2012届高考数学课时复习题1
2012届高考数学第一轮复习精品试题:集合-学生版
2012届高考数学第一轮复习精品试题:集合§1.1 集合的含义及其表示经典例题:若x ∈R ,则{3,x ,x2-2x }中的元素x 应满足什么条件? 当堂练习1.下面给出的四类对象中,构成集合的是( )A .某班个子较高的同学B .长寿的人CD .倒数等于它本身的数2下面四个命题正确的是( )A .10以内的质数集合是{0,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程2210x x -+=的解集是{1,1} D .0与{0}表示同一个集合3. 下面四个命题: (1)集合N 中最小的数是1; (2)若 -a ∉Z ,则a ∈Z ; (3)所有的正实数组成集合R+;(4)由很小的数可组成集合A ; 其中正确的命题有( )个A .1B .2C .3D .44.下面四个命题: (1)零属于空集; (2)方程x2-3x+5=0的解集是空集; (3)方程x2-6x+9=0的解集是单元集; (4)不等式 2 x-6>0的解集是无限集; 其中正确的命题有( )个A .1B .2C .3D .4 5. 平面直角坐标系内所有第二象限的点组成的集合是( ) A . {x,y 且0,0x y <>} B . {(x,y)0,0x y <>}C. {(x,y)0,0x y <>} D. {x,y 且0,0x y <>}6.用符号∈或∉填空:0__________{0}, a__________{a}, π__________Q , 21__________Z ,-1__________R ,0__________N , 0 Φ. 7.由所有偶数组成的集合可表示为{x x =}.8.用列举法表示集合D={2(,)8,,x y y x x N y N=-+∈∈}为 .9.当a 满足 时, 集合A ={30,x x a x N +-<∈}表示单元集.10.对于集合A ={2,4,6}, 若a ∈A ,则6-a ∈A ,那么a 的值是__________. 11.数集{0,1,x2-x}中的x 不能取哪些数值?12.已知集合A ={x ∈N|126x -∈N },试用列举法表示集合A .13.已知集合A={2210,,x ax x a R x R++=∈∈}.(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围.14.由实数构成的集合A 满足条件:若a ∈A, a ≠1,则11Aa∈-,证明:(1)若2∈A ,则集合A 必还有另外两个元素,并求出这两个元素; (2)非空集合A 中至少有三个不同的元素。
2012届高考数学一轮复习测试题及答案(一)
第一章集合与简易逻辑课时训练1集合的概念与运算【说明】本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)1.(2010四川成都模拟,1)已知集合A={x||x2-4|≤1,x∈Z},则集合A的真子集个数为()A.2个B.1个C.4个D.3个答案:D解析:A={x|3≤x2≤5,x∈Z}={2,-2},故A的真子集个数为22-1=3. 2.(2010江苏苏州一模,1)设全集U={0,1,2,3,4},集合A={1,2,3},集合B={2,3,4},则A∩B等于()A.{1}B.{0,1}C.{0,1,2,3}D.{0,1,2,3,4}答案:A解析:B={0,1},A∩(B)={1}.3.(2010河南新乡一模,1)已知M={y|y=x2},N={y|x2+y2=2},则M∩N 等于()A.{(1,1),(-1,1)}B.{1}C.[0,1]D.[0,2]答案:D解析:∵M=[0,+∞],N=[-2,2],∴M∩N=[0,2].4.给定集合A、B,定义一种新运算:A*B={x|x∈A或x∈B,但x∉A ∩B},又已知A={0,1,2},B={1,2,3},则A*B等于()A.{0}B.{3}C.{0,3}D.{0,1,2,3}答案:C解析:依题意x∈A∪B,但x∉A∩B,而A∪B={0,1,2,3},A∩B={1,2}故A*B={0,3}.5.设M={0,1},N={11-a,lga,2a,a},若M∩N={1},则a值()A.存在,且有两个值B.存在,但只有一个值C.不存在D.无法确定答案:C解析:若11-a=1,则a=10,lga=1,与集合元素互异性矛盾,同理知lga≠1;若2a=1,则a=0,此时lga无意义;若a=1,则lga=0,此时M∩N={0,1}.故不存在这样的a值.6.设集合M={x|x-m<0},N={y|y=a x-1,a>0且a≠1,x∈R},若M∩N=∅,则m的范围是()A.m≥-1B.m>-1C.m≤-1D.m<-1答案:C解析:M={x|x<m},N={y|y>-1},又M∩N=∅,则m≤-1.7.已知向量的集合M={a|a=λ1(1,0)+(1+λ12)(0,1),λ1∈R},N={a|a=(1,6)+λ2(2,4),λ2∈R},则M∩N等于()A.{(-1,2)}B.{(-1,2),(3,10)}C.∅D.{(1,2),(-1,2)}答案:B解析:M={a |a =(λ1,λ12+1),λ1∈R },N={a |a =(1+2λ2,6+4λ2),λ2∈R },设a ∈M ∩N,则⎩⎨⎧-=-=⎩⎨⎧==⎩⎨⎧+=++=.1,11,3,461,21212122121λλλλλλλλ或即故a =(3,10)或(-1,2).二、填空题(每小题5分,共15分)8.下列各式:①2006⊆{x|x ≤2007};②2007∈{x|x ≤2007};③{2007}{x|x ≤2007};④∅∈{x|x<2007},其中正确的是____________. 答案:②③解析:①应为2006∈{x|x ≤2007};④应为∅{x|x<2007}.9.设全集U={x|0<x<6,x ∈N },A={x|x 2-5x+q=0},B={x|x 2+px+12=0},(A)∪B={1,3,4,5},则集合A=_____________B=_______________. 答案:{2,3}{3,4}解析:U={1,2,3,4,5},由2∉{1,3,4,5}知2∈A ,∴22-5×2+q=0即q=6.∴A={2,3},A={1,4,5},故3∈B ,∴p=-7,B={3,4}.10.已知集合A={-1,2},B={x|mx+1=0},若A ∩B=B ,则所有实数m 的值组成的集合是_______.答案:{0,1,-21}解析:A ∩B=B ⇒B ⊆A,故B 为∅或{-1}或{2}.当B=∅时,m=0;当B={-1}时,m=1;当B={2}时,m=-21.三、解答题(11—13题每小题10分,14题13分,共43分)11.(2010浙江杭州二中模拟,15)已知集合A={x|x 2-3x+2=0},集合B={x|x 2-ax+a-1=0},若A ∪B=A ,求实数a 的值.解析:A={x|x 2-3x+2=0}={1,2},A ∪B=A ⇒B ⊆A ;B={x|x 2-ax+a-1=0}={x|(x-1)(x-a+1)=0};则有a-1=2⇒a=3或a-1=1⇒a=2.故实数a 的值为2或3.12.设函数f(x)=log 2(2x-3)的定义域为集合M ,函数g(x)=)1)(3(--x x 的定义域为集合N.(1)求集合M 、N ;(2)求集合M ∩N ,M ∪N ,(N )∩M.解析:(1)由2x-3>0得x>23,故M={x|x>23},由(x-3)(x-1)>0得x<1或x>3,故N={x|x<1或x>3}.(2)M ∩N={x|x>3},M ∪N={x|x<1或x>23}. ∵N={x|1≤x ≤3},∴(N)∩M={x|23<x ≤3}.13.已知集合A={x|x 2-6x+8<0},B={x|(x-a)(x-3a)<0}.(1)若A B,求a 的取值范围;(2)若A ∩B=∅,求a 的取值范围;(3)若A ∩B={x|3<x<4},求a 的取值范围.解析:A={x|2<x<4},当a>0时,B={x|a<x<3a};当a=0时,B=∅;当a<0时,B={x|3a<x<a}.(1)若A B ,则a>0且⎩⎨⎧≥≤,43,2a a 即34≤a ≤2.(2)若A ∩B=∅,则a ≤0满足;当a>0时,则3a ≤2或a ≥4.∴a 的取值范围为a ≤32或a ≥4.(3)若A ∩B={x|3<x<4},当a>0时,则a>3;当a ≤0时不满足.∴a 的取值范围是a>3.14.已知集合A 的元素全为实数,且满足:若a ∈A ,则a a -+11∈A. (1)若a=2,求出A 中其他所有元素.(2)0是不是集合A 中的元素?请你设计一个实数a ∈A,再求出A 中的所有元素.(3)根据(1)(2),你能得出什么结论?请证明你的猜想(给出一条即可).解析:(1)由2∈A,得2121-+=-3∈A. 又由-3∈A ,得21)3(1)3(1-=---+∈A. 再由-21∈A ,得31)21(1)21(1=---+∈A.而31∈A 时,311311-+=2∈A. 故A 中元素为2,-3,-21,31. (2)0不是A 的元素.若0∈A ,则0101-+=1∈A ,而当1∈A 时,aa -+11不存在,故0不是A 的元素.取a=3,可得A={3,-2,-21,31}. (3)猜想:①A 中没有元素-1,0,1;②A 中有4个元素,且每两个互为负倒数.证明:①由上题,0、1∉A ,若0∈A ,则由a a -+11=0,得a=-1. 而当aa -+11=-1时,a 不存在,故-1∉A,A 中不可能有元素-1,0,1. ②设a 1∈A,则a 1∈A ⇒a 2=1111a a -+∈A ⇒a 3=2211a a -+=-11a ∈A ⇒a 4=3311a a -+=1111+-a a ∈A ⇒a 5=4411a a -+=a 1∈A. 又由集合元素的互异性知,A 中最多只有4个元素:a 1,a 2,a 3,a 4,且a 1a 3=-1,a 2a 4=-1,显然a 1≠a 3,a 2≠a 4.若a 1=a 2,即a 1=1111a a -+,得a 12+1=0, 此方程无解;同理,若a 1=a 4,即a 1=1111a a +-,此方程也无实数解. 故a 1≠a 2,a 1≠a 4.∴A 中有4个元素.。
2012 年全国各地高考数学试题及解答汇编大全
3、 (2012 全国卷大纲版●理)将字母 a,a,b,b,c,c 排成三行两列, 要求每行的字母 互不相同,每列的字母也互不相同,则不同的排列方法共有(A). A. 12 种; B. 18 种; C. 24 种; D. 36 种. 4、 (2012 全国卷大纲版●理)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE BF
2、 (2012 新课标●理)已知三棱锥 S ABC 的所有顶点都在球 O 的球面上, ABC 是边 长为 1 的正三角形, SC 为球 O 的直径,且 SC 2 ,则此棱锥的体积为(A). A. B. C. D.
2 ; 6
3 ; 6 2 ; 3
2 . 2
【解析】 ABC 的外接圆的半径 r 1 1 o 3 ,球心 O 到面 ABC 的距离 2 sin 60 3 第 1 页/共 64 页
1 1 1 1 f ( y),即 y f 1 ( x) g ( x) 知, y f (2 x) 的 2 2 2
反函数是 y 1 g ( x) ,故函数 y f (2 x) 与 y 1 g ( x) 的图像也关于直线 y x 对称;正 2 2 确. ③ f ( x) f (2 x) f ( x 2) f [2 ( x 2)] f (4 x) f ( x 4) .故 f ( x) 是周期为 4 的函数. 故选 C.
由对称性知, y x,y 1 , ( x 1) 2 ( y 1) 2 1 围成的面积与 x
1 y x,y , ( x 1)2 ( y 1)2 1 围成的面积相等. x
故 A B 所表示的平面图形的面积为 y x , ( x 1)2 ( y 1)2 1 围成的面积
2012年高考数学一轮复习 4-专题1课时作业
4专题1课时作业一、选择题1.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1),…的前n 项之和为( )A .2n-1 B .n ·2n-n C .2n +1-n D .2n +1-n -2答案 D解析 记a n =1+2+22+…+2n -1=2n-1∴S n =2·2n-12-1-n =2n +1-2-n2.数列{a n }、{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项之和为( ) A.13B.512 C.12D.712 答案 B 解析b n =1a n =1n +1n +2=1n +1-1n +2S 10=b 1+b 2+b 3+…+b 10=12-13+13-14+14-15+…+111-112=12-112=512 3.已知等差数列公差为d ,且a n ≠0,d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1可化简为( )A.nd a 1a 1+nd B.na 1a 1+ndC.da 1a 1+ndD.n +1a 1[a 1+n +1d ]答案 B 解析∵1a n a n +1=1d (1a n -1a n +1)∴原式=1d (1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1)=1d (1a 1-1a n +1)=na 1·a n +1,选B4.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2008的值为( )A.20052006B.20062007 C.20072008D.20082009答案 D解析 直线与x 轴交于(2n,0),与y 轴交于(0,2n +1), ∴S n =12·2n ·2n +1=1nn +1=1n -1n +1, ∴原式=(1-12)+(12-13)+…+(12008-12009)=1-12009=20082009二、填空题5.(1002-992)+(982-972)+…+(22-12)=____________. 答案 5050 解析 原式=100+99+98+97+…+2+1=100×100+12=50506.S n =122-1+142-1+…+12n 2-1=________. 答案n2n +1 解析 通项a n =12n 2-1=12n -12n +1=12(12n -1-12n +1)∴S n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1)=n 2n +17.(2010·《高考调研》原创题)某医院近30天每天因患甲型H1N1流感而入院就诊的人数依次构成数列{a n },已知a 1=1,a 2=2,且满足a n +2-a n =1+(-1)n(n ∈N *),则该医院30天内因患甲型H1N1流感而入院就诊的人数共有________.答案 255解析 当n 为偶数时,由题易得a n +2-a n =2,此时为等差数列;当n 为奇数时,a n +2-a n=0,此时为常数列,所以该医院30天内因患甲型H1N1流感而入院就诊的人数总和为S 30=15+15×2+15×142×2=255.三、解答题8.(2010·某某卷,文)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n . 解析 (1)因为{a n }是首项为a 1=19,公差为d =-2的等差数列,所以a n =19-2(n -1)=-2n +21.S n =19n +n n -12·(-2)=-n 2+20n .(2)由题意知b n -a n =3n -1,所以b n =3n -1+a n =3n -1-2n +21.T n =S n +(1+3+…+3n -1)=-n 2+20n +3n-12.9.已知数列{a n }中,a 1=1,a 2=2,a n +2=a n q 2,(q ≠0) 求和:1a 1+1a 2+…+1a 2n.解 由题意得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n,于是1a 1+1a 2+…+1a 2n =(1a 1+1a 3+…+1a 2n -1)+(1a 2+1a 4+…+1a 2n )=1a 1(1+1q 2+1q 4+…+1q 2n -2)+1a 2(1+1q 2+1q 4+…+1q 2n -2)=32(1+1q 2+1q 4+…+1q2n -2).当q =1时,1a 1+1a 2+…+1a 2n =32(1+1q 2+1q 4+…+1q 2n -2)=32n ,当q ≠1时,1a 1+1a 2+…+1a 2n =32(1+1q 2+1q 4+…+1q 2n -2)=32(1-q -2n1-q -2)=32[q 2n-1q 2n -2q 2-1]. 故1a 1+1a 2+…+1a 2n=⎩⎪⎨⎪⎧32n , q =132[q 2n-1q 2n -2q 2-1], q ≠1.10.数列{a n }的前n 项和为S n =10n -n 2,求数列{|a n |}的前n 项和. 解析 易求得a n =-2n +11(n ∈N *). 令a n ≥0,得n ≤5;令a n <0,得n ≥6. 记T n =|a 1|+|a 2|+…+|a n |,则: (1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =10n -n 2. (2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+a 3+a 4+a 5-a 6-a 7-…-a n=2(a 1+a 2+a 3+a 4+a 5)-(a 1+a 2+a 3+a 4+a 5+a 6+…+a n ) =2S 5-S n =n 2-10n +50.综上,得T n =⎩⎪⎨⎪⎧-n 2+10nn ≤5时;n 2-10n +50n ≥6时.11.已知数列{a n }为等比数列.T n =na 1+(n -1)a 2+…+a n ,且T 1=1,T 2=4(1)求{a n }的通项公式. (2)求{T n }的通项公式. 解析 (1)T 1=a 1=1T 2=2a 1+a 2=2+a 2=4,∴a 2=2∴等比数列{a n }的公比q =a 2a 1=2 ∴a n =2n -1(2)解法一:T n =n +(n -1)·2+(n -2)·22+…+1·2n -1①2T n =n ·2+(n -1)22+(n -2)23+…+1·2n② ②-①得T n =-n +2+22+…+2n -1+2n=-n +21-2n1-2=-n +2n +1-2=2n +1-n -2解法二:设S n =a 1+a 2+…+a n ∴S n =1+2+…+2n -1=2n-1∴T n =na 1+(n -1)a 2+…+2a n -1+a n =a 1+(a 1+a 2)+…+(a 1+a 2+…+a n )=S 1+S 2+…+S n =(2-1)+(22-1)+…+(2n-1) =(2+22+ (2))-n =21-2n1-2-n=2n +1-n -212.设数列{a n }是公差大于0的等差数列,a 3,a 5分别是方程x 2-14x +45=0的两个实根. (1)求数列{a n }的通项公式; (2)设b n =a n +12n +1,求数列{b n }的前n 项和T n .解 (1)因为方程x 2-14x +45=0的两个根分别为5、9,所以由题意可知a 3=5,a 5=9,所以d =2,所以a n =a 3+(n -3)d =2n -1.(2)由(1)可知,b n =a n +12n +1=n ·12n ,∴T n =1×12+2×122+3×123+…+(n -1)×12n -1+n ·12n ①,∴12T n =1×122+2×123+…+(n -1)×12n +n ·12n +1②, ①-②得,12T n =12+122+123+…+12n -1+12n -n ·12n +1=1-n +22n +1,所以T n =2-n +22n .13.已知数列{a n }的首项a 1=23,a n +1=2a na n +1,n =1,2,….(1)证明:数列{1a n-1}是等比数列;(2)求数列{n a n}的前n 项和S n . 解 (1)∵a n +1=2a n a n +1,∴1a n +1=a n +12a n =12+12·1a n ,∴1a n +1-1=12(1a n -1),又a 1=23,∴1a 1-1=12.∴数列{1a n -1}是以12为首项,12为公比的等比数列. (2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,∴n a n =n2n +n .设T n =12+222+323+…+n2n .①则12T n =122+223+…+n -12n +n2n +1.② ①-②得12T n =12+122+…+12n -n 2n +1=121-12n1-12-n 2n +1=1-12n -n2n +1, ∴T n =2-12n -1-n 2n ,又1+2+3+…+n =nn +12,∴数列{n a n }的前n 项和S n =2-2+n 2n +n n +12=n 2+n +42-n +22n .。
2012届高考数学第一轮复习精品试题:函数-学生版
2012届高考数学第一轮复习精品试题:函数§2.1.1 函数的概念和图象经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域: (1)H (x )=f (x2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( ) A.(),()f x x g x ==B.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D.()()f x g x ==2函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠ B .{}2x x ≠- C .{}1,2xx ≠-- D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞B .5(,]4-∞C . 4[,)3+∞D .4(,3-∞ 5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( )(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( ) A .(1),(2),(3) B .(1),(3),(4) C .(2),(4) D .(2),(3)6.在对应法则,,,x y y x b x R y R→=+∈∈中,若25→,则2-→ , →6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则f = .8.规定记号“∆”表示一种运算,即a b a b a b R+∆++∈,、. 若13k ∆=,则函数()fx k x=∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)(1)()x f x x x+=-12.求函数y x =13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向A 点运动,设M 点运动的距离为x ,△ABM 的面积为S . (1)求函数S=的解析式、定义域和值域; (2)求f[f(3)]的值.§2.1.2 函数的简单性质经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是 f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A .①④ B .②③ C .①③ D .②④ 当堂练习:1.已知函数f(x)=2x2-mx+3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f(1)等于 ( )A .-3B .13C .7D .含有m 的变量2.函数1()x f x -=是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数3.已知函数(1)()11f x x x =++-,(2)()f x =2()33f x x x =+(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个 A .1 B .2 C .3 D .44.奇函数y=f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为( )5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 .7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称.10.点(x,y)在映射f作用下的对应点是(,)22y x +-,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。
2012届高考数学一轮复习 1不等式和绝对值不等式课件 (文) 新人教A版选修4-5
)
C.(-4,0)
D.(-4,-2)∪(0,2)
解析:由1<|x+1|<3,得 1<x+1<3或-3<x+1<-1,
∴0<x<2或-4<x<-2,
∴不等式的解集为(-4,-2)∪(0,2). 答案:D
5.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值 是( A.0 C.-1 ) B.1 D.2
(2)由不等式|2x+5|>7+x,
可得2x+5>7+x或2x+5<-(7+x),
整理得x>2或x<-4. ∴原不等式的解集是{x|x<-4或x>2}.
