初三数学概率试题大全(含答案)【精选】
概率(共50题)(解析版)--2023年中考数学真题分项汇编(全国通用)
专题概率(50题)一、单选题1(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.34【答案】B【分析】根据概率公式求解即可.【详解】解:总人数为10人,随机抽取一个学号共有10种等可能结果,抽到的学号为男生的可能有6种,则抽到的学号为男生的概率为:610=35,故选:B.【点睛】本题考查了概率公式求概率;解题的关键是熟练掌握概率公式.2(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为()A.16B.13C.12D.23【答案】C【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果,再找出符合题意的结果数,最后利用概率公式计算即可.【详解】∵任意掷一枚均匀的小正方体色子,共有6种等可能的结果,其中朝上点数是偶数的结果有3种,∴朝上点数是偶数的概率为36=12.故选:C.【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.3(2023·湖北武汉·统考中考真题)某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.112【答案】C【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画出树状图,找到所有情况数和满足要求的情况数,利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画树状图如下:由树状图可知共有12种等可能情况,他选择“100米”与“400米”两个项目即选择C 和D 的情况数共有2种,∴选择“100米”与“400米”两个项目的概率为212=16,故选:C .【点睛】此题考查了树状图或列表法求概率,正确画出树状图或列表,找到所有等可能情况数和满足要求情况数是解题的关键.4(2023·河北·统考中考真题)1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选:B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5(2023·江苏苏州·统考中考真题)如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.14B.13C.12D.34【答案】C【分析】根据灰色区域与整个面积的比即可求解.【详解】解:∵转盘中四个扇形的面积都相等,设整个圆的面积为1,∴灰色区域的面积为12,∴当转盘停止转动时,指针落在灰色区域的概率是12,故选:C.【点睛】本题考查了几何概率,熟练掌握概率公式是解题的关键.6(2023·湖南永州·统考中考真题)今年2月,某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.1【答案】B【分析】根据概率公式,即可解答.【详解】解:从三首歌曲中选择两首进行排练,有《在希望的田野上》《我和我的祖国》、《在希望的田野上》《十送红军》、《我和我的祖国》《十送红军》共三种选择方式,故选到前两首的概率是1 3,故选:B.【点睛】本题考查了根据概率公式计算概率,排列出总共可能的情况的数量是解题的关键.7(2023·山东临沂·统考中考真题)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.23【答案】D【分析】画树状图得出所有等可能的结果数和抽取的两名同学恰好是一名男生和一名女生的结果数,再利用概率公式可得出答案.【详解】解:设两名男生分别记为A,B,两名女生分别记为C,D,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为812=23,故选:D.【点睛】本题考查列表法或树状图法求概率,解题时要注意是放回试验还是不放回试验;概率等于所求情况数与总情况数之比.用列表法或画树状图法不重复不遗漏的列出所有可能的结果是解题的关键.8(2023·浙江温州·统考中考真题)某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.23【答案】C【分析】根据概率公式可直接求解.【详解】解:∵有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山,∴若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为24=12;故选:C .【点睛】本题考查了根据概率公式求简单事件的概率,正确理解题意是关键.9(2023·浙江绍兴·统考中考真题)在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.57【答案】C【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.10(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm ,大圆半径为20cm ,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()A.16B.18C.110D.112【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可.【详解】解:由题意得,大圆面积为π×202=400πcm 2,免一次作业对应区域的面积为60×π×202360-60×π×102360=50πcm 2,∴投中“免一次作业”的概率是50π400π=18,故选B.【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.11(2023·安徽·统考中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.29【答案】C【分析】根据题意列出所有可能,根据新定义,得出2种可能是“平稳数”,根据概率公式即可求解.【详解】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有,123,132,213,231,312,321共六种可能,只有123,321是“平稳数”∴恰好是“平稳数”的概率为26=13故选:C.【点睛】本题考查了新定义,概率公式求概率,熟练掌握概率公式是解题的关键.12(2023·浙江·统考中考真题)某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是()A.12B.14C.13D.34【答案】B【分析】直接根据概率公式求解即可.【详解】解:从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,总共有4种选择,选中梅岐红色教育基地有1种,则概率为1 4,故选:B【点睛】此题考查了概率的求法,通过所有可能结果得出n,再从中选出符合事件结果的数目m,然后根据概率公式P=mn求出事件概率.13(2023·四川成都·统考中考真题)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.12B.13C.14D.16【答案】B【分析】根据概率公式求解即可.【详解】解:由题意,随机抽取一张,共有6种等可能的结果,其中恰好抽中水果类卡片的有2种,∴小明随机抽取一张,他恰好抽中水果类卡片的概率是26=13,故选:B .【点睛】本题考查求简单事件的概率,关键是熟知求概率公式:所求情况数与总情况数之比.14(2023·四川泸州·统考中考真题)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为()A.16B.13C.12D.23【答案】B【分析】由众数的概念可知六个数中众数为5,然后根据简单概率计算公式求解即可.【详解】解:1,2,3,4,5,5六个数中,数字5出现了2次,出现的次数最多,故这组数据的众数为5,所以从六个数中随机选取一个数,这个数恰为该组数据的众数的概率为P =26=13.故选:B .【点睛】本题主要考查了求一组数据的众数以及简单概率计算,正确确定该组数据的众数是解题关键.15(2023·广东·统考中考真题)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为()A.18 B.16C.14D.12【答案】C【分析】根据概率公式可直接进行求解.【详解】解:由题意可知小明恰好选中“烹饪”的概率为14;故选C .【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.二、填空题16(2023·山西·统考中考真题)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.【答案】16【分析】用树状图把所有情况列出来,即可求出.【详解】总共有12种组合,《论语》和《大学》的概率112=16,故答案为:16.【点睛】此题考查了用树状图或列表法求概率,解题的关键是熟悉树状图或列表法,并掌握概率计算公式.17(2023·湖南郴州·统考中考真题)在一个不透明的袋子中装有3个白球和7个红球,它们除颜色外,大小、质地都相同.从袋子中随机取出一个球,是红球的概率是.【答案】710【分析】根据概率公式进行计算即可.【详解】解:由题意,得,随机取出一个球共有10种等可能的结果,其中取出的是红球共有7种等可能的结果,∴P =710;故答案为:710.【点睛】本题考查概率.熟练掌握概率的计算公式,是解题的关键.18(2023·浙江杭州·统考中考真题)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+n =25,去分母,得6×5=26+n ,解得n =9,经检验n =9是所列分式方程的根,∴n =9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.19(2023·天津·统考中考真题)不透明袋子中装有10个球,其中有7个绿球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为.【答案】710【分析】直接利用概率公式求解即可.【详解】解:由题意,从装有10个球的不透明袋子中,随机取出1个球,则它是绿球的概率为710,故答案为:710.【点睛】本题考查求简单事件的概率,理解题意是解答的关键.20(2023·山东滨州·统考中考真题)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是.【答案】16【分析】利用表格或树状图列示出所有可能结果,找出满足条件的结果,根据概率公式计算即可.【详解】所有可能结果如下表,所有结果共有36种,其中,点数之和等于7的结果有6种,概率为636=16故答案为:16.【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.21(2023·新疆·统考中考真题)在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,从中任选一个点恰好在第一象限的概率是.【答案】25【分析】根据第一象限的点的特征,可得共有2个点在第一象限,进而根据概率公式即可求解.【详解】解:在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,其中A 1,2 ,D 4,3 ,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是25,故答案为:25.【点睛】本题考查了概率公式求概率,第一象限点的坐标特征,熟练掌握以上知识是解题的关键.22(2023·浙江台州·统考中考真题)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是.【答案】25【分析】根据概率的公式即可求出答案.【详解】解:由题意得摸出红球的情况有两种,总共有5个球,∴摸出红球的概率:22+3=25.故答案为:25.【点睛】本题考查了概率的求法,解题的关键在于熟练掌握概率的简单计算公式:概率=事件发生的可能情况÷事件总情况.23(2023·上海·统考中考真题)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.