,着重考查二项展开式的通项公式,考查运算能力,属于中档题、6、(5分)若S1=x2dx,S2=dx,S3=e x dx,则S1,S2,S3的大小关系为()A、S1<S2<S3B、S2<S1<S3C、S2<S3<S1D、S3<S2<S1【分析】:先利用积分基本定理计算三个定积分,再比较它们的大小即可、【解答】:解:由于S1=x2dx=|=,S2=dx=lnx|=ln2,S3=e x dx=e x|=e2﹣e、且ln2<<e2﹣e,则S2<S1<S3、故选:B、【点评】:本小题主要考查定积分的计算、不等式的大小比较等基础知识,考查运算求解能力、属于基础题、7、(5分)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为()A、S=2*i﹣2B、S=2*i﹣1C、S=2*iD、S=2*i+4【分析】:题目给出了输出的结果i=5,让我们分析矩形框中应填的语句,根据判断框中内容,即s<10,我们模拟程序执行的过程,从而得到答案、【解答】:解:当空白矩形框中应填入的语句为S=2*I时,程序在运行过程中各变量的值如下表示:i S 是否继续循环循环前1 0/第一圈2 5 是第二圈3 6 是第三圈4 9 是第四圈5 10 否故输出的i值为:5,符合题意、故选:C、【点评】:本题考查了程序框图中的当型循环,当型循环是当条件满足时进入循环体,不满足条件算法结束,输出结果、8、(5分)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A、8B、9C、10D、11【分析】:判断CE与EF与正方体表面的关系,即可推出正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,求出m+n的值、【解答】:解:由题意可知直线CE与正方体的上底面平行在正方体的下底面上,与正方体的四个侧面不平行,所以m=4,直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以n=4,所以m+n=8、故选:A、【点评】:本题考查直线与平面的位置关系,基本知识的应用,考查空间想象能力、9、(5分)过点()引直线l与曲线y=相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于()A、B、﹣C、D、﹣【分析】:由题意可知曲线为单位圆在x轴上方部分(含与x轴的交点),由此可得到过C点的直线与曲线相交时k的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值、【解答】:解:由y=,得x2+y2=1(y≥0)、所以曲线y=表示单位圆在x轴上方的部分(含与x轴的交点),设直线l的斜率为k,要保证直线l与曲线有两个交点,且直线不与x轴重合,则﹣1<k<0,直线l的方程为y﹣0=,即、则原点O到l的距离d=,l被半圆截得的半弦长为、则===、令,则,当,即时,S有最大值为△ABO、此时由,解得k=﹣、故选:D、【点评】:本题考查了直线的斜率,考查了直线与圆的关系,考查了学生的运算能力,考查了配方法及二次函数求最值,解答此题的关键在于把面积表达式转化为二次函数求最值,是中档题、10、(5分)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点、设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A、B、C、D、【分析】:由题意可知:随着l从l1平行移动到l2,y=EB+BC+CD越来越大,考察几个特殊的情况,计算出相应的函数值y,结合考查选项可得答案、【解答】:解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG为正三角形,此时AM=OH=,在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA﹣(AE+AD)=3×﹣2×1=2﹣2、如图、又当x=时,图中y0=+(2﹣)=>2﹣2、故当x=时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确、故选:D、【点评】:本题考查函数的图象,注意理解图象的变化趋势是解决问题的关键,属中档题、二、第Ⅱ卷填空题:本大题共4小题,每小题5分,共20分11、(5分)函数y=sin2x+2sin2x最小正周期T为π、【分析】:函数解析式第二项利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的最小正周期、【解答】:解:y=sin2x+2×=sin2x﹣cos2x+=2(sin2x﹣cos2x)+=2sin(2x﹣)+,∵ω=2,∴T=π、故答案为:π【点评】:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的余弦函数公式,两角和与差的正弦函数公式,熟练掌握公式是解本题的关键、12、(5分)设,为单位向量、且、的夹角为,若=+3,=2,则向量在方向上的射影为、【分析】:根据题意求得的值,从而求得的值,再根据在上的射影为,运算求得结果、【解答】:解:∵、为单位向量,且和的夹角θ等于,∴=1×1×cos=、∵=+3,=2,∴=(+3)•(2)=2+6=2+3=5、∴在上的射影为=,故答案为、【点评】:本题主要考查两个向量的数量积的运算,一个向量在另一个向量上的射影的定义,属于中档题、13、(5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=2、【分析】:由题设知,可先用换元法求出f(x)的解析式,再求出它的导数,从而求出f′(1)、【解答】:解:函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,令e x=t,则x=lnt,故有f(t)=lnt+t,即f(x)=lnx+x,∴f′(x)=+1,故f′(1)=1+1=2、故答案为:2、【点评】:本题考查了求导的运算以及换元法求外层函数的解析式,属于基本题型,运算型、14、(5分)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=6、【分析】:求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线与双曲线的交点坐标,利用三角形是等边三角形求出p即可、【解答】:解:抛物线的焦点坐标为(0,),准线方程为:y=﹣,准线方程与双曲线联立可得:,解得x=±,因为△ABF为等边三角形,所以,即p2=3x2,即,解得p=6、故答案为:6、【点评】:本题考查抛物线的简单性质,双曲线方程的应用,考查分析问题解决问题的能力以及计算能力、三、第Ⅱ卷选做题:请在下列两题中任选一题作答,若两道题都做,按第一题评卷计分、本题共5分、15、(5分)(坐标系与参数方程选做题)设曲线C的参数方程为(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρcos2θ﹣sinθ=0、【分析】:先求出曲线C的普通方程,再利用x=ρcosθ,y=ρsinθ代换求得极坐标方程、【解答】:解:由(t为参数),得y=x2,令x=ρcosθ,y=ρsinθ,代入并整理得ρcos2θ﹣sinθ=0、即曲线C的极坐标方程是ρcos2θ﹣sinθ=0、故答案为:ρcos2θ﹣sinθ=0、【点评】:本题主要考查极坐标方程、参数方程及直角坐标方程的转化、普通方程化为极坐标方程关键是利用公式x=ρcosθ,y=ρsinθ、16、(不等式选做题)在实数范围内,不等式||x﹣2|﹣1|≤1的解集为[0,4] 