(3)解法一:分别求|x-1|,|x+2|的零点,即1,-2.
由-2,1把数轴分成三部分:
x<-2,-2≤x≤1,x>1. 当x<-2时,原不等式为1-x-2-x<5. 解得-3<x<-2;
[反思感悟] 使用绝对值不等式的性质证明不等式时,常与放缩法结合在一起应用,利用放缩法时要目标明
确,通过添、拆项后,适当放缩.
错源
去绝对值不当致误
【典例】 解不等式:|2x+1|-|x-4|<2. [剖析] 本题可以按照-,4把实数集分割成三个部分,去掉绝对值后转化为三个不等式组的解处理.可能出 现的错误就在这个去绝对值上,一个是分区时漏掉了端点值- 、 4,另一个是在各个部分内判断绝对 值内式子的符号,如当- ≤ x<4时认为2x+1<0等.
等式.转化的途径有三种:一是依据实数绝对值的定义:
2012届江苏高考数学二轮复习:教案+学案+课后训练(含完整答案)整套word稿-课时答案
专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. x<0,有x2≤02. (2,3)解析:M=(-∞,3),N=(2,+∞),∴ M∩N=(2,3).3. (-∞,-1)∪(3,+∞)解析:不等式对应的二次函数开口向上,则Δ=(a-1)2-4>0.4. [-1,1]解析:集合A=[-1,1],B=(-∞,1],∴ A∩B=A.5.215解析:⎩⎪⎨⎪⎧0≤a,a+45≤10≤a≤15,⎩⎪⎨⎪⎧b-13≥0,b≤113≤b≤1,利用数轴,分类讨论可得集合A∩B的“长度”的最小值为13-15=215.6. ⎣⎡⎦⎤-12,13解析:p:x2+x-6<0为真,则不等式的解集为A=(-3,2),由q:mx +1>0得m=0时,解集为B=R,m>0时,解集为B=⎝⎛⎭⎫-1m,+∞,m<0时,解集为B=⎝⎛⎭⎫-∞,-1m,m=0时,A B成立;m>0时,-1m≤-3,0<m≤13;m<0时,-1m≥2,-12≤m<0,综上m∈⎣⎡⎦⎤-12,13.7. 12解析:这是一个典型的用韦恩图来求解的问题,如图.设两者都喜欢的人数为x,则只喜爱篮球的有15-x,只喜爱乒乓球的有10-x,由此可得(15-x)+(10-x)+x+8=30,解得x=3,所以15-x=12,即所求人数为12.8. (-∞,-4)∪(42,+∞)解析:两集合分别表示半圆和直线,画图利用几何性质可得答案.9. 解:(1) 2-x+3x+1≥02x+2-(x+3)x+1≥0x-1x+1≥0(x-1)(x+1)≥0且x≠-1x≥1或x<-1.∴集合A={x|x≥1或x<-1}.(2) (x-a-1)(2a-x)>0(a<1)(x-a-1)(x-2a)<0.∵a<1,∴2a<a+1.∴2a<x<a +1.∴不等式的解为2a<x<a+1.∴集合B={x|2a<x<a+1}.∵B A,∴2a≥1或a +1≤-1,∴ a≥12或a≤-2.又a<1,则实数a的取值范围是(-∞,-2]∪⎣⎡⎭⎫12,1.10. 解:若命题p为真,则⎩⎪⎨⎪⎧m2-4>0,-m<0m>2.若命题q为真,Δ=16(m-2)2-16<0,1<m<3.p或q为真,p且q为假,所以若命题p为真,命题q为假,则m≥3;若命题p 为假,命题q为真,则1<m≤2,综上,则实数m的取值范围是{m|1<m≤2或m≥3}.第2讲函数、图象及性质1. f(x)=(x-2)2解析:函数满足f(x)=f(x+2),函数周期为2.则x∈[2,3],x-2∈[0,1],f(x)=f(x -2)=(x -2)2.2. (0,1] 解析:y =x x -m =1+m x -m,由反比例函数性质可得到0<m ≤1;也可以用导数求得.3. 12 解析:f(-x)=12-x -1+a =2x 1-2x+a ,f(-x)=-f(x) 2x 1-2x +a =-⎝⎛⎭⎫12x -1+a 2a =11-2x -2x 1-2x=1,故a =12;也可用特殊值代入,但要检验.4. 1<a <2 解析:函数为奇函数,在(-1,1)上单调递减,f(1-a)+f(1-a 2)>0,得f(1-a)>f(a 2-1).∴ ⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<11-a <a 2-1,1<a < 2.5. [3,+∞) 解析:⎩⎪⎨⎪⎧|x -2|-1≥0,x -1>0,x -1≠1⎩⎪⎨⎪⎧x -2≥1或x -2≤-1,x >1,x ≠2x ≥3.6. 2 解析:函数满足f(x +2)=1f (x ),故f(x +4)=1f (x +2)=f(x),函数周期为4,f(2 012)=f(0),又f(2)=1f (0),∴ f(0)=2.7. 3 解析:画图可知a +(-1)2=1,a =3,也可利用f(0)=f(2)求得,但要检验.8. 1 解析:由y =|x 2-2x -t|得y =|(x -1)2-1-t|,函数最大值只能在y(0),y(1),y(3)中取得,讨论可得只有t =1时成立.9. 解:(1) ∵ f(a +2)=18,f(x)=3x ,∴ 3a +2=183a =2, ∴ g(x)=(3a )x -4x =2x -4x ,x ∈[-1,1].(2) g(x)=-(2x )2+2x =-⎝⎛⎭⎫2x -122+14,当x ∈[-1,1]时,2x ∈⎣⎡⎦⎤12,2,令t =2x ,∴ y =-t 2+t =-⎝⎛⎭⎫t -122+14,由二次函数单调性知当t ∈⎣⎡⎦⎤12,2时y 是减函数,又t =2x 在[-1,1]上是增函数,∴ 函数g(x)在[-1,1]上是减函数.(也可用导数的方法证明)(3) 由(2)知t =2x,2x ∈⎣⎡⎦⎤12,2,则方程g(x)=m 有解m =2x -4x在[-1,1]内有解m =t -t 2=-⎝⎛⎭⎫t -122+14,t ∈⎣⎡⎦⎤12,2, ∴ m 的取值范围是⎣⎡⎦⎤-2,14. 10. (1) 证明:取x =y =0,f(0)=f(0)+f(0),∴ f(0)=0,取y =-x ,则f(0)=f(x)+f(-x),∴ f(-x)=-f(x),故f(x)是奇函数.(2)解: 任取x 2>x 1,则x 2-x 1>0,∴ f(x 2-x 1)<0,又f(x 2-x 1)=f(x 2)+f(-x 1)=f(x 2)-f(x 1)<0,∴ f(x 2)<f(x 1),f(x)在[-3,3]上单调递减,f(-3)=-f(3)=-3f(1)=6,∴ f(x)在[-3,3]上的最大值f(-3)=6,最小值f(3)=-6.第3讲 基本初等函数1. 2 解析:lg 22+lg2lg5+lg50=lg2(lg2+lg5)+lg5+lg10=lg2lg(2·5)+lg5+1=2.2. a ∈(1,2) 解析:y =log a (2-ax)是[0,1]上关于x 的减函数,∴ ⎩⎪⎨⎪⎧a >1,2-a >01<a <2.3. [-3,1] 解析:2x 2+2x -4≤122x 2+2x -4≤2-1x 2+2x -4≤-1x 2+2x -3≤0-3≤x ≤-1.4. (2,2)5. a ≥2 解析: 二次函数f(x)=-x 2+2ax -1+a 2开口向下,对称轴x =-2a-2=a ,则a ≥2.6. ⎣⎡⎦⎤1,3127 解析:f(x)为偶函数,则b =0,又a -1+2a =0,∴ a =13,f(x)=13x 2+1在⎣⎡⎦⎤-23,23上的值域为⎣⎡⎦⎤1,3127.7. f(-25)<f(80)<f(11) 解析:∵ f(x -4)=-f(x),∴ f(x -4)=f(x +4),∴ 函数周期T =8.∵ f(x)为奇函数,在区间[0,2]上是增函数,∴ f(x)在[-2,2]上是增函数.则f(-25)=f(-1),f(11)=f(3)=-f(-1)=f(1),f(80)=f(0).∵ f(-1)<f(0)<f(1),∴ f(-25)<f(80)<f(11).8. 4 解析:函数图象恒过定点(1,1),从而m +n =1,又mn >0,∴ 1m +1n =m +n m +m +nn=2+n m +m n ≥4,当且仅当m =n 时取等号,1m +1n的最小值为4.9. 解:f(x)=12p x 2-x +3=12p (x -p)2+3-p 2.① p ≤-1时,f(x)在[-1,2]上递减,M =f(-1)=12p +4,m =f(2)=2p +1,由2M +m =3,得p =-12(舍).② -1<p <0,M =f(p)=3-p 2,m =f(2)=2p +1,由2M +m =3,得p =2-6,p =2+6(舍).③ 0<p <12,M =f(2),m =f(p),由2M +m =3,得p =2±23(舍).④ 12≤p ≤2,M =f(-1),m =f(p)由2M +m =3,得p =8±66(舍). ⑤ p >2,M =f(-1),m =f(2)由2M +m =3,得p =-12(舍).综上,当p =2-6时,2M +m =3成立.10. 解:(1) 设P(x 0,y 0)是y =f(x)图象上的点,Q(x ,y)是y =g(x)图象上的点,则⎩⎪⎨⎪⎧ x =x 0-2a ,y =-y 0.∴ ⎩⎪⎨⎪⎧x 0=x +2a ,y 0=-y.又y 0=log a (x 0-3a),∴ -y =log a (x +2a -3a ),∴ y =log a1x -a (x >a),即y =g(x)=log a 1x -a(x >a). (2) ∵ ⎩⎪⎨⎪⎧x -3a >0,x -a >0,∴ x >3a ,∵ f(x)与g(x)在x ∈[a +2,a +3]上有意义,∴ 3a <a +2,0<a <1,∵ |f(x)-g(x)|≤1恒成立,∴ |log a (x -3a)(x -a)|≤1恒成立.∴⎩⎪⎨⎪⎧-1≤log a [(x -2a )2-a 2]≤1,0<a <1a ≤(x -2a)2-a 2≤1a.对x ∈[a +2,a +3]时恒成立,令h(x)=(x -2a)2-a 2,其对称轴x =2a,2a <2,而2<a +2,∴ 当x ∈[a +2,a +3]时,h(x)min =h(a +2),h(x)max =h(a +3).∴ ⎩⎪⎨⎪⎧a ≤h (x )min ,1a ≥h (x )max⎩⎪⎨⎪⎧a ≤4-4a ,1a ≥9-6a0<a ≤9-5712.第4讲 函数的实际应用1. log 32 解析:本题主要考查分段函数和简单的已知函数值求x 的值.由⎩⎪⎨⎪⎧x ≤1,3x=2x =log 32或⎩⎪⎨⎪⎧x >1,-x =2无解,故应填log 32.2. 20% 解析:设该产品初始成本为a ,每年平均降低百分比为p ,则a(1-p)2=0.64a ,∴ p =0.2.3. m ∈(1,2) 解析:令f(x)=x 2-2mx +m 2-1,则⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)<0,f (3)>0.解得1<m <2.4. a >1 解析:设函数y =a x (a >0,且a ≠1)和函数y =x +a ,则函数f(x)=a x -x -a(a>0且a ≠1)有两个零点, 就是函数y =a x (a >0且a ≠1)与函数y =x +a 有两个交点,由图象可知当0<a <1时两函数只有一个交点,不符合要求,当a >1时,因为函数y =a x (a >1)的图象过点(0,1),而直线y =x +a 所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.5. 14 解析:设每个销售定价为x 元,此时销售量为100-10(x -10),则利润y =(x -8)[100-10(x -10)]=10(x -8)(20-x)≤10⎝⎛⎭⎫x -8+20-x 22=360,当且仅当x =14时取等号.6. ⎝⎛⎭⎫-1,-13 解析:由题意得f(1)·f(-1)<0,即(3a +1)(a +1)<0,-1<a <-13. 7. 6 解析:⎩⎨⎧-a +22=1,a +b2=1b =6.8. ①③④ 解析:函数f(x)=-|x|x 2+bx 2+c 为偶函数,当x ≥0时,f(x)=-x 3+bx 2+c ,b <0,∴ f ′(x)=-3x ⎝⎛⎭⎫x -2b3≤0对x ∈[0,+∞)恒成立,∴ x =0时,f(x)在R 上有最大值,f(0)=c ;由于f(x)为偶函数,②不正确;取b =3,c =-2③正确;若b <0,取a =0,若b ≥0,取a =2b3,故一定存在实数a ,使f(x)在[a ,+∞)上单调减.9. (1)证明:由条件知f(2)=4a +2b +c ≥2恒成立.又∵ x =2时,f(2)=4a +2b +c ≤18(2+2)2=2恒成立,∴ f(2)=2.(2)解: ∵ ⎩⎪⎨⎪⎧4a +2b +c =2,4a -2b +c =0,∴ 4a +c =2b =1,∴ b =12,c =1-4a.又f(x)≥x 恒成立,即ax 2+(b -1)x +c ≥0恒成立. ∴ a >0,Δ=⎝⎛⎭⎫12-12-4a(1-4a)≤0,∴(8a -1)2≤0. 解得:a =18,b =12,c =12,∴ f(x)=18x 2+12x +12.(3)解:(解法1) 由分析条件知道,只要f(x)图象(在y 轴右侧部分,包含与y 轴交点)总在直线y =m 2x +14上方即可,也就是直线的斜率m2小于直线与抛物线相切时的斜率,∴⎩⎨⎧y =18x 2+12x +12,y =m 2x +14,解得 m ∈⎝⎛⎭⎫-∞,1+22. (解法2)g(x)=18x 2+⎝⎛⎭⎫12-m 2x +12>14在x ∈[0,+∞)必须恒成立, 即x 2+4(1-m)x +2>0在x ∈[0,+∞)恒成立. ① Δ<0,即[4(1-m)]2-8<0,解得:1-22<m <1+22; ② ⎩⎪⎨⎪⎧Δ≥0,-2(1-m )≤0,f (0)=2>0,解得:m ≤1-22. 综上,m ∈⎝⎛⎭⎫-∞,1+22. 10. (1)证明: 当x ≥7时,f(x +1)-f(x)=0.4(x -3)(x -4),而当x ≥7时,函数y =(x -3)(x -4)单调递增,且(x -3)(x -4)>0, 故f(x +1)-f(x)单调递减,∴ 当x ≥7时,掌握程度的增长量f(x +1)-f(x)总是下降.(2)解: 由题意可知0.1+15ln a a -6=0.85,整理得aa -6=e 0.05,解得a =e 0.05e 0.05-1·6=20.50×6=123.0,123.0∈(121,127],由此可知,该学科是乙学科.第5讲 不等式及其应用1. (-∞,-2)∪(3,+∞)2. (-1,2) 解析:由已知得a <0,b =-a ,ax -b x -2>0即为ax +a x -2>0,得x +1x -2<0,得-1<x <2.3. -6 解析:作出可行域,求出凸点坐标分别为(3,-3),(4,-5),(5,-1),(6,-3),则最优解为(4,-5);或让直线t =x +2y 平行移动,当直线过点(4,-5)时,目标函数取最小值.4.116 解析:∵ x ,y ∈R +,∴ 1=x +4y ≥2x·4y ,∴ xy ≤116,当且仅当x =4y ,即x =12,y =18时取等号. 5. 9 解析:∵ x >0,y >0,1x +4y =1,∴ x +y =(x +y)⎝⎛⎭⎫1x +4y =5+y x +4xy ≥5+2y x ·4x y=9,当且仅当y x =4xy,即x =3,y =6时取等号.6. m ≤-5 解析:x 2+mx +4<0,x ∈(1,2)可得m <-⎝⎛⎭⎫x +4x ,而函数y =-⎝⎛⎭⎫x +4x 在(1,2)上单调增,∴ m ≤-5.7. ⎣⎡⎦⎤95,6 解析:变量x ,y 满足约束条件构成的区域是以(1,3),(1,6),⎝⎛⎭⎫52,92三点为顶点的三角形区域(含边界),y x 表示区域内的点与原点连线的斜率,∴ y x ∈⎣⎡⎦⎤95,6 8. x ≥1 解析:n n +1=1-1n +1<1,当n 无限变大时,nn +1的值趋近于1,不等式要恒成立,显然x >12,2x -1|x|>n n +1等价于2x -1x ≥1且x >12,故x ≥1.9. 解:(1) y =2 150+10×55+⎝⎛⎭⎫a 6x 2+13x (55-1)x =2 700x +9ax +18.(0<x ≤20,12≤a ≤1).(2) 当34≤a ≤1时,y ≥22 700x·9ax +18=1803a +18. 当且仅当2 700x =9ax ,即x =300a时取等号. 即当x =300a时,y min =1803a +18; 当12≤a <34时,y ′=-2 700x 2+9a <0,故y =f(x)在(0,20]上是减函数, 故当x =20时,y min =2 70020+180a +18=153+180a. 答:若12≤a <34,则当车队速度为20 m/s 时,通过隧道所用时间最少;若34≤a ≤1时,则当车队速度为300am/s 时,通过隧道所用时间最少.10. 解:(1) ⎩⎪⎨⎪⎧f (0)=0,f (-2)=0⎩⎪⎨⎪⎧b =6,c =0,∴ f(x)=3x 2+6x ; (2) g(x)=3⎣⎡⎦⎤x +⎝⎛⎭⎫1+m 62-2-3×⎝⎛⎭⎫1+m 62,-⎝⎛⎭⎫1+m 6≤2,m ≥-18; (3) f(x)+n ≤3即n ≤-3x 2-6x +3,而x ∈[-2,2]时,函数y =-3x 2-6x +3的最小值为-21,∴ n ≤-21,实数n 的最大值为-21.第6讲 导数及其应用1. f(x)=x 2+2x +12. 98 解析:f ′(2)=4.5-4=-98,切线方程为y =-98x +92,∴ f(2)=94. 3. y =x -1 解析:y ′=3x 2-2,k =y ′x =1=1,则切线方程y -0=1·(x -1), ∴ x -y -1=0.4. ⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 解析:y ′=3x 2-3≥-3,∴ tanα≥-3,0≤α<π且α≠π2,结合正切函数图象可得答案.5. a ≥-4 解析:x ∈(0,+∞),f ′(x)=1x +4x +a ≥0恒成立,由基本不等式1x +4x+a ≥4+a ,当且仅当x =12时取等号,∴ a +4≥0,∴ a ≥-4.6. 