2011年全国高中数学联赛试题(A卷)

合集下载

2011年全国高中数学联赛一试试题参考答案与评分标准

2011年全国高中数学联赛一试试题参考答案与评分标准
(t 2 − x1 )(t 2 − x 2 ) + ( 2t − y 1 )( 2t − y 2 ) = 0 ,
即 t 4 − ( x1 + x 2 )t 2 + x1 ⋅ x 2 + 4t 2 − 2( y 1 + y 2 )t + y 1 ⋅ y 2 = 0 , 即 t 4 − 14t 2 − 16t − 3 = 0 , 即 (t 2 + 4t + 3)(t 2 − 4t − 1) = 0 . 从而点 C 与点 A 显然 t 2 − 4t − 1 ≠ 0 , 否则 t 2 − 2 ⋅ 2t − 1 = 0 , 则点 C 在直线 x − 2 y − 1 = 0 上, 或点 B 重合. 所以 t 2 + 4t + 3 = 0 ,解得 t 1 = −1, t 2 = −3 . 故所求点 C 的坐标为 (1,−2) 或 (9,−6) .
一、填空题:本大题共 8 小题,每小题 8 分,共 64 分.把答案填在横线上.
1 .设集合 A = {a1 , a 2 , a 3 , a 4 } ,若 A 中所有三元子集的三个元素之和组成的集合为 B = {−1, 3, 5, 8} ,则集合 A = . 解 显然,在 A 的所有三元子集中,每个元素均出现了 3 次,所以 3(a1 + a 2 + a 3 + a 4 ) = (−1) + 3 + 5 + 8 = 15 , 故 a1 + a 2 + a 3 + a 4 = 5 ,于是集合 A 的四个元素分别为 5-(-1)=6,5-3=2,5-5 =0,5-8=-3,因此,集合 A = {−3, 0, 2, 6} .
2011 年全国高中数学联合竞赛一试 试题参考答案及评分标准(A 卷)

专家预测卷考前必做)2011年全国高中数学联合竞赛加试试题、参考答案(1)

专家预测卷考前必做)2011年全国高中数学联合竞赛加试试题、参考答案(1)

(专家预测卷考前必做)2011年全国高中数学联合竞赛加试试题、参考答案一 试一、填空题(本题满分64分,每小题8分)1. 已知2a ≥-,且{}2A x x a =-≤≤,{}23,B y y x x A ==+∈,{}2,C t t x x A ==∈,若C B ⊆,则a 的取值范围是 。

2. 在ABC ∆中,若2AB = ,3AC = ,4BC =,O 为ABC ∆的内心,且A O AB BC λμ=+ ,则λμ+= .3. 已知函数()()()()21,0,1,0,x x f x f x x -⎧-≤⎪=⎨->⎪⎩若关于x 的方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是 。

4. 计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0~n -1中的任意一个数。

如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9、99、999都出现的概率是 。

5. 已知椭圆22143x y +=的左、右焦点分别为F 1、F 2,过椭圆的右焦点作一条直线l 交椭圆于点P 、Q ,则△F 1PQ 内切圆面积的最大值是 .6. 设{}n a 为一个整数数列,并且满足:()()()11121n n n a n a n +-=+--,n N +∈.若20072008a ,则满足2008n a 且2n ≥的最小正整数n 是 .7. 如图,有一个半径为20的实心球,以某条直径为中心轴挖去一个半径为12的圆形的洞,再将余下部分融铸成一个新的实心球,那么新球的半径是 。

8. 在平面直角坐标系内,将适合,3,3,x y x y <<<且使关于t 的方程33421()(3)0x y t x y t x y-+++=-没有实数根的点(,)x y 所成的集合记为N ,则由点集N 所成区域的面积为 。

二、解答题(本题满分56分)9. (本小题满分16分)对正整数2n ≥,记11112n n k k n a n k --==⋅-∑,求数列{}n a 中的最大值.10.(本小题满分20分)已知椭圆 12222=+by a x 过定点A (1,0),且焦点在x 轴上,椭圆与曲线y x =的交点为B 、C 。

-全国高中数学联赛试题及答案

-全国高中数学联赛试题及答案

2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】 110【解析】 ()()()1f x f x = ()()()2f x f f x =⎡⎤⎣⎦……()()99f x故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知()f t S =阴影部分面积 AOB OCD BEF S S S ∆∆∆=--()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a的值为 .【答案】 2009【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x ya b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 . 【答案】 22222a b a b+【解析】 设()cos sin P OP OP θθ,, ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a bOP OQ+=+. 于是当OP OQ ==OP OQ 达到最小值22222a b a b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 .【答案】 0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩当且仅当0kx > ① 10x +>② ()2210x k x +-+=③对③由求根公式得1x ,2122x k ⎡=-⎣④2400k k k ∆=-⇒≥≤或4k ≥. (ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去.综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯ ……()121212n n a n --=+-⨯ ()212n n -=+故981001012a =⨯. 8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,一旅客820∶到车站,则它候车时间的数学期望为 (精确到分)【答案】 27 【解析】 旅客候车的分布列为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+->① ………………………………………………4分 由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k +=- ()()()2222243120km k m ∆=-+-+>② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得 2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k <.因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示); (Ⅱ)若1p =,14q =,求{}n a 的前n 项和. 【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列.数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以211n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nn a n n α=+-=+. 于是数列{}n a 的通项公式为()1n n a n α=+; (5)分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--. 于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-. (15)分方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---. (10)分(Ⅱ)同方法一.3. (本小题满分15分)求函数y 【解析】 函数的定义域为[]013,.因为y ==当0x =时等号成立.故y 的最小值为.……………………………………………5分又由柯西不等式得22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11.…………………………………………………………………………………15分2010年全国高中数学联赛一 试一、填空题(每小题8分,共64分,) 1. 函数x x x f 3245)(---=的值域是 .2. 已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是 . 3. 双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 .4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα .5. 函数)1,0(23)(2≠>-+=a a a ax f x x在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 .6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 .7. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin .8. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 . 二、解答题(本题满分56分)9. (16分)已知函数)0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值.10.(20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.11.(20分)证明:方程02523=-+x x 恰有一个实数根r ,且存在唯一的严格递增正整数数列}{n a ,使得+++=32152a a a r r r . 解 答1. ]3,3[- 提示:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-.2. 1223≤≤-a 提示:令t x =sin ,则原函数化为t a at t g )3()(2-+-=,即 t a at t g )3()(3-+-=.由3)3(3-≥-+-t a at ,0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即3)(2-≥+t t a . (1)当1,0-=t 时(1)总成立;对20,102≤+<≤<t t t ;对041,012<+≤-<<-t t t .从而可知 1223≤≤-a . 3. 9800 提示:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为98009848512=+⨯.3 提示 :设}{n a 的公差为}{,n b d 的公比为q ,则,3q d =+ (1) 2)43(3q d =+, (2)(1)代入(2)得961292++=+d d d ,求得9,6==q d .从而有βα+=-+-19log )1(63n n 对一切正整数n 都成立,即βα+-=-9log )1(36n n 对一切正整数n 都成立. 从而βαα+-=-=9log 3,69log ,求得 3,33==βα,333+=+βα.5. 41-提示:令,y a x =则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的. 当10<<a 时,],[1-∈a a y ,211max 1()32822g y a a a a ---=+-=⇒=⇒=, 所以412213)21()(2min -=-⨯+=y g ;当1>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 1217 提示:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为+⨯+⨯+127)125(127)125(1274217121442511127=-⨯=.7.4提示:解法一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=B A B .设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x =、),,(222z y x =,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x BP m z x BA ⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x B x A B 由此可设 )3,1,0(),1,0,1(==n m ,所以cos m n m n α⋅=⋅,即2cos cos 4αα=⇒=. 所以 410sin =α. 解法二:如图,PB PA PC PC ==11,.OEPC 1B 1A 1CBA设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ .11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E .连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得3,2,5111=====PO O B O A PA PB .在直角O PA 1∆中,OE P A PO O A ⋅=⋅11,即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OE O B E B O B . 4105542sin sin 111===∠=E B O B EO B α. 8. 336675 提示:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类:(1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.9. 解法一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得)21(4)1(2)0(23f f f a '-'+'=.所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤ 8≤, 所以38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38. 解法二:c bx ax x f ++='23)(2. 设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g . 设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b az b a z a z g z h .容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . 从而当11≤≤-z 时,22)()(0≤-+≤z h z h , 即21434302≤++++≤c b a z a , 从而 0143≥+++c b a ,2432≤z a ,由 102≤≤z 知38≤a .又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.10. 解法一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=.线段AB 的垂直平分线的方程是)2(30--=-x y y y . (1) 易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.由(1)知直线AB 的方程为)2(30-=-x y y y ,即2)(300+-=y y y x . (2) (2)代入x y 62=得12)(2002+-=y y y y ,即012222002=-+-y y y y . (3)依题意,21,y y 是方程(3)的两个实根,且21y y ≠,所以22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+=]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=. 定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==.220209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆ )9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤7314=. 当且仅当20202249y y -=+,即0y =,66((33A B +-或66((33A B -时等号成立. 所以,ABC ∆面积的最大值为7314. 解法二:同解法一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, 2222122112))656665(21(t t t t t t S ABC --+=∆221221)5()(23+-=t t t t )5)(5)(24(23212121++-=t t t t t t3)314(23≤,所以7314≤∆ABC S , 当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t6572+-=t ,66((33A B +-或66((33A B -时等号成立. 所以,ABC ∆面积的最大值是7314. 11.令252)(3-+=x x x f ,则056)(2>+='x x f ,所以)(x f 是严格递增的.又043)21(,02)0(>=<-=f f ,故)(x f 有唯一实数根1(0,)2r ∈.所以 32520r r +-=,3152rr -=4710r r r r =++++.故数列),2,1(23 =-=n n a n 是满足题设要求的数列. 若存在两个不同的正整数数列 <<<<n a a a 21和 <<<<n b b b 21满足52321321=+++=+++ b b b a a a r r r r r r ,去掉上面等式两边相同的项,有+++=+++321321t t t s s s r r r r r r ,这里 <<<<<<321321,t t t s s s ,所有的i s 与j t 都是不同的.不妨设11t s <,则++=++<21211t t s s s r r r r r ,112111111121211=--<--=++≤++<--rr r r r s t s t ,矛盾.故满足题设的数列是唯一的.2011年全国高中数学联合竞赛一试试题(A 卷)考试时间:2011年10月16日 8:00—9:20一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上. 1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设ba ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++n n n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式; (2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l与椭圆C:143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.yOPAB2012年全国高中数学联赛一试参考答案及详细评分标准一、填空题:本大题共8小题,每小题8分,共64分.把答案填在题中的横线上.1. 设P 是函数2y x x=+(0x >)的图像上任意一点,过点P 分别向 直线y x =和y 轴作垂线,垂足分别为,A B ,则PA PB ⋅的值是 .解:方法1:设0002(,),p x x x +则直线PA 的方程为0002()(),y x x x x -+=--即0022.y x x x =-++由00000011(,).22y xA x x y x x x x x=⎧⎪⇒++⎨=-++⎪⎩又002(0,),B x x +所以00011(,),(,0).PA PB x x x =-=-故001() 1.PA PB x x ⋅=⋅-=- 2. 设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a Bb Ac -=,则tan tan A B的值是 . 解:由题设及余弦定理得222223225c a b b c a a b c ca bc +-+-⋅-⋅=,即22235a b c -=故222222222222228tan sin cos 2542tan sin cos 52a c b a c A A B c a b ac b c a B B A b c a c b bc+-⋅+-=====+-+-⋅.3.设,,[0,1]x y z ∈,则||||||M x y y z z x =-+-+-的最大值是 .解:不妨设01,x y z ≤≤≤≤则.M y x z y z x =-+-+-因为2[()()]2().y x z y y x z y z x -+-≤-+-=-所以2()(21)2 1.M z x z x z x ≤-+-=+-≤-当且仅当1,0,1,2y x z y x z y -=-===时上式等号同时成立.故max 2 1.M =+ 4.抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N ,则||||MN AB 的最大值是 . 解:由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得2222cos3AB AF BF AF BF π=+-⋅2()3AF BF AF BF =+-⋅22()3()2AF BF AF BF +≥+-22().2AF BF MN +== 当且仅当AF BF =时等号成立.故MNAB的最大值为1.5.设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的侧面与底面所成的角为45,则正三棱锥Q ABC -的侧面与底面所成角的正切值是 . 解:如图.连结PQ ,则PQ ⊥平面ABC ,垂足H 为正ABC ∆的中心,且PQ 过球心O ,连结CH 并延长交AB 于点M ,则M 为AB 的中点,且CM AB ⊥,易知,PMH QMH ∠∠分别为正三棱锥,P ABC Q ABC --的侧面与底面所成二角的平面角,则45PMH ∠=,从而12PH MH AH ==,因为90,,PAQ AH PQ ∠=⊥ 所以2,AP PH QH =⋅即21.2AH AH QH =⋅所以24.QH AH MH ==,故tan 4QHQMH MH∠==6. 设()f x 是定义在R 上的奇函数,且当0x ≥时,()f x x 2=.若对任意的[,2]x a a ∈+,不等式()2()f x a f x +≥恒成立,则实数a 的取值范围是 .解:由题设知22(0)()(0)x x f x x x ⎧≥⎪=⎨-<⎪⎩,则2()).f x f =因此,原不等式等价于()).f x a f +≥因为()f x 在R 上是增函数,所以,x a +≥即1).a x ≥又[,2],x a a ∈+所以当2x a =+时,1)x 取得最大值1)(2).a +因此,1)(2),a a ≥+解得a ≥故a 的取值范围是).+∞7.满足11sin 43n π<<的所有正整数n 的和是 .解:由正弦函数的凸性,有当(0,)6x π∈时,3sin ,x x x π<<由此得131sin ,sin ,1313412124πππππ<<>⨯= 131sin ,sin .10103993πππππ<<>⨯=所以11sin sin sin sin sin .134********πππππ<<<<<< 故满足11sin 43n π<<的正整数n 的所有值分别为10,11,12,它们的和为33.8.某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .(用最简分数表示)解:用k P 表示第k 周用A 种密码的概率,则第k 周末用A 种密码的概率为1k P -.于是,有11(1),3k k P P k N *+=-∈,即1111()434k k P P +-=--由11P =知,14k P ⎧⎫-⎨⎬⎩⎭是首项为34,公比为13-的等比数列。