【答案】25【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为P =410=25,故答案为:25.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.24(2023·浙江金华·统考中考真题)下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是.“偏瘦”“标准”“超重”“肥胖”803504624【答案】710【分析】根据概率公式计算即可得出结果.【详解】解:该生体重“标准”的概率是350500=710,故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.25(2023·浙江嘉兴·统考中考真题)现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是.【答案】13【分析】根据概率公式即可求解.【详解】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13.【点睛】本题考查了概率公式求概率,熟练掌握概率公式是解题的关键.26(2023·四川南充·统考中考真题)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.【答案】6【分析】设袋中红球有x 个,然后根据概率计算公式列出方程求解即可.【详解】解:设袋中红球有x 个,由题意得:xx +4=0.6,解得x =6,检验,当x =6时,x +4≠0,∴x =6是原方程的解,∴袋中红球有6个,故答案为:6.【点睛】本题主要考查了已知概率求数量,熟知红球的概率=红球数量÷球的总数是解题的关键.27(2023·重庆·统考中考真题)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.【答案】19【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.28(2023·四川自贡·统考中考真题)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是.【答案】25【分析】画树状图可得,共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,再利用概率公式求解即可.【详解】解:设蛋黄粽为A ,鲜肉粽为B ,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,∴爷爷奶奶吃到同类粽子的概率是820=25,故答案为:25.【点睛】本题考查用列表法或树状图求概率、概率公式,熟练掌握相关知识是解题的关键.29(2023·辽宁大连·统考中考真题)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为.【答案】12【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为P =24=12,故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.30(2023·山东·统考中考真题)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为.【答案】59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.三、解答题31(2023·四川内江·统考中考真题)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团,该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了名学生,补全条形统计图(要求在条形图上方注明人数);(2)扇形统计图中圆心角α=度;(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.【答案】(1)200,补全条形统计图见解析(2)54(3)恰好选中甲、乙两名同学的概率为16【分析】(1)用B类型社团的人数除以其人数占比即可求出参与调查的总人数;用总人数减去A、B、D、E 四个类型社团的人数得到C类型社团的人数,即可补全条形统计图;(2)用360°乘以C类型社团的人数占比即可求出扇形统计图中α的度数;(3)先画出树状图得到所有等可能性的结果数,再找到恰好选中甲和乙两名同学的结果数,最后依据概率计算公式求解即可.【详解】(1)解:50÷25%=200(人),C类型社团的人数为200-30-50-70-20=30(人),补全条形统计图如图,故答案为:200;=54°,(2)解:α=360°×30200故答案为:54;(3)解:画树状图如下:∵共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,∴恰好选中甲、乙两名同学的概率为212=16.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图并画出树状图或列出表格是解题的关键.32(2023·湖北宜昌·统考中考真题)“阅读新时代,书香满宜昌”.在“全民阅读月”活动中,某校提供了四类适合学生阅读的书籍:A 文学类,B 科幻类,C 漫画类,D 数理类.为了解学生阅读兴趣,学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据,整理后得到下列不完整的图表:书籍类别学生人数A 文学类24B 科幻类mC 漫画类16D 数理类8(1)本次抽查的学生人数是,统计表中的m =;(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是;(3)若该校共有1200名学生,请你估计该校学生选择“D 数理类”书籍的学生人数;(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文、小明随机选取四个社团中的一个,请利用列表或画树状图的方法,求他们选择同一社团的概率.【答案】(1)80,32(2)72°(3)120(4)14【分析】(1)利用A 文学类的人数除以对应的百分比即可得到本次抽查的学生人数,用抽查总人数乘以B 科幻类的百分比即可得到m 的值;(2)用360°乘以“C 漫画类”对应的百分比即可得到“C 漫画类”对应的圆心角的度数;(3)用该校共有学生数乘以抽查学生中选择“D 数理类”书籍的学生的百分比即可得到该校学生选择“D 数理类”书籍的学生人数;(4)画出树状图,找到等可能情况总数和小文、小明选择同一社团的情况数,利用概率公式求解即可.【详解】(1)解:由题意得,本次抽查的学生人数是24÷30%=80(人),统计表中的m =80×40%=32,故答案为:80,32(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是:360°×1680×100%=72°,故答案为:72°(3)由题意得,1200×880×100%=120(人),即估计该校学生选择“D 数理类”书籍的学生为120人;(4)树状图如下:从树状图可看出共有16种等可能的情况,小文、小明选择同一社团的情况数共有4种,∴P (小文、小明选择同一社团)=416=14.【点睛】此题考查了树状图或列表法求概率、样本估计总体、扇形统计图等相关知识,读懂题意,熟练掌握树状图或列表法求概率和准确计算是解题的关键.33(2023·湖北黄冈·统考中考真题)打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m =,n =,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)18,6,72°(2)480人(3)29【分析】(1)根据选择“E :其他类”的人数及比例求出总人数,总人数乘以A 占的比例即为m ,总人数减去A ,B ,C ,E 的人数即为n ,360度乘以B 占的比例即为文学类书籍对应扇形圆心角;。
九年级数学概率统计练习题及答案
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
中考数学真题《概率》专项测试卷(附答案)
中考数学真题《概率》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(50题)一、单选题1.(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.342.(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子朝上点数是偶数的概率为()A.16B.13C.12D.233.(2023·湖北武汉·统考中考真题)某校即将举行田径运动会“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1124.(2023·河北·统考中考真题)1有7张扑克牌如图所示将其打乱顺序后背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A.B.C.D.5.(2023·江苏苏州·统考中考真题)如图,转盘中四个扇形的面积都相等任意转动这个转盘1次当转盘停止转动时指针落在灰色区域的概率是()A.14B.13C.12D.346.(2023·湖南永州·统考中考真题)今年2月某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练参加永州市即将举办的“唱响新时代筑梦新征程”合唱选拔赛那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.17.(2023·山东临沂·统考中考真题)在项目化学习中“水是生命之源”项目组为了解本地区人均淡水消耗量需要从四名同学(两名男生两名女生)中随机抽取两人组成调查小组进行社会调查恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.238.(2023·浙江温州·统考中考真题)某校计划组织研学活动现有四个地点可供选择:南麂岛百丈漈楠溪江雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.239.(2023·浙江绍兴·统考中考真题)在一个不透明的袋子里装有2个红球和5个白球它们除颜色外都相同从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.5710.(2023·四川遂宁·统考中考真题)为增强班级凝聚力吴老师组织开展了一次主题班会.班会上他设计了一个如图的飞镖靶盘靶盘由两个同心圆构成小圆半径为10cm大圆半径为20cm每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次)投中“免一次作业”的概率是()A.16B.18C.110D.11211.(2023·安徽·统考中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用123这三个数字随机组成一个无重复数字的三位数恰好是“平稳数”的概率为()A.59B.12C.13D.2912.(2023·浙江·统考中考真题)某校准备组织红色研学活动需要从梅岐王村口住龙小顺四个红色教育基地中任选一个前往研学选中梅岐红色教育基地的概率是()A.12B.14C.13D.3413.(2023·四川成都·统考中考真题)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目老师提供6张背面完全相同的卡片其中蔬菜类有4张正面分别印有白菜辣椒豇豆茄子图案水果类有2张正面分别印有草莓西瓜图案每个图案对应该种植项目.把这6张卡片背面朝上洗匀小明随机抽取一张他恰好抽中水果类卡片的概率是()A.12B.13C.14D.1614.(2023·四川泸州·统考中考真题)从1 2 3 4 5 5六个数中随机选取一个数这个数恰为该组数据的众数的概率为()A.16B.13C.12D.2315.(2023·广东·统考中考真题)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习每门课程被选中的可能性相等小明恰好选中“烹饪”的概率为()A.18B.16C.14D.12二 填空题16.