32 解析:f(x)=x 3-12x +8,f ′(x)=3(x -2)(x +2),则f(x)的单调增区间是[-3,-2]∪[2,3],减区间是[-2,2],f(-3)=17,f(2)=-8,f(3)=-1,f(-2)=24,∴ M =24,m =-8.7. (-2,2) 解析:设f(x)=x 3-3x +a ,f ′(x)=3(x +1)(x -1),f(x)在x =-1取极大值,在x =1时取极小值,⎩⎪⎨⎪⎧f (-1)>0,f (1)<0⎩⎪⎨⎪⎧a +2>0,a -2<0-2<a <2.8. 4 解析:若x =0,则不论a 取何值,f(x)≥0显然成立;当x >0即x ∈(0,1]时,f(x)=ax 3-3x +1≥0可化为,a ≥3x 2-1x3,设g(x)=3x 2-1x 3,则g ′(x)=3(1-2x )x 4,所以g(x)在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎭⎫12,1上单调递减,因此g(x)max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x <0即x ∈[-1,0)时,f(x)=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g(x)=3x 2-1x 3,则g ′(x)=3(1-2x )x 4>0,显然g(x)在区间[-1,0)上单调递增,因此g(x)min =g(-1)=4,从而a ≤4,综上,a =4.9. 解:(1) 因为函数f(x),g(x)的图象都过点(t,0),所以f(t)=0,即t 3+at =0.因为t ≠0,所以a =-t 2.g(t)=0,即bt 2+c =0,所以c =ab.又因为f(x),g(x)在点(t,0)处有相同的切线,所以f ′(t)=g ′(t)而f ′(x)=3x 2+a ,g ′(x)=2bx ,所以3t 2+a =2bt.将a =-t 2代入上式得b =t.因此c =ab =-t 3.故a =-t 2,b =t ,c =-t 3.(2) y =f(x)-g(x)=x 3-t 2x -tx 2+t 3,y ′=3x 2-2tx -t 2=(3x +t)(x -t),因为函数y =f(x)-g(x)在(-1,3)上单调递减,所以⎩⎪⎨⎪⎧ y ′x =-1≤0,y ′x =3≤0.即⎩⎪⎨⎪⎧(-3+t )(-1-t )≤0,(9+t )(3-t )≤0,解得t ≤-9或t ≥3.所以t 的取值范围为(-∞,-9]∪[3,+∞).10. 解:(1) ∵ f(x)=x 3+ax ,g(x)=x 2+bx ,∴ f ′(x)=3x 2+a ,g ′(x)=2x +b.x ∈[-1,+∞),f ′(x)g ′(x)≥0,即x ∈[-1,+∞),(3x 2+a)(2x +b)≥0,∵ a >0,∴3x 2+a >0,∴ x ∈[-1,+∞),2x +b ≥0,即∴ x ∈[-1,+∞),b ≥-2x ,∴ b ≥2,则所求实数b 的取值范围是[2,+∞).(2) b 的最小值为2,h(x)=x 3-x 2+ax -2x ,h ′(x)=3x 2-2x +a -2=3⎝⎛⎭⎫x -132+a -73.当a ≥73时,h ′(x)=3x 2-2x +a -2≥0对x ∈[-1,+∞)恒成立,h(x)在[-1,+∞)上单调增,当0<a <73时,由h ′(x)=3x 2-2x +a -2=0得,x =1±7-3a 3>-1,∴h(x)在⎣⎢⎡⎦⎥⎤-1,1-7-3a 3上单调增,在⎣⎢⎡⎦⎥⎤1-7-3a 3,1+7-3a 3上单调减,在⎣⎢⎡⎭⎪⎫1+7-3a 3,+∞上单调增.滚动练习(一)1.24 解析:f(x)=x α,f(4)=12,α=-12,f(x)=x -12,f(8)=24. 2. x ∈R ,都有x 2+2x +5≠03. (-∞,0] 解析:x <-1时,不等式可化为x +(x +1)(-x -1+1)≤1,-x 2≤1,∴ x <-1;x ≥-1时,不等式可化为x +x +1≤1,x ≤0,∴ -1≤x ≤0,综上x ≤0.4. 12 解析:考虑x >0时,f(x)=x x +1=1x +1x ≤12,当且仅当x =1时取等号. 5. [-4,0)∪(0,1) 解析:⎩⎪⎨⎪⎧x 2-3x +2≥0,-x 2-3x +4≥0,x ≠0.上面式中等号不能同时成立.6. 2 解析:在同一个直角坐标系中作出函数y =⎝⎛⎭⎫12x,y =3-x 2的图象,两个函数图象有两个交点.7. (-∞,-1)∪(3,+∞) 解析:x 2+ax >4x +a -3可化为(x -1)a +x 2-4x +3>0对a ∈[0,4]恒成立,设f(a)=(x -1)a +x 2-4x +3,∴ ⎩⎪⎨⎪⎧f (0)>0,f (4)>0.解得x <-1或x >3.8. -1或-2564 解析: 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由直线y =0与抛物线y =ax 2+154x -9相切可得a =-2564,当x 0=32时,由直线y =274x -274与曲线y =ax 2+154x -9相切可得a =-1.9. 2 008 解析:令3x =t ,则x =log 3t ,则f(2)+f(4)+f(8)+…+f(28)=4log 23(log 321+2+…+8)+233×8=2 008.10. a ≥2 解析:由log a x +log a y =3,得y =a 3x ,函数y =a 3x 在x ∈[a,2a]上单调递减,得其值域为⎣⎡⎦⎤a 32a ,a 3a ,由题知⎣⎡⎦⎤a 32a ,a3a [a ,a 2],∴ a ≥2. 11. 解:p 为真,则|x -4|≤6的解集为A =[-2,10],q 为真,x 2-2x +1-m 2≤0(m >0)的解集为B =[1-m,1+m],∵ p 是q 的必要而不充分条件,∴ p 是q 的充分而不必要条件,∴ A =[-2,10]B =[1-m,1+m],∴⎩⎪⎨⎪⎧1+m ≥10,1-m ≤-2.两式中等号不能同时成立,又m >0,∴ m ≥9. 12. 解:(1) 令g(x)=f(x)-x =x 2+(a -1)x +a ,则由题意可得⎩⎪⎨⎪⎧Δ>0,<1-a 2<1,g (1)>0,g (0)>0⎩⎪⎨⎪⎧a >0,-1<a <1,a <3-22或a >3+220<a <3-2 2.故所求实数a 的取值范围是(0,3-22).(2) f(0)·f(1)-f(0)=2a 2,令h(a)=2a 2.∵ 当a >0时h(a)单调递增,∴ 当0<a <3-22时,0<h(a)<h(3-22)=2(3-22)2=2(17-122)=217+122<116,即f(0)·f(1)-f(0)<116.13. 解:(1) ① 当0<t ≤10时,V(t)=(-t 2+14t -40)e 14t +50<50,化简得t 2-14t +40>0,解得t <4或t >10,又0<t ≤10,故0<t <4.② 当10<t ≤12时,V(t)=4(t -10)(3t -41)+50<50,化简得(t -10)(3t -41)<0,解得10<t <413,又10<t ≤12,故10<t ≤12.综合得0<t <4或10<t ≤12;故知枯水期为1月,2月,3月,11月,12月共5个月.(2)由(1)知:V(t)的最大值只能在(4,10)内达到.由V ′(t)=e 14t ⎝⎛⎭⎫-14t 2+32t +4=-14e 14t(t +2)(t -8),令V ′(t)=0,解得t =8(t =-2舍去). 当t 变化时,V ′(t) 与V (t)的变化情况如下表:t (4,8) 8 (8,10) V ′(t) + 0 - V(t)极大值由上表,V(t)在t =8时取得最大值V(8)=8e +50=108.32(亿立方米).故知一年内该水库的最大蓄水量是108.32亿立方米.14. 解:(1) 当x ∈[-2,-1)时,f(x)=x +1x 在[-2,-1)上是增函数(用导数判断),此时f(x)∈⎣⎡⎭⎫-52,-2,当x ∈⎣⎡⎭⎫-1,12时,f(x)=-2,当x ∈⎣⎡⎦⎤12,2时,f(x)=x -1x 在⎣⎡⎦⎤12,2上是增函数,此时f(x)∈⎣⎡⎦⎤-32,32,∴ f(x)的值域为⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32. (2) ① 若a =0,g(x)=-2,对于任意x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32,不存在x 0∈[-2,2]使得g(x 0)=f(x 1)都成立.② 若当a >0时,g(x)=ax -2在[-2,2]是增函数,g(x)∈[-2a -2,2a -2],任给x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32,若存在x 0∈[-2,2],使得g(x 0)=f(x 1)成立,则⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32[-2a -2,2a -2],∴有⎩⎨⎧-2a -2≤-52,2a -2≥32,解得 a ≥74.③ 若a <0,g(x)=ax -2在[-2,2]上是减函数,g(x)∈[2a -2, -2a -2],任给x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32, 若存在x 0∈[-2,2]使得g(x 0)=f(x 1)成立, 则⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32[2a -2,-2a -2]⎩⎨⎧2a -2≤-52,-2a -2≥32,解得 a ≤-74.综上,实数a 的取值范围是⎝⎛⎦⎤-∞,-74∪⎣⎡⎭⎫74,+∞.专题二 三角函数与平面向量 第7讲 三角函数的图象与性质1. y =sin ⎝⎛⎭⎫2x +π3,x ∈R 2. 103. 1 解析:f(x)=f ⎝⎛⎭⎫π4cosx +sinx ,f ′(x)=-f ′⎝⎛⎭⎫π4sinx +cosx ,f ′⎝⎛⎭⎫π4=-22f ′⎝⎛⎭⎫π4+22,f ′⎝⎛⎭⎫π4=2-1,f(x)=(2-1)cosx +sinx ,f ⎝⎛⎭⎫π4=(2-1)×22+22=1. 4. 6 解析:平移后f(x)=cos ⎝⎛⎭⎫ωx -ωπ3,与原来函数图象重合,则ωπ3=2kπ,k ∈Z ,∵ ω>0,∴ ωmin =6.5. ⎣⎡⎦⎤-54,1 解析:a =cos 2x -cosx -1=⎝⎛⎭⎫cosx -122-54,转化为函数的值域问题. 6. 2+22 解析:f(x)=2sin πx4,周期为8,f(1)+f(2)+f(3)+…+f(2 012)=f(1)+f(2)+f(3)+f(4)=2+2 2.7. 2 解析:T =2ππ2=4,对任意x ∈R ,都有f(x 1)≤f(x)≤f(x 2)成立,f(x)min =f(x 1),f(x)max=f(x 2),于是|x 1-x 2|min =T2=2.8. 23 解析:考查三角函数的图象、数形结合思想.线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx =5tanx ,解得sinx =23.线段P 1P 2的长为23.9. 解:f(x)=-2asin ⎝⎛⎭⎫2x +π6+2a +b ,sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, 当a >0时,-2a +2a +b =-5,-2a ×⎝⎛⎭⎫-12+2a +b =1,∴ a =2,b =-5; 当a <0时,-2a +2a +b =1,-2a ×⎝⎛⎭⎫-12+2a +b =-5,∴ a =-2,b =1; a =0,不存在.综上,a =2,b =-5或a =-2,b =1.10. 解:(1) 由最低点为M ⎝⎛⎭⎫2π3,-2得A =2,由T =π得ω=2πT =2ππ=2, 由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫4π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1, 所以4π3+φ=2kπ-π2,故φ=2kπ-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,所以φ=π6,所以f(x)=2sin ⎝⎛⎭⎫2x +π6. (2) 因为x ∈⎣⎡⎦⎤0,π12,2x +π6∈⎣⎡⎦⎤π6,π3,所以当2x +π6=π6时,即x =0时,f(x)取得最小值1;当2x +π6=π3,即x =π12时,f(x)取得最大值 3.第8讲 三角变换与解三角形1. 3 解析:∵ sin 2α+cos2α=14,∴ sin 2α+1-2sin 2α=14,∴ sin 2α=34,∵ α∈⎝⎛⎭⎫0,π2,∴ s inα=32,∴ α=π3,tanα= 3. 2. 523 解析:由正弦定理a sinA =b sinB ,得 a =bsinAsinB =5·1322=523.3. 5 解析:12arcsinB =2,c =42,由余弦定理可求得b.4. 1 解析:由sin 2α+sinαcosα-2cos 2α=0,得tan 2α+tanα-2=0,tanα=1或tanα=-2(舍),sin2α=2sinαcosα=2tanα1+tan 2α=21+1=1. 5. 4 解析:由余弦定理得b a +ab =6cosC ,a 2+b 2ab =6×a 2+b 2-c 22ab ,a 2+b 2=32c 2,tanC tanA +tanC tanB =sinC cosC ⎝⎛⎭⎫cosA sinA +cosB sinB =1cosC ⎝⎛⎭⎫sin 2C sinAsinB =2ab a 2+b 2-c 2⎝⎛⎭⎫c 2ab =2c 2a 2+b 2-c 2,将a2+b 2=32c 2代入上式即可.注:(1) 在用正、余弦定理处理三角形中的问题时,要么把所有关系转化为边的关系,要么把所有的关系都转化为角的关系;(2) 本题也可以转化为角的关系来处理.6.724 解析:tanα=-34,tanβ=-12,tan2β=-43. 7. -17 解析:由余弦定理得c =a 2+b 2-2abcosC =3,故最大角为角B.8.817 解析:12bcsinA =-(b 2+c 2-a 2)+2bc ,12bcsinA =-2bccosA +2bc , 2-12sinA =2cosA ,⎝⎛⎭⎫2-12sinA 2=(2cosA)2=4(1-sin 2A),sinA =817. 9. 解:(1) ∵ c 2=a 2+b 2-2abcosC =1+4-4×14=4,∴ c =2,∴ △ABC 的周长为a +b +c =1+2+2=5. (2) ∵ cosC =14,∴ sinC =1-cos 2C =1-⎝⎛⎭⎫142=154, ∴ sinA =asinC c =1542=158.∵ a <c ,∴ A <C ,故A 为锐角,∴ cosA =1-sin 2A =1-⎝⎛⎭⎫1582=78,∴ cos(A -C)=cosAcosC +sinAsinC =78×14+158×154=1116.10. 解:(1) sin 2B +C 2+cos2A =1-cos (B +C )2+cos2A =1+cosA 2+2cos 2A -1=5950.(2) ∵ cosA =45,∴ sinA =35,∴ S △ABC =12bcsinA =310bc ,∵ a =2,由余弦定理得:a 2=b 2+c 2-2bccosA =4,∴ 85bc +4=b 2+c 2≥2bc ,bc ≤10,∴ S △ABC =12×bcsinA =310bc ≤3,当且仅当b =c 时,取得最大值,所以当b =c 时,△ABC 的面积S 的最大值为3.第9讲 平面向量及其应用1. ⎝⎛⎭⎫45,-35或⎝⎛⎭⎫-45,352.10 解析:|α|=1,|β|=2,α⊥(α-2β),得α·(α-2β)=0,α·β=12,|2α+β|=4α2+4α·β+β2=10.3. π3 解析:∵ (a +2b )·(a -b )=-6,∴ |a|2-2|b|2+a·b =-6,∴ a·b =1,cos 〈a ,b 〉=a·b |a|·|b|=12. 4. 4 解析:设BC 边中点为D ,则AO →=23AD →,AD →=12(AB →+AC →),∴ AO →·AC →=13(AB →+AC →)·AC →=13(3×2×cos60°+32)=4.5. (-3,1)或(-1,1) 解析:设a =(x ,y),∴ a +b =(x +2,y -1),∴ ⎩⎪⎨⎪⎧ y -1=0,(x +2)2+(y -1)2=1,∴ ⎩⎪⎨⎪⎧ x =-1,y =1或⎩⎪⎨⎪⎧x =-3,y =1. 6. -14 解析:AD →·BE →=12(AB →+AC →)·⎝⎛⎭⎫23AC →-AB → =12⎝⎛⎭⎫-1+23-13×12=-14. 7. 1-2 解析:设a +b =2d ,则d 为单位向量. (a -c )·(b -c )=1-(a +b )·c =1-2d·c =1-2cos 〈d ,c 〉.8. 2 解析:取O 为坐标原点,OA 所在直线为x 轴,建立直角坐标系,则A(1,0),B ⎝⎛⎭⎫-12,32,设∠COA =θ,则θ∈⎣⎡⎦⎤0,2π3,C(cosθ,sinθ),∴ (cosθ,sinθ)=x(1,0)+y ⎝⎛⎭⎫-12,32,x +y =3sinθ+cosθ=2sin ⎝⎛⎭⎫θ+π6,θ=π3时取最大值2. 9. 解:(1) 由m·n =0得-cosA +3sinA =0,tanA =33,A ∈(0,π), ∴ A =π6.(2)1+sin2B cos 2B -sin 2B =-3,∴ sinB +cosBcosB -sinB=-3,∴ tanB =2,∴ tanC =tan ⎝⎛⎭⎫π-π6-B =-tan π6+tanB 1-tan π6tanB=8+5 3. 10. 解:(1) 在Rt △ADC 中,AD =8,CD =6, 则AC =10,cos ∠CAD =45,sin ∠CAD =35.又∵ AB →·AC →=50,AB =13,∴ cos ∠BAC =AB →·AC →|AB →||AC →|=513.