2011年全国高中数学联赛湖北省预赛试题word版含参考答案

2011年全国高中数学联赛湖北省预赛试题word版含参考答案

2011年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。

填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。

一、填空题(本题满分64分,每小题8分。

直接将答案写在横线上。

)1.计算:2222sin 10sin 20sin 30sin 90︒+︒+︒++︒ = 5 .2.设等差数列{}n a 的前n 项和为n S ,已知1221S =,则34910a a a a +++=____7____. 3.已知P 是△ABC 所在平面上一点,满足23PA PB PC AB ++= ,则△ABP 与△ABC 的面积之比为1:2. 4.111(1)(1)(1)121231232011---+++++++ =6712011.5.满足方程28sin()160x x xy ++=(R,[0,2)x y π∈∈)的实数对(,)x y 的个数为 8 .6.已知函数2()2||2f x x x =-+的定义域为[,]a b (其中a b <),值域为[2,2]a b ,则符合条件的数组(,)a b 为1(,22+. 7.设集合{0,1,2,3,4,5,6,7,8,9}A =.如果方程20x mx n --=(,m n A ∈)至少有一个根0x A ∈,就称该方程为合格方程,则合格方程的个数为 23 .8.已知关于x 的方程||x k -=[1,1]k k -+上有两个不相等的实根,则实数k 的取值范围是01k <≤.二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知二次函数2()y f x x bx c ==++的图象过点(1,13),且函数y =1()2f x -是偶函数. (1)求()f x 的解析式;(2)函数()y f x =的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.解 (1)因为函数1()2y f x =-是偶函数,所以二次函数2()f x x bx c =++的对称轴方程为12x =-,故1b =. ------------------------------------------4分又因为二次函数2()f x x bx c =++的图象过点(1,13),所以113b c ++=,故11c =.因此,()f x 的解析式为2()11f x x x =++. ------------------------------------------8分(2)如果函数()y f x =的图象上存在符合要求的点,设为P 2(,)m n ,其中m 为正整数,n 为自然数,则2211m m n ++=,从而224(21)43n m -+=,即[2(21)][2(21)]43n m n m ++-+=.------------------------------------------12分 注意到43是质数,且2(21)2(21)n m n m ++>-+,2(21)0n m ++>,所以有2(21)43,2(21)1,n m n m ++=⎧⎨-+=⎩解得10,11.m n =⎧⎨=⎩因此,函数()y f x =的图象上存在符合要求的点,它的坐标为(10,121).------------------------------------------16分10.已知,R a b ∈,关于x 的方程432210x ax x bx ++++=有一个实根,求22a b +的最小值. 解 设r 为方程432210x ax x bx ++++=的实根,则有432210r ar r br ++++=,即 222(1)()0r r ar b +++=.显然0r ≠. ------------------------------------------5分 容易证明22224()()(1)ar b a b r +≤++,于是222224422222442424()(1)1(1)(21)[]11(1)(1)ar b r r r r a b r r r r r r r ++++++≥=-⋅==++++42244422424(1)4(1)414448(1)1r r r r r r r r r r +++++==++≥=++. ------------------------------------------15分 当且仅当4224141r r r r +=+且2a r b=时等号成立,此时21r =,a b =. 结合222(1)()0r r ar b +++=可求得2,1,a b r ==-⎧⎨=⎩或2,1.a b r ==⎧⎨=-⎩ 因此22a b +的最小值为8. ------------------------------------------20分11.已知数列{}n a 满足2*1121,(N )3n n n a a a a n n+==+∈.证明:对一切*N n ∈,有 (1)11n n a a +<<; (2)1124n a n>-. 解 (1)显然,0n a >,所以212n n n n a a a a n+=+>(*n N ∈). 所以,对一切*k N ∈,211221k k k k k k a a a a a a k k ++=+<+,所以21111k k a a k +-<. --------------------5分 所以,当2n ≥时,111121122111111111111()3[1]3[1()](1)1n n n n k k k k n k k a a a a a k k k k k ----====+=-->->-+=-+---∑∑∑∑ 13[11]111n n n =-+-=>--, 所以1n a <. 又1113a =<,故对一切*n N ∈,有1n a <. 因此,对一切*n N ∈,有11n n a a +<<. ------------------------------------------10分(2)显然111113424a =>=-. 由1n a <,知2122k k k k k a a a a a k k +=+<+,所以2121k k k a a k +>+,所以 2211122221111k k k k k k k k k a k a a a a a a a a k k k k +++=+>+⋅=+++, 所以211111k k a a k +->+, ------------------------------------------15分 所以,当*n N ∈且2n ≥时,111121111111111111111()33()1(1)1n n n n k k k k n k k a a a a a k k k kk ----====+=--<-<-=--+++∑∑∑∑ 1213(1)n n n+=--=, 所以11112122(21)24n n a n n n >=->-++. ------------------------------------------20分。

2011年全国高中数学联赛试题及答案详解(B卷)

2011年全国高中数学联赛试题及答案详解(B卷)

二、解答题:本大题共 3 小题,共 56 分.解答应写出文字说明、证明过程 或演算步骤.
9.(本小题满分 16 分)已知实数 x, y, z 满足:x ≥ y ≥ z ,x + y + z = 1,x 2 + y 2 + z 2 = 3 .求
实数 x 的取值范围. 解 令 x = 1+ t .由 x + y + z = 1得 z = −t − y ,代入 x 2 + y 2 + z 2 = 3 ,得
2011 年全国高中数学联合竞赛一试答案(B 卷)第 4 页(共 5 页)
x 2 − 4 pq x − 2qy1 y2 = 0 .

y1 + y2
y1 + y2
由于 A1 A2 所在的直线与抛物线 x 2 = 2qy 相切,所以方程①的判别式
化简整理得
Δ
=
⎜⎜⎝⎛ −
)=
2009a1006
=1,
于是 a1006
=
1 2009
,所以
S 2011
= 2011( a1
+ a 2011 )09

2.已知复数 z 的模为 1, 若 z = z1 和 z = z2 时|z+1+i|分别取得最大值和最小值,则
z1 − z2 =

解 易知|1+i|-|z|≤|z+1+i|≤|1+i|+|z|,即 2 −1 ≤|z+1+i|≤ 2 +1 .
2
2
又 x ≥ y ,所以 1+ t ≥ − t + 4 − 4t − 3t 2 ,即 2 + 3t ≥ 4 − 4t − 3t 2 ,解得 t ≥ 0 . 2