(2023·山西·统考中考真题)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》 它是儒家思想的核心著作 是中国传统文化的重要组成部分 若从这四部著作中随机抽取两本(先随机抽取一本 不放回 再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.17.(2023·湖南郴州·统考中考真题)在一个不透明的袋子中装有3个白球和7个红球 它们除颜色外 大小 质地都相同.从袋子中随机取出一个球 是红球的概率是___________.18.(2023·浙江杭州·统考中考真题)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =_________.19.(2023·天津·统考中考真题)不透明袋子中装有10个球 其中有7个绿球 3个红球 这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为________.20.(2023·山东滨州·统考中考真题)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是___________.21.(2023·新疆·统考中考真题)在平面直角坐标系中有五个点 分别是()1,2A ()3,4B - ()2,3C --()4,3D ()2,3E - 从中任选一个点恰好在第一象限的概率是______.22.(2023·浙江台州·统考中考真题)一个不透明的口袋中有5个除颜色外完全相同的小球 其中2个红球 3个白球.随机摸出一个小球 摸出红球的概率是________.23.(2023·上海·统考中考真题)在不透明的盒子中装有一个黑球 两个白球 三个红球 四个绿球 这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为________.24.(2023·浙江金华·统考中考真题)下表为某中学统计的七年级500名学生体重达标情况(单位:人) 在该年级随机抽取一名学生 该生体重“标准”的概率是__________. “偏瘦” “标准” “超重” “肥胖”80350462425.(2023·浙江嘉兴·统考中考真题)现有三张正面印有2023年杭州亚运会吉祥物琮琮宸宸和莲莲的不透明卡片卡片除正面图案不同外其余均相同将三张卡片正面向下洗匀从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.26.(2023·四川南充·统考中考真题)不透明袋中有红白两种颜色的小球这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6若袋中有4个白球,则袋中红球有________个.27.(2023·重庆·统考中考真题)一个口袋中有1个红色球有1个白色球有1个蓝色球这些球除颜色外都相同.从中随机摸出一个球记下颜色后放回摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________ .28.(2023·四川自贡·统考中考真题)端午节早上小颖为全家人蒸了2个蛋黄粽3个鲜肉粽她从中随机挑选了两个孝敬爷爷奶奶请问爷爷奶奶吃到同类粽子的概率是________.29.(2023·辽宁大连·统考中考真题)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为_______________.30.(2023·山东·统考中考真题)用数字0 1 2 3组成个位数字与十位数字不同的两位数其中是偶数的概率为__________.三解答题31.(2023·四川内江·统考中考真题)某校为落实国家“双减”政策丰富课后服务内容为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团B.体育社团C.美术社团D.文学社团E.电脑编程社团该校为了解学生对这五类社团活动的喜爱情况随机抽取部分学生进行了调查统计并根据调查结果绘制了如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)此次调查一共随机抽取了___________名学生补全条形统计图(要求在条形图上方注明人数)(2)扇形统计图中圆心角α=___________度(3)现从“文学社团”里表现优秀的甲乙丙丁四名同学中随机选取两名参加演讲比赛请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.32.(2023·湖北宜昌·统考中考真题)“阅读新时代书香满宜昌”.在“全民阅读月”活动中某校提供了四类适合学生阅读的书籍:A文学类B科幻类C漫画类D数理类.为了解学生阅读兴趣学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据整理后得到下列不完整的图表:书籍类别学生人数A文学类24B科幻类mC漫画类16D数理类8(1)本次抽查的学生人数是_________ 统计表中的m=_________(2)在扇形统计图中“C漫画类”对应的圆心角的度数是_________(3)若该校共有1200名学生请你估计该校学生选择“D数理类”书籍的学生人数(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文小明随机选取四个社团中的一个请利用列表或画树状图的方法求他们选择同一社团的概率.33.(2023·湖北黄冈·统考中考真题)打造书香文化培养阅读习惯崇德中学计划在各班建图书角开展“我最喜欢阅读的书篇”为主题的调查活动学生根据自己的爱好选择一类书籍(A:科技类B:文学类C:政史类D:艺术类E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查根据收集到的数据绘制了两幅不完整的统计图(如图所示).根据图中信息请回答下列问题(1)条形图中的m=________ n=________ 文学类书籍对应扇形圆心角等于________度(2)若该校有2000名学生请你估计最喜欢阅读政史类书籍的学生人数(3)甲同学从A B C三类书籍中随机选择一种乙同学从B C D三类书籍中随机选择一种请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.34.(2023·湖南岳阳·统考中考真题)为落实中共中央办公厅国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》深入开展“我们的节日”主题活动某校七年级在端午节来临之际成立了四个社团:A包粽子B腌咸蛋C酿甜酒D摘艾叶.每人只参加一个社团的情况下随机调查了部分学生根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了_________名学生(2)请补全条形统计图(3)学校计划从四个社团中任选两个社团进行成果展示请用列表或画树状图的方法求同时选中A和C两个社团的概率.35.(2023·山东烟台·统考中考真题)“基础学科拔尖学生培养试验计划”简称“珠峰计划” 是国家为回应“钱学森之问”而推出的一项人才培养计划旨在培养中国自己的杰出人才.已知A B C D E五所大学设有数学学科拔尖学生培养基地并开设了暑期夏令营活动参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况随机抽取部分学生进行调查并将统计数据整理后绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整(2)在扇形统计图中D所在的扇形的圆心角的度数为_________ 若该市有1000名中学生参加本次活动,则选择A大学的大约有_________人(3)甲乙两位同学计划从A B C三所大学中任选一所学校参加夏令营活动请利用树状图或表格求两人恰好选取同一所大学的概率.36.(2023·江苏苏州·统考中考真题)一只不透明的袋子中装有4个小球分别标有编号1,2,3,4这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球这个球的编号是2的概率为________________.(2)搅匀后从中任意摸出1个球记录球的编号后放回搅匀再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)37.(2023·山东枣庄·统考中考真题)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布劳动课正式成为中小学的一门独立课程日常生活劳动设定四个任务群:A清洁与卫生B整理与收纳C家用器具使用与维护D烹饪与营养.学校为了较好地开设课程对学生最喜欢的任务群进行了调查并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中一共调查了___________名学生其中选择“C家用器具使用与维护”的女生有___________名“D烹饪与营养”的男生有___________名.(2)补全上面的条形统计图和扇形统计图(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.38.(2023·湖北随州·统考中考真题)中学生心理健康受到社会的广泛关注某校开展心理健康教育专题讲座就学生对心理健康知识的了解程度采用随机抽样调查的方式根据收集到的信息进行统计绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有___________人条形统计图中m的值为___________ 扇形统计图中“非常了解”部分所对应扇形的圆心角的度数为___________(2)若该校共有学生800人根据上述调查结果可以估计出该校学生中对心理健康知识“不了解”的总人数为___________人(3)若某班要从对心理健康知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加心理健康知识竞赛请用列表或画树状图的方法求恰好抽到2名女生的概率.39.(2023·江西·统考中考真题)为了弘扬雷锋精神某校组织“学雷锋争做新时代好少年”的宣传活动根据活动要求每班需要2名宣传员某班班主任决定从甲乙丙丁4名同学中随机选取2名同学作为宣传员.(1)“甲乙同学都被选为宣传员”是_______事件:(填“必然” “不可能”或“随机”)(2)请用画树状图法或列表法求甲丁同学都被选为宣传员的概率.40.(2023·甘肃武威·统考中考真题)为传承红色文化激发革命精神增强爱国主义情感某校组织七年级学生开展“讲好红色故事传承红色基因”为主题的研学之旅策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县)B.长征会师胜利之旅(会宁县)C.西路军红色征程之旅(高台县)且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片正面分别写上字母A B C卡片除正面字母不同外其余均相同将3张卡片正面向下洗匀小亮先从中随机抽取一张卡片记下字母后正面向下放回洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A的概率(2)请用画树状图或列表的方法求两人都抽到卡片C的概率.41.(2023·四川乐山·统考中考真题)为培养同学们爱劳动的习惯某班开展了“做好一件家务”主题活动要求全班同学人人参与经统计同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”.班主任将以上信息绘制成了统计图表如图所示.家务类型洗衣拖地煮饭刷碗人数(人)101210m根据上面图表信息 回答下列问题:(1)m =__________(2)在扇形统计图中 “拖地”所占的圆心角度数为__________(3)班会课上 班主任评选出了近期做家务表现优异的4名同学 其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会 请用画树状图或列表的方法求所选同学中有男生的概率.42.(2023·四川遂宁·统考中考真题)为贯彻落实党的二十大关于深化全民阅读活动的重要部署 教育部印发了《全国青少年学生读书行动实施方案》于是某中学开展了以“书香润校园 好书伴成长”为主题的系列读书活动.