∵ 0<∠BAC <π,∴ sin ∠BAC =1213.∴ sin ∠BAD =sin(∠BAC +∠CAD)=6365.(2) S △BAD =12AB·AD·sin ∠BAD =2525,S △BAC =12AB·AC·sin ∠BAC =60,S △ACD =24,则S △BCD =S △ABC +S △ACD -S △BAD =1685,∴ S △ABD S △BCD =32.滚动练习(二)1. {-1,0,1} 解析:M ={-2,-1,0,1},N ={-1,0,1,2,3},则M ∩N ={-1,0,1}.2. 0 解析:f(1)=-f(-1)=-(-3+2+1)=0.3. 2 解析:cos10°+3sin10°1-cos80°=2sin40°2sin 240°= 2.4. (-3,2) 解析:6-x -x 2>0,∴ x 2+x -6<0,∴ -3<x <2.5. 2 解析:f ′(x)=3x 2-6x =3x(x -2),则函数的增区间是(-∞,0)∪(2,+∞),减区间是(0,2),所以函数在x =2处取极小值.6. 1 解析:a -2b =(3,3)与c 共线,则3·3=3k ,∴ k =1.7. 6 解析:A*B ={0,2,4}.8. 充要 解析:f(x)=x 2+mx +1的图象关于直线x =1对称-m2=1m =-2.9. (-∞,2ln2-2] 解析:f ′(x)=e x -2,x ∈(-∞,ln2),f ′(x)<0,x ∈(ln2,+∞),f ′(x)>0,x =ln2时,f(x)取极小值即为最小值2-2ln2+a ≤0,a ≤2ln2-2;本题也可转化为a =-e x +2x ,求函数g(x)=-e x +2x 值域即可.10. ②④ 解析:函数为偶函数,在⎣⎡⎦⎤0,π2上单调增,画图即可. 11. 点拨:本题考查函数的概念和性质,对分段函数在讨论其性质时要整体考虑.对二次函数要能用数形结合的思想来研究它的单调性与最值等问题.解:(1) 函数f(x)为奇函数,f(-x)+f(x)=0对x ∈R 恒成立,m =2;(2) 由f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x >00,x =0,x 2+2x ,x <0,知f(x)在[-1,1]上单调递增,∴ ⎩⎪⎨⎪⎧a -2>-1,a -2≤1,得1<a ≤3,即实数a 的取值范围是(1,3]. 12. 点拨:本小题主要考察综合运用三角函数公式、三角函数的性质进行运算、变形、转换和求解的能力.解:(1)∵ f(x)=sin(π-ωx)cosωx +cos 2ωx ,∴ f(x)=sinωxcosωx +1+cos2ωx 2=12sin2ωx +12cos2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12,由ω>0得2π2ω=π,∴ ω=1. (2) 由(1)知f(x)=22sin ⎝⎛⎭⎫2x +π4+12, ∴ g(x)=f(2x)=22sin ⎝⎛⎭⎫4x +π4+12,当0≤x ≤π16时,π4≤4x +π4≤π2,∴ 22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g(x)≤1+22,故x =0时,g(x)在此区间内取最小值为1.13. 点拨:本题考查同角三角函数的基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.解:由cosA =1213,得sinA =1-⎝⎛⎭⎫12132=513.又12bcsinA =30,∴ bc =156. (1) AB →·AC →=bccosA =156×1213=144.(2) a 2=b 2+c 2-2bccosA =(c -b)2+2bc(1-cosA)=1+2×156×⎝⎛⎭⎫1-1213=25,∴ a =5. 14. 点拨:应用题是高考必考题型,解决应用题的关键要学会审题,根据条件,选择合适的变量,建立数学模型,选择适当的方法解题,结论要符合题意.解:∵ △ABC 是直角三角形,AB =2,BC =1,∴ ∠A =30°.设∠FEC =α,则α∈⎝⎛⎭⎫0,π2,∠EFC =90°-α,∠AFD =180°-60°-(90°-α)=30°+α,∴ ∠ADF =180°-30°-(30°+α)=120°-α,再设CF =x ,则AF =3-x ,在△ADF 中有DFsin30°=3-x sin (120°-α),由于x =EF·sinα=DF·sinα, ∴DF sin30°=3-DF·sinαsin (120°-α),化简得DF =32sinα+3cosα≥37=217, ∴ △DEF 边长的最小值为217.专题三 数 列第10讲 等差数列与等比数列1. 13 解析:a 3=7,a 5=a 2+6,∴ 3d =6,∴ a 6=a 3+3d =13.2. 13 解析:6S 5-5S 3=5,∴ 6(5a 1+10d)-5(3a 1+3d)=5,得a 1+3d =13. 3. 20 解析:a n =41-2n ,a 20>0,a 21<0.4.152 解析:a 2=1,a n +2+a n +1=6a n ,∴ q 2+q =6(q >0),∴ q =2,则S 4=152. 5. 15 解析:S 4a 4=a 1(1-q 4)1-q a 1q 3=1-q 4(1-q )q 3=15.6. 4 解析:设公差为d ,则⎩⎨⎧4a 1+4×32d ≥10,5a 1+5×42d ≤15.即⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.又a 4=a 1+3d ,由线性规划可知a 1=1,d =1时,a 4取最大值4.7.212解析:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=33+2(1+2+…+(n -1))=n 2-n +33,a n n =n +33n -1,数列⎩⎨⎧⎭⎬⎫a n n 在1≤n ≤6,n ∈N *时单调减,在n ≥7,n ∈N *时单调增,∴ n =6时,a nn取最小值.8. 4 解析:⎩⎨⎧k (k +4)⎝⎛⎭⎫23k≥(k -1)(k +3)⎝⎛⎭⎫23k -1,k (k +4)⎝⎛⎭⎫23k≥(k +1)(k +5)⎝⎛⎭⎫23k +1,10≤k ≤1+10,k ∈N *,∴ k =4.9. 解:(1) 设公差为d ,则⎩⎪⎨⎪⎧(a 1+2d )(a 1+5d )=55,2a 1+7d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2.或⎩⎪⎨⎪⎧a 1=15,d =-2.(舍去) ∴ a n =2n -1(n ∈N *).(2) n =1时,a 1=b 12,a 1=1,∴ b 1=2,n ≥2时,a n -1=b 12+b 222+…+b n -12n -1,2=a n -a n -1=b n 2n (n ≥2),b n =2n +1(n ≥2),∴ b n =⎩⎪⎨⎪⎧2(n =1),2n +1(n ≥2,n ∈N *),S n =2n +2-6(n ∈N *). 10. (解法1)(1)证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n=q ,∴ a n +2=a n q 2(n ∈N *). (2)证明:∵ a n =a n -2q 2(n ≥3,n ∈N *),∴ a 2n -1=a 2n -3q 2=…=a 1q 2n -2,a 2n =a 2n -2q 2=…=a 2q 2n -2,∴ c n =a 2n -1+2a 2n =a 1q 2n -2+2a 2q 2n -2=(a 1+2a 2)q 2n -2=5q 2n -2. ∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n ,于是1a 1+1a 2+…+1a 2n =⎝⎛⎭⎫1a 1+1a 3+…+1a 2n -1+⎝⎛⎭⎫1a 2+1a 4+…+1a 2n =1a 1⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2+1a 2⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2. 当q =1时,1a 1+1a 2+…+1a 2n =32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32n.当q ≠1时,1a 1+1a 2+…+1a 2n =32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1-q -2n 1-q -2=32⎣⎢⎡⎦⎥⎤q 2n -1q 2n -2(q 2-1). 故1a 1+1a 2+…+1a 2n=⎩⎨⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n -1q 2n -2(q 2-1),q ≠1.(解法2)(1) 证明:同解法1(1).(2) 证明:c n +1c n =a 2n +1+2a 2n +2a 2n -1+2a 2n =q 2a 2n -1+2q 2a 2na 2n -1+2a 2n=q 2(n ∈N *),又c 1=a 1+2a 2=5,∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)的类似方法得a 2n -1+a 2n =(a 1+a 2)q 2n -2=3q 2n -2,1a 1+1a 2+…+1a 2n =a 1+a 2a 1a 2+a 3+a 4a 3a 4+…+a 2n -1+a 2n a 2n -1a 2n ,∵ a 2k -1+a 2k a 2k -1a 2k =3q 2k -22q 4k -4=32q -2k +2,k =1,2,…,n.∴1a 1+1a 2+…+1a 2k =32(1+q 2+…+q -2n +2).下同解法1.第11讲 数列求和及其综合应用1. 2n +1-n -2 解析:a n =2n -1,1+(1+2)+(1+2+4)+…+(1+2+…+2n -1)=(2+22+23+…+2n )-n =2(2n -1)-n =2n +1-n -22. 2+lnn 解析:累加可得.3. T 8T 4 T 12T 84. -p -q 解析:由求和公式知q =pa 1+p (p -1)2d ,p =qa 1+q (q -1)2d ,因为p ≠q ,两式相减得到-1=a 1+p +q -12d ,两边同时乘以p +q ,则-(p +q)=(p +q)a 1+(p +q )(p +q -1)2d ,即S p +q =-(p +q).5. 2n +1 解析:由条件得b n +1=a n +1+2a n +1-1=2a n +1+22a n +1-1=2a n +2a n -1=2b n 且b 1=4,所以数列{b n }是首项为4,公比为2的等比数列,则b n =4·2n -1=2n +1.6. 11 解析:(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则(a 21+a 22+…+a 250)+2(a 1+a 2+…+a 50)+50=107,∴ a 21+a 22+…+a 250=39,故a 1,a 2,…,a 50中数字0的个数为50-39=11.7. [24,36] 解析:a n =6n -(9+a),由题知5.5≤9+a6≤7.5,∴ 24≤a ≤36.8. 470 解析:由于⎩⎨⎧⎭⎬⎫cos 2nπ3-sin 2nπ3以3 为周期,故S 30=⎝⎛⎭⎫-12+222+32+⎝⎛⎭⎫-42+522+62+…+⎝⎛⎭⎫-282+2922+302 =∑k =110⎣⎡⎦⎤-(3k -2)2+(3k -1)22+(3k )2=∑k =110 ⎣⎡⎦⎤9k -52=9×10×112-25=470,分组求和是解决本题的关键.9. 解:(1) 由S n =(1+λ)-λa n S n -1=(1+λ)-λa n -1(n ≥2).相减得:a n =-λa n +λa n -1,∴ a n a n -1=λ1+λ(n ≥2),∴ 数列{a n }是等比数列.(2) f(λ)=λ1+λ,∴ b n =b n -11+b n -11b n =1b n -1+1,∴ ⎩⎨⎧⎭⎬⎫1b n 是首项为1b 1=2,公差为1的等差数列,∴ 1b n =2+(n -1)=n +1.∴ b n =1n +1.(n ∈N *) (3) λ=1时,a n =⎝⎛⎭⎫12n -1,∴ c n =a n⎝⎛⎭⎫1b n-1=⎝⎛⎭⎫12n -1n , ∴ T n =1+2⎝⎛⎭⎫12+3⎝⎛⎭⎫122+…+n ⎝⎛⎭⎫12n -1, ①12T n =⎝⎛⎭⎫12+2⎝⎛⎭⎫122+3⎝⎛⎭⎫123+…+n ⎝⎛⎭⎫12n , ② ①-②得:12T n =1+⎝⎛⎭⎫12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1-n ⎝⎛⎭⎫12n ∴ 12T n =1+⎝⎛⎭⎫12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1-n ⎝⎛⎭⎫12n = 2⎣⎡⎦⎤1-⎝⎛⎭⎫12n -n ⎝⎛⎭⎫12n , 所以:T n =4-⎝⎛⎭⎫12n -2-2n ⎝⎛⎭⎫12n =4-n +22n -1. 10. 解:(1) n =1时,由S 2=tS 1+a ,解得a 2=at ,当n ≥2时,S n =tS n -1+a ,所以S n +1-S n =t(S n -S n -1),即a n +1=a n t , 当n =1时,由S 2=tS 1+a 得a 2=ta 1,又因为a 1=a ≠0,综上,有a n +1a n=t(n ∈N *),所以{a n }是首项为a ,公比为t 的等比数列,所以a n =at n -1.(2) 当t =1时,S n =na ,b n =na +1,b n +1-b n =[(n +1)a +1]-[na +1]=a , 此时{b n }为等差数列;当a >0时,{b n }为单调递增数列,且对任意n ∈N *,a n >0恒成立,不合题意;当a <0时,{b n }为单调递减数列,由题意知b 4>0,b 6<0,且有⎩⎪⎨⎪⎧b 4≥|b 5|,-b 6≥|b 5|,即⎩⎪⎨⎪⎧|5a +1|≤4a +1,|5a +1|≤-6a -1,解得-29≤a ≤-211.综上,a 的取值范围是⎣⎡⎦⎤-29,-211. (3) 因为t ≠1,b n =1+a 1-t -at n 1-t ,所以c n =2+⎝⎛⎭⎫1+a 1-t n -a 1-t (t +t 2+…+t n)=2+⎝⎛⎭⎫1+a 1-t n -a (t -t n +1)(1-t )2=2-at (1-t )2+1-t +a 1-t ·n +at n +1(1-t )2,由题设知{c n }是等比数列,所以有⎩⎪⎨⎪⎧2-at (1-t )2=0,1-t +a 1-t =0,解得⎩⎪⎨⎪⎧a =1,t =2,即满足条件的数对是(1,2).(或通过{c n }的前3项成等比数列先求出数对(a ,t),再进行证明)滚动练习(三)1. {4,5} 解析:A ∪B ={1,2,3}.2. π4 解析:由正弦定理a sinA =c sinC ,∴ sinA =cosA ,∴ tanA =1,∵ 0<A <π, ∴ A =π4.3. 12 解析:由a 1+3a 8+a 15=60得5a 1+35d =60,a 8=12,2a 9-a 10=a 8=12.4. 12 解析:周期是4π,∴ ω=2π4π=12. 5. [0,4) 解析:mx 2+mx +1≠0对x ∈R 恒成立.当m =0时,成立;当m ≠0时,Δ=m 2-4m <0,∴ 0<m <4.综上,0≤m <4.6. 6 解析:本题考查线性规划内容.7. ⎝⎛⎭⎫7π6,11π6 解析:y ′=1+2sinx <0,∴ sinx <-12,∴ 7π6<x <11π6. 8. π3 解析:∵ m ⊥n ,∴ (a +c)(a -c)+b(b -a)=0,∴ a 2+b 2-c 22ab =12, ∴ cosC =12,∴ C =π3.9. (-∞,-1)∪(2,+∞) 解析:画出符合题意的草图,则x -2<-3或x -2>0.10. 4 解析:本题其实是关于最小正周期问题.a 2=a 1-t ,a 3=t +2-a 1+t =2t +2-a 1,a 4=a 3-t =t +2-a 1,a 5=t +2-a 4=a 1,故实数k 的最小值是4.11. 解:(1) f(x)=12sin2x +3cos 2x =12sin2x +32(1+cos2x)=sin ⎝⎛⎭⎫2x +π3+32,∴ f(x)的最小正周期为T =2π2=π. (2) 依题意得g(x)=f ⎝⎛⎭⎫x -π4+32=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π3+32+32=sin ⎝⎛⎭⎫2x -π6+3,当x ∈⎣⎡⎦⎤0,π4时,2x -π6∈⎣⎡⎦⎤-π6,π3,∴ -12≤sin ⎝⎛⎭⎫2x -π6≤32,∴ 23-12≤g(x)≤332,∴ g(x)在⎣⎡⎦⎤0,π4的最大值为332. 12. 解:(1) 当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列.a n =120-10(n -1)=130-10n ;当n ≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n-6,因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,n ∈N *,70×⎝⎛⎭⎫34n -6,n ≥7,n ∈N *. (2) 设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n ≤6时,S n =120n -5n(n -1),A n =120-5(n -1)=125-5n >80;当n ≥7时,S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n-6,A n =780-210×⎝⎛⎭⎫34n -6n.