、【分析】:利用绝对值不等式的等价形式,利用绝对值不等式几何意义求解即可、【解答】:解:不等式||x﹣2|﹣1|≤1的解集,就是﹣1≤|x﹣2|﹣1≤1的解集,也就是0≤|x﹣2|≤2的解集,0≤|x﹣2|≤2的几何意义是数轴上的点到2的距离小于等于2的值,所以不等式的解为:0≤x≤4、所以不等式的解集为[0,4]、故答案为:[0,4]、【点评】:本题考查绝对值不等式的解法,绝对值不等式的几何意义,注意不等式的等价转化是解题的关键、四、第Ⅱ卷解答题:本大题共6小题,共75分、解答应写出文字说明、证明过程或演算步骤、17、(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA ﹣sinA)cosB=0、(1)求角B的大小;(2)若a+c=1,求b的取值范围、【分析】:(1)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA不为0求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(2)由余弦定理列出关系式,变形后将a+c及cosB的值代入表示出b2,根据a 的范围,利用二次函数的性质求出b2的范围,即可求出b的范围、【解答】:解:(1)由已知得:﹣cos(A+B)+cosAcosB﹣sinAcosB=0,即sinAsinB﹣sinAcosB=0,∵sinA≠0,∴sinB﹣cosB=0,即tanB=,又B为三角形的内角,则B=;(2)∵a+c=1,即c=1﹣a,cosB=,∴由余弦定理得:b2=a2+c2﹣2ac•cosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣)2+,∵0<a<1,∴≤b2<1,则≤b<1、【点评】:此题考查了余弦定理,二次函数的性质,诱导公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键、18、(12分)正项数列{a n}的前n项和S n满足:S n2(1)求数列{a n}的通项公式a n;(2)令b,数列{b n}的前n项和为T n、证明:对于任意n∈N*,都有T、【分析】:(I)由S n2可求s n,然后利用a1=s1,n≥2时,a n=s n﹣s n﹣1可求a n(II)由b==,利用裂项求和可求T n,利用放缩法即可证明【解答】:解:(I)由S n2可得,[](S n+1)=0∵正项数列{a n},S n>0∴S n=n2+n于是a1=S1=2n≥2时,a n=S n﹣S n﹣1=n2+n﹣(n﹣1)2﹣(n﹣1)=2n,而n=1时也适合∴a n=2n(II)证明:由b==∴]=【点评】:本题主要考查了递推公式a1=s1,n≥2时,a n=s n﹣s n﹣1在求解数列的通项公式中的应用及数列的裂项求和方法的应用、19、(12分)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X、若X=0就参加学校合唱团,否则就参加学校排球队、(1)求小波参加学校合唱团的概率;(2)求X的分布列和数学期望、【分析】:(1)先求出从8个点中任意取两个点为向量的终点的不同取法,而X=0时,即两向量夹角为直角,求出结果数,代入古典概率的求解公式可求(2)先求出两向量数量积的所有可能情形及相应的概率,即可求解分布列及期望值【解答】:解:(1)从8个点中任意取两个点为向量的终点的不同取法有=28种X=0时,两向量夹角为直角共有8种情形所以小波参加学校合唱团的概率P(X=0)==(2)两向量数量积的所有可能情形有﹣2,﹣1,0,1X=﹣2时有2种情形X=1时有8种情形X=﹣1时,有10种情形X的分布列为:X﹣2﹣10 1PEX==【点评】:本题主要考查了古典概率的求解公式的应用及离散型随机变量的分布列及期望值的求解、20、(12分)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F (1)求证:AD⊥平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值、【分析】:(1)利用直角三角形的判定得到∠BAD=,且∠ABE=∠AEB=、由△DAB≌△DCB得到△EAB≌△ECB,从而得到∠FED=∠FEA=,所以EF⊥AD且AF=FD,结合题意得到FG是△PAD是的中位线,可得FG∥PA,根据PA⊥平面ABCD 得FG⊥平面ABCD,得到FG⊥AD,最后根据线面垂直的判定定理证出AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,得到A、B、C、D、P的坐标,从而得到、、的坐标,利用垂直向量数量积为零的方法建立方程组,解出=(1,﹣,)和=(1,,2)分别为平面BCP、平面DCP的法向量,利用空间向量的夹角公式算出、夹角的余弦,即可得到平面BCP与平面DCP的夹角的余弦值、【解答】:解:(1)∵在△DAB中,E为BD的中点,EA=EB=AB=1,∴AE=BD,可得∠BAD=,且∠ABE=∠AEB=∵△DAB≌△DCB,∴△EAB≌△ECB,从而得到∠FED=∠BEC=∠AEB=∴∠EDA=∠EAD=,可得EF⊥AD,AF=FD又∵△PAD中,PG=GD,∴FG是△PAD是的中位线,可得FG∥PA∵PA⊥平面ABCD,∴FG⊥平面ABCD,∵AD⊂平面ABCD,∴FG⊥AD又∵EF、FG是平面CFG内的相交直线,∴AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,可得A(0,0,0),B(1,0,0),C(,,0),D(0,,0),P(0,0,)∴=(,,0),=(﹣,﹣,),=(﹣,,0)设平面BCP的法向量=(1,y1,z1),则解得y1=﹣,z1=,可得=(1,﹣,),设平面DCP的法向量=(1,y2,z2),则解得y2=,z2=2,可得=(1,,2),∴cos<,>===因此平面BCP与平面DCP的夹角的余弦值等于﹣cos<,>=﹣、【点评】:本题在三棱锥中求证线面垂直,并求平面与平面所成角的余弦值、着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题、21、(13分)如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4、(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3、问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由、【分析】:(1)由题意将点P (1,)代入椭圆的方程,得到,再由离心率为e=,将a,b用c表示出来代入方程,解得c,从而解得a,b,即可得到椭圆的标准方程;(2)方法一:可先设出直线AB的方程为y=k(x﹣1),代入椭圆的方程并整理成关于x的一元二次方程,设A(x1,y1),B(x2,y2),利用根与系数的关系求得x1+x2=,,再求点M的坐标,分别表示出k1,k2,k3、比较k1+k2=λk3即可求得参数的值;方法二:设B(x0,y0)(x0≠1),以之表示出直线FB的方程为,由此方程求得M的坐标,再与椭圆方程联立,求得A的坐标,由此表示出k1,k2,k3、比较k1+k2=λk3即可求得参数的值【解答】:解:(1)椭圆C:经过点P (1,),可得①由离心率e=得=,即a=2c,则b2=3c2②,代入①解得c=1,a=2,b=故椭圆的方程为(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为y=k(x﹣1)③代入椭圆方程并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0设A(x1,y1),B(x2,y2),x1+x2=,④在方程③中,令x=4得,M的坐标为(4,3k),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k 所以k1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k1+k2=2k﹣×=2k﹣1又k3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA的斜率k1=,直线PB的斜率为k2=所以k1+k2=+=2×=2k3,故存在常数λ=2符合题意【点评】:本题考查直线与圆锥曲线的综合问题,考查了分析转化的能力与探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极易出错,解答时要严谨运算,严密推理,方能碸解答出、22、(14分)已知函数f(x)=,a为常数且a>0、(1)f(x)的图象关于直线x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S (a)的单调性、【分析】:(1)只要证明成立即可;(2)对a分类讨论,利用二阶周期点的定义即可得出;(3)由(2)得出x3,得出三角形的面积,利用导数即可得出其单调性、【解答】:(1)证明:∵==a(1﹣2|x|),=a(1﹣2|x|),∴,∴f(x)的图象关于直线x=对称、(2)解:当时,有f(f(x))=、∴f(f(x))=x只有一个解x=0又f(0)=0,故0不是二阶周期点、当时,有f(f(x))=、∴f(f(x))=x有解集,{x|x},故此集合中的所有点都不是二阶周期点、当时,有f(f(x))=,∴f(f(x))=x有四个解:0,,,、由f(0)=0,,,、故只有,是f(x)的二阶周期点,综上所述,所求a的取值范围为、(3)由(2)得,、∵x2为函数f(x)的最大值点,∴,或、当时,S(a)=••|﹣|=、求导得:S′(a)=、∴当时,S(a)单调递增,当时,S(a)单调递减、当时,S(a)=,求导得、∵,从而有、∴当时,S(a)单调递增、【点评】:本题考查了新定义“二阶周期点”、利用导数研究函数的单调性、三角形的面积等基础知识,考查了推理能力和计算能力、。
江西省抚州市2013届高三数学上学期第六次同步考试试题 文 新人教A版
抚州一中2013届高三第六次同步考试数学(文)试题一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出代号为A 、B 、C 、D四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x >1},B ={x |x ≤5},则A ∩B =A .ΦB .{x |1<x ≤5}C .{x |x <1或x ≥5}D .{x |1≤x <5}2.复数11ii +2+(i 是虚数单位)的虚部是 A .32 B .3 C .12D .13.下列四个函数中,在区间(0,1)上是减函数的是A .y =2log xB .y =13x C .y =-1()2xD .y =1x4.已知直线ax -by -2=0与曲线y =3x 在点P (1,1)处的切线互相垂直,则a b为 A .13 B .23 C .-23 D .-135.已知双曲线2221x a b2y -=的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为A .2254x 5y -=1B .2154x 2y -=C .2154x 2y -=D .2255x 4y -=1 6.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm )。
可得这个几何体的体积是A .133cm B .233cm C .433cm D .833cm 7.将函数f (x )=3sin (4x +6π)图象上所有点的横坐标伸长到原来的2倍,再向右平移6π个单位长度,得到函数y =g (x )的图象.则y =g (x )图象的一条对称轴是A .x =12π B .x =6π C .x =3πD .x =23π 8.已知直线m 、n 与平面α、β,下列命题正确的是A .m ∥α,n ∥β且α∥β,则m ∥nB .m ⊥α,n ∥β且α⊥β,则m ⊥nC .α∩β=m ,n ⊥m 且α⊥β,则n ⊥αD .m ⊥α,n ⊥β且α⊥β,则m ⊥n 9.等差数列{}n a 的前n 项和为n S ,若8584()()0S S S S --<,则( )A.67a a >B.67a a <C.67a a =D.6a =010.设函数()x f =241,3,1,x x x x -4,x ≤-4+>⎧⎨⎩则函数()()x f x g =-4log x 的零点个数为A .4B .3C .2D .1二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.已知变量x 、y 满足条件3,325,1,x y x x ⎧⎪⎨⎪⎩-4≤-+5y ≤≥则z =2x +y 的最小值为__________.12.已知正方形ABCD 的边长为a ,则|AC +AD |等于__________.13.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖___________块.14.在三角形ABC 中,若∠C =3∠B ,则cb的取值范围是__________. 15.对于函数()[]()π,0cos 2∈-=x x x f 与函数21()ln 2g x x x =+有下列命题:①函数()f x 的图像关于2x π=对称;②函数()g x 有且只有一个零点;③函数()f x 和函数()g x 图像上存在平行的切线;④若函数()f x 在点P 处的切线平行于函数()g x 在点Q 处的切线,则直线PQ 的斜率为1.2π- 其中正确的命题是 。
江西省2013届高三数学 周六考试试题3(教师版) 新人教A版