学校为了解学生周末的阅读情况 采用随机抽样的方式获取了若干名学生的周末阅读时间数据 整理后得到下列不完整的图表: 类别A 类B 类C 类D 类 阅读时长t (小时)01t ≤< 12t ≤< 23t ≤< 3t ≥ 频数 8 m n 4请根据图表中提供的信息 解答下面的问题:(1)此次调查共抽取了_________名学生 m = _________ n = _________(2)扇形统计图中 B 类所对应的扇形的圆心角是_________度(3)已知在D 类的4名学生中有两名男生和两名女生 若从中随机抽取两人参加阅读分享活动 请用列表或画树状图的方法求出恰好抽到一名男生和一名女生的概率.43.(2023·四川广安·统考中考真题)“双减”政策实施后某校为丰富学生的课余生活开设了A书法B 绘画C舞蹈D跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况随机抽取该校部分学生进行了问卷调查并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.(1)本次抽取调查学生共有___________人估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为___________人.(2)请将以上两个..统计图补充完整.(3)甲乙两名学生要选择参加兴趣班若他们每人从A B C D四类兴趣班中随机选取一类请用画树状图或列表法求两人恰好选择同一类的概率.44.(2023·四川宜宾·统考中考真题)某校举办“我劳动 我快乐 我光荣”活动.为了解该校九年级学生周末在家的劳动情况 随机调查了九年级1班的所有学生在家劳动时间(单位:小时) 并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题: 类别 劳动时间xA01x ≤< B12x ≤< C23x ≤< D34x ≤< E 4x ≤(1)九年级1班的学生共有___________人 补全条形统计图(2)若九年级学生共有800人 请估计周末在家劳动时间在3小时及以上的学生人数(3)已知E 类学生中恰好有2名女生3名男生 现从中抽取两名学生做劳动交流 请用列表或画树状图的方法 求所抽的两名学生恰好是一男一女的概率.45.(2023·四川南充·统考中考真题)为培养学生劳动习惯 提升学生劳动技能 某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A .物品整理 B .环境美化 C .植物栽培 D .工具制作.要求每个学生选择其中一项活动参加该班数学科代表对全班学生参与四类活动情况进行了统计并绘制成统计图(如图).(1)已知该班有15人参加A类活动,则参加C类活动有多少人?(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖其中一名女生叫王丽若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛求刚好抽中王丽和1名男生的概率.46.(2023·四川凉山·统考中考真题)2023年“五一”期间凉山旅游景点人头攒动热闹非凡州文广旅、、、表局对本次“五一”假期选择泸沽湖会理古城螺髻九十九里邛海沪山风景区(以下分别用A B C D 示)的游客人数进行了抽样调查并将调查情况绘制成如下不完整的两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的游客有多少人?(2)将两幅不完整的统计图补充完整、、、四个景区中的两个用列表或画树状图的方法求他第一个景区恰好选(3)若某游客随机选择A B C D择A的概率.47.(2023·四川达州·统考中考真题)在深化教育综合改革提升区域教育整体水平的进程中某中学以兴趣小组为载体加强社团建设艺术活动学生参与面达100%通过调查统计八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团B.泥塑社团C.陶笛社团D.书法社团E.合唱社团并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人并把条形统计图补充完整(2)扇形统计图中m=___________ n=___________ 参加剪纸社团对应的扇形圆心角为_______度(3)小鹏和小兵参加了书法社团由于参加书法社团几位同学都非常优秀老师将从书法社团的学生中选取2人参加学校组织的书法大赛请用“列表法”或“画树状图法” 求出恰好是小鹏和小兵参加比赛的概率.48.(2023·山东·统考中考真题)某学校为扎实推进劳动教育把学生参与劳动教育情况纳入积分考核.学校随机抽取了部分学生的劳动积分(积分用x表示)进行调查整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数x≥4A90B8090≤<mxC7080≤<20xD6070x≤<8x<3E60请根据以上图表信息解答下列问题:(1)统计表中m _________ C等级对应扇形的圆心角的度数为_________(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人请估计该学校“劳动之星”大约有多少人(3)A等级中有两名男同学和两名女同学学校从A等级中随机选取2人进行经验分享请用列表法或画树状图法求恰好抽取一名男同学和一名女同学的概率.49.(2023·福建·统考中考真题)为促进消费助力经济发展某商场决定“让利酬宾” 于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①①①的3个黄球的袋中随机摸出1个球若摸得红球,则中奖可获得奖品:若摸得黄球,则不中奖.同时还允许未中奖的顾客将其摸得的球放回袋中并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同)然后从中随机摸出1个球记下颜色后不放回再从中随机摸出1个球若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.(1)求该顾客首次摸球中奖的概率(2)假如该顾客首次摸球未中奖为了有更大机会获得精美礼品他应往袋中加入哪种颜色的球?说明你的理由50.(2023·湖北荆州·统考中考真题)首届楚文化节在荆州举办前 主办方为使参与服务的志愿者队伍整齐 随机抽取了部分志愿者 对其身高进行调查 将身高(单位:cm )数据分A B C D E 五组制成了如下的统计图表(不完整).组别身高分组 人数 A155160x ≤< 3 B160165x ≤< 2 C165170x ≤< m D170175x ≤< 5 E 175180x ≤< 4根据以上信息回答:(1)这次被调查身高的志愿者有___________人 表中的m =___________ 扇形统计图中α的度数是___________(2)若E 组的4人中 男女各有2人 以抽签方式从中随机抽取两人担任组长.请列表或画树状图 求刚好抽中两名女志愿者的概率.参考答案一 单选题1.(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.34【答案】B【分析】根据概率公式求解即可.【详解】解:总人数为10人随机抽取一个学号共有10种等可能结果抽到的学号为男生的可能有6种则抽到的学号为男生的概率为:63 105=故选:B.【点睛】本题考查了概率公式求概率解题的关键是熟练掌握概率公式.2.(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子朝上点数是偶数的概率为()A.16B.13C.12D.23【答案】C【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果再找出符合题意的结果数最后利用概率公式计算即可.【详解】①任意掷一枚均匀的小正方体色子共有6种等可能的结果其中朝上点数是偶数的结果有3种①朝上点数是偶数的概率为31 62 =.故选:C.【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.3.(2023·湖北武汉·统考中考真题)某校即将举行田径运动会“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.112【答案】C【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为A B C D、、、画出树状图找到所有情况数和满足要求的情况数利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A B C D、、、画树状图如下:。
初三概率练习题及答案
初三概率练习题及答案概率是数学中一个重要的分支,它研究随机事件的发生概率。
在初三数学学习中,概率也是一个重要的知识点。
为了帮助同学们更好地掌握概率知识,我将提供一些初三概率练习题及答案。
练习题1:某班级学生早餐的习惯如下:80%的学生吃面包,60%的学生喝牛奶,40%的学生既吃面包又喝牛奶。
现在从该班级中随机选取一位学生,请回答以下问题:a) 这位学生早餐吃面包的概率是多少?b) 这位学生早餐喝牛奶的概率是多少?c) 这位学生早餐既吃面包又喝牛奶的概率是多少?解答:a) 这位学生早餐吃面包的概率为80%。
b) 这位学生早餐喝牛奶的概率为60%。
c) 这位学生早餐既吃面包又喝牛奶的概率为40%。
练习题2:一副扑克牌共有52张牌,其中红桃有13张,黑桃有13张,方块有13张,梅花有13张。
现从扑克牌中随机抽取一张,请回答以下问题:a) 抽到红桃的概率是多少?b) 抽到黑桃或者方块的概率是多少?解答:a) 抽到红桃的概率为13/52,即1/4。
b) 抽到黑桃或者方块的概率为26/52,即1/2。
练习题3:某箱子中有5个红球和3个蓝球,现从中随机抽取两个球,请回答以下问题:a) 抽到两个红球的概率是多少?b) 抽到一个红球和一个蓝球的概率是多少?c) 抽到两个蓝球的概率是多少?解答:a) 抽到两个红球的概率为(5/8) * (4/7) = 20/56,即5/14。
b) 抽到一个红球和一个蓝球的概率为(5/8) * (3/7) + (3/8) * (5/7) = 30/56,即15/28。
c) 抽到两个蓝球的概率为(3/8) * (2/7) = 6/56,即3/28。
练习题4:小明参加一次抽奖活动,共有20个奖品,其中2个一等奖,5个二等奖,13个三等奖。
小明只能中奖一次,请回答以下问题:a) 小明中一等奖的概率是多少?b) 小明中二等奖的概率是多少?c) 小明中三等奖的概率是多少?解答:a) 小明中一等奖的概率为2/20,即1/10。
中考数学复习专题《概率》专项训练-附带答案
中考数学复习专题《概率》专项训练-附带答案一、选择题1.下列事件为必然事件的是()A.三角形内角和是180°B.打开电视机,正在播放新闻C.明天下雨D.掷一枚质地均匀的硬币,正面朝上2.九年级一班有25名男生和20名女生,从中随机抽取一名作为代表参加校演讲比赛.下列说法正确的是()A.抽到男生和女生的可能性一样大B.抽到男生的可能性大C.抽到女生的可能性大D.抽到男生或女生的可能性大小不能确定3.将分别标有“大”、“美”、“明”、“德”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“明德”的概率是()A.16B.18C.14D.5164.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A离开的概率是()A.12B.13C.14D.166.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计下一次操作获到红球的概率是()A.0.3 B.0.4 C.0.5 D.0.67.有三张正面分别写有数字-2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,洗匀后,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.498.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。
数学初中概率试题及答案