2011年全国高中数学联赛试题参考答案

2011年全国高中数学联赛试题参考答案

2011年全国高中数学联合竞赛一试试题(A 卷)考试时间:2011年10月16日 8:00—9:20一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A.2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式; (2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2011年全国高中数学联合竞赛加试试题(A卷)考试时间:2011年10月16日 9:40—12:10二、(本题满分40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有)()()()(21k r f r f r f m f ≠.三、(本题满分50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a jk i j ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.四、(本题满分50分)设A是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A中的一个)9⨯nmm方格表为“好矩形”,若它的所有数的和为10的倍数.称A n≤≤1(≤1,3≤中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A中“坏格”个数的最大值.出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

第8无理函数

第8无理函数

无理函数的值域问题求无理函数的值域问题是初等数学的难点,因该类问题内涵丰富,灵活多变,涉及多个知识点,技巧性、综合性较强,解法灵活多样,因此成为数学竞赛的热点.本文通过对各种解法进行对比研究,试图寻找解决各种类型问题的最佳方法.1.单调性质法[例1]:(2010年全国高中数学联赛试题)函数f(x)=5-x -x 324-的值域是 .[解析]:[评注]:一个函数我们直接或作一些变形就能判断函数的单调性,用单调求值域是一种比较快捷的方法.无理函数f (x)=b ax ++d cx +(a 与c 同号)型,或f (x)=b ax +-d cx +(a 与c 异号)型,或f (x)=b ax +-d cx +(a 与c 相等)型等,可判断函数单调性,均可用此法.用单调性质法求无理函数的值域时,必须注意到函数隐含的正负性特征和定义域.[类题]:1.(2011年全国高中数学联赛湖南初赛试题)函数y=1+x -x 525-的值域是 .2.(1995年第六届“希望杯”全国数学邀请赛(高一)试题)函数y=2+x -2-x ( ) (A)是非单调函数,没有反函数 (B)有反函数,且反函数是增函数 (C)有反函数,且反函数是减函数 (D)有反函数,且反函数是非单调函数3.(原创题)求函数y=27+x +x -13-x 的最大值和最小值.4.(原创题)求函数y=27+x +x -14-x -13的最大值和最小值.2.平方分析法[例2]:(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .[解析]:[评注]:求无理函数值域的难点是解析式中含有的根式,而平方法是去掉根式的根本方法.无理函数f (x)=b ax ++ax d -(a>0,b>0,d>0)型,或f (x)=ax+b ±q px x a ++22型等,可使用平方法分析求解.用平方法求无理函数的值域时,必须注意到平方前函数中隐含的非负性特征和定义域.[类题]:1.(1994年全国高中数学联赛上海初赛试题)函数y=x -1994+1993-x 的值域是_____.2.(2003年第十四届“希望杯”全国数学邀请赛(高二)试题)函数y=232+-x x +232x x -+的最大值是 ,最小值是 .3.(2005年全国高中数学联赛吉林初赛试题)若x 2+y 2=169,则函数f(x,y)=3381024+-x y +3381024++x y 的最大值是 .4.(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .3.代数换元法[例3]:(2006年江苏高考试题)设a 为实数,设函数f(x)=a21x -+x +1+x -1的最大值为g(a).(Ⅰ)设t=x +1+x -1,求t 的取值范围,并把f(x)表示为t 的函数m(t); (Ⅱ)求g(a); (Ⅲ)试求满足g(a)=g(a1)的所有实数a. [解析]:[评注]:此法适用于函数f(x)=ax+b+md cx +,一般令t=d cx +,将原函数转化为t 的二次函数,当然也适用于函数f(x)=ax 2+b+m d cx +2、f(x)=ax 2+bx+k+m d cx +、f(x)=qpx cbx ax +++等.用代数换元法求无理函数的值域时,必须注意到换元后的新变元的取值范围.[类题]:1.(1997年第八届“希望杯”全国数学邀请赛(高一))函数y=x-x -1的值域为 . 2,(2011年全国高中数学联赛山西初赛试题)函数y=2x-5+x 311-的最大值是 . 3.(原创题)函数f(x)=x 2+21x -的值域为 .4.(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . 4.三角换元法(Ⅰ)[例4]:(2010年全国高中数学联赛安徽初赛试题)函数f(x)=2x-24x x -的值域是_________.[解析]:[评注]:若|x|≤R,则可作代换x=Rcos α,且α∈[0,π].此法适用于无理函数f(x)中的无理式是22)(a x R --的形式.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.如作代换x=Rsin α,则α∈[-2π,2π],使得换元恰取值好为原函数的定义域.[类题]:1.(2010年全国高中数学联赛江西初赛试题)函数f(x)=212+-x x 的值域是 . 2.(典型题)函数y=x 21x -+x 2的值域是 .3.(1986年全国高中数学联赛上海初赛试题)已知函数y=)56)(96(22-+-+-x x x x ,那么它的值域是__________.4.⑴(2011年全国高中数学联赛内蒙古初赛试题)函数f(x)=9102-+-x x +184502-+-x x 的最大值为 . ⑵(2004年第十五届“希望杯”全国数学邀请赛(高一))已知函数f(x)=232-+-x x +652-+-x x ,则函数f(x)的最大值与最小值之差是________.5.三角换元法(Ⅱ)[例5]:(2006年全国高中数学联赛江西初赛试题)函数f(x)=3-x +x 312-的值域为 .[解析]:[评注]:若x ∈[a,b],则可作代换x=(b-a)sin 2α+a,且α∈[0,2π],或x=2a b -cos α+2b a +,且α∈[0,π].此法适用于无理函数f(x)中的无理式的定义域为[a,b]的函数.如无理函数f (x)=b ax ++d cx +(a 与c 异号)型,或f (x)=ax 2+bx+c+ m t qx px ++2(a<0,q 2-4pr>0)型.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(2008年重庆高考试题)(2009年全国高中数学联赛河南初赛试题)已知函数y=x -1+3+x 的最大值为M,最小值为m,则Mm的值为 .2.(2010年全国高中数学联赛湖南初赛试题)设函数f(x)=x -4+2+x 的最大值为M,最小值为m,则M 与m 的乘积为 .3.(2006年全国高中数学联赛福建初赛试题)函数y=43+x +x 34-的最大值与最小值之和为 .4.(典型题)函数y=x+2+23102-+-x x 的值域是________.6.三角换元法(Ⅲ)[例6]:(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . [解析]:[评注]:若无理函数f(x)中的无理式是c b x a ++2)((a>0,c>0)的形式,可作代换x+b=actan α,且α∈(-2π,2π),则c b x a ++2)(=αcos c.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(原创题)函数f(x)=212+-x x 的值域为 .2.(200年全国高考试题改编题)若函数f(x)=12+x -ax(a>0)在[0,+∞)上单调递减,则实数a 的取值范围是 .3.(原创题)函数f(x)=5422+-x x -x 的值域为 .4.(2002年全国高中数学联赛上海初赛试题)已知函数f(x)=x21(1-x+2221x x +-),x ∈[2,4],则该函数的值域是_____. 7.距离分析法[例7]:(2008年全国高中数学联赛江西初赛试题)设x ∈R,则函数f(x)=12+x +16)12(2+-x 的最小值为 .[解析]:[评注]:对于有些无理函数的值域问题,巧妙地应用平面上两点间的距离公式,可以起到化难为易,化繁为简的作用,同时借助几何直观,使问题得到顺利解答.[类题]:1.(2006年全国高中数学联赛四川初赛试题)函数f(x)=222++x x +222+-x x 的最小值是 . ⑵(2011年台湾高校(对澳门地区)试题)设f(x)=522+-x x +1342+-x x ,则f(x)的最小值为 . ⑶(2011年第二十二届“希望杯”全国数学邀请赛(高一)试题)522+-x x +2582+-x x 的最小值为______. ⑷(2010年第二十一届“希望杯”全国数学邀请赛(高二))函数f(x)=50102+-x x +252+x 的值域是 .2.(2011年全国高中数学联赛安徽初赛试题)设a 是正数,若f(x)=22106a ax x +-+2252a ax x ++(x ∈R)的最小值为10, 则a= .3.⑴(2004年第十五届“希望杯”全国数学邀请赛(高二))函数y=222++x x -332+-x x 达到最大值时,x 的值是 .⑵(2007年第十八届“希望杯”全国数学邀请赛(高二))当x ∈R 时,函数y=1022++x x -102+-x x ( ) (A)没有最大值和最小值 (B)有最大值,没有最小值 (C)没有最大值,有最小值 (D)有最大值和最小值 4.⑴(1992年全国高中数学联赛试题)函数f(x)=136324+--x x x -124+-x x 的最大值是 .⑵(2011年全国高中数学联赛河南初赛试题)函数f(x)=106324+-+x x x -52324++-x x x 的最大值是 .8.曲线分析法[例8]:(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .[解析]:[评注]:利用函数解析式的几何意义,把求函数值域的问题转化为距离或截距的范围问题.数形结合是解决求值域和最值问题的重要方法,运用图形的直观性,通过数形结合使抽象问题直观化,复杂问题简单化,综合问题浅显化,充分训练发散思维.[类题]:1.(2005年第十六届“希望杯”全国数学邀请赛(高二)试题)函数y=2-x +x -5的最大值是 ,最小值是 .2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值是 .3.(典型题)函数y=4x+223x x -+的值域为 .4.(数学奥林匹克高中训练题(73))函数y=212x x -+-2215x x --的值域为 .9.向量分析法[例9]:(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值. [解析]:[评注]:根据向量的数量积的定义ab =|a ||b |cos<a,b>⇒(ab )2=|a |2|b |2cos 2<a,b>⇒(ab )2≤|a |2|b |2,等号当且仅当a ∥b 时成立.如求函数f(x)=m x a -+n b x -的最值,可令a =(m,n),b =(x a -,b x -),由(x a -)2+(b x -)2=a-b,f 2(x) =(ab )2=|a |2|b |2cos 2<a,b>⇒<a,b>∈[0,θ],tan θ=n/m,或cot θ=n/m ⇒cos<a,b>∈[t,1],其中t=min{22nm n +,22nm m +}⇒f 2(x)∈[(m 2+n 2)t,(m 2+n 2)(a-b)].[类题]:1.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值为 .2.(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219. 