C.3个D.4个 2. 已知⎩⎨⎧<+≥-=)6()2()6(5)(x x f x x x f ,则f(3)为( C )A 4 B. 3 C 2 D.5 3. 函数()()34log 11xf x x x -=++-的定义域为( D ) A.(1-,+∞) B. [1-,1)(1,4] C.(1-,4) D.(1,1-)(1,4]4. 给出两个命题:p :|x |=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调递增的函数.则下列复合命题中的真命题是 ( D ) A .p 且q B .p 或q C .非p 且q D .非p 或q 5. 在等比数列{}n a 中,1346510,4a a a a +=+=,则公比q 等于( C ) A.2 B.-2 C. 12 D.12-6. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( D )A.若m ∥α,n ∥α,则m∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α7. 已知()()()f x x a x b =--(其中b a <),若()f x 的图象如图(1)所示,则函数()xg x a b =+的图象是( A )8. 已知ABC ∆中,4,43AB AC BC ===,点D 为BC 边的中点,点P 为BC 边所在直线上的一个动点,则AP AD ⋅满足( B )A.最大值为8B.为定值4C.最小值为2D.与P 的位置有关9. 已知,x y 满足约束条件02,02,32,x y z ax y y x ≤≤⎧⎪≤≤=-⎨⎪-≥⎩如果的最大值的最优解为4(2,)3,则a 的取值范围是 ( C )A .1[,1]3B .1(,1)3C .1[,)3+∞D .1(,)3+∞10. 下列四个选项给出的条件中,能唯一确定四面体ABCD 的是 ( A )A .四面体ABCD 三对对棱(即没有公共顶点的棱)分别相等,长度分别是1cm ,2cm,3cmB .四面体ABCD 有五条棱长都是1cmC .四面体ABCD 内切球的半径是1cm D .四面体ABCD 外接球的半径是1cm二.填空题:本大题共5小题,每小题5分,共25分11. 设函数b x a x f +-=)12()(是R 上的减函数,则a 的范围为)21,(-∞12. 一空间几何体的三视图如图所示,则该几何体的体积为 2 13. 已知函数2()2(2)f x x xf =-',则函数)(x f 的图象在点()()2,2f 处的切线方程是 .084=--y x14. 圆()()72222=-+-y x 关于直线2=+y x 对称的圆的方程为 ; 722=+y x 15. 关于以下命题: ⑴函数()1log 2-=x y 值域是R⑵等比数列}{n a 的前n 项和是n S (*∈N n ),则K k K k k S S S S S 232,,--(*∈N k )是等比数列。
2013年高考理科数学江西卷有答案
绝密★启用前2013年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分,考试时间120分钟. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1,2{},i M z =,i 为虚数单位,4{}3,N =,}4{MN =,则复数z = ( )A .2i -B .2iC .4i -D .4i2.函数(1)y x -=的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]3.等比数列x ,33+x ,66+x ,…的第四项等于 ( )A .24-B .0C .12D .244.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .08B .07C .02D .015.2532()x x-展开式中的常数项为( )A .80B .80-C .40D .40-6.若2211d S x x =⎰,2211d S x x=⎰,231e d x S x =⎰,则S 1,S 2,S 3的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<7.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )A .=22S i -*B .=21S i -*C .=2Si *D .=2S i +4*8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ∥,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么=+m n( )A.8 B .9 C .10D .119.过点)0引直线l与曲线y A ,B 两点,O 为坐标原点,当AOB △的面积取最大值时,直线l 的斜率等于( )A B . C . D .10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线1l ,2l之间,1l l∥,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为()0πx x <<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是( )A .B .C .D .--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二、填空题:本大题共4小题,每小题5分,共20分.11.函数2sin 2i =n y x x +的最小正周期T 为 . 12.设1e ,2e 为单位向量,且1e ,2e 的夹角为π3,若123=+a e e ,12=b e ,则向量a 在b 方向上的射影为 .13.设函数()f x 在(0),+∞内可导,且=(e )e x x f x +,则)=(1f ' .14.抛物线20=2()x py p >的焦点为F ,其准线与双曲线22=133x y -相交于A ,B 两点,若ABF △为等边三角形,则=p .三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分.15(1).(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t =⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .15(2).(不等式选做题)在实数范围内,不等式|2|11x --≤的解集为 . 四、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos ()cos C A A B +0=. (Ⅰ)求角B 的大小;(Ⅱ)若=1a c +,求b 的取值范围.17.(本小题满分12分)正项数列{}n a 的前n 项和n S 满足:222()10()=n n n n S S n n -+-+-. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)令221(2)n nn b n a +=+,数列{}n b 的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <.18.