数学初中概率试题及答案1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?答案:抽到红球的概率是5/8。
2. 抛一枚公平的硬币两次,两次都正面朝上的概率是多少?答案:两次都正面朝上的概率是1/4。
3. 在一个班级中,有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,选到男生的概率是多少?答案:选到男生的概率是1/2。
4. 一个转盘被平均分成了8个部分,其中3个部分涂成红色,2个部分涂成蓝色,其余3个部分涂成绿色。
如果转动转盘,停在红色部分的概率是多少?答案:停在红色部分的概率是3/8。
5. 一个袋子里有10个球,其中7个是白球,3个是黑球。
如果随机抽取两个球,两个都是白球的概率是多少?答案:两个都是白球的概率是7/15。
6. 一个骰子有6个面,每个面上分别标有1到6的数字。
如果掷一次骰子,掷出偶数的概率是多少?答案:掷出偶数的概率是1/2。
7. 一个袋子里有6个球,其中4个是红球,2个是黄球。
如果随机抽取两个球,至少抽到一个红球的概率是多少?答案:至少抽到一个红球的概率是2/3。
8. 一个袋子里有5个球,其中3个是红球,2个是白球。
如果随机抽取一个球,抽到白球的概率是多少?答案:抽到白球的概率是2/5。
9. 一个班级有50名学生,其中25名男生和25名女生。
如果随机选择两名学生,两名都是女生的概率是多少?答案:两名都是女生的概率是1/2。
10. 一个袋子里有8个球,其中5个是红球,3个是蓝球。
如果随机抽取两个球,两个都是红球的概率是多少?答案:两个都是红球的概率是5/28。
(完整版)初三数学概率试题大全(含答案)
试题一一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键 3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.24 9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.16图1图210.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 . 13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0,2,π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分)19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?9 8 3 7 6 2 4 5 120.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数). (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强… (1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B. 二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1100. 23.(1)P (偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16. 24.根据题意,以(m ,n )为坐标的点A 共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y =2x 图像上,所求概率是336=112,即点A 在函数y =2x 图像上的概率是112. 四、25,(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:双方马的对阵中,只有一种对抗情况田忌能赢,所以田忌获胜的概率P =16. 26,【参考答案】(1)设袋中有黄球个,由题意得,解得,故袋中有黄球个; (2) ∵ ∴.(3)设小明摸到红球有次,摸到黄球有次,则摸到蓝球有次,由题意得,即∴∵、、均为自然数∴当时,;当时,;当时,.综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为次、次、次或次、次、次或次、次、次.m 21122=++m 1=m 161122)(==两次都摸到红球P x y )6(y x --20)6(35=--++y x y x 72=+y x x y 27-=x y y x --61=x 06,5=--=y x y 2=x 16,3=--=y x y 3=x 26,1=--=y x y 150231312第二次摸球第一次摸球黄红2蓝红2蓝黄红1红1红1红2黄蓝蓝黄红2红1备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为() A A.12个B.9个C.6个D.3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,•得病与不得病的概率各占50%”,他的说法() CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是()BA.37B.316C.12D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,•其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是() DA.532B.38C.1532D.17325.某同学期中考试全班第一,则期末考试.(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为.0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是 .52 8.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有 粒. 4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 张.910.在中考体育达标跳绳项目测试中,1min 跳160次为达标.•小敏记录了他预测时1min 跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。
初三数学概率考试卷
一、选择题(每题5分,共25分)1. 从一副含有大小、花色不同的扑克牌中随机抽取一张牌,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/3D. 1/52. 小明从0到9这10个数字中随机选择一个数字,选择到偶数的概率是多少?A. 1/2B. 1/4C. 1/5D. 1/103. 一个袋子里有5个红球、3个蓝球和2个黄球,随机取出一个球,取出黄球的概率是多少?A. 1/5B. 1/2C. 1/3D. 1/104. 小华从0到9这10个数字中随机选择一个数字,选择到小于5的概率是多少?A. 1/2B. 1/4C. 1/5D. 1/105. 一个骰子掷出奇数的概率是多少?B. 1/3C. 2/3D. 1二、填空题(每题5分,共25分)6. 从0到9这10个数字中随机选择一个数字,选择到大于5的概率是______。
7. 一个袋子里有5个红球、3个蓝球和2个黄球,随机取出一个球,取出红球的概率是______。
8. 小明从0到9这10个数字中随机选择一个数字,选择到偶数的概率是______。
9. 一个骰子掷出偶数的概率是______。
10. 从一副含有大小、花色不同的扑克牌中随机抽取一张牌,抽到黑桃的概率是______。
三、解答题(每题10分,共30分)11. (10分)一个袋子里有5个红球、3个蓝球和2个黄球,随机取出一个球,求取出蓝球的概率。
12. (10分)小明从0到9这10个数字中随机选择一个数字,求选择到3的概率。
13. (10分)一个骰子掷出3个面的概率是多少?四、简答题(每题10分,共20分)14. (10分)简述概率的定义。
15. (10分)简述古典概型的特点。
答案:一、选择题1. A2. B4. A5. A二、填空题6. 1/27. 3/108. 1/29. 1/210. 1/4三、解答题11. 3/1012. 1/1013. 1/6四、简答题14. 概率是表示某个事件发生的可能性大小的数值,其取值范围在0到1之间。
初三数学概率中考试卷答案
一、选择题(每题4分,共40分)1. 已知一个装有红球、蓝球、绿球各一个的袋子,从中任意摸出一个球,摸到红球的概率是()A. 1/3B. 2/3C. 1/2D. 1答案:A2. 从1到10这10个自然数中随机抽取一个数,抽到偶数的概率是()A. 1/2B. 1/3C. 2/3D. 1答案:A3. 抛掷一枚均匀的硬币,出现正面的概率是()A. 1/2B. 1/3C. 2/3D. 1答案:A4. 一个袋子里装有5个红球和3个蓝球,从中随机抽取一个球,抽到红球的概率是()A. 5/8B. 3/8C. 2/3D. 1/2答案:A5. 一个密码锁由0到9这10个数字组成,任意输入一个密码,正确的概率是()A. 1/10B. 1/100C. 1/1000D. 1/10000答案:A6. 一个班级有40名学生,其中有20名男生,20名女生。
随机选择一名学生,选择到女生的概率是()A. 1/2B. 2/3C. 1/3D. 1/4答案:A7. 一个正方体有6个面,每个面都涂有不同颜色。
随机掷这个正方体,得到红色的概率是()A. 1/6B. 1/3C. 1/2D. 2/3答案:A8. 一个装有红球、蓝球、绿球各两个的袋子,从中随机抽取一个球,抽到红球的概率是()A. 1/3B. 2/3C. 1/2D. 1答案:A9. 一个班级有50名学生,其中有30名学生喜欢数学,20名学生喜欢英语。
随机选择一名学生,选择到喜欢数学的概率是()A. 3/5B. 2/5C. 1/2D. 1/3答案:A10. 一个袋子里装有10个球,其中有3个白球、4个黑球、3个红球。
从中随机抽取一个球,抽到白球的概率是()A. 1/2B. 1/3C. 2/3D. 3/10答案:A二、填空题(每题4分,共20分)11. 抛掷一枚均匀的骰子,得到偶数的概率是 _______。
答案:1/212. 从1到10这10个自然数中随机抽取一个数,抽到奇数的概率是 _______。
初三数学概率与排列组合练习题及答案20题
初三数学概率与排列组合练习题及答案20题1、某班级有24名学生,其中12人喜欢音乐,15人喜欢篮球。
有4人既喜欢音乐又喜欢篮球。
某学生只有喜欢音乐或者喜欢篮球。
请问该班级有多少名学生既不喜欢音乐也不喜欢篮球?解答:根据题意,喜欢音乐的学生数量为12,喜欢篮球的学生数量为15,既喜欢音乐又喜欢篮球的学生数量为4。
根据集合的性质可知,喜欢音乐或者喜欢篮球的学生数量应为喜欢音乐的学生数量加上喜欢篮球的学生数量,再减去既喜欢音乐又喜欢篮球的学生数量。
即 12 + 15 - 4 = 23。
所以,该班级共有23名学生既不喜欢音乐也不喜欢篮球。
2、小明有6只不同颜色的球,他想把这些球放入4个不同的盒子中。
每个盒子至少放一个球。
问他有多少种不同的放置方法?解答:首先,我们需要找到小明将6个球分配到4个盒子中的所有可能性。
假设每个盒子中放了a、b、c、d个球,根据题意可知,a、b、c、d都是大于等于1的正整数,并且a + b + c + d = 6。
我们可以使用组合数学中的排列组合方法来解答这个问题。
首先,将6个球放到4个盒子中,相当于在6个位置中插入3个分隔符,将这6个位置分为4个区域。
例如,位置间隔和分隔符的排列可以表示为:OO|OOO|O|。
根据排列组合的知识,将3个相同的分隔符插入6个位置中的所有不同方法数为 C(6, 3) = 20。
所以,小明有20种不同的放置方法。
3、在一副标准扑克牌中,从中随机抽取3张牌。
请问有多少种可能的抽牌结果?解答:一副标准扑克牌共有52张牌,我们需要从中抽取3张牌,而每张牌的选取都是独立的,所以我们可以使用排列组合的方法计算总的可能性。
根据组合数学的知识,从n个元素中选取m个元素的组合数可以表示为 C(n, m) = n! / (m! * (n - m)!)。
所以,从52张牌中选取3张牌的组合数为 C(52, 3) = 22,100。
因此,有22,100种可能的抽牌结果。
4、一枚硬币抛掷8次,问出现正面的次数为奇数的概率是多少?解答:一枚硬币抛掷8次,每次抛掷都有两种可能的结果:正面或反面。
初三数学概率试题(含答案)