因为{a n }是递减数列,所以{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫348-68=824764>80,A 9=780-210×⎝⎛⎭⎫349-69=767996<80,所以须在第9年初对M进行更新.13. 解:(1) f ′(x)=3x 2+2ax +b.由题意得⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×23+b =0,f ′(1)=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.设切线l 的方程为y =3x +m(m>0),由原点到切线l 的距离为1010, 有|m|32+1=1010,解得m =1.∵ 切线l 不过第四象限,∴ m =1,m =-1(舍),∴ 切线l 的方程为y =3x +1,由于切点的横坐标为x =1,∴ 切点坐标为(1,4),∵ f(1)=1+a +b +c =4,∴ c =5.(2) 由(1)知f(x)=x 3+2x 2-4x +5,所以f ′(x)=3x 2+4x -4=(x +2)(3x -2),令f ′(x)=0,得x 1=-2,x 2=23.x -4 (-4,-2)-2 ⎝⎛⎭⎫-2,2323 ⎝⎛⎭⎫23,1 1 f ′(x) +0 -0 +f(x)极大值 极小值函数值-11139527414. 解:(1) ∵ -1,S n ,a n +1成等差数列,∴ 2S n =a n +1-1, ① 当n ≥2时,2S n -1=a n -1, ②①-②得:2(S n -S n -1)=a n +1-a n ,∴ 3a n =a n +1,∵ a 1=1≠0,∴ a n ≠0, ∴ a n +1a n=3.当n =1时,由①得∴ 2S 1=2a 1=a 2-1,又a 1=1,∴ a 2=3, ∴a 2a 1=3,∴ {a n }是以3为公比的等比数列,∴ a n =3n -1. (2) ∵ f(x)=log 3x ,∴ f(a n )=log 33n -1=n -1,b n =1(n +3)[f (a n )+2]=1(n +1)(n +3)=12⎝⎛⎭⎫1n +1-1n +3,∴ T n =1212-14+13-15+14-16+15-17+…+1n -1n +2+1n +1-1n +3=1212+13-1n +2-1n +3=512-2n +52(n +2)(n +3),比较T n 与512-2n +5312的大小,只需比较2(n +2)(n +3)与312的大小即可.又2(n +2)(n +3)-312=2(n 2+5n +6-156)=2(n 2+5n -150)=2(n +15)(n -10),∵ n ∈N *,∴ 当1≤n ≤9时n ∈N *,2(n +2)(n +3)<312,即T n <512-2n +5312;∴ 当n=10时,2(n +2)(n +3)=312,即T n =512-2n +5312;当n >10且n ∈N *时,2(n +2)(n +3)>312,即T n >512-2n +5312;当n =10时,2(n +2)(n +3)=312,即T n =512-2n +5312;当n>10且n ∈N *时,2(n +2)(n +3)>312,即T n >512-2n +5312.。
2012年高考理科数学(全国卷)含答案及解析
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。
在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。
(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。
在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。
2012年高考数学一轮复习全册课时训练及各单元检测试卷[全套]
解析 A={x|-a≤x≤a},根据题意可知 1≤a<2. 10.设集合 A={-1,0,1},集合 B={0,1,2,3},定义 A*B={(x,y)|x∈A∩B,y∈A∪B}, 则 A*B 中元素的个数为________. 答案 10 解析 由题知,A∩B={0,1},A∪B{-1,0,1,2,3},所以满足题意的实数对有(0,-1),
[精品]2012 年高考数学一轮复习全册课时训练及各单元检测试卷解析版[全套]
(0,0),(0,1),(0,2),(0,3),(1,-1),(1,0),(1,1),(1,2),(1,3),共 10 个,即 A*B 中的元素 有 10 个. 11.设集合 A、B 都是 U={1,2,3,4}的子集,已知(∁UA)∩(∁UB)={2},(∁UA)∩B={1}, 且 A∩B=∅,则 A=________. 答案 {3,4}
2x-1>0 2x-1<0 或 1-|x|<0 1-|x|>0
)
1 B.x>1 或-1<x< 2 1 D.x<-1 或 x> 2
1 1 x>2 x<2 ∴ 或 x>1或x<-1 -1<x<1 1 ∴x>1 或-1<x< ,故选 B. 2 7.(2011· 徐州质检)已知集合 M={x|x2-2008x-2009>0},N={x|x2+ax+b≤0},若 M ∪N=R,M∩N=(2009,2010],则( A.a=2009,b=-2010 C.a=2009,b=2010 答案 D 解析 化简得 M={x|x<-1 或 x>2009}, 由 M∪N=R,M∩N=(2009,2010]可知 N={x|-1≤x≤2010},即-1,2010 是方程 x2+ ax+b=0 的两个根. 所以 b=-1×2010=-2010,-a=-1+2010,即 a=-2009. 8.已知不等式 ax2+bx+2>0 的解集为{x|-1<x<2},则不等式 2x2+bx+a<0 的解集为 ( ) 1 A.{x|-1<x< } 2 C.{x|-2<x<1} 答案 A 解析 由题意知 x=-1,x=2 是方程 ax2+bx+2=0 的根. 1 B.{x|x<-1 或 x> } 2 D.{x|x<-2 或 x>1} ) B.a=-2009,b=2010 D.a=-2009,b=-2010
2012届高考理科数学小题训练
2012届高考理科数学小题训练1 姓名一、本题共8小题,每小题5分,共40分,每小题有且只有一个选项是符合题目要求的.1.若集合211{|log (1)1},{|()1}42xM x x N x =-<=<<,则M N = ( ) A .{|12}x x <<B .{|13}x x <<C .{|03}x x <<D .{|02}x x <<2.已知向量()525,2,1=-=⋅=b a a等于( )A .5B .52C .25D .53.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3B .38000cm 3C .32000cmD .34000cm4.命题“存在R x ∈,使24x ax a +-<0,为假命题”是命题“016≤≤-a ”的 ( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件5.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m , 105,45=∠=∠CAB ACB 后,就可以计算出A 、B 两点的距离为( ) A. m 250B. m 350C. m 225D. m 22256. 某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽 取了5名学生的学分,用茎叶图表示(如右图). 1s ,2s 分别表 示甲、乙两班抽取的5名学生学分的标准差,则1s 2s .(填“>”、“<”或“=”). 为( ) A .> B .< C .= D .不能确定7. 函数x x y sin 3+=的图象大致是( )正视图侧视图俯视图8.设双曲线1422=-y x 的两条渐近线与直线2=x 围成的三角形区域(包括边界)为D ,P ()y x ,为D 内的一个动点,则目标函数y x z -=21的最小值为 ( )A .2-B .223-C .0D .225-二、填空题:本大题共8小题,每小题5分,共35分,把答案填在题中横线上。
2012年高考全国卷1理科数学试题及答案(word精校版)
2012 年普通高等学校招生全国统一考试全国课标Ⅰ理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种 D .8种 3.下面是关于复数21iz =-+的四个命题: p 1:|z |=2, p 2:z 2=2i , p 3:z 的共轭复数为1+i , p 4:z 的虚部为-1, 其中的真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 44.设F 1,F 2是椭圆E :22221x y a b +=(a >b >0)的左、右焦点,P 为直线32ax =上一点,△F2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .455.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-76.如果执行右边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B .2A B+为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .188.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B两点,||AB =C 的实轴长为( )AB. C .4 D .8 9.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)单调递减,则ω的取值范围是( ) A .1524⎡⎤⎢⎥⎣⎦, B .1324⎡⎤⎢⎥⎣⎦, C .(0,12] D .(0,2]10.已知函数1()ln(1)f x x x=+-,则y =f (x )的图像大致为( )11.已知三棱锥S -ABC 的所有顶点都在球O 的球面上, △ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.6 B.6 C.3 D.212.设点P 在曲线1e 2xy =上,点Q 在曲线y =ln(2x )上,则|PQ |的最小值为( ) A .1-ln2 B(1-ln2) C .1+ln2 D(1+ln2) 二、填空题:本大题共4小题,每小题5分.13.已知向量a ,b 夹角为45°,且a =1,2a b -=b =__________.14.设x ,y 满足约束条件1300,x y x y x y ≥⎧⎪≤⎪⎨≥⎪⎪≥⎩--,+,,,则z =x -2y 的取值范围为__________.15.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________. 16.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; ②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.20.(本小题满分12分)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)已知函数f (x )满足f (x )=(1)f 'e x -1-f (0)x +12x 2. (1)求f (x )的解析式及单调区间; (2)若f (x )≥12x 2+ax +b ,求(a +1) b 的最大值.请考生在22、23、24三题中任选一题作答.如果多做,则按所做第一个题计分. 22.(本题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD =BC ; (2)△BCD ∽△GBD .23.(本题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程是2cos 3sin x y ϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3). (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围.24.(本题满分10分)选修4—5:不等式选讲已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.2012年全国课标Ⅰ理科数学参考答案13.14.[-3,3] 15.816. 1 830 17.解:(1)由a cos C +a sin C -b -c =0及正弦定理得sin A cos C sin A sin C -sin B -sin C =0.因为B =π-A -C , A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以π1sin()62A -=. 又0<A <π,故π3A =. (2)△ABC 的面积1sin 2S bc A ==bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.18.解:(1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80.所以y 关于n 的函数解析式为1080<16()8016n n y n n ⎧∈⎨≥⎩N -,,=.,,(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7.X 的分布列为X 的数学期望为EX =60×0.1+70×0.2+80×0.7=76.X 的方差为DX =(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44. ②答案一: 花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4. Y 的方差为DY =(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,DX <DY ,即购进16枝玫瑰花时利润波动相对较小.另外,虽然EX <EY ,但两者相差不大.故花店一天应购进16枝玫瑰花. 答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 55 65 75 85 P0.10.20.160.54Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX <EY ,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.19.解:(1)证明:由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又112AC AA =,可得DC 12+DC 2=CC 12,所以DC 1⊥DC . 而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD .BC平面BCD ,故DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1, 所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA 方向为x 轴的正方向,CA 为单位长,建立如图所示的空间直角坐标系C -xyz . 由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2).则1(0,01)A D =,-,(11,1)BD =,-,1(1,0,1)DC =-.设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则10,0,BD A D ⎧⋅=⎪⎨⋅=⎪⎩n n ,即00x y z z ⎧⎨⎩-+=,=, 可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,10,0.BD DC ⎧⋅=⎪⎨⋅=⎪⎩m m 可取m =(1,2,1). 3cos ,⋅=n m n m n m . 故二面角A 1-BD -C 1的大小为30°20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径||2FA =.由抛物线定义可知A 到l 的距离=||2d FA =. 因为△ABD 的面积为42所以1||422BD d ⋅=,即122422p ⋅= 解得p =-2(舍去),p =2. 所以F (0,1),圆F 的方程为x 2+(y -1)2=8.(2)因为A ,B ,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°.由抛物线定义知|AD |=|FA |=12|AB |, 所以∠ABD =30°,m 的斜率为3或3-.当m 的斜率为3时,由已知可设n :y =3x +b ,代入x 2=2py ,得x 2-3px -2pb =0. 由于n 与C 只有一个公共点,故∆=43p 2+8pb =0, 解得6pb =-. 因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. 21.解:(1)由已知得f ′(x )=f ′(1)e x -1-f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e. 从而f (x )=e x -x +12x 2. 由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .①(ⅰ)若a +1<0,则对任意常数b ,当x <0,且11bx a -<+时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0.