10.不等式法[例10]:(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219.[解析]: [类题]:1.(数学奥林匹克高中训练题(147))设0≤x ≤8则函数f(x)=1)8)(8(2+-+x x x x 的值域为 .2.(《中等数学》2006年笫6期.数学奥林匹克高中训练题(1))设x ∈R +,则函数y=211x++2xx+1的最大值为 . 3.(数学奥林匹克高中训练题(126))函数f(x)=x(x +1+x -1)的值域为 . 4.(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.无理函数的值域问题求无理函数的值域问题是初等数学的难点,因该类问题内涵丰富,灵活多变,涉及多个知识点,技巧性、综合性较强,解法灵活多样,因此成为数学竞赛的热点.本文通过对各种解法进行对比研究,试图寻找解决各种类型问题的最佳方法.Ⅰ.解法分析1.单调性质法[例1]:(2010年全国高中数学联赛试题)函数f(x)=5-x -x 324-的值域是 .[解析]:函数f(x)的定义域为[5,8],且函数y=5-x 在定义域[5,8]内单调递减,y=x 324-在定义域[5,8]内单调递增⇒f(x)在定义域[5,8]内单调递增⇒f(x)的值域是[f(5),f(8)]=[-3,3].[评注]:一个函数我们直接或作一些变形就能判断函数的单调性,用单调求值域是一种比较快捷的方法.无理函数f (x)=b ax ++d cx +(a 与c 同号)型,或f (x)=b ax +-d cx +(a 与c 异号)型,或f (x)=b ax +-d cx +(a 与c 相等)型等,可判断函数单调性,均可用此法.用单调性质法求无理函数的值域时,必须注意到函数隐含的正负性特征和定义域.[类题]:1.(2011年全国高中数学联赛湖南初赛试题)函数y=1+x -x 525-的值域是 .2.(1995年第六届“希望杯”全国数学邀请赛(高一)试题)函数y=2+x -2-x ( ) (A)是非单调函数,没有反函数 (B)有反函数,且反函数是增函数 (C)有反函数,且反函数是减函数 (D)有反函数,且反函数是非单调函数 解:y=2+x -2-x =224-++x x 在[-2,2]上单调递减⇒有反函数,且反函数是减函数.3.(原创题)求函数y=27+x +x -13-x 的最大值和最小值. 解:函数的定义域为[0,13],y=27+x -x =xx ++2727在[0,13]上单调递减⇒函数y=27+x +x -13-x 在[0,13]上单调递减⇒x=13时,y min =210-13,x=0时,y max =33+13. 4.(原创题)求函数y=27+x +x -14-x -13的最大值和最小值. 解:函数的定义域为[-27,,13],y=x -14-x -13=xx -+-14131在[-27,13]上单调递增⇒y=27+x +x -14-x -13在[-27,13]上单调递增⇒2.平方分析法[例2]:(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .[解析]:令y=3-x +x -6,3≤x ≤6,则y 2=3+2)6)(3(x x --(或用二次函数)≤3+[(x-3)+(6-x)]=6,实数k 的最大值是6.[评注]:求无理函数值域的难点是解析式中含有的根式,而平方法是去掉根式的根本方法.无理函数f (x)=b ax ++ax d -(a>0,b>0,d>0)型,或f (x)=ax+b ±q px x a ++22型等,可使用平方法分析求解.用平方法求无理函数的值域时,必须注意到平方前函数中隐含的非负性特征和定义域.[类题]:1.(1994年全国高中数学联赛上海初赛试题)函数y=x -1994+1993-x 的值域是_____.2.(2003年第十四届“希望杯”全国数学邀请赛(高二)试题)函数y=232+-x x +232x x -+的最大值是 ,最小值是 .解:令x 2-3x=t,y=2+t +t -2.3.(2005年全国高中数学联赛吉林初赛试题)若x 2+y 2=169,则函数f(x,y)=3381024+-x y +3381024++x y 的最大值是 .解:f 2(x,y)=48y+676+222)10()33824(x y -+=48y+676+22222210169338338242)1024(⨯-+⨯⨯++y y ,y=13,x=0时,f(x)max=1026.4.(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .解:y=x+232+-x x ⇒y-x=232+-x x ≥0⇒(y-x)2=x 2-3x+2⇒(2y-3)x=y 2-2⇒y ≠23,x=3222--y y ⇒y ≥3222--y y ⇒1≤y <23,或y ≥2. 3.代数换元法[例3]:(2006年江苏高考试题)设a 为实数,设函数f(x)=a21x -+x +1+x -1的最大值为g(a).(Ⅰ)设t=x +1+x -1,求t 的取值范围,并把f(x)表示为t 的函数m(t); (Ⅱ)求g(a); (Ⅲ)试求满足g(a)=g(a1)的所有实数a. [解析]:(Ⅰ)t 2=2+221x -∈[2,4]⇒t ∈[2,2],f(x)=m(t)=21at 2-a+t; (Ⅱ)①当a=0时,m(t)=t ⇒g(a)=m(2)=2;②当a>0时,函数m(t)过定点(2,2),对称轴t=-a1⇒g(a)=m(2)=a+2;③当a<0时,函数m(t)过定点(2,2),对称轴t=-a1. 综上[评注]:此法适用于函数f(x)=ax+b+md cx +,一般令t=d cx +,将原函数转化为t 的二次函数,当然也适用于函数f(x)=ax 2+b+m d cx +2、f(x)=ax 2+bx+k+m d cx +、f(x)=qpx cbx ax +++等.用代数换元法求无理函数的值域时,必须注意到换元后的新变元的取值范围.[类题]:1.(1997年第八届“希望杯”全国数学邀请赛(高一))函数y=x-x -1的值域为 . 解:令x -1=t,则t ≥0,且x=1-t 2,则y=1-t 2-t ≤1.2,(2011年全国高中数学联赛山西初赛试题)函数y=2x-5+x 311-的最大值是 . 解:令x 311-=t,则t ≥0,且x=31(11-t 2),则3y=-2t 2+3t+7≤865⇒y 的最大值是2465. 3.(原创题)函数f(x)=x 2+21x -的值域为 .解:令21x -=t,则t ∈[0,1],且x 2=1-t 2,y=1-t 2+t.4.(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . 解:令x-1=t,则f(x)=tt 1)1(2++.当t>0时,f(x)=2221t t ++>1;当t<0时,f(x)=-2221t t ++=-21)211(22++t ≤-22. 4.三角换元法(Ⅰ)[例4]:(2010年全国高中数学联赛安徽初赛试题)函数f(x)=2x-24x x -的值域是_________.[解析]:f(x)=2x-24x x -=2x-2)2(4--x ,设x-2=2cos α,α∈[0,π],则y=4cos α-2sin α+4=25cos(α+φ)+4,其中cos φ=52,φ为锐角,所以当α=0时,y max =8,当α+φ=π时,y min =4-25.[评注]:若|x|≤R,则可作代换x=Rcos α,且α∈[0,π].此法适用于无理函数f(x)中的无理式是22)(a x R --的形式.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.如作代换x=Rsin α,则α∈[-2π,2π],使得换元恰取值好为原函数的定义域.[类题]:1.(2010年全国高中数学联赛江西初赛试题)函数f(x)=212+-x x 的值域是 . 解:设x=cos α,且α∈[0,π].则y=2cos sin +αα,作P(cos α,sin α),A(-2,0),k AP =2cos sin +αα∈[0,33].2.(典型题)函数y=x 21x -+x 2的值域是 .解:设x=sin α(|α|≤2π),则y=sin αcos α+sin 2α=21+22sin(2α-4π),故所求函数值域为[21-22,21+22]. 3.(1986年全国高中数学联赛上海初赛试题)已知函数y=)56)(96(22-+-+-x x x x ,那么它的值域是__________. 解:f(x)的定义域为[1,5],令x-3=2cos α,α∈[0,π],y=])3(4[)3(22---x x =αα22cos sin 16=2|sin2α|∈[0,2]. 4.⑴(2011年全国高中数学联赛内蒙古初赛试题)函数f(x)=9102-+-x x +184502-+-x x 的最大值为 . 解:f(x)=22)5(4--x -22)25(21--x ,令x-5=4cos α,x-25=21cos β,α,β∈[0,π],4cos α-21cos β=20,f(x)=4sin α+21sin β,f 2(x)+202=(4sin α+21sin β)2+(4cos α-21cos β)2=16+441-168cos(α+β)⇒f 2(x)=57-168cos(α+β)⇒cos(α+β)=-1时,f(x)max =16857+=15.⑵(2004年第十五届“希望杯”全国数学邀请赛(高一))已知函数f(x)=232-+-x x +652-+-x x ,则函数f(x)的最大值与最小值之差是________. 解:f(x)=2)23(41--x +2)25(41--x ,令x-23=21cos α,x-25=21cos β,α,β∈[0,π],cos α-cos β=2⇒f(x)=21(sinα+sin β)⇒4+4f 2(x)=2-2cos(α+β)≤4⇒f(x)=0.5.三角换元法(Ⅱ)[例5]:(2006年全国高中数学联赛江西初赛试题)函数f(x)=3-x +x 312-的值域为 .[解析]:f(x)的定义域为[3,4],令x=(4-3)sin 2θ,θ∈[0,2π],则f(x)=sin θ+3cos θ=2sin(θ+3π),3π≤θ+3π≤65π⇒21≤sin(θ+3π)≤1⇒f(x)=3-x +x 312-的值域为[1,2].[评注]:若x ∈[a,b],则可作代换x=(b-a)sin 2α+a,且α∈[0,2π],或x=2a b -cos α+2b a +,且α∈[0,π].此法适用于无理函数f(x)中的无理式的定义域为[a,b]的函数.如无理函数f (x)=b ax ++d cx +(a 与c 异号)型,或f (x)=ax 2+bx+c+ m t qx px ++2(a<0,q 2-4pr>0)型.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(2008年重庆高考试题)(2009年全国高中数学联赛河南初赛试题)已知函数y=x -1+3+x 的最大值为M,最小值为m,则Mm的值为 . 2.(2010年全国高中数学联赛湖南初赛试题)设函数f(x)=x -4+2+x 的最大值为M,最小值为m,则M 与m 的乘积为 .3.(2006年全国高中数学联赛福建初赛试题)函数y=43+x +x 34-的最大值与最小值之和为 .4.(典型题)函数y=x+2+23102-+-x x 的值域是________.解:由-x 2+10x-23≥0⇒5-2≤x ≤5+2,令x=2cos α+5,α∈[0,π],则y=2cos α+7+2sin α=2sin(α+4π)+7,由 α∈[0,π]⇒α+4π∈[4π,45π]⇒sin(α+4π)∈[-22,1]⇒y ∈[7-2,9]. 6.三角换元法(Ⅲ)[例6]:(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . [解析]:令x=tan α,α∈(-2π,2π),α≠4π,f(x)=ααcos sin 1-=)4sin(21πα-,α-4π∈(-43π,4π)⇒sin(α-4π)∈[-1,0)∪(0,22)⇒f(x)∈(-∞,-22]∪(1,+∞).[评注]:若无理函数f(x)中的无理式是c b x a ++2)((a>0,c>0)的形式,可作代换x+b=actan α,且α∈(-2π,2π),则c b x a ++2)(=αcos c.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(原创题)函数f(x)=212+-x x 的值域为 .解:令x=2tan α,α∈(-2π,2π),则f(x)=22(sin α-cos α)=sin(α-4π)∈[-1,22). 