(本小题满分12分)小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从1A ,2A ,3A ,4A ,5A ,6A ,7A ,8A (如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若=0X 就参加学校合唱团,否则就参加学校排球队.(Ⅰ)求小波参加学校合唱团的概率; (Ⅱ)求X 的分布列和数学期望.19.(本小题满分12分)如图,四棱锥P ABCD —中,PA ⊥平面ABCD ,E 为BD 的中点,G 为PD 的中点,DAB △DCB ≌△,===1EA EB AB ,32=PA ,连接CE 并延长交AD 于F .(Ⅰ)求证:AD ⊥平面CFG ;(Ⅱ)求平面BCP 与平面DCP 的夹角的余弦值.20.(本小题满分13分)如图,椭圆2222=1(0)x y a C b a b :+>>经过点()31,2P ,离心率12e =,直线l 的方程为4x =.(Ⅰ)求椭圆C 的方程;(Ⅱ)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为1k ,2k ,3k .问:是否存在常数λ,使得123=k k k λ+?若存在,求λ的值;若不存在,说明理由.21.(本小题满分14分)已知函数1(1|)(|2)2f x x a --=,a 为常数且0a >. (Ⅰ)证明:函数()f x 的图像关于直线12x =对称; (Ⅱ)若0x 满足00()=()f f x x ,但00()f x x ≠,则称0x 为函数()f x 的二阶周期点.如果()f x 有两个二阶周期点1x ,2x ,试确定a 的取值范围;(Ⅲ)对于(Ⅱ)中的1x ,2x 和a ,设3x 为函数(())f f x 的最大值点,11()(())A x f f x ,,22()(())B x f f x ,,3(0),C x .记ABC △的面积为()S a ,讨论()S a 的单调性.2013年普通高等学校招生全国统一考试(江西卷)2535()522()()r r rrrrrxx C x----=-,令1050r -=的常数项为25(2)41040rC -⨯=⨯=,故选C .5225()52(r r x--展开式中的常数项.322111k k -=+2621k -+D=线段的下方,对照选项,D 正确,故选D .s3x,2ω=,∴2【解析】1e 、2e 为单位向量,且e 和e 的夹角31211e e ∴=⨯⨯123a e e =+,12b e =,2121112(3)(2)26235a b e e e e e e ∴=+=+=+=.a ∴在b 上的射影为52||a b b =,故答案为52. 【提示】根据题意求得12e e 的值,从而求得a b 的值,再根据a 在b 上的射影为||a bb ,运c o s ,sin 0A ≠)1a c +=1cos B =,cos ac B ,即22a c ac +-,01a <<2114b ≤<,正项数列22416n =⎢⎣21111n n ++-+(-)(+)1⎤⎛<22416n =⎢⎣【考点】数列的求和,等差数列的通项公式)在DAB △≌△EDA ∴∠=又PAD △中,PA ⊥平面,AD ⊂平面又EF 、FG AD ∴⊥平面(2)以点x 轴、y 轴、1,BC ⎛∴=,3CP ⎛=- ,3CD ⎛=- 的法向量(1,,m y =1232m BC m CP ⎧=+⎪⎪⎨⎪=--⎪2,可得321,,33m ⎛⎫- ⎪ ⎪=⎭, 的法向量(1,,n y z =3232n CD n CP ⎧=-+⎪⎪⎨⎪=--⎪2,(13,2n =11,||||411349m n m n m n ⨯+<>=++与平面DCP 的夹角的余弦值等于2,4m n <>=ππ、P A 分别为x 轴、y 轴、的坐标,从而得到BC 、CP 、CD 的坐标,利用垂直向量数量积为零的方法建立方程组,解出1,3m ⎛=- ⎪ ⎪⎭和(1,3,2)n =分别为平面利用空间向量的夹角公式算出m 、n 夹角的余弦,即可得到平面【考点】用空间向量求平面间的夹角,直线与平面垂直的判定,二面角的平面角及求法1212132(x x x x x +-+④代入⑤得k k +0003⎛⎫19)证明:12f x ⎛+ ⎝12x a ⎫-=⎪⎭2x 为函数当314x a=12a >,从而有∴当1a ⎛∈ ⎝。
江西省2013届高三数学 周六考试试题7(教师版) 新人教A版
2012~2013(上)宜丰中学高三(7)数学周六考试试题7(答案)姓名:一.选择题:本大题共10小题,每小题5分,共50分1. 设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B= (A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ] 【答案】D2. 已知变量x ,y 满足约束条件1110 x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为( )A. 3B. 1C. 5-D. 6- 【答案】C3. 已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S =( ) (A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【答案】B4.若12+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( ) A 、2,3b c == B 、2,1b c ==- C 、2,1b c =-=- D 、2,3b c =-= 【答案】D5. 某几何体的三视图如图1所示,它的体积为A. 72πB. 48πC. 30πD. 24π 【答案】C6. 已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是 ( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) 【答案】A7. 已知定义在区间[0,2]上的函数y=f(x)的图像如图所示,则y=-f(2-x)的图像为【答案】B8. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【答案】C9如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
(江西版)2013年普通高等学校招生全国统一考试高三数学模拟组合试卷02 理 (教师版)