(ⅲ)若a +1>0,设g (x )=e x -(a +1)x ,则g ′(x )=e x -(a +1).当x ∈(-∞,ln(a +1))时,g ′(x )<0;当x ∈(ln(a +1),+∞)时,g ′(x )>0. 从而g (x )在(-∞,ln(a +1))上单调递减,在(ln(a +1),+∞)上单调递增. 故g (x )有最小值g (ln(a +1))=a +1-(a +1)ln(a +1).所以f (x )≥12x 2+ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2-(a +1)2ln(a +1). 设h (a )=(a +1)2-(a +1)2ln(a +1),则h ′(a )=(a +1)(1-2ln(a +1)).所以h (a )在(-1,12e 1-)上单调递增,在(12e 1-,+∞)上单调递减, 故h (a )在12=e 1a -处取得最大值.从而e ()2h a ≤,即(a +1)b ≤e 2. 当12=e 1a -,12e 2b =时,②式成立,故f (x )≥12x 2+ax +b . 综合得,(a +1)b 的最大值为e 2. 22.证明:(1)因为D ,E 分别为AB ,AC 的中点,所以DE ∥BC . 又已知CF ∥AB ,故四边形BCFD 是平行四边形,所以CF =BD =AD . 而CF ∥AD ,连结AF ,所以ADCF 是平行四边形,故CD =AF . 因为CF ∥AB ,所以BC =AF ,故CD =BC .(2)因为FG ∥BC ,故GB =CF . 由(1)可知BD =CF ,所以GB =BD . 而∠DGB =∠EFC =∠DBC ,故△BCD ∽△GBD .23.解:(1)由已知可得A (π2cos3,π2sin 3),B (ππ2cos()32+,ππ2sin()32+), C (2cos(π3+π),2sin(π3+π)),D (π3π2cos()32+,π3π2sin()32+),即A (1,3),B (3-,1),C (-1,3-),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|PA |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].24.解:(1)当a =-3时,25,2,()1,23,25, 3.x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩当x ≤2时,由f (x )≥3,得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3,得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4||x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |4-x -(2-x )≥|x +a |-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].。
2012年全国各地高考数学试题及解答分类汇编大全(17 计数原理、二项式定理)
2012年全国各地高考数学试题及解答分类汇编大全(17计数原理、二项式定理)一、选择题:1. (2012安徽理)2521(2)(1)x x+-的展开式的常数项是( ) ()A 3- ()B 2- ()C 2 (D )3 【解析】选D第一个因式取2x ,第二个因式取21x得:1451(1)5C ⨯-=第一个因式取2,第二个因式取5(1)-得:52(1)2⨯-=- 展开式的常数项是5(2)3+-=2.(2012安徽理)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品 的同学人数为( )()A 1或3 ()B 1或4 ()C 2或3 (D )2或4 【解析】选D261315132C -=-=①设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为2人 ②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人3. (2012北京理)从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。
如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。
【答案】B4.(2012广东理)从个位数与十位数之和为奇数的两位数中任选一个,其中个位数为0的概率是( ) A .94 B .31 C .92 D .91解析:(D ).两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,而其中个位数为0的有5个,是10,30,50,70,90。
所以,所求事件的概率为91455=5.(2012湖北理)设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a =A .0B .1C .11D .12 考点分析:本题考察二项展开式的系数. 难易度:★ 解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.(2012辽宁理) 一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【答案】C【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有3!种排法,三个家庭共有33!3!3!(3!)⨯⨯=种排法;再把三个家庭进行全排列有3!种排法。
2012届高考数学复习方案配套测试题(附答案)
2012届高考数学复习方案配套测试题(附答案)试卷类型:A 2012届高三原创月考试题二数学适用地区:新课标地区考查范围:集合、逻辑、函数、导数、三角、向量、数列、不等式建议使用时间:2011年9月底本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案填在答题卡上.在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项: 1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上. 2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损. 5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若集合则() A. B. C. D.2.(理)[2011•安徽“江南十校”联考]设向量a,b均为单位向量,且|a+b| ,则a与b夹角为() A. B. C. D.(文)[2011•安徽“江南十校”联考]设向量a,b均为单位向量,且(a+b) ,则a与b夹角为() A. B. C. D. 3.[2011•天津卷] 已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,Sn为{an}的前n项和,n∈N*,则S10的值为( ) A.-110 B.-90 C.90 D.1104.[2011•课标全国卷] 已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( ) A.-45 B.-35 C.35 D.455.[2011•皖南八校二模]设是公比为q的等比数列,令,若数列的连续四项在集合{―53,―23,19,37,82}中,则q等于( )A. B. C. D. 6.(理)[2011•湖南卷] 由直线x=-π3,x=π3,y=0与曲线y=cosx所围成的封闭图形的面积为( ) A.12 B.1C.32D.3 (文)已知锐角的面积为,,则角的大小为()A. 75° B. 60° C. 45° D.30° 7.[2011•山东临沂一检]已知,且,则下列不等式中,正确的是() A. B. C. D. 8.已知函数且在上的最大值与最小值之和为,则的值为() A. B. C. D. 9.[2011•天津一中月考]已知函数,将的图象上各点的横坐标缩短为原来,纵坐标不变,再将所得图象向右平移个单位,得到函数的图象,则函数的解析式为() A. B. C. D. 10.在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域内的面积等于2,则的值为() A. -5 B. 1 C. 2 D. 3 11.[2011•安徽“江南十校”二模]已知函数是R上的单调增函数且为奇函数,数列是等差数列,>0,则的值() A.恒为正数 B.恒为负数 C.恒为0 D.可正可负 12.[2011•陕西卷] 方程|x|=cosx在(-∞,+∞)内( ) A.没有根 B.有且仅有一个根 C.有且仅有两个根 D.有无穷多个根第Ⅱ卷二、填空题(本大题共4小题,每小题4分,共16分.将答案填在答题卷相应位置上) 13.[2011•青岛模拟]已知向量a、b 的夹角为 ,|a|=2, |b|=3,则|2a-b |= . 14.若对任意,恒成立,则的取值范围是. 15.[2011•皖南八校二模]若将函数的图象向右平移个单位长度后,与函数的图象重合,则的最小值为. 16.[2011•江西九校联考]下列说法正确的为. ①集合A= ,B={ },若B A,则-3 a 3;②函数与直线x=l的交点个数为0或l;③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;④ ,+∞)时,函数的值域为R;⑤与函数关于点(1,-1)对称的函数为(2 -x). 三、解答题(本大题共6小题,满分74分.解答须写出文字说明、证明过程和演算步骤) 17.(本小题满分12分)[2011•皖南八校二模拟]已知向量 . (1)若且,试求的值;(2)设试求的对称轴方程,对称中心,单调递增区间. 18.(本小题满分12分)[2011•课标全国卷] 等比数列{an}的各项均为正数,且2a1+3a2=1,a23=9a2a6. (1)求数列{an}的通项公式; (2)设bn=log3a1+log3a2+…+log3an,求数列1bn的前n项和. 19.(本小题满分12分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损? 20.(本小题满分12分)已知函数, . (1)求的最大值和最小值;(2)若不等式在上恒成立,求实数m的取值范围. 21.(本小题满分12分)[2011•北京卷] 若数列An:a1,a2,…,an(n≥2)满足|ak+1-ak|=1(k=1,2,…,n-1),则称An为E数列.记S(An)=a1+a2+…+an. (1)写出一个E数列A5满足a1=a3=0; (2)若a1=12,n=2000,证明:E数列An是递增数列的充要条件是an=2011; (3)在a1=4的E数列An中,求使得S(An)=0成立的n的最小值.22.(本小题满分14分)(理)[2011•黑龙江鸡西一中三模] 设函数 . (1)写出定义域及的解析式;(2)设,讨论函数的单调性;(3)若对任意,恒有成立,求实数的取值范围. (文) [2011•山东青岛一模]已知函数. (1)若 ,令函数 ,求函数在上的极大值、极小值; (2)若函数在上恒为单调递增函数,求实数的取值范围.试卷类型:A 2012届高三原创月考试题二参考答案数学 1、【答案】B 【解析】当x=-1,0,1时集合B的元素y对应取值为:cos(-1),1,cos1,故A∩B= . 2.(理)【答案】C 【解析】设a,b的夹角为θ,(a+b) ,a•b ,, ∴〈a,b〉,故选C. (文)【答案】C 【解析】a•b ,,〈a,b〉= ,故选C. 3. 【答案】D 【解析】由a27=a3•a9,d=-2,得(a1-12)2=(a1-4)(a1-16),解之得a1=20,∴S10=10×20+10×92(-2)=110. 4.【答案】B 【解析】解法1:在角θ终边上任取一点P(a, 2a)(a≠0),则r2=OP2=a2+(2a)2=5a2,∴cos2θ=a25a2=15,∴cos2θ=2cos2θ-1=25-1=-35. 解法2:tanθ=2aa=2,cos2θ=cos2θ-sin2θcos2θ+sin2θ=1-tan2θ1+tan2θ=-35. 5. 【答案】C【解析】各项减去1得到集合,其中-24,36,-54,81或81,-54,36,-24成等比数列, . 6. (理)【答案】D 【解析】根据定积分的简单应用相关的知识可得到:由直线x=-π3,x=π3,y=0与曲线y=cosx所围成的封闭图形的面积为:,故选D. (文)【答案】B 【解析】由正弦定理得,注意到其是锐角三角形,故C= °,选B. 7. 【答案】D 【解析】结合对数函数性质及基本不等式可知选D. 8.【答案】C 【解析】无论a>1还是0<a<1总有,解得a=2. 9. 【答案】D 【解析】函数横坐标缩短为原来变为,纵坐标不变,再将所得图象向右平移个单位,函数变为. 11. 【答案】A 【解析】,>0,>又>0,∴ >,∴ >,∴ >0,故选A. 13. 【答案】【解析】. 14.【答案】【解析】因为,所以(当且仅当时取等号),所以有,即的最大值为,故. 15. 【答案】【解析】依题意,将函数的图象向右平移个单位长度后得,它的图象与函数的图象重合,所以(),解得().因为,所以 . 16. 【答案】②③⑤ 17.解:(1)..(2)由题意得.令;令令可得单调递增区间为. 18. 解:(1)设数列{an}的公比为q,由a23=9a2a6得a23=9a24,所以q2=19. 由条件可知q>0,故q=13. 由2a1+3a2=1得2a1+3a1q =1,所以a1=13. 故数列{an}的通项公式为an=13n. (2)bn=log3a1+log3a2+…+log3an =-(1+2+…+n) =-+故1bn=-+=-21n-1n+1, 1b1+1b2+…+1bn=-2 =-2nn+1. 所以数列1bn的前n项和为-2nn+1. 19.解:(1)由题意可知,二氧化碳的每吨平均处理成本为:,当且仅当,即时,才能使每吨的平均处理成本最低,最低成本为元.(2)设该单位每月获利为 , 则,因为,所以当时,有最大值.故该单位不获利,需要国家每月至少补贴元,才能不亏损. 20. 解:(1),又,,即,.(2),,且,,即的取值范围是. 21.解:(1)0,1,0,1,0是一个满足条件的E数列A5. (答案不唯一,0,-1,0,1,0;0,±1,0,1,2;0,±1,0,-1,-2;0,±1,0,-1,0都是满足条件的E数列A5) (2)必要性:因为E数列An是递增数列,所以ak+1-ak=1(k=1,2,…,1999),.所以An是首项为12,公差为1的等差数列,所以a2000=12+(2000-1)×1=2011,充分性:由于a2000-a1999≤1. a1999-a1998≤1. …… a2-a1≤1. 所以a2000-a1≤1999,即a2000≤a1+1999. 又因为a1=12,a2000=2011,所以a2000=a1+1999. 故ak+1-ak=1>0(k=1,2,…,1999),即E数列An是递增数列.综上,结论得证. (3)对首项为4的E数列An,由于a2≥a1-1=3,a3≥a2-1≥2,…… a8≥a7-1≥-3,…… 所以a1+a2+…+ak>0(k=2,3,…,8).所以对任意的首项为4的E数列An,若S(An)=0,则必有n≥9. 又a1=4的E数列A9:4,3,2,1,0,-1,-2,-3,-4满足S(A9)=0,所以n的最小值是9. 22.(理)解:(1)的定义域为.(2)①当时,,所以上为增函数;② 当,由,上为增函数,在上是减函数.(3)①当时,由(1)知,对任意,恒有;②当时,由(1)知,上是减函数,在上是增函数,取,则;③当时,对任意,恒有且,得.综上,当且仅当时,若对任意恒有成立.(文)解:(1) ,所以.由得或.所以函数在处取得极小值;在处取得极大值. (2) 因为的对称轴为.①若即时,要使函数在上恒为单调递增函数,则有,解得:,所以;②若即时,要使函数在上恒为单调递增函数,则有,解得:,所以.综上,实数的取值范围为.。
苏州大学2012届高考数学考前指导题组
19-3.在直角坐标平面上有一点列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,对一切正整数n, 13 5 点Pn位于函数y=3x+ 4 的图象上,且Pn的横坐标构成以-2为首项,-1 为公差的等差数列{xn}. (1)求点 Pn 的坐标; (2)设抛物线列 c1,c2,c3,…,cn,…中的每一条的对称轴都垂直于 x 轴,第 n 条抛物线 cn 的顶点为 Pn,且过点 Dn(0,n2+1),设与抛物线 cn 相切于 Dn 的直线的斜率为 kn. 1 1 1 求:k k +k k +…+ ; k - 1 2 2 3 n 1kn * (3)设S={x|x=2xn,n∈N },T={y|y=4yn,n∈N*},等差数列{an}的任一项an∈S∩T,其中 a1 是S∩T中的最大数,-265<a10<-125,求{an}的通项公式.
y P
F1 A
O
F2
B
x
18-3.设 F1 , F2 是椭圆 C :
x2 y 2 1 (a b 0) 的左、右 a 2 b2 焦点,A, B 分别为其左顶点和上顶点,BF1 F2 是面积为 3
A
y
B
O
N
M
的正三角形. (1)求椭圆 C 的方程; (2)过右焦点 F2 的直线 l 交椭圆 C 于 M , N 两点,直线
A
A
F D C E 图(1) B
F
D
C
E 图(2)
B
18 - 1 .如图,已知椭圆
x2 y 2 1 (a b 0) 的左,右焦点为 a 2 b2 F1 , F2 ,点 P 为椭圆上动点,弦 PA,PB 分别过点 F1 , F2 . 24 (1) 若 F1 (3,0) , 当 PF1 F1 F2 时, 点 O 到 PF2 的距离为 , 17 求椭圆的方程; (2)设 PF1 1 F1 A , PF2 2 F2 B, 1 , 2 R ,求证: 1 2 为定值.