一、选择题1. 下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( ) A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21 B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D.摸到白球、黑球、红球的概率都是31 6.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.32个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12B.13C.23D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12 B.14 C.16 D.18二、填空题11.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .12.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下图1图2一盘棋小红不输的概率是_______.13.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .14.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .15.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.16.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克?(2)估计这个鱼塘可产这种鱼多少千克?17.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?18.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?19.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m、n,若把m、n作为点A的横、纵坐标,那么点A(m,n)在函数y=2x的图像上的概率是多少?四、能力提升20.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)21. 不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?1.c2.a3.a4.d5.c6.b7.c8.b9.a 10.b 11.251 12.54% 13.52 14.小红 15.9 16.①102:2=x :100 x=5100②每条鱼的质量=(150+150-1.5x2)/(100+100-2)总重量=5100x 每条鱼的质量=7573.5 17.1001 18.32 ;61 19.363=121 20.①下、上、中的顺序; ②61(齐王上中下-上中下,上中下-上下中,上中下-中上下,上中下中下上,上中下-下上中,上中下-下中上 )21.①1 ② 61 ③设小明摸到红球有x 次,黄球y 次,蓝球(6-x-y )次,则5x+3y+(6-x-y)=20 即2x+y=7 y=7-2x由于三者均为自然数,经讨论得:1,5,0 或2,3,1 或3,1,2。
初三数学概率练习题
初三数学概率练习题
一、选择题
1. 从一副完整的扑克牌中随机抽取一张,抽到红桃的概率是多少?
A. 1/4
B. 1/2
C. 1/13
D. 1/52
2. 一个袋子里有3个红球和2个蓝球,随机抽取一个球,抽到红球的概率是多少?
A. 1/2
B. 1/3
C. 3/5
D. 2/5
二、填空题
3. 一个班级有40名学生,其中20名男生和20名女生。
从这个班级中随机抽取一名学生,抽到女生的概率是______。
4. 抛一枚均匀的硬币两次,两次都是正面朝上的概率是______。
三、计算题
5. 一个袋子里有5个白球和3个黑球,随机抽取两个球,求两个球都是白球的概率。
6. 一个不透明的箱子里有4个红球,5个蓝球和6个绿球,随机抽取一个球,求抽到红球的概率。
四、解答题
7. 一个袋子里有10个球,其中3个是红球,7个是白球。
如果从袋子里随机抽取两个球,求至少抽到一个红球的概率。
8. 一个转盘被分成8个相等的扇形,其中3个扇形是红色,2个扇形是蓝色,3个扇形是绿色。
如果转动转盘一次,求指针停在红色扇形上的概率。
五、应用题
9. 在一次抽奖活动中,有10个奖项,其中1个是一等奖,3个是二等奖,6个是三等奖。
如果从这10个奖项中随机抽取一个,求抽到一等奖的概率。
10. 一个班级有50名学生,其中25名男生和25名女生。
如果随机选出5名学生参加学校活动,求选出的5名学生中至少有1名男生的概率。
初三数学概率试题大全(含答案)
初三数学概率试题大全(含答案)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学概率试题大全(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学概率试题大全(含答案)的全部内容。
舑。
初三数学概率试题含答案
一、选择题1. 下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16B.13C.14D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )(摸到白球)=21,P (摸到黑球)=21 (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D.摸到白球、黑球、红球的概率都是31 6.概率为的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )个 个 个 个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12B.13C.23D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )图1 图2A.12B.14C.16D.18二、填空题11.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .12.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.13.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .14.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .15.白球有2个,黄球有1个,_个.16.某鱼塘捕到100条鱼,称得总重为150千克,塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克?(2)估计这个鱼塘可产这种鱼多少千克?17.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?18.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?19.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升20.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)21. 不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法? 1.c 11.251 % 13.52 14.小红 16.①102:2=x :100 x=5100②每条鱼的质量=(150+)/(100+100-2)总重量=5100x 每条鱼的质量= 17.1001 18.32 ;61 19.363=121 20.①下、上、中的顺序; ②61(齐王上中下-上中下,上中下-上下中,上中下-中上下,上中下中下上,上中下-下上中,上中下-下中上 )21.①1 ② 61 ③设小明摸到红球有x 次,黄球y 次,蓝球(6-x-y )次,则 5x+3y+(6-x-y )=20 即2x+y=7 y=7-2x 由于三者均为自然数,经讨论得:1,5,0 或 2,3,1 或 3,1,2。
初三数学概率试题大全(含答案)【精选】-精心整理
试题一一、选择题(每题3分,共30分)1。
(08新疆建设兵团)下列事件属于必然事件的是( ) A .打开电视,正在播放新闻 B .我们班的同学将会有人成为航天员 C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键 D 。
退格键3。
(08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4。
掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B 。
13 C 。
14 D.125。
小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( ) A 。
P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 C 。
P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D 。
摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生 D 。
以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个 B 。
30个 C 。
36个 D.42个8。
在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A 。
6B 。
16 C.18 D.249。
如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B 。
(专题精选)初中数学概率经典测试题含答案解析
(专题精选)初中数学概率经典测试题含答案解析一、选择题1.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.58【答案】C【解析】【分析】根据菱形的表示出菱形ABCD的面积,由折叠可知EF是△BCD的中位线,从而可表示出菱形CEOF的面积,然后根据概率公式计算即可.【详解】菱形ABCD的面积=12AC BD⋅,∵将菱形沿EF折叠,使点C与点O重合,∴EF是△BCD的中位线,∴EF=12BD ,∴菱形CEOF的面积=1128OC EF AC BD⋅=⋅,∴阴影部分的面积=113288AC BD AC BD AC BD ⋅-⋅=⋅,∴此点取自阴影部分的概率为: 33 814 2AC BDAC BD⋅=⋅.故选C..【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积n表示所有等可能的结果数,用某个事件所占有的面积m表示这个事件发生的结果数,然后利用概率的概念计算出这个事件的概率为:m Pn =.2.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.3.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖B.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 .故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.5.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类. 现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.16B.18C.112D.116【答案】C【解析】【分析】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,画出树状图,根据概率公式,即可求解.【详解】设投放可回收物、易腐垃圾、有害垃圾和其他垃圾的垃圾桶分别为:A,B,C,D,设可回收物、易腐垃圾分别为:a,b,∵将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶一共有12种可能,投放正确的只有一种可能,∴投放正确的概率是:1 12.