【步步高】(江西版)2013届高三数学 名校强化模拟测试卷02 理(教师版)第I 卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 【江西省临川一中2012届高三信息卷数学】设全集U=R,若集合M ={}3222+-=x x y y ,N =⎭⎬⎫⎩⎨⎧-+=x x y x 23lg ,则N M C U )(= A .(-3,2) B .(-3,0) C.(-∞,1)∪(4,+∞) D.(-3,1)2. 【四川省成都市高2013级(高三)一诊模拟】 如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB ,则复数12z z 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3. 【2012年河南省豫东、豫北十所名校高中毕业班阶段性测试(三)】已知函数()12,021,<0xx x f x x -⎧-≥⎪=⎨-⎪⎩,则该函数是(A)偶函数,且单调递增 (B)偶函数,且单调递减 (C)奇函数,且单调递增 (D)奇函数,且单调递减 【答案】C【解析】当0x >时,0x -<,()()()()21120x x f x f x ---+=-+-=;当0x <时,0x ->,()()()()12210x x f x f x -+=-+-=;()00f =.因此函数()f x 是奇函数.当0x >时,函数()f x 是增函数,因函数图像关于原点对称,故()f x 是增函数,选C.4. 【改编题】已知cos(x―π6)=3-3,则cosx+cos(x―π3)的值是A 、―233 B 、±233C 、―1 D、±1 5. 【北京市朝阳区2012届高三年级第二次综合练习】下列命题::p 函数44()sin cos f x x x =-的最小正周期是π;:q 已知向量(1)λ,a,2(1),λb ,(11)-,c,则(+)//a b c 的充要条件1λ=-;:r 若111adx =x⎰(1a >),则e =a . 其中所有的真命题是 A .rB .,p qC .,q rD .,p r6. 【安徽省黄山市2013届高中毕业班第一次质量检测】已知函数()lg()x x f x x a b =+-中,常数101a b a b a b >>>=+、满足,且,那么()1f x >的解集为A .(01),B .(1)+∞,C .(110),D .(10)+∞,【答案】B7. 【2012年河南省豫东、豫北十所名校高中毕业班阶段性测试(三)】在 ΔABC 中,内角,,A B C 的对边分别是,,a b c .若1sin 15cos =,2,,4sin 4ABC C B S A ∆==则b = (A)4 (B)3 (C)2 (D)18. 【江西省南昌市2013届高三第一次模拟考试】某家电企业要将刚刚生产的100台变频空调送往南昌,现有4辆甲型货车和8辆乙型货车调配。
江西省2013届高三数学 周六考试试题12(教师版) 新人教A版
开始输入1250,,,a a a1,0,0k M W ===kT a =M M T =+W W T=+50?k <24M M =26W W =1k k =+输出,,M W A结束是 否是否2012~2013(上)高三(7)数学周六考试试题12(答案)一.选择题:本大题共10小题,每小题5分,共50分1. 若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( A )A .iB .i -C .2iD .2i -2. 已知命题:0p x ∃≥,使23x=,则 ( D ) A .:0p x ⌝∀<,使23x≠ B .:0p x ⌝∃<,使23x≠ C .:0p x ⌝∃≥,使23x≠ D .:0p x ⌝∀≥,使23x≠3. 已知()()0,1,2,3-=-=,向量b a +λ与b a 2-垂直,则实数λ的值为( A )A.17-B.17C.16-D.164. 公比不为1等比数列{}n a 的前n 项和为n S ,11a =且1233,,a a a --成等差数列,若,则4S =(A )A .20-B .0C .7D .405. 若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是 ( B ) A.]1,3[-- B. ]1,3[- C. ]3,1[- D. ),1[]3,(+∞⋃--∞6. 某班有24名男生和26名女生,数据1250,,,a a a 是该班50名学生在一次数学学业水平模拟考试的成绩,下面的程序用来同时统计全班成绩的平均分:A ,男生平均分:M ,女生平均分:W ;为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其成绩的相反数,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( D )A .0?T >,50M W A +=B .0?T <,50M WA +=C .0?T <,50M W A -=D .0?T >,50M WA -=7. 我们将底面是正方形,侧棱长都相等的棱锥称为正四棱锥。
江西省2013届高三数学 周六考试试题14(教师版) 新人教A版
OBADC 2012~2013(上)高三(7)数学周六考试试题14(答案)一.选择题:本大题共10小题,每小题5分,共50分1. 复数534i +的共轭复数是 ( A )A .3455i +B .3455i - C .3+4i D .3-4i2. 某程序框图如图所示,该程序运行后输出的k 的值是( A ) A .4 B .5 C .6 D .73.,有下面四个命题:平面,直线平面已知直线βα⊂⊥m l(1)//l m αβ⇒⊥;(2)//l m αβ⊥⇒; (3)//l m αβ⇒⊥;(4)//l m αβ⊥⇒ 其中正确的命题是 ( C )A .(1)(2)B .(2)(4)C .(1)(3)D .(3)(4)4. 已知圆C 与直线x -y =0 及x -y -4=0都相切,且圆心在直线x +y =0上,则圆C 的方程为( B )A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D.22(1)(1)2x y +++=5. 设不等式⎩⎨⎧>+>-00y x y x 表示的平面区域与抛物线24y x =-的准线围成的三角形区域(包含边界)为D ,),(y x P 为D 内的一个动点,则目标函数52+-=y x z 的最大值为( C )A .4B .5C .8D .126. 在长方形ABCD 中,AB =2,BC =1,M 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到M 的距离大于1的概率为 ( C ) A.4π B.8π C.14π-D.18π- 7. 等比数列{}n a 的各项都是正数,且132,21,a a a 成等差数列,则6554a a a a ++的值是( A )A .215- B . 251-C .215+D .215-或215+8. 定义行列式运算1234a a a a =3241a a a a -.将函数sin 23()cos 21x f x x=的图象向左平移6π个单位,以下是所得函数图象的一个对称中心是 ( B )A .,04π⎛⎫⎪⎝⎭ B .,02π⎛⎫⎪⎝⎭C .,03π⎛⎫⎪⎝⎭D .,012π⎛⎫⎪⎝⎭9. 下列命题:①在ABC ∆中,若B A >,则B A sin sin >;②已知)1,2(),4,3(--==CD AB ,则AB 在CD 上的投影为2-;③已知1cos ,:=∈∃x R x p ,01,:2>+-∈∀x x R x q ,则“q p ⌝∧”为假命题.其中真命题的个数为( C ) (A )0(B )1 (C )2(D )310. 定义方程()()f x f x '=的实数根0x 叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α, β,γ的大小关系是( D )A .γβα<<B .βγα<<C .βαγ<<D .γαβ<<二.填空题:本大题共5小题,每小题5分,共25分 11. 某同学学业水平考试的9科成绩如茎叶图4所示,则根据茎叶图可知该同学的平均分为 .8012. 已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为 .⎥⎦⎤ ⎝⎛∞-637,13. 函数)(x f y =的导数记为)('x f ,若)('x f 的导数记为)()2(x f,)()2(x f 的导数记为)()3(x f ,…….。