2.(200年全国高考试题改编题)若函数f(x)=12+x -ax(a>0)在[0,+∞)上单调递减,则实数a 的取值范围是 .解:令x=tan α,α∈(-2π,2π),则f(x)=αcos 1-atan α=ααcos sin 1a -=a ααcos sin 1-a ,取单位圆上的点P(cos α,sin α),A(0,a 1),-k PA =ααcos sin 1-a ,f(x)递减⇔k PA 递增⇔a 1≤1⇔a ≥1. 3.(原创题)函数f(x)=5422+-x x -x 的值域为 . 解:f(x)=3)1(22+-x -12+x ,令x-1=26tan α,α∈(-2π,2π),则f(x)=αcos 3-26tan α-1=26ααcos sin 2--1,取单位圆上的点P(cos α,sin α),A(0,2),-k PA =ααcos sin 2-,k PA ≤-1⇒-k PA ≥1⇒f(x)≥26-1.4.(2002年全国高中数学联赛上海初赛试题)已知函数f(x)=x21(1-x+2221x x +-),x ∈[2,4],则该函数的值域是_____. 解:f(x)=x 21(1-x+2221x x +-)=21(x1-1+2212+-xx)=21[x 1-1+1)11(2+-x ],令1-x 1=tan α∈[21,43],则y=f(x)=21(-tan α+αcos 1)=21ααcos sin 1-,取单位圆上的点P(cos α,sin α),A(0,1),-k PA =ααcos sin 1-,k OA 递增,ααcos sin 1-递减,当tan α=21时,sin α=55,cos α=552⇒f(x)max =415-;当tan α=43时,sin α=53,cos α=54⇒f(x)min =41.7.距离分析法[例7]:(2008年全国高中数学联赛江西初赛试题)设x ∈R,则函数f(x)=12+x +16)12(2+-x 的最小值为 .[解析]:[评注]:对于有些无理函数的值域问题,巧妙地应用平面上两点间的距离公式,可以起到化难为易,化繁为简的作用,同时借助几何直观,使问题得到顺利解答.[类题]:1.(2006年全国高中数学联赛四川初赛试题)函数f(x)=222++x x +222+-x x 的最小值是 . ⑵(2011年台湾高校(对澳门地区)试题)设f(x)=522+-x x +1342+-x x ,则f(x)的最小值为 . ⑶(2011年第二十二届“希望杯”全国数学邀请赛(高一)试题)522+-x x +2582+-x x 的最小值为______. ⑷(2010年第二十一届“希望杯”全国数学邀请赛(高二))函数f(x)=50102+-x x +252+x 的值域是 .2.(2011年全国高中数学联赛安徽初赛试题)设a 是正数,若f(x)=22106a ax x +-+2252a ax x ++(x ∈R)的最小值为10,则a= .3.⑴(2004年第十五届“希望杯”全国数学邀请赛(高二))函数y=222++x x -332+-x x 达到最大值时,x 的值是 . ⑵(2007年第十八届“希望杯”全国数学邀请赛(高二))当x ∈R 时,函数y=1022++x x -102+-x x ( ) (A)没有最大值和最小值 (B)有最大值,没有最小值 (C)没有最大值,有最小值 (D)有最大值和最小值4.⑴(1992年全国高中数学联赛试题)函数f(x)=136324+--x x x -124+-x x 的最大值是 .⑵(2011年全国高中数学联赛河南初赛试题)函数f(x)=106324+-+x x x -52324++-x x x 的最大值是 .8.曲线分析法[例8]:(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .[解析]:取点P(x-23,232+-x x ),则点P 在x 2-y 2=41(y ≥0)上,u=x+y+23,直线x+y=u-23在x 轴上的截矩u-23满足-21≤u-23<0,u-23≥21⇔u ∈[1,23)∪[2,+∞). [评注]:利用函数解析式的几何意义,把求函数值域的问题转化为距离或截距的范围问题.数形结合是解决求值域和最值问题的重要方法,运用图形的直观性,通过数形结合使抽象问题直观化,复杂问题简单化,综合问题浅显化,充分训练发散思维.[类题]:1.(2005年第十六届“希望杯”全国数学邀请赛(高二)试题)函数y=2-x +x -5的最大值是 ,最小值是 . 解:取点P(2-x ,x -5),点P 在四分之一圆弧C:x 2+y 2=3(x ≥0,y ≥0)上,u=x+y,直线x+y=u 在x 轴上的截矩u 满足:3≤u ≤6.2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值是 .解:取点P(5-x ,x -8),点P 在四分之一圆弧C:x 2+y 2=3(x ≥0,y ≥0)上,u=x+3y,直线x+y=u 在x 轴上的截矩u 满足:3≤u ≤23.3.(典型题)函数y=4x+223x x -+的值域为 .解:取点P(x,223x x -+),点P 在半圆圆弧C:(x-1)2+y 2=4(0≤y ≤2)上,u=4x+y,直线4x+y=u 在x 轴上的截矩u 满足:-1≤41u ≤217+1⇒-4≤u ≤4+217. 4.(数学奥林匹克高中训练题(73))函数y=212x x -+-2215x x --的值域为 . 解:f(x)的定义域为[-3,3],设y 1=212x x -+(y 1≥0),y 2=2215x x --(y 2≥0),则(x-21)2+y 12=(27)2,(x+1)2+y 22=42, 作此两圆,如图: B y 设直线x=t 与半圆C 1,C 2分别相交于A,B 两点,则有向线段BA 的数量, A即为x=t 时的函数值. C 2 C 1 显然,当x=-3时,y 取得最小值-23;当x=3时,y 取得最大值6. -5 -3 x=t O 3 4 x9.向量分析法[例9]:(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.[解析]:设a =(31,21,1),b =()13(3x -,x 2,27+x ),则|a |=666,|b |=66,ab =27+x +x -13+x ,其中0≤x ≤13,由(ab )2≤|a |2|b |2得y ≤66666=11,当且仅当a ∥b ,即x=9时,等号成立;又因()13(3x -)2+(x 2)2+(27+x )2=66⇒当且仅当b =(39,0,33),即x=0时,cos<a ,b >≥113313+⇒27+x +x -13+x =ab =|a ||b |cos<a ,b >≥13+33.[评注]:根据向量的数量积的定义ab =|a ||b |cos<a,b>⇒(ab )2=|a |2|b |2cos 2<a,b>⇒(ab )2≤|a |2|b |2,等号当且仅当a ∥b 时成立.如求函数f(x)=m x a -+n b x -的最值,可令a =(m,n),b =(x a -,b x -),由(x a -)2+(b x -)2=a-b,f 2(x) =(ab )2=|a |2|b |2cos 2<a,b>⇒<a,b>∈[0,θ],tan θ=n/m,或cot θ=n/m ⇒cos<a,b>∈[t,1],其中t=min{22nm n +,22nm m +}⇒f 2(x)∈[(m 2+n 2)t,(m 2+n 2)(a-b)].[类题]:Y.P.M 数学竞赛讲座 71.(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值为 .3.(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219. 解:设a =(2,1,1),b =(1+x ,32-x ,x 315-),则|a |=6,|b |=13,ab =21+x +32-x +x 315-=|a ||b | cos<a ,b >=613cos<a ,b >.当b =(25,0,221),即x=23时,cos<a ,b >取得最大值⇒21+x +32-x +x 315-最大值=225+221<219. 10.不等式法[例10]:(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219.[解析]:由(x 1+x 2+…+x n )2=x 12+x 22+…+x n 2+2x 1x 2+2x 1x 3+…+2x n-1x n ≤x 12+x 22+…+x n 2+(n-1)(x 12+x 22+…+x n 2)=n(x 12+x 22+…+x n 2)⇒x 1+x 2+…+x n ≤n22221n x x x +⋅⋅⋅++,当且仅当x 1=x 2=…=x n 时取等号.21+x +32-x +x 315-=1+x +1+x +32-x +x 315-≤214+x ≤219,而等号不能成立.柯西不等式:(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2),当且仅当a 1:x 1=a 2:x 2=…=a n :x n 时等号成立; (21+x +32-x +x 315-)2=(m1m mx 44++n1n nx 32-+k1kx k 315-)2≤(m 1+n 1+k1)[(4mx+4m)+(2nx-3n)+ (15k-3kx)],令4m+2n=3k,y 5≤(m 1+n 1+k1)(4m-3n+15k),取[评注]: [类题]:1.(数学奥林匹克高中训练题(147))设0≤x ≤8则函数f(x)=1)8)(8(2+-+x x x x 的值域为 .解:f(x)=1)8)(8(2+-+x x x x =1)8)(8(22+-+x x x x ≤)1(2)8()8(22+-++x x x x =4,当且仅当x=2时等号成立,值域为[0,4].2.(《中等数学》2006年笫6期.数学奥林匹克高中训练题(1))设x ∈R +,则函数y=211x++2xx+1的最大值为 . 解:设t=x1(t>0),y=21t t ++t+12≤2)1(2t t ++t+12=t t +12+t +12=2-t +12+t +12=2-2(t+11-22)2+22≤ 2+22=223,当且仅当t+11=22,即t=1时等号成立. 3.(数学奥林匹克高中训练题(126))函数f(x)=x(x +1+x -1)的值域为 .解:函数f(x)的定义域为[-1,1],且为奇函数,设21x -=t,0≤t ≤1,f 2(x)=x 2(2+221x -)=2(1-t 2)(1+t)=(1+t)(1+t)(2-2t)≤[3)22()1()1(t t t -++++]3=2764,当且仅当1+t=2-2t,t=31时等号成立⇒f max (x)=938⇒值域为[-938,938]. 4.(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.解:函数的定义域为[0,13],y=27+x +x -13+x =27+x +)13(213x x -+≥27+13=33+13,当且仅当x=0时等号成立;又由柯西不等式:(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2),当且仅当a 1:x 1=a 2:x 2=…=a n :x n 时等号成立;y 2= (27+x +x -13+x )2=(m1m mx 27++n1nx n -13+k1kx )2≤(m 1+n 1+k1)[(mx+27m)+(13n-nx)+kx],令m+k=n,且m1:m mx 27+=n 1:nx n -13=k 1:kx ⇒m 2x+27m 2=13n 2-n 2x=k 2x ⇒x=22222713m n m n +-=22213k n n +∈[0,13],取m=1⇒k=2,n=3,则y 5≤(m 1+n 1+k1)(27m+13n)=112.x=9时等号成立;Ⅱ.类型分析1.函数f(x)=ax+b+m dcx +2.函数f(x)=3.函数f(x)=nbax ++mdcx +4.函数f(x)=ax+b+m t qx px ++25.函数f(x)=6.函数f(x)=7.函数f(x)=8.函数f(x)=9.函数f(x)= 10.函数f(x)=3.函数f(x)=n b ax ++m d cx ++k q px +4.f(x)=ax+b+m t qx px ++25.f(x)=ax 2+bx+c+m t qx px ++26.f(x)=n c bx ax ++2+m t qx px ++27.f(x)=qpx cbx ax +++4.(原创题)函数f(x)=5422+-x x -12+x 的值域为 . 解:设y 1=5422+-x x ,y 2=12+x ⇒。