故选C.【点睛】本题主要考查画树状图求简单事件的概率,根据题意,画出树状图,是解题的关键.6.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20 B.15 C.10 D.5【答案】B【解析】【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)?-=15个,故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键.7.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.8.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.23B.12C.13D.14【答案】C【解析】【分析】【详解】用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,所以,所求概率为3193,故选C.考点:简单事件的概率.9.在一个不透明的袋中,装有3个红球和1个白球,这些球除颜色外其余都相同. 搅均后从中随机一次模出两个球.......,这两个球都是红球的概率是()A.12B.13C.23D.14【答案】A【解析】【分析】列举出所有情况,看两个球都是红球的情况数占总情况数的多少即可.【详解】画树形图得:一共有12种情况,两个球都是红球的有6种情况,故这两个球都是红球相同的概率是61= 122,故选A.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,-2的中位数是4D.“367人中有2人同月同日出生”为确定事件【答案】D【解析】【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【详解】A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,-2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选D.【点睛】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.11.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.110【答案】A【解析】【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.12.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.13.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A【解析】【分析】用K的扑克张数除以一副扑克的总张数即可求得概率.【详解】解:∵一副扑克共54张,有4张K,∴正好为K的概率为454=227,故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【解析】【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.15.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )A.15B.110C.25D.225【答案】B【解析】【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案.【详解】用字母A、B、C、D、E分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形,所以,正好抽中养老保险和医疗保险的概率P=212010 . 故选B.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A .16B .13C .23D .14【答案】A【解析】 【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况, ∴这两个球上的数字之积为奇数的概率是21=126. 故选A .【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x 上的概率为( ) A .118 B .112 C .19 D .16【答案】C【解析】画树状图如下:∵一共有36种等可能结果,点P落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1),∴点P落在双曲线6y=x上的概率为:41=369.故选C.18.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计【答案】A【解析】根据题意可得5位同学摸到红球的频率为85976357505010++++==,由此可得盒子里的红球比白球多.故选A.20.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.16【答案】A【解析】【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122=.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.。
中考数学专题训练:概率(附参考答案)
中考数学专题训练:概率(附参考答案)1.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.58B.1350C.1332D.5162.在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是( )A.13B.12C.23D.143.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.14B.13C.12D.344.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,朝上一面的点数是偶数的概率是( )A.12B.14C.16D.15.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A.12B.13C.14D.346.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A.59B.12C.13D.297.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.14B.13C.12D.239.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.110.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在平面直角坐标系第二象限的概率是.11.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“·”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是______.12.一个不透明的口袋中装有标号为1,2,3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是______.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是______.14.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题.(1)参与此次抽样调查的学生人数是_______人,补全统计图1(要求在条形图上方注明人数);(2)图2中扇形C的圆心角度数为______度;(3)若参加成果展示活动的学生共有1 200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.15.在一个不透明的袋子中,装有五个分别标有数字-√3,√6,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.16.新高考“3+1+2”选科模式是指除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______.17.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是______.18.从2 021,2 022,2 023,2 024,2 025 这五个数中任意抽取3个数.抽到中位数是2 022的3个数的概率等于______.19.为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对五一假期期间的游客去向进行了随机抽样调查,并绘制了不完整的统计图,请根据图1、图2中所给的信息,解答下列问题.(1)此次抽样调查的样本容量是_______;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,五一假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.20.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外其他都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球.若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.A 8.C 9.B10.1611.1412.5913.1414.(1)120 图略(2)90 (3)300人(4)11015.25 16.1617.2318.31019.(1)200 (2)B组的人数为60人,补全条形统计图略(3)估计前往青海湖景区的游客有6.65万人(4)1420.游戏对双方都公平。
初三数学概率试题大全(含答案)【精选】-精心整理
初三数学概率试题大全(含答案)【精选】-精心整理初三数学概率试题大全(含答案)【精选】-精心整理一、选择题1.如果一枚硬币被抛掷一次,出现正面向上的概率是多少?A. 1/2B. 1/4C. 3/4D. 1/32.一个袋子中有4个红球和6个绿球,从中任取一个球,取出的是红球的概率是多少?A. 1/4B. 1/2C. 2/5D. 2/33.班上有18名男生和12名女生,从中任取一名学生,取出的是女生的概率是多少?A. 2/3B. 1/2C. 3/5D. 5/6二、填空题1.将一个标准扑克牌52张洗乱后,从中随机抽出一张牌,出现红桃的概率是 ______。
2.一个骰子被投掷一次,出现一个小于3的数的概率是 ______。
三、计算题1.将一枚均匀的硬币抛掷三次,出现正面向上的次数为X,求X=2的概率。
2.从1至20的整数中随机选择一个数,求其为偶数且小于10的概率。
答案:一、选择题1. A2. A3. C二、填空题1. 1/22. 1/2三、计算题1. 投掷硬币三次,每次出现正面的概率为1/2,因为硬币投掷的结果是独立事件,所以出现正面向上的次数为2的概率为(1/2)^2 * (1/2) = 1/8。
2. 从1至20的整数中,偶数且小于10的数有2、4、6、8共4个,所以该事件的概率为4/20 = 1/5。
以上是初三数学概率试题大全的一部分,通过选择题、填空题和计算题的形式,旨在帮助同学们加深对概率知识的理解和应用。
希望同学们能通过多练习这些题目,掌握概率的基本概念和计算方法,提高解题能力。
祝愿大家在数学学习中取得好成绩!。
九年级数学概率计算练习题及答案
九年级数学概率计算练习题及答案概率是数学中一个重要的概念,它用于描述某个事件发生的可能性大小。
在九年级的数学学习中,概率计算是一个重要的内容。
为了帮助同学们巩固和提高概率计算的能力,下面为大家整理了一些九年级数学概率计算的练习题及答案,希望能对同学们的学习有所帮助。
【练习题一】某班级有30名学生,其中有12名男生和18名女生。