2012年全国各地高考数学试题及解答分类汇编大全(01 集合)
2012年全国各地高考数学试题及解答分类汇编大全(01集合)一、选择题:1.(2012安徽文)设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A.(1,2)B. [1,2]C. [,)12 D .(,]12【解析】选D{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=2.(2012北京文、理)已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=( ) A .(-∞,-1) B .(-1,-23) C .(-23,3) D . (3,+∞) 【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D .【答案】D3. (2012福建文)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( ) A.N ⊆M B.M ∪N=M C.M ∩N=N D.M ∩N={2}4. (2012广东文) 设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则UM =( )A. {2,4,6}B. {1,3,5}C. {1,2,4}D. U 4. A. U M ={2,4,6}.5.(2012广东理)设集合}6,5,4,3,2,1{=U ,}4,2,1{=M ,则M C U =( )A .UB .}5,3,1{C .}6,5,3{D .}6,4,2{ 解析:(C ).6.(2012湖北文) 已知集合A{x| 2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足 条件A ⊆C ⊆B 的集合C 的个数为( ) A 1 B 2 C 3 D 4 6.D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.7. (2012湖南文)设集合M={-1,0,1},N={x|x 2=x},则M ∩N=( )A.{-1,0,1}B.{0,1}C.{1}D.{0} 【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M ∩N.8 (2012湖南理) 设集合M={-1,0,1},N={x|x 2≤x},则M ∩N=( )A.{0}B.{0,1}C.{-1,1}D.{-1,0,0}【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分. 先求出{}0,1N =,再利用交集定义得出M ∩N.9. (2012江西文) 若全集U={x ∈R |x 2≤4} A={x ∈R ||x+1|≤1}的补集CuA 为( ) A |x ∈R |0<x <2| B |x ∈R |0≤x <2| C |x ∈R |0<x≤2| D |x ∈R |0≤x≤2|【答案】C【解析】考查集合的基本运算{|22}U x x =-≤≤,{|20}A x x =-≤≤,则{|02}U C A x x =<≤.10、(2012江西理) 若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5 B.4 C .3 D.210.C 【解析】本题考查集合的概念及元素的个数.容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn 图的考查等.12. (2012辽宁文、理)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为( )(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}。
2012届高考数学课时复习题42
(时间60分钟,满分80分)一、选择题(共6个小题,每小题5分,满分30分)1.(2010·湖南四县调研)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:A、B、C中α与β都有可能相交.答案:D2.(2010·江南十校)已知a、b、l表示三条不同的直线,α、β、γ表示三个不同的平面,有下列四个命题:①若α∩β=a,β∩γ=b且a∥b,则α∥γ;②若a、b相交,且都在α、β外,a∥α,a∥β,b∥α,b∥β,则α∥β;③若α⊥β,α∩β=a,b⊂β,a⊥b,则b⊥α;④若a⊂α,b⊂α,l⊥a,l⊥b,则l⊥α.其中正确的是()A.①②B.②③C.①④D.③④解析:可通过公理、定理判定其正确,通过特例、反例说明其错误.①在正方体A1B1C1D1-ABCD中,平面A1B1CD∩平面DCC1D1=CD.平面A1B1C1D1∩平面DCC1D1=C1D1,且CD∥C1D1,但平面A1B1CD与平面A1B1C1D1不平行,①错误.②因为a、b相交,可设其确定的平面为γ,根据a∥α,b∥α,可得γ∥α.同理可得γ∥β,因此α∥β,②正确.③根据平面与平面垂直的判定定理:两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,③正确.④当直线a∥b时,l垂直于平面α内两条不相交直线,得不出l⊥α,④错误.答案:B3.下列命题正确的是()A.直线a与平面α不平行,则直线a与平面α内的所有直线都不平行B.如果两条直线在平面α内的射影平行,则这两条直线平行C.垂直于同一直线的两个平面平行D.直线a与平面α不垂直,则直线a与平面α内的所有直线都不垂直解析:当直线a在平面α内时,它与平面α不平行,但a可以与平面α内的一些直线平行,故选项A错误;两条直线在平面α内的射影平行,则可以为异面直线,故选项B错误;直线a 与平面α不垂直,但直线a 可以与平面α内的一些直线垂直,故选项D 错误,只有选项C 正确.答案:C4.给出下列命题:①若直线a ∥直线b ,且直线a ∥平面α,则直线b 与平面α的位置关系是平行或直线b 在平面α内;②直线a ∥平面α,平面α内有n 条直线交于一点,那么这n 条直线中与直线a 平行的直线有且只有一条;③a ∥α,b 、c ⊂α,a ∥b ,b ⊥c ,则有a ⊥c ;④过平面外一点只能引一条直线与这个平面平行;其中错误的个数是( )A .0B .1C .2D .3解析:②④错误.答案:C5.(2010·无锡一模)下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α;②若直线l 上有无数个点不在平面α内,则l ∥α;③若直线l 与平面α平行,则l 与α内的任意一条直线都平行;④若l 与平面α平行,则l 与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A .1B .2C .3D .4解析:a ∩α=A 时,a ⊄α,∴①错;直线l 与α相交时,l 上有无数个点不在α内,故②错;l ∥α时,α内的直线与l 平行或异面,故③错;l ∥α,l 与α无公共点,∴l 与α内任一直线都无公共点,④正确;长方体中A 1C 1与B 1D 1都与面ABCD 平行,∴⑤正确.答案:B6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF =12,则下列结论中错误的是( ) A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等解析:由AC ⊥平面DBB 1D 1可知AC ⊥BE .故A 正确.EF ∥BD ,EF ⊄平面ABCD ,BD ⊂平面ABCD ,知EF ∥平面ABCD ,故B 正确. A 到平面BEF 的距离即为A 到平面DBB 1D 1的距离,为22,且S △BEF =12BB 1×EF =定值,故V A -BEF 为定值,即C 正确.答案:D二、填空题(共3个小题,每小题5分,满分15分)7.已知m 、n 是不同的直线,α、β是不重合的平面,给出下列命题:①若m ∥α,则m 平行于平面α内的无数条直线;②若α∥β,m ⊂α,n ⊂β,则m ∥n ;③若m ⊥α,n ⊥β,m ∥n ,则α∥β;④若α∥β,m ∥α,则m ∥β.其中,真命题的序号是________(写出所有真命题的序号).解析:由线面平行定义及性质知①正确.②中若m ⊂α,n ⊂β,α∥β,则m 、n 可能平行,也可能异面,故②错,③中由 ⎭⎪⎬⎪⎫m ⊥αm ∥n ⇒ ⎭⎪⎬⎪⎫n ⊥αn ⊥β⇒α∥β知③正确.④中由α∥β,m ∥α可得,m ∥β或m ⊂β,故④错.答案:①③8.正方体ABCD -A 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为 ________.解析:如图,连结AC 、BD 交于O ,连结EO ,则EO ∥BD 1又EO ⊂面ACE ,故BD 1∥面ACE .答案:平行9.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则当M 满足条件________________时,有MN ∥平面B 1BDD 1.解析:当M 点满足在线段FH 上有MN ∥面B 1BDD 1.答案:M ∈线段FH三、解答题(共3个小题,满分35分)10.如图所示,在四棱锥S —ABCD 中,底面ABCD 为平行四边形,E ,F 分别为AB ,SC 的中点.求证:EF ∥平面SAD .证明:法一:作FG ∥DC 交SD 于点G ,则G 为SD 的中点.连结AG ,FG 綊12CD ,又CD 綊AB ,且E 为AB 的中点,故FG 綊AE ,∴四边形AEFG 为平行四边形.∴EF ∥AG .又∵AG ⊂平面SAD ,EF ⊄平面SAD ,∴EF ∥平面SAD .法二:取线段CD 的中点M ,连结ME ,MF ,∵E ,F 分别为AB ,SC 的中点,∴ME ∥AD ,MF ∥SD ,又∵ME ,MF ⊄平面SAD ,∴ME ∥平面SAD ,MF ∥平面SAD又∵ME ,MF 相交,∴平面MEF ∥平面SAD ,∵EF ⊂平面MEF ,∴EF ∥平面SAD .11.如图,已知α∥β,异面直线AB 、CD 和平面α、β分别交于A 、B 、C 、D 四点,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)E 、F 、G 、H 共面;(2)平面EFGH ∥平面α.证明:(1)∵E 、H 分别是AB 、DA 的中点,∴EH∥BD且EH=12BD.同理,FG∥BD且FG=12BD,∴FG∥EH且FG=EH.∴四边形EFGH是平行四边形,即E、F、G、H共面.(2)平面ABD和平面α有一个公共点A,设两平面交于过点A的直线AD′.∵α∥β,∴AD′∥BD.又∵BD∥EH,∴EH∥BD∥AD′.∴EH∥平面α,同理,EF∥平面α,又EH∩EF=E,EH⊂平面EFGH,EF⊂平面EFGH,∴平面EFGH∥平面α.12.(2010·山东济南)如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.(1)证明:BD⊥AA1;(2)证明:平面AB1C∥平面DA1C1;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.解:(1)证明:连接BD,∵平面ABCD为菱形,∴BD⊥AC,由于平面AA1C1C⊥平面ABCD,则BD⊥平面AA1C1C,又A1A⊂平面AA1C1C,故BD⊥AA1.(2)证明:由棱柱ABCD-A1B1C1D1的性质知AB1∥DC1,A1D∥B1C,AB1∩B1C=B1,A1D∩DC1=D,由面面平行的判定定理推论知:平面AB1C∥平面DA1C1.(3)存在这样的点P满足题意.∵A1B1綊AB綊DC,∴四边形A1B1CD为平行四边形.∴A1D∥B1C,在C1C的延长线上取点P,使C1C=CP,连接BP,∵B1B綊CC1,∴BB1綊CP,∴四边形BB1CP为平行四边形,∴BP∥B1C,∴BP∥A1D,∴BP∥平面DA1C1.。
2012届高考数学课时复习题22
(时间60分钟,满分80分)一、选择题(共6个小题,每小题5分,满分30分)1.在△ABC 中,已知sin(A -B )cos B +cos(A -B )sin B ≥1,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形解析:sin(A -B )cos B +cos(A -B )sin B =sin[(A -B )+B ]=sin A ≥1,又sin A ≤1,∴sin A =1,A =90°,故△ABC 为直角三角形.答案:A2.已知sin2α=-2425,α∈⎝⎛⎭⎫-π4,0,则sin α+cos α=( ) A .-15B.15 C .-75D.75 解析:由(sin α+cos α)2=1+2sin αcos α=1+sin2α=1-2425=125, 又∵α∈⎝⎛⎭⎫-π4,0,∴sin α+cos α>0, ∴sin α+cos α=15. 答案:B3.sin(65°-x )cos(x -20°)+cos(65°-x )cos(110°-x )的值为( ) A. 2B.22C.12D.32解析:原式=sin(65°-x )cos(x -20°)+cos(65°-x )·cos[90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)]=sin45°=22. 答案:B4.若点P (cos α,sin α)在直线y =-2x 上,则sin2α+2cos2α的值是( )A .-145B .-75C .-2 D.45解析:∵点P 在y =-2x 上,∴sin α=-2cos α,∴sin2α+2cos2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:C5.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为() A .1 B.110C .1或110D .1或10解析:tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg 1a 1-lg (10a )·lg 1a=1⇒lg 2a +lg a =0,所以lg a =0或lg a =-1,即a =1或110.答案:C6.2cos10°-sin20°sin70°的值是( )A.12B.32C. 3D. 2解析:原式=2cos (30°-20°)-sin20°sin70°=2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70° =3cos20°cos20°= 3.答案:C二、填空题(共3小题,每小题5分,满分15分)7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则角α=________.解析:依题意有cos αcos β-sin αsin β=sin αcos β-cos αsin β,即cos α(cos β+sin β)=sin α(sin β+cos β).∵α、β均为锐角,∴sin β+cos β≠0,必有cos α=sin α,∴α=π4. 答案:π48.若tan(π4-θ)=3,则cos2θ1+sin2θ=________. 解析:∵tan(π4-θ)=1-tan θ1+tan θ=3, ∴tan θ=-12. ∴cos2θ1+sin2θ=cos 2θ-sin 2θsin 2θ+2sin θcos θ+cos 2θ=1-tan 2θ1+2tan θ+tan 2θ=1-141-1+14=3. 答案:39.设f (x )=1+cos2x 2sin (π2-x )+sin x +a 2sin(x +π4)的最大值为2+3,则常数a =________. 解析:f (x )=1+2cos 2x -12cos x +sin x +a 2sin(x +π4) =cos x +sin x +a 2sin(x +π4) =2sin(x +π4)+a 2sin(x +π4) =(2+a 2)sin(x +π4). 依题意有2+a 2=2+3,∴a =±3.答案:±3三、解答题(共3小题,满分35分)10.已知α为锐角,且tan ⎝⎛⎭⎫π4+α=2. (1)求tan α的值;(2)求sin2αcos α-sin αcos2α的值. 解:(1)tan ⎝⎛⎭⎫π4+α=1+tan α1-tan α,所以1+tan α1-tan α=2, 1+tan α=2-2tan α,所以tan α=13. (2)sin2αcos α-sin αcos2α=2sin αcos 2α-sin αcos2α=sin α(2cos 2α-1)cos2α=sin αcos2αcos2α=sin α. 因为tan α=13,所以cos α=3sin α, 又sin 2α+cos 2α=1,所以sin 2α=110, 又α为锐角,所以sin α=1010, 所以sin2αcos α-sin αcos2α=1010. 11.已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2). (1)求sin2α和tan2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin2α=95,∴sin2α=45. 又2α∈(0,π2),∴cos2α=1-sin 22α=35, ∴tan2α=sin2αcos2α=43. (2)∵β∈(π4,π2),β-π4∈(0,π4),∴cos(β-π4)=45, 于是sin2(β-π4)=2sin(β-π4)cos(β-π4)=2425.又sin2(β-π4)=-cos2β,∴cos2β=-2425. 又2β∈(π2,π),∴sin2β=725. 又cos 2α=1+cos2α2=45, ∴cos α=25,sin α=15(α∈(0,π4)). ∴cos(α+2β)=cos αcos2β-sin αsin2β =255×(-2425)-55×725=-11525. 12.(2010·天津高考)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R).(1)求函数f (x )的最小正周期及在区间[0,π2]上的最大值和最小值; (2)若f (x 0)=65,x 0∈[π4,π2],求cos2x 0的值. 解:(1)由f (x )=23sin x cos x +2cos 2x -1,得 f (x )=3(2sin x cos x )+(2cos 2x -1)=3sin2x +cos2x =2sin(2x +π6). 所以函数f (x )的最小正周期为π.因为f (x )=2sin(2x +π6)在区间[0,π6]上为增函数,在区间[π6,π2]上为减函数, 又f (0)=1,f (π6)=2,f (π2)=-1, 所以函数f (x )在区间[0,π2]上的最大值为2,最小值为-1. (2)由(1)可知f (x 0)=2sin(2x 0+π6). 又因为f (x 0)=65,所以sin(2x 0+π6)=35. 由x 0∈[π4,π2],得2x 0+π6∈[2π3,7π6]. 从而cos(2x 0+π6)=-1-sin 2(2x 0+π6)=-45. 所以cos2x 0=cos[(2x 0+π6)-π6]=cos(2x 0+π6)cos π6+sin(2x 0+π6)sin π6=3-4310.。
2012年高考数学一轮复习 10A-7课时作业