江西省2013届高三数学 周六考试试题9(教师版) 新人教A版
ABC1B 1A 1C 2012~2013(上)高三(7)数学周六考试试题9(答案)姓名:一.选择题:本大题共10小题,每小题5分,共50分 1. 已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =( D ) A .∅ B .{x |0<x <3} C .{x |1<x <3} D .{x |2<x <3} 2. 以下说法错误..的是( C ) A.命题“若2320x x -+=,则x =1”的逆否命题为“若x ≠1,则2320x x -+≠”.B. “1x =”是“2320x x -+=”的充分不必要条件. C.若p q ∧为假命题,则p q 、均为假命题.D.若命题p :x ∃∈R,使得210x x ++<,则p ⌝:x ∀∈R,则210x x ++≥.3. 若对任意的R x ∈,函数)(x f 满足f(x+1)=-f(x),且f(2013)=-2013,则f(-1)=( D ) A.1 B.-1 C.2013 D.-20134. 给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( D )A .①和② B.②和③ C.③和④ D.②和④ 5. 如图,在三棱柱111ABC ABC -中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则AA 1与平面11AB C 所成的角为( A ) A.6π B. 4π C. 3πD. 2π 6. 已知数列*{},(,)()n n a n a n N ∈若点在经过点(5,3)的定直线l 上,则数列{}n a 的前9项和S 9= ( D )A .9B .10C .18D .277. 已知实数[0,8]x ∈,执行如右图所示的程序框图,则输出的x 不小于55的概率 为 ( A ) A .14 B .12 C .34 D .54 8. 已知函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩为奇函数,若函数()[1,2]f x a --在区间上单调递增,则a 的取值范围是 ( B )A .(1,3)B .(1,3]C .(3,)+∞D .[3,)+∞9. 定义在R 上的奇函数12log (1),[0,1)(),.0,(),1|3|,[1,)x x f x x f x x x +∈⎧⎪≥=⎨⎪--∈+∞⎩当时则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为 ( B )A .21a-B .12a-C .21a-- D .12a-- 110. 如图所示的三角形数阵叫“莱布尼兹调和三角形”, 它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n ()2n ≥,每个数是它下一行左右相邻两数 1112 12 13 16 13 14 112 112 14 15 120 130 12015 的和,如111122=+,111236=+,1113412=+,…,则第10行第4个数(从左往右数)为(B )A .11260B .1840C .1504D .1360二.填空题:本大题共5小题,每小题5分,共25分 11. 若321i i z +=-,则z = . 1522i +12. 已知,x y 满足01040y x y x y ≥⎧⎪--≥⎨⎪+-≤⎩, 则y x z +=2的最大值为 . 813. 已知25≥x ,则4254)(2-+-=x x x x f 的最小值为 . 114. 双曲线2214yx -=的渐进线被圆226210x y x y +--+=所截得的弦长为 4 15. ①函数π=sin -2y x ⎛⎫⎪⎝⎭在[]0π,上是减函数;②点A (1,1)、B (2,7)在直线03=-y x 两侧;③数列{}n a 为递减的等差数列,051=+a a ,设数列{}n a 的前n 项和为n S ,则当4=n 时,n S 取得最大值;④定义运算11a b 212212=-a a b a b b 则函数2+3()=x x f x x 113x 的图象在点⎪⎭⎫⎝⎛31,1处的切线方程是.0536=--y x其中正确命题的序号是 (把所有正确命题的序号都写上). ②④三.解答题:共75分16. (本小题满分12分)在ABC ∆中,角C B A 、、的对边分别为c b a 、、, 且B c B a C b cos cos 3cos -=. ①求B cos 的值;②若2=⋅BC BA ,且22=b ,求c a 和的值.解:(Ⅰ)解:由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则 因此.31cos =B ………6分(Ⅱ)解:由2cos ,2==⋅B ac BC BA 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以.6==c a ………12分17. (本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【答案】(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. 18. (本小题满分12分)如图,在四棱锥E ABCD -中,四边形ABCD 为平行四边形,BE BC =,AE BE ⊥,M 为CE 上一点,且BM ⊥平面ACE .⑴求证:AE BC ⊥;⑵如果点N 为线段AB 的中点,求证:MN ∥平面ADE .NABCDEM19. (本小题满分12分)已知抛物线28y x =与椭圆22221x y a b+=有公共焦点F ,且椭圆过点D (.⑴.求椭圆方程;⑵.点A 、B 是椭圆的上下顶点,点C 为右顶点,记过点A 、B 、C 的圆为⊙M,过点D 作⊙M 的切线l ,求直线l 的方程;⑶.过点A 作互相垂直的两条直线分别交椭圆于点P 、Q ,则直线PQ 是否经过定点,若是,求出该点坐标,若不经过,说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012~2013(上)宜丰中学高三(7)数学周六考试试题1
一.选择题:本大题共10小题,每小题5分,共50分
1. 已知222{|},{|2}M y R y x N x R x y =∈==∈+=,则M N = ( )
A .{(1,1),(1,1)}-
B .{1} C
. D .[0,1]
2.