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
2017年全国高中数学联合竞赛(四川初赛)
(5月14日下午14:30—16:30)
题目



总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.

高中数学联赛组合数学试题集锦

高中数学联赛组合数学试题集锦
72000全国有n个人已知他们中的任意两人至多通电话一次他们中的任意n2个人之间通电话的次数相等都是382002全国在世界杯足球赛前f国教练为了考察a1a2?a7这七名准备让他们在三场训练比赛每场90分钟都上场假设在比赛的任何时刻这些队员中有且仅有一人在场上并且a1a2a3a4每人上场的总时间以分钟为单位均被7整除a5a6a7每人上场的总时间以分钟为单位均被13整除如果每场换人次数不限那么按每名队员上场的总时间计算共有多少种不同的情况
高中数学联赛组合数学试题集锦
1、(1992 全国)设集合 Sn={1,2,,n}.若 X 是 Sn 的子集,把 X 中所有数的和称为 X 的 “容量”(规定空集的容量为 0),若 X 的容量为奇(偶)数,则称 X 为的奇(偶)子集. (1)求证 Sn 的奇子集与偶子集个数相等. (2)求证:当 n≥3 时,Sn 的所有奇子集的容量之和等于所有偶子集的容量之和. (3)当 n≥3 时,求 Sn 的所有奇子集的容量之和.
x1k 仍然具有性质(O) ,即对于数表 P 中的任意一列 x2 k ( k 1,2,„,9)均存在某个 x 3k
i {1,2,3}使得 xik ui min { xi1 , xi 2 , xik * }.
13、 (2010 全国)一种密码锁的密码设置是在正 n 边形 A1 A2 An 的每个顶点处赋值 0 和 1
15、 (2011A 卷)
6
15、 (2011B 卷) 给定 n 个不同实数,其所有全排列组成集合为 An.对于(a1,a2,„,an)∈An,若恰有两个 不同的整数 i、j∈{1,2,„,n-1}使得 ai ai 1 , a j a j 1 成立,则称该排列为“好排列” ,求 An 中所有“好排列”的个数。

全国高中数学联赛试题分类汇编: 7立体几何

全国高中数学联赛试题分类汇编: 7立体几何

1981年~2019年全国高中数学联赛试题分类汇编立体几何部分2019A 7、如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF的值为 . 3★解析:作图延长,AK BF 交于点P ,连接CP 交FG 于点N ,则截面为ACNK ,由于面//ABC 面KFN ,知ABC KFN -为棱台,则EK AEKF PF=. 不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFN -的体积为14, 设PF x =,则1KF NF PF xAB BC PB x ===+,由于 11113232ABC KFN V AB BC PB KF FN PF -⎛⎫⎛⎫=⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭所以()()322113311146161x x x x x x ⎛⎫++⎛⎫=⋅+-= ⎪ ⎪ ⎪+⎝⎭+⎝⎭,解得3x =。

所以13EK AE KF PF x===2019B 4. 设三棱锥P ABC -满足3PA PB ==,2AB BC CA ===,则该三棱锥的体积的最大值为 . 26★解析:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则223122h PM ≤=-=当平面PAB 垂直于平面ABC 时,h 取到最大值22.此时三棱锥P ABC -的体积取到最大值为11263232⨯=。

2018A 2、设点P 到平面α的距离为3,点Q 在平面α上,使得直线PQ 与平面α所成角不小于030且不大于060,则这样的点Q 所构成的区域的面积为 ◆答案:π8★解析:设点P 在平面α上的射影为O ,由条件知⎥⎦⎤⎢⎣⎡∈=∠3,33tan OQ OP OQP ,即[]3,1∈OQ ,所以区域的面积为πππ81322=⨯-⨯。

2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为 ◆答案: π3★解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。

2011年高考安徽省数学试卷-文科(含详细答案)

2011年高考安徽省数学试卷-文科(含详细答案)

(C) 4
(C) 3

(C) ( ,b+1)
a
(B) 2, 2 (C ) 1, 2
(7)若数列an的通项公式是 an (1)n (3n 2) ,则 a a L a
(A) 15
(B) 12
(8)一个空间几何体得三视图如图所示,则该几何体的表面积为
第(8)题图
2011 年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第 1 至第 2 页,第Ⅱ 卷第 3 页至第 4 页。全卷满分 150 分,考试时间 120 分钟。 考生注意事项:
(1) 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答 题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题 卡背面规定的地方填写姓名和座位号后两位。
(2) 答第Ⅰ卷时,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号 涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
(3) 答第Ⅱ卷时,必须使用 0.5 毫米的黑色墨水签字笔在答题卡上书写,要求字体 工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用 0.5 毫 米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出书写的答案 无效,在试题卷、草稿纸上答题无效。
(A) 48
(B)32+8
(C )
(C) 48+8
(9) 从正六边形的 6 个顶点中随机选择 4 个顶点,则以它们作为顶点的四边形是矩形的概率
等于
(A)
ቤተ መጻሕፍቲ ባይዱ (B)
(C)
(10) 函数 f (x) axn g( x) 在区间〔0,1〕上的图像如图所示,则 n 可能是

2011年全国高中数学联赛试题及标准答案

2011年全国高中数学联赛试题及标准答案

2011年全国高中数学联赛一 试一、填空题(每小题8分,共64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 . 3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 . 5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体A BCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于A,B两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题(本大题共3小题,共56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.解 答1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)-∞+∞. 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u ,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈= u x f .3.-1. 提示:由2211≤+ba ,得ab b a 22≤+.又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是ab b a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式 )cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+.又5371)(x x x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故 ∈+<<+k k k (45242ππθππZ). 因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ. 5.15000. 提示:由题设条件可知,满足条件的方案有两种情形: (1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案;。

2011年全国高中数学联赛试题及答案详解(A卷)

2011年全国高中数学联赛试题及答案详解(A卷)

一、填空题(每小题8分,共64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 . 3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .二、解答题(本大题共3小题,共56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.加 试1. (40分)如图,Q P ,分别是圆内接四边形ABCD 的对角线BD AC ,的中点.若DPA BPA ∠=∠,证明:CQB AQB ∠=∠.2. (40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--具有如下性质:4.(50分)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值。

2011年全国高中数学联赛一试试题及参考答案

2011年全国高中数学联赛一试试题及参考答案
9 2 3 6 -1 0 9 2 , 当 n =9 在C 2 时, a 9 2 =C 2 0 0 ·3 ·2 2 0 0 =

2 0 0! 中, 同样可求得9 2! 中 因 数 2 的 个 数 为 9 2! ·1 0 8!
8 6 故C 8 8, 1 0 8! 中因数 2 的个数为 1 0 5, 2 0 0中 因 数 2的 个
2 2 3 ) ) ( ) 又( a+ b =4 a b+ ( a- b =4 a b+4 a b 2 3 ( ) , ) =8 a b a b·( a b ≥4·2 槡
b+1) ( , 实数 a, 满 足 f( b a< b) a) =f( - 1 0 a+6 b+ f( b+2 ) 求 a, 2 1 =4 l 2, b 的值 . g
中学生数学 ·2 高中 ) 0 1 2 年 1 月上 · 第 4 3 3期(
2 0 1 1 年全国高中数学联赛一试 试题及参考答案
试 题
一、 填空题 ( 每小题 8 分 , 共6 4分) , 设集合 A= { 若 A 中所有三元子 1. a a a a 1, 2, 3, 4} , 则 集的三个元素之和组成的 集 合 为 B = { -1, 3, 5, 8} 集合 A= .
8 6 3 8 -5 8 6 , 当 n =8 在C 6 时, a 2 0 0 ·3 ·2 2 0 0 = 8 6 =C
ON ⊥D P, OM ⊥C D.
因为 ∠C DA = ∠C D B= , 设C B=6 0 ° D 与平面 ∠AD , A B D 所成角为θ 可求得 c o s = θ 3 槡 1, 2 槡 s i n = . θ 3 槡
8 6 所以 C 故 9 7-8 2-1 1 0=5, 2 0 0 中因数 2 的个数为 1