课时作业(五十三)一、选择题1.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是( )A.0 B.8C.奥 D.运答案 B2.(2010·某某卷,理)如图,若Ω是长方体ABCD-A1B1C1D1被平面FEGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中正确的是( )A.EH∥FGB.四边形EFGH是矩形C.Ω是棱形D.Ω是棱台答案 D解析根据棱台的定义(侧棱延长之后,必交于一点,即棱台可以还原成棱锥).因此,几何体Ω不是棱台,应选D.3.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A.23B.33C.43 D.32答案 A解析 分别过A 、B 作EF 的垂线,垂足分别为G 、H ,连结DG 、CH .V =12×1×22×1+13×12×1×22×12×2=23. 4.(09·东北三校第一次联考)正三棱锥底面边长为a ,侧棱与底面所成角的60°,过底面一边作一截面使其与底面成30°的二面角,则此截面的面积为( )A.34a 2B.33a 2 C.13a 2D.38a 2 答案 D解析 如图所示,正三棱锥P -ABC 中AB =a ,作PO ⊥面ABC ,则∠PAO 为侧棱与底面所成的角,即∠PAO =60°.连接AO 并延长交BC 于一点M ,在PA 上取一点N ,使∠AMN =30°,连接BN 、NC ,可得截面NBC ,由MN ⊥BC ,AM ⊥BC 可得∠AMN 就是二面角N -BC -M 的平面角,∴AN ⊥MN ,又AM =32a , 得MN =AM sin60°=BC ·32·32=34a , ∴S △NBC =12BC ·MN =12×a ×34a =38a 2,故应选D.5.如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,高为4,过AB 作一截面交侧棱CC 1于点P ,截面与底面成60°角,则截面△PAB 的面积是( )A .23B .3 2 C.233D.323 答案 A解析 由题意,在图中作PD ⊥AB 于D 点,连结CD ,在Rt △PDC 中,CD =3,∠PDC =60°,则PD =23,所以截面△PAB 的面积为12×2×23=23,故选A.6.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60°的菱形,则该棱柱的体积等于( )A.2B .2 2 C .32D .4 2 答案 B解析 如下图,在三棱柱ABC -A 1B 1C 1中,设∠AA 1B 1=∠AA 1C 1=60°,由条件有∠C 1A 1B 1=60°,作AO ⊥面A 1B 1C 1于点O ,则cos ∠AA 1O =cos ∠AA 1B 1cos ∠B 1A 1O =cos60°cos30°=13=33,∴sin ∠AA 1O =63. ∴AO =AA 1·sin∠AA 1O =263.于是,VABC -A 1B 1C 1=S △A 1B 1C 1·AO =12×2×2×sin60°×263=2 2.二、填空题7.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2.则该三角形的斜边长为________.答案 2 3解析 正三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,边长为2,△DEF 为直角三角形,DF 为斜边,设DF 长为x ,则DE =EF =22x ,作DG ⊥BB 1,HG ⊥CC 1,EI ⊥CC 1,EG =DE 2-DG 2=x 22-4,FI =EF 2-EI 2=x 22-4,FH =FI +HI =FI+EG =2x 22-4,在Rt △DHF 中,DF 2=DH 2+FH 2,即x 2=4+(2x 22-4)2,解得x =2 3.8.如图所示,在正三棱柱ABC -A 1B 1C 1中,AB =1.若二面角C -AB -C 1的大小为60°,则点C 到平面ABC 1的距离为________.答案349.已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角等于________.答案θ=π3解析 底面正方形面积S =12(26)2=12,底面边长a =S ,高h =3V S ,二面角的余切值tan θ=ha /2.代入数据,得:tan θ=3V /S S /2=6V S S =6×1212×12= 3.又θ必为锐角,所以θ=π3. 三、解答题10.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为CC 1的中点. (1)求二面角A 1-BD -M 的大小; (2)求四面体A 1-BDM 的体积.解析 (1)在正方体ABCD -A 1B 1C 1D 1中,棱长为1,取BD 的中点为O ,连结OM ,OA 1. ∵BM =DM =52,A 1B =A 1D =2, 从而A 1O ⊥BD ,MO ⊥BD ,∴∠A 1OM 为二面角A 1-BD -M 的平面角, 在△A 1OM 中,OM =BM 2-OB 2=32, A 1O =A 1B 2-OB 2=62, 而A 1M =A 1C 12+C 1M 2=32,从而由勾股定理可知:∠A 1OM =90°.(2)由(1)可知A 1O ⊥平面BDM ,从而四面体A 1-BDM 的体积V =13·S △BDM ·A 1O =13·(12·2·32)·62=14. 11.如图,平面ADE ⊥面ABCD ,△ADE 是边长为a 的等边三角形,ABCD 是矩形,F 是AB 的中点,EC 与面ABCD 成30°角,(1)求四棱锥E -AFCD 的体积;(2)求二面角E -CF -D 的大小;(3)求D 到面EFC 的距离.思路点拨 无论是求体积还是确定二面角的平面角,其关键都是确定平面ABCD 的垂线,对于求点D 到平面EFC 的距离可考虑用体积转化法求之.解析 (1)EH ⊥AD 于H∵面ADE ⊥面ABCD ∴EH ⊥面ABCD ∵△ADE 是边长为a 的等边三角形. ∴H 为AD 中点,且EH =32a 连结CH ,则∠ECH 为EC 与面ABCD 所成的角. ∴∠ECH =30° 在Rt △CEH 中,∵EH =32a ,CH =32a ;CE =3a 在Rt △CDH 中,∵CH =32a ,DH =12a ,∴CD =2a∴AF =12AB =12CD =22a∴S 梯形AFCD =12(AF +CD )·AD =324a 2∴V E -AFCE =13·S 梯形AFCD ·EH =13×324a 2×32a =68a 3(2)∵AF ⊥AH ,由三垂线定理可证AF ⊥AE 在Rt △AEF 中EF =AE 2+AF 2=a 2+12a 2=62a 在Rt △CBF 中,CF =BF 2+BC 2=12a 2+a 2=62a 在△CEF 中,∵EF 2+CF 2=CE 2,∴∠EFC =90°由三垂线逆定理可得HF ⊥CF∴∠EFH 为所求的二面角E -CF -H 的大小.在Rt △EFH 中,sin ∠EFH =EH EF =32a 62a=22 ∴∠EFH =45°(3)设D 到面EFC 的距离为h ,S △EFC =12EF ·CF =34a 2S △CDF =12·AD ·CD =22a 2 由V D -CEF =V E -CDF 得,h =EH ·S △CDF S △CEF =32a ·22a 234a 2=63a即D 到面EFC 的距离为63a . 12.(2011·某某一中)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =3,BC =1,CC 1=6,D 是CC 1的中点.(1)求证:A 1D ⊥平面AB 1C 1;(2)求二面角B -AB 1-C 1的大小(用反三角函数表示). 解析 (1)由∠ACB =90°,知BC ⊥AC . 在直三棱柱ABC -A 1B 1C 1中,BC ⊥CC 1, 又AC ∩CC 1=C ,∴BC ⊥平面ACC 1A 1, 又A 1D ⊂平面ACC 1A 1,∴BC ⊥A 1D , 而B 1C 1∥BC ,∴A 1D ⊥B 1C 1.在Rt △ACC 1和Rt △A 1DC 1中,AC =A 1C 1=3,CC 1=6,C 1D =62, ∴tan AC 1C =AC CC 1=22,tan A 1DC 1=A 1C 1C 1D=2, ∴∠AC 1C +∠A 1DC 1=90°,∴A 1D ⊥AC 1,又B 1C 1∩AC 1=C 1,∴A 1D ⊥平面AB 1C 1.(2)设A 1D ∩AC 1=E ,作A 1F ⊥AB 1,垂足为F ,且A 1F ∩BB 1=G . 连结EF .由(1)知A 1D ⊥平面AB 1C 1,∴A 1D ⊥AB 1,又∵A 1F ⊥AB 1,A 1D ∩A 1F =A 1,∴AB 1⊥平面A 1DF , 则EF ⊥AB 1,∠EFG 是二面角B -AB 1-C 1的平面角.在Rt △AA 1C 1、Rt △AA 1E 、Rt △AA 1B 1、Rt △AA 1F 和Rt △A 1EF 中,AA 1=6,A 1C 1=3,AC 1=3,A 1B 1=2,AB 1=10,∴A 1E =AA 1·A 1C 1AC 1= 2 A 1F =AA 1·A 1B 1AB 1=2155,∴sin A 1FE =A 1E A 1F =306,∠A 1FE =arcsin 306. ∴二面角B -AB 1-C 1的大小为π-arcsin306. 13.(2010·某某卷)已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M 是棱AA ′的中点,点O 是对角线BD ′的中点.(1)求证:OM 为异面直线AA ′和BD ′的公垂线; (2)求二面角M -BC ′-B ′的大小; (3)求三棱锥M -OBC 的体积.解析 (1)连结AC ,取AC 的中点K ,则K 为BD 的中点,连结OK . 因为点M 是棱AA ′的中点,点O 是BD ′的中点,所以AM 綊12DD ′綊OK ,所以MO 綊AK .由AA ′⊥AK ,得MO ⊥AA ′.因为AK ⊥BD ,AK ⊥BB ′,所以AK ⊥平面BDD ′B ′, 所以AK ⊥BD ′,所以MO ⊥BD ′.又因为OM 与异面直线AA ′和BD ′都相交, 故OM 为异面直线AA ′和BD ′的公垂线.(2)取BB ′的中点N ,连结MN ,则MN ⊥平面BCC ′B ′.过点N 作NH ⊥BC ′于H ,连结MH ,则由三垂线定理得,BC ′⊥MH .从而,∠MHN 为二面角M -BC ′-B ′的平面角. 因为MN =1,所以NH =BN sin 45°=12×22=24.在Rt ΔMNH 中tan ∠MHN =MNNH=124=2 2.故二面角M -BC ′-B ′的大小为arctan 2 2.(3)易知,S ΔOBC =S ΔOA ′D ′,且ΔOBC 和ΔOA ′D ′都在平面BCD ′A ′内.点O 到平面MA ′D ′的距离h =12.V M -OBC =V M -OA ′D ′=V O -MA ′D ′=13S ΔMA ′D ′h =124.14.(2010·某某卷)如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB ∶AD ∶AA 1=1∶2∶4.(1)求异面直线EF 与A 1D 所成角的余弦值; (2)证明AF ⊥平面A 1ED ;(3)求二面角A 1-ED -F 的正弦值.解析 (1)设AB =1,可得AD =2,AA 1=4,CF =1,CE =12,连接B 1C ,BC 1,设B 1C 与BC 1交于点M ,易知A 1D ∥B 1C . 由CE CB =CF CC 1=14,可知EF ∥BC 1.故∠BMC 是异面直线EF 与A 1D 所成的角,易知BM =CM =12B 1C =5,所以cos ∠BMC =BM 2+CM 2-BC 22·BM ·CM =35.所以异面直线EF 与A 1D 所成角的余弦值为35.(2)连接AC ,设AC 与DE 交于点N . 因为CD BC =EC AB =12,所以Rt △DCE ∽Rt △CBA .从而∠CDE =∠BCA ,又由于∠CDE +∠CED =90°,所以∠BCA +∠CED =90°,故AC ⊥DE ,又因为CC 1⊥DE 且CC 1∩AC =C ,所以DE ⊥平面ACF ,从而AF ⊥DE .连接BF ,同理可证B 1C ⊥平面ABF ,从而AF ⊥B 1C ,所以AF ⊥A 1D ,因为DE ∩A 1D =D ,所以AF ⊥平面A 1ED .(3)连接A 1N ,FN ,由(2)可知DE ⊥平面ACF ,又NF ⊂平面ACF ,A 1N ⊂平面ACF ,所以DE ⊥NF ,DE ⊥A 1N ,故∠A 1NF 为二面角A 1-ED -F 的平面角.易知Rt △E ∽Rt △CBA ,所以CB =ECAC ,又AC =5,所以=55,在Rt △F 中,NF =CF 2+2=305,在Rt △A 1AN 中,A 1N =AN 2+A 1A 2=4305. 连接A 1C 1,A 1F ,在Rt △A 1C 1F 中,A 1F =A 1C 12+C 1F 2=14.在△A 1NF 中,cos ∠A 1NF =A 1N 2+FN 2-A 1F 22·A 1N ·FN =23.所以sin ∠A 1NF =53.所以二面角A 1-ED -F 的正弦值为53.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(时间60分钟,满分80分)
一、选择题(共6个小题,每小题5分,满分30分)
1.已知集合A ={1,2,3,4},B =⎩⎨⎧⎭
⎬⎫y |y =12x ,x ∈A ,则A ∩B =( ) A .{1,2,3,4}
B .{1,2} C{1,3} D .{2,4}
解析:由题意得B ={12,1,32
,2},则A ∩B ={1,2}. 答案:B
2.(2011·威海模拟)如图,I 是全集,A 、B 、C 是它的子集,则
阴影部分所表示的集合是( )
A .(∁I A ∩
B )∩C
B .(∁I B ∪A )∩C
C .(A ∩B )∩∁I C
D .(A ∩∁I B )∩C
解析:由图可知阴影部分所表示的集合是(A ∩∁I B )∩C .
答案:D
3.(2010·北京宣武模拟)设集合A ={1,2,3,4},B ={3,4,5},全集U =A ∪B ,则集合∁U (A ∩B )的元素个数为( )
A .1个
B .2个
C .3个
D .4个
解析:A ∩B ={3,4},U =A ∪B ={1,2,3,4,5},∁U (A ∩B )={1,2,5},∁U (A ∩B )的元素个数有3个.
答案:C
4.设集合U ={小于7的正整数},A ={1,2,5},B =⎩⎨⎧⎭
⎬⎫x |32-x +1≤0,x ∈N ,则A ∩(∁U B )=( )
A .{1}
B .{2}
C .{1,2}
D .{1,2,5} 解析:U ={1,2,3,4,5,6},B ={3,4,5},则A ∩∁U B ={1,2}.
答案:C
5.设集合A ={x |y =x 2-4},B ={y |y =x 2-4},C ={(x ,y )|y =x 2-4},则下列关系:①A ∩C =∅;②A =C ;③A =B ;④B =C .其中不.
正确的共有( ) A .1个 B .2个
C .3个
D .4个
解析:②、③、④都不正确.
答案:C
6.如图所示的韦恩图中,A 、B 是非空集合,定义A *B 表示阴影部分的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A *B 为( )
A .{x |0<x <2}
B .{x |1<x ≤2}
C .{x |0≤x ≤1或x ≥2}
D .{x |0≤x ≤1或x >2} 解析:A ={x |0≤x ≤2},B ={y |y >1},A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0},由图可得A *B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}.
答案:D
二、填空题(共3小题,每小题5分,满分15分)
7.设集合A ={x |x 2-2x +2m +4=0},B ={x |x <0},若A ∩B ≠∅,则实数m 的取值范围为____________.
解析:设M ={m |关于x 的方程x 2-2x +2m +4=0的两根均为非负实数},
则⎩⎪⎨⎪⎧
Δ=4(-2m -3)≥0,x 1+x 2=2>0,
x 1·x 2=2m +4≥0,⇒-2≤m ≤-32, 设全集U ={m |Δ≥0}=⎩⎨⎧⎭⎬⎫m ⎪⎪ m ≤-32, ∵M =⎩⎨⎧⎭⎬⎫m ⎪⎪
-2≤m ≤-32, ∴m 的取值范围是∁U M ={m |m <-2}.
答案:{m |m <-2}
8.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.
解析:A ∪B ={x ∈N *|lg x <1}={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4}={1,3,5,7,9},∴B ={2,4,6,8}.
答案:{2,4,6,8}
9.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.
解析:借助Venn 图分析(如图所示).
答案:12
三、解答题(共3小题,满分35分)
10.设集合A ={x 2,2x -1,-4},B ={x -5,1-x,9},若A ∩B ={9},求A ∪B . 解:由9∈A ,可得x 2=9,或2x -1=9,
解得x =±3,或x =5.
当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;
当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B = {-8,-7,-4,4,9};
当x =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.
综上所述,A ∪B ={-8,-7,-4,4,9}.
11.已知集合A ={x |x 2-2x -3≤0,x ∈R},B ={x |x 2-2mx +m 2-4≤0,x ∈R}.
(1)若A ∩B =[1,3],求实数m 的值;
(2)若A ⊆∁R B ,求实数m 的取值范围.
解:A ={x |-1≤x ≤3},
B ={x |m -2≤x ≤m +2}.
(1)∵A ∩B =[1,3],∴⎩⎪⎨⎪⎧
m -2=1m +2≥3,得m =3. (2)∁R B ={x |x <m -2或x >m +2}.
∵A ⊆∁R B ,∴m -2>3或m +2<-1.
∴m >5或m <-3.
12.若集合A ={x |x 2-2x -8<0},B ={x |x -m <0}.
(1)若m =3,全集U =A ∪B ,试求A ∩(∁U B );
(2)若A ∩B =∅,求实数m 的取值范围;
(3)若A ∩B =A ,求实数m 的取值范围.
解:(1)由x 2-2x -8<0,得-2<x <4,
∴A ={x |-2<x <4}.
当m =3时,由x -m <0,得x <3,∴B ={x |x <3},
∴U =A ∪B ={x |x <4},∁U B ={x |3≤x <4}.
∴A ∩(∁U B )={x |3≤x <4}.
(2)∵A ={x |-2<x <4},B ={x |x <m },
又A∩B=∅,∴m≤-2.
(3)∵A={x|-2<x<4},B={x|x<m},由A∩B=A,得A⊆B,∴m≥4.。