函数y =的值域是 ( )
A .[0,)+∞
B .[0,4]
C .[0,4)
D .(0,4)
3. 命题“2
,240x x x ∀∈-+≤R ”的否定为 ( ) A.2
,240x x x ∀∈-+≥R B.2
,240x x x ∃∈-+>R C.2
,240x x x ∀∉-+≤R D. 2
,240x x x ∃∉-+>R 4. 函数2
()2x f x a x
=--的一个零点在区间(1,2)内,则实数a 的取值范围是( )
A . (0,3)
B .(1,2)
C .(1,3)
D .(0,2)
5. 若奇函数))((R x x f ∈满足)2()()2(,1)2(f x f x f f +=+=,则)5(f = ( ) A .0
B .1
C . 5
D .
25
6. 设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2
x =π
对
称,则下列判断正确的是 ( ) A. p 为真 B. q ⌝为假 C.p q ∧为假 D.p q ∨为真 7. 设右图是某几何体的三视图,则该几何体的体积为
( )
A .942π+
B .3618π+
C .9122π+
D .9
182
π+
8. 设集合(){},|,,1A x y x y x y =--是三角形的三边长,则A 所表示的平面区域(不含边界的阴
影部分)是
( )
9. 函数)(x f y =在点),(00y x 处的切线方程为12+=x y , 则x
x x f x f x ∆∆--→∆)
2()(lim
000等于 ( )
A .4-
B .2-
C .2
D .4
10. 已知()y f x =为R 上的可导函数,当0x ≠时,()()'0f x f x x
+
>,则关于x 的函数
()()1
g x f x x
=+的零点个数为( )
A.1
B.2
C.0
D.0或 2
二.填空题:本大题共5小题,每小题5分,共25分
11. 已知向量a ,b 夹角为45︒
,且|a|=1,|2a -b|
|b|=
________.
12. 已知0,0x y >>,若
2282y x
m m x y
+>+恒成立,则实数m 的取值范围是 . 13. 某地球仪上北纬30
纬线的长度为12πcm ,该地球仪的半径是__________cm ,表面积是
______________cm 2。
14. 若)(x f 是R 上的减函数,且1)3(,3)0(-==f f ,设},2|1)(||{<-+=t x f x P
}1)(|{-<=x f x Q ,若“Q x ∈”是“P x ∈”的必要不充分条件,则实数t 的取值范围
是 .
15. 若222
250(,)|30{(,)|(0)}0x y x y x x y x y m m x y ⎧-+≥⎫⎧⎪⎪⎪-≥⊆+≤>⎨⎨⎬⎪⎪⎪
+≥⎩⎭⎩
,则实数m 的取值范围
是 .
三.解答题:共75分
16. 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sin C -c cos A
.
正视图
侧视图
俯视图
(1)求A ;
(2)若a =2,△ABC.的面积为3,求b ,c.
17.(12分)在△ABC 中,(,2),(cos ,cos )m b a c n B C =-=
,且m ∥n .
(1)求角B 的大小;(2)设()cos()sin (0)2
B
f x x x ωωω=-+>,且()f x 的最小正周期为π,求()f x 在区间[0,]2
π
上的最大值和最小值.
18.(12分)已知1>a ,设命题01)2(:>+-x a P ,命题1)2()1(:2
+->-x a x Q .试寻求
使得Q P 、都是真命题的x 的集合。
19. (12分) 时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种
趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的
关系式()2
462
m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保
留1位小数)
20.(12分)数列}{n a 的前n 项和为n S ,当1n ≥时,1+n S 是1+n a 与12n S ++的等比中项. (Ⅰ)求证:当1n ≥时,
2
1
111=-+n n S S ;
(Ⅱ)设11-=a ,求n S 的表达式; (Ⅲ)设11-=a ,且⎭
⎬
⎫⎩⎨
⎧
+n S q pn n )(是等差数列)0(≠pq ,求证:q p 是常数.
21.(14分)设f (x )=ln x +x -1,证明:
(1)当x >1时,f (x )<3
2
(x -1);
(2)当1<x <3时,f (x )<9x -1x +5
.。