2016年全国高中数学联合竞赛一试(A卷)试题及答案

2016年全国高中数学联合竞赛一试(A卷)试题及答案

2016年全国高中数学联合竞赛一试(A 卷)说明:1. 评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次给分,解答题中第9小题4分为一个档次,第10、11小题5分一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,共64分 1.设实数a 满足||1193a a a a <-<,则a 的取值范围是2.设复数w z ,满足3||=z ,i w z w z 47))((+=-+,其中i 是虚数单位,w z ,分别表示w z ,的共轭复数,则)2)(2(w z w z -+的模为3.正实数w v u ,,均不等于1,若5log log =+w vw v u ,3log log =+v u w v ,则u w log 的值为 4.袋子A 中装有2张10元纸币和3张1元纸币,袋子B 中装有4张5元纸币和3张1元纸币.现随机从两个袋子中各取出两张纸币,则A 中剩下的纸币面值之和大于B 中剩下的纸币面值之和的概率为 5.设P 为一圆锥的顶点,A ,B ,C 是其底面圆周上的三点,满足ABC ∠=90°,M 为AP 的中点.若AB =1,AC =2,2=AP ,则二面角M —BC —A 的大小为6.设函数10cos 10sin)(44kxkx x f +=,其中k 是一个正整数.若对任意实数a ,均有}|)({}1|)({R x x f a x a x f ∈=+<<,则k 的最小值为7.双曲线C 的方程为1322=-y x ,左、右焦点分别为1F 、2F ,过点2F 作直线与双曲线C 的右半支交于点P ,Q ,使得PQ F 1∠=90°,则PQ F 1∆的内切圆半径是 8.设4321,,,a a a a 是1,2,…,100中的4个互不相同的数,满足2433221242322232211)())((a a a a a a a a a a a a ++=++++则这样的有序数组),,,(4321a a a a 的个数为二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC ∆中,已知CB CA BC BA AC AB ∙=∙+∙32.求C sin 的最大值.10.(本题满分20分)已知)(x f 是R 上的奇函数,1)1(=f ,且对任意0<x ,均有)()1(x xf x xf =-. 求+++)981()31()991()21()1001()1(f f f f f f …)511()501(f f +的值.11.(本题满分20分)如图所示,在平面直角坐标系xOy 中,F 是x 轴正半轴上的一个动点.以F 为焦点,O 为顶点作抛物线C .设P 是第一象限内C 上的一点,Q 是x 轴负半轴上一点,使得PQ 为C 的切线,且|PQ |=2.圆21,C C 均与直线OP 相切于点P ,且均与轴相切.求点F 的坐标,使圆1C 与2C 的面积之和取到最小值.2016年全国高中数学联合竞赛加试一、(本题满分40分)设实数,,21a a …2016,a 满足,2,1(11921=>+i a a i i …)2015,。

1990-2011全国高中数学联赛代数分类试题答案

1990-2011全国高中数学联赛代数分类试题答案

11990——2011年全国数学竞赛试题分类代数部分一、填空题 1、已知82121=+-xx ,则xx12+=_____62________. (90年) 2、2223,2,1,…,1234567892的和的个位数的数字是 __5__. (90年)3、方程01)8)((=---x a x ,有两个整数根,则=a ____8__. (90年)4、已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么=+ac b 32____6__.(91年)5、设m ,n ,p ,q 为非负数,且对一切x >0,qpn m xx x x )1(1)1(+=-+恒成立,则=++q p n m 22)2(__9__.(91年)6、若0≠x ,则xxx x 44211+-++的最大值是(92年)7、若b a ,都是正实数,且0111=+--ba b a ,则=+33)()(b a a b (92年) 8、当x 变化时,分式15632212++++x x x x 的最小值是_____2______.(93年)9、放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有____7__个小球. (93年)10、若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =_____7/4_______.(93年)11、若在关于 x 的恒等式b x c a x x x N Mx --+=-++222 中,2x 2-++x x NM 为最简分式,且有a >b ,a+b=c 则N=____-8__. (94年)12、在12,22,32…,952这95个数中,十位数字为奇数的数共有____19________个. (95年)13、已知 a 是方程 x 2 + x - 41 = 0 的根,则 234531a a a a a --+-的值等于__20___.(95年)14、设 x 为正实数,则 y = x 2 - x +x1的最小值是__1_____.(95年) 15、实数x,y 同时满足y=x1及y=|x|+1,则x+y=_____.(96年)16、当a 取遍0到5的所有实数值时,满足3b=a(3a-8)的整数b 的个数是____13_____.(97年) 17、若a,b 满足3a +5|b|=7,则S=22-3|b|的取值范围是_215⎡⎢⎣_______.(97年) 18、若正整数x,y 满足x 2+y 2=1997,则x+y 等于_____63__.(97年) 19、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___1,3,5________。

全国高中数学竞赛集合真题汇编与典型例题

全国高中数学竞赛集合真题汇编与典型例题

全国高中数学历届(2009-2019)联赛与各省市预赛试题汇编专题18集合真题汇编与预赛典型例题全国联赛真题:1.【2019年全国联赛】若实数集合的最大元素与最小元素之差等于该集合的所有元素之和,则x的值为.2.【2018年全国联赛】设集合A={1,2,3…,99},B={2x|x∈A},C={x|2x∈A},则B∩C的元素个数为3.【2013年全国联赛】设集合.则集合中所有元素的和为______.4.【2011年全国联赛】设集合.若中所有三元子集的三个元素之和组成的集合为,则集合______.5.【2019年全国联赛】设V是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E为这些线段构成的集合.试求最小的正整数n,满足条件:若E至少有n 个元素,则E一定含有908个二元子集.其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.6.【2015年全国联赛】设为四个有理数,使得.求的值.7.【2015年全国联赛】设,其中,个互不相同的有限集合,满足对任意,均有.若表示有限集合的元素个数),证明:存在,使得属于中的至少个集合.8.【2014年全国联赛】设.求最大的整数,使得集合S有k个互不相同的非空子集,具有性质:对这k个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.9.【2013年全国联赛】一次考试共有道试题,名学生参加,其中为给定的整数.每道题的得分规则是:若该题恰有名学生没有答对,则每名答对该题的学生得分,未答对的学生得零分.每名学生的总分为其道题的得分总和.将所有学生总分从高到低排列为.求的最大可能值.10.【2012年全国联赛】试证明:集合满足(1)对每个,若,则一定不是的倍数;(2)对每个表示中的补集),且,必存在,使的倍数.各省预赛典型题1.【2018年江苏】在1,2,3,4,…,1000中,能写成的形式,且不能被3整除的数有________个。

2011年全国高中数学联赛模拟卷(一)

2011年全国高中数学联赛模拟卷(一)
分) 试确定集合 M ={ ,, , } . 12 … l 共有多少个“ 2 等和划分” . 三、 桌上放着个数分别为 12 …, 的 后 ,, k 堆石子( ≥3 . 1 任选 3 后 ) 第 步, 堆石子将它们合并成一堆 , 并在这
堆石子中挑 出一个石子扔掉 ; 2 , 第 步 从现在桌上的所有石子堆 中选出 3 堆石子将它们合并成一堆 , 并 在这堆石子中挑 出 2 个石子扔掉 . ・ .; . 一般地 , 第 步, 在桌上选取石子总数大于 的 3 堆将它们合并成
出相应的安排方法.

第一 试
1 8 2 2 0 30 6 3 a —b .0 . 2 6 . ≤ ≤ 口一6+C—d



1. 0解 由均 值 不 等 式得
( 6 +( b 4) a+ ) a+ + c =
4 ・ 蜘
丽 丽
( + ) + ( + c +( + c ]≥ a 6 [a 2) b 2)
・4 3・
四、 一副 牌有 2 n+1 , 中有 一张 “ ” l2 … , 张 其 王 , ,, n各 2张 把 这 2 n+1张 牌 排 成 一行 , 得王 在 中 间 , 使 且 对 每个 k 1 ≤ )2个 k之 间恰 有 k—l张牌 . n 0时 , (≤ , 当 ≤1 对怎 样 的 , 述安 排 是 可 能的 吗 ?并 给 上
— —
= — —
时, 都有 ) = 成立?请给出结
+) 5 。 的小数表示中, ” 小数点后至少连续有
个0 .
9 是否存在一个二次 函数 )使得对任意的正整数 k 当 . , , =
论, 并加 以证 明.
.个 5 ] }
2 k个 5

2011年全国高中数学联赛几何专题(平面几何解析几何)

2011年全国高中数学联赛几何专题(平面几何解析几何)