现从中随机选择一个学生,请回答下列问题:1.男生被选择的概率是多少?2.女生被选择的概率是多少?3.被选择的学生是男生或女生的概率是多少?【答案一】1.男生被选择的概率= 男生人数/总人数 = 12/30 = 2/5 = 0.42.女生被选择的概率= 女生人数/总人数 = 18/30 = 3/5 = 0.63.被选择的学生是男生或女生的概率= 男生被选择的概率 + 女生被选择的概率 = 0.4 + 0.6 = 1【练习题二】甲、乙两个盒子中各装有10个红球和10个蓝球,现从甲盒中随机取出一个球放入乙盒中,然后从乙盒中随机取出一个球,试回答下列问题:1.从乙盒中取出的球是红球的概率是多少?2.从乙盒中取出的球是蓝球的概率是多少?【答案二】1.从甲盒中取出一个球放入乙盒中后,乙盒中红球的数量为11个,蓝球数量为10个,所以从乙盒中取出红球的概率= 11/21 ≈ 0.5238(保留四位小数)2.从甲盒中取出一个球放入乙盒中后,乙盒中红球的数量为10个,蓝球数量为11个,所以从乙盒中取出蓝球的概率= 11/21 ≈ 0.4762(保留四位小数)【练习题三】一枚均匀的硬币抛掷两次,试回答下列问题:1.两次抛掷结果都是正面的概率是多少?2.两次抛掷结果都不是正面的概率是多少?3.至少有一次抛掷结果是反面的概率是多少?【答案三】1.两次抛掷结果都是正面的概率= 抛掷结果为正面的概率 ×抛掷结果为正面的概率 = 0.5 × 0.5 = 0.252.两次抛掷结果都不是正面的概率= 抛掷结果为反面的概率 ×抛掷结果为反面的概率 = 0.5 × 0.5 = 0.253.至少有一次抛掷结果是反面的概率= 1 - 两次抛掷结果都是正面的概率 = 1 - 0.25 = 0.75通过以上的练习题,我们可以巩固和提高在概率计算方面的能力。
九年级概率试题与答案
一、单选题1、从﹣1,0,1,2这4个数中任取2个数,然后求积,积为非负数的概率是()A. 12B. 13C. 16D. 23参考答案: D【思路分析】考查用列举法求概率。
列举出所有情况,看积为非负数的情况数占总情况数的多少即可.【解题过程】解:列表如下,一共有6种情况,积为非负数的情况有四种,所以积为非负数的概率是46=23.故选D.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、有两个事件:①袋中装有4个红球和1个黑球,这些球除颜色外都相同,从中摸出一个球恰好为红球;②信封中装有8个男生名字和2个女生名字,从中摸出1一个名字恰好为男生名字.上述2个事件发生的可能性的大小相比,()A. ①②的可能性相同B. ②的可能性大C. ①的可能性大D. 大小不能确定参考答案: A【思路分析】根据概率公式求出两个事件的概率,再比较出其大小即可.【解题过程】解:①∵袋中装有4个红球和1个黑球,∴从中摸出一个球恰好为红球的概率=45;②∵信封中装有8个男生名字和2个女生名字,∴从中摸出1一个名字恰好为男生名字=45,∴①②的可能性相同.故选A.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、同时抛两枚质地均匀的正方体骰子(骰子每个面的点数分别是1、2、3、4、5、6),下列事件中是必然事件的是()。
A. 两枚骰子朝上一面的点数的和是6B. 两枚骰子朝上一面的点数之和不小于2C. 两枚骰子朝上一面的点数均为偶数D. 两枚骰子朝上一面的点数均为奇数参考答案: B【思路分析】本题主要考查确定事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试题一一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16B.13C.14D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21 B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31 D.摸到白球、黑球、红球的概率都是31 6.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12B.13C.23D.16图1图210.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( ) A.12 B.14 C.16 D.18二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0,2,π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分)19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?9 8 3 7 6 2 4 5 120.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克?(2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强…(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为() A A.12个B.9个C.6个D.3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,•得病与不得病的概率各占50%”,他的说法() CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是()BA.37B.316C.12D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,•其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是() DA.532B.38C.1532D.17325.某同学期中考试全班第一,则期末考试.(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为.0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是.528.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有粒.4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.910.在中考体育达标跳绳项目测试中,1min跳160次为达标.•小敏记录了他预测时1min跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2 511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。
可能得分情况的概论 169 (2)在上述情况下,这一部分同学这两道题的平均得分约是多少?(1)161,166.(2)这两题得分的平均数=6×161+3×83+0×169=1.5. 答:这两题得分的平均数是1.5分12.如图,为举办毕业联欢会,小颖设计了一个游戏:•游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母都相同时,他就可以获得一次指定..一位到会者为大家表演节目的机会.(1)利用画树形图或列表的方法(只选其中一种)•表示出游戏可能出现的所有结果;(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少?(1)方法一: 方法二:转盘2 转盘1CD A(A ,C ) (A ,D ) B(B ,C ) (B ,D ) C (C ,C ) (C ,D )即游戏共有6种结果.(2)参加一次游戏,获得这种指定机会的概率是16. 参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05.21,(1)1.5千克.(2)1021002 =5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1100. 23.(1)P (偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16. 24.根据题意,以(m ,n )为坐标的点A 共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y =2x 图像上,所求概率是336=112,即点A 在函数y =2x 图像上的概率是112. 四、25,(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的双方马的对阵中,只有一种对抗情况田忌能赢,所以田忌获胜的概率P =16. 26,【参考答案】(1)设袋中有黄球m 个,由题意得21122=++m ,解得1=m ,故袋中有黄球1个;(2) ∵∴61122)(==两次都摸到红球P . (3)设小明摸到红球有x 次,摸到黄球有y 次,则摸到蓝球有)6(y x --次,由题意得 20)6(35=--++y x y x ,即72=+y x ∴x y 27-=∵x 、y 、y x --6均为自然数∴当1=x 时,06,5=--=y x y ;当2=x 时,16,3=--=y x y ;当3=x 时,26,1=--=y x y .第二次摸球第一次摸球黄红2蓝红2蓝黄红1红1红1红2黄蓝蓝黄红2红1综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次或2次、3次、1次或3次、1次、2次.试题二用频率估计概率 练习一、仔仔细细,记录自信1.公路上行驶的一辆汽车车牌为偶数的频率约是(A .50%B .100%C .由各车所在单位或个人定D .无法确定 2.实验的总次数、频数及频率三者的关系是( )A .频数越大,频率越大B .频数与总次数成正比C .总次数一定时,频数越大,频率可达到很大D .频数一定时,频率与总次数成反比3.在一副(54张)扑克牌中,摸到“A”的频率是( )A .B .C .D .无法估计4.在做针尖落地的实验中,正确的是( )A .甲做了4 000次,得出针尖触地的机会约为46%,于是他断定在做第4 001次时,针尖肯定不会触地B .乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C .老师安排每位同学回家做实验,图钉自由选取14227113D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要二、认认真真,书写快乐5.通过实验的方法用频率估计概率的大小,必须要求实验是在的条件下进行.6.某灯泡厂在一次质量检查中,从2 000个灯泡中随机抽查了100个,其中有10个不合格,则出现不合格灯泡的频率是,在这2 000个灯泡中,估计有个为不合格产品.7.在红桃A至红桃K这13张扑克牌中,每次抽出一张,然后放回洗牌再抽,研究恰好抽到的数字小于5的牌的概率,若用计算机模拟实验,则要在的范围中产生随机数,若产生的随机数是,则代表“出现小于5”,否则就不是.8.抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是.三、平心静气,展示智慧9.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.10.如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:转动转盘的次数n100150 200 500 800 1 1000 落在“铅笔”的次数m68 111 136 345 564 701落在“铅笔”的频率n(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动转盘一次,你获的铅笔的概率是多少?28.3用频率估计概率一、1~4.ADBB二、5.相同或同等(意思相近即可) 6.0.1,200 7.1~13,1,2,3,4 8.0.45三、9.30个.10.(1)0.68,0.74,0.68,0.69,0.705,0.701;(2)接近0.7;(3)0.7.试题三概率初步一、 重点知识事件分类⎪⎩⎪⎨⎧有时不发生的事件件下,试验时有时发生③随机事件:在一定条都不会发生的事件条件下,每一次试验时②不可能事件:在一定会发生的事件件下,每一次试验时都①必然事件:在一定条1、 事件随机事件不可能事件必然事件确定事件2、 随机事件A 发生的频率与概率频率:在相同条件下大量重复的n 次试验中,随机事件A 发生了m 次,则频率为nm 。