数学竞赛中的平面几何一、引言1.国际数学竞赛中出现的几何问题,包括平面几何与立体几何,但以平面几何为主体.国际数学竞赛中的平面几何题数量较多、难度适中、方法多样(综合几何法、代数计算法、几何变换法等),从内容上看可以分成三个层次:第一层次,中学几何问题.这是与中学教材结合比较紧密的常规几何题,虽然也有轨迹与作图,但主要是以全等法、相似法为基础的证明题,重点是与圆有关的命题,因为圆的命题知识容量大、变化余地大、综合性也强,是编拟竞赛试题的优质素材.第二层次,中学几何的拓展.这是比中学教材要求稍高的内容,如共点性、共线性、几何不等式、几何极值等.这些问题结构优美,解法灵活,常与几何名题相联系.有时还可用几何变换来巧妙求解.第三层次,组合几何——几何与组合的交叉 .这是用组合数学的成果来解决几何学中的问题,主要研究几何图形的拓扑性质和有限制条件的欧几里得性质.所涉及的类型包括计数、分类、构造、覆盖、递推关系以及相邻、相交、包含等拓扑性质.这类问题在第六届IMO (1964)就出现了,但近30年,无论内容、形式和难度都上了新的台阶,成为一类极有竞赛味、也极具挑战性的新颖题目.组合几何的异军突起是数学竞赛的三大热点之一.2.在中国的数学竞赛大纲中,对平面几何内容除了教材内容外有如下的补充.初中竞赛大纲:四种命题及其关系;三角形的不等关系;同一个三角形中的边角不等关系,不同三角形中的边角不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质.高中竞赛大纲: 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;三角形中的几个特殊点:旁心、费马点,欧拉线;几何不等式;几何极值问题;几何中的变换:对称、平移、旋转;圆的幂和根轴;面积方法,复数方法,向量方法,解析几何方法.二、基本内容全等三角形的判别与性质,相似三角形的判别与性质,等腰三角形的判别与性质,“三线八角”基本图形,中位线定理,平行线截割定理,圆中角(圆心角、圆周角、弦切角)定理等大家都已经非常熟悉,此外,竞赛中还经常用到以下基本内容.定义1 点集的直径是指两个端点都属于这个集合且长度达到最大值的线段(一个点集可能有多条直径,也可能没有直径).定义2 如果对点集A 中的任意两点,以这两点为端点的线段包含在A 里,则集合A 称为是凸的.定义3 设n M M M ,,,21 是多边形,如果12n M M M M = 并且当j i ≠时,i M 与j M 没有公共的内点,则称多边形M 剖分为多边形12,,,n M M M .定义4 如果凸边形N 的所有顶点都在凸多边形M 的边上,则称多边形N 内接于多边性M . 定理1 两点之间直线距离最短.推论 三角形的两边之和大于第三边,两边之差小于第三边.定理2 三角形的内角之等于180.凸n 边形(3≥n )的n 个内角和等于(2)180n - ;外角和为180(每一个顶点处只计算一个外角).证明 如图1,过C 作//CE AB ,则有 ECA A ∠=∠,(两直线平行,内错角相等) 得 ()A B C A C B ∠+∠+∠=∠+∠+∠ (结合律)ECB B =∠+∠(等量代换)180= .(两直线平行,同旁内角互补 图1推论 三角形的一个外角等于两个不相邻内角之和.定理3 三角形中大边对大角、小边对小角.证明 (1)如图2,在ABC 中,已知AB AC >,可在AB 上截取AD AC =,则在等腰ACD 中有 12∠=∠.(等腰三角形的性质定理)又在BCD 中,2B ∠>∠,(外角定理)更有 12C B ∠>∠=∠>∠.(传递性)说明 由上面的证明知,,,AB AC B C AB AC B C AB AC B C >⇒∠<∠⎧⎪=⇒∠=∠⎨⎪<⇒∠>∠⎩这样的分断式命题,其逆命题必定成立.证明如下: 图2(2)反之,在ABC 中,若C B ∠>∠,这时,AB AC 有且只有三种关系AB AC <,AB AC =,AB AC >.若AB AC <,由上证得C B ∠<∠,与已知C B ∠>∠矛盾.若AB AC =,由等腰三角形性质定理得C B ∠=∠,与已知C B ∠>∠矛盾. 所以AB AC >.定理4 在ABC 与111A B C 中,若1111,AB A B AC AC ==,则111A A BC B C ∠>∠⇔>. 定理5 凸四边形ABCD 内接于圆的充分必要条件是:180ABC CDA ∠+∠= (或180BAD DCB ∠+∠= ).证明 当四边形ABCD 内接于圆时,由圆周角定理有1122ABC CDA ADC ABC ∠+∠=+ 1118022ADC ABC ⎛⎫=+= ⎪⎝⎭. 同理可证180BAD DCB ∠+∠=.反之,当180ABC CDA ∠+∠=时,首先过不共线的三点,,A B C 作O ,若点D 不在O 上,则有两种可能:(1)D 在O 的外部(如图3(1)).记AD 与O 相交于S ,连CS ,在CDS 中有ASC CDA ∠>∠.又由上证,有180ABC ASC ∠+∠=,得180180ABC CDA ABC ASC =+∠<∠+∠=,矛盾.图3(2)D 在O 的内部(如图3(2)).记AD 的延长线与O 相交于S ,连CS ,在CDS 中有 ASC CDA ∠<∠.又由上证,有180ABC ASC ∠+∠= , 得 180180ABC CDA ABC ASC =+∠>∠+∠= ,矛盾. 定理6 凸四边形ABCD 外切于圆的充分必要条件是AD BC CD AB +=+.证明 当凸四边形ABCD 外切于圆时,设各边的切点分别为,,,P Q R S (如图4),根据圆外一点到圆的两切线长相等,有,,,.AP AS PB BQ CR QC DR DS ====相加 AP PB CR DR AS BQ QC DS +++=+++, 得 AD BC CD AB +=+. 图4反之,若AD BC CD AB +=+,我们引,B C ∠∠的平分线,因为360B C ∠+∠<,所以,两条角平分线必定相交于四边形内部一点,记为N ,则N 到三边,,AB BC CD 的距离相等,可以以N 为圆心作N 与,,AB BC CD 同时相切,这时AD 与N 的关系有且只有三种可能:相离、相切、相交.(1)若AD 与N 相离(如图5(1)).过A 作切线与CD 相交于/D ,在/ADD 中,有 //DD AD AD >-. ①但由上证,有//AB CD BC AD +=+, 又由已知,有AD BC CD AB +=+ 相减得 //CD CD AD AD -=- ,//DD AD AD =-,与①矛盾.图5(2)若AD 与N 相交(如图5(2)).过A 作切线与CD 的延长线相交于/D ,在/ADD 中,有①//DD AD AD >-. 但由上证,有//AB CD BC AD +=+,又由已知,有AD BC CD AB +=+相减得 //CD CD AD AD -=- , 即 //DD AD AD =-,与①矛盾.综上得AD 与N 的相切,即凸四边形ABCD 外切于圆.定理7 (相交弦定理)圆内的两条相交弦,被交点分成的两条线段长的积相等.定理8 (切割线定理)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.定义 5 从一点A 作O 的割线交O 于,B C ,则点A 到两交点,B C 的线段长度之积AB AC 称为点A 对O 的羃.对于两个已知圆有等羃的点的轨迹,称为两圆的根轴(或等羃轴).定理9 若两圆相交,其根轴在两圆公共弦所在的直线上;若两圆相切,其根轴在过两圆切点的公切线上;若两圆相离,则两圆的四条公切线的中点在根轴上.定理10 (三角形面积公式)在ABC ∆中,记c b a ,,为三边长,1()2p a b c =++为半周长,R 是外接圆半径,r 为内切圆半径,a h 是边BC 上的高,a r 是与边BC 及,AB AC 的延长线相切的旁切圆的半径,则ABC ∆的面积S 为:111(1)222a b c S ah bh ch ===; 111(2)sin sin sin 222S ab C ac B bc A ===;))()(()3(c p b p a p p S ---=;2(4)2sin sin sin 4abcS R A B C R==; rp S =)5(;)(21)6(a c b r S a -+=; )2sin 2sin 2(sin 21)7(2C B A R S ++=.定理11 在ABC Rt ∆中,有 (1)222a b c +=,(勾股定理的逆定理也成立) (2)1(),22cr a b c R =+-=.定理12 (角平分线定理)设AD 是ABC ∆中A ∠的平分线,则.AB BDAC DC=. 此定理有10多种证法,下面是有辅助线与无辅助线的两种代表性证法. 证明1 (相似法)如图6,延长BA 到E ,使AE AC =,连CE ,则 12B A D A ∠=∠(已知) ()12A E C A C E=∠+∠(外角定理) AEC =∠,(等腰三角形的两个底角相等) 有 //AD CE ,得 B D A B A BD C AE A C==.(平行线截割定理) 图6 证明2 (面积法)11sin 2211sin 22ABD ACD AB AD AS BC AB DC S ACAC AD A ∠===∠ . 定理13 (正弦定理、余弦定理)在ABC ∆中,有 (1)cos cos a b B c C =+,cos cos b a A c C =+, cos cos c a A b B =+. (2)2sin sin sin a b CR A B C===; (3)2222cos a b c bc A =+-,2222cos b a c ac B =+-, C ab b a c cos 2222-+=.(4)222sin sin sin 2sin sin cos A B C B C A =+-.(2)2sin sin sin a b CR A B C===; 证明1 (1)当ABC ∆为直角三角形时,命题显然成立. (2)当ABC ∆为锐角三角形时,如图7(1),作ABC ∆外接圆O ,则圆心O 在ABC ∆的内部,连BO 交O 于D ,连结DC .因为BD 是O 的直径,所以90BCD ∠=,在直角BCD 中有2sin a R D =,但A D ∠=∠,故得2sin a R A =.同理可证2,2sin sin b cR R B C==. 得2sin sin sin a b CR A B C===. (1) (2) 图7(3)当ABC ∆为钝角三角形时,记A ∠为钝角,则圆心O 在ABC ∆的外部,过A作直径,仿上证可得2,2sin sin b cR R B C==. 又在优弧 BC 上取一点D ,连,BD DC ,如图7(2),由于圆心O 在BCD 的内部,所以BCD 为锐角三角形,且()sin sin 180sin D A A =-= ,有22sin sin a aR R D A=⇒=. 综上得2sin sin sin a b CR A B C===. 证明2 由余弦定理,有222222sin 1cos 12b c a A A bc ⎛⎫+-=-=- ⎪⎝⎭()()()22222222bc b c abc -+-=()()()()()22a b c a b c c a b c a b bc +++-+--+=, 记t b =因为 0A π<<,开方得sin 2tA bc=. 同理可得sin ,sin 22t t B C ca ab ==. 所以 2s i n s i n s i n a b c a b cA B C t===. 证明3 如图8,在A B C ∆中,,,a b c 分别是三个内角,,A B C 所对的边,以三角形外接圆的圆心O 为原点,半径OA 所在的直线为x 轴建立直角坐标系,设外接圆的半径长为R , 于是A 点坐标为(),0R .由三角函数的定义得B 点坐标为()co s 2,s i n 2R C R C ,C 点坐标为()()()cos 22,sin 22R B R B ππ--,即()cos2,s i n 2R B R B -. 由 ()c o s 2,s i n 2A B R C R R C =-,有AB=2sin R C ==,得 2s i n c R C =.同理可得2sin ,2sin a R A b R B ==, 图8所以2s i n s i n s i na bcR A B C ===. (2)2222cos a b c bc A =+-,2222cos b a c ac B =+-,C ab b a c cos 2222-+=. 证明1 如图9(1),设CB CA AB ===a,b,c ,有=-a c b ,得()()22222cos ,c b cb A =--=+-+- a c b c b c c b b c b=即 2222cos a b c bc A +-=.同理可得 2222cos b a c ac B =+-,C ab b a c cos 2222-+=.(1) (2) 图9证明2 如图9(2),以A 为原点、以直线AB 为x 轴,建立直角坐标系,则()()()0,0,,,c o s ,s i nA B c o C b A b A , 由两点距离公式,有BC ==得 2222cos a b c bc A +-=.(3)222sin sin sin 2sin sin cos A B C B C A =+-.定理14 (梅内劳斯定理)一直线截ABC ∆的边,,BC AC AB 或其延长线于,,D E F ,(位于延长线上的点有奇数个)则1BD CE AFDCEA FB= .图10证明1 (将三个比值转化为三个值的循环比)如图10,过C 作//CG DF 交AB 于G ,有,BD BF CE GFDC GF EA AF==, 得 1BD CE AF BF GF AFDC EA FB GF AF FB== .也可以过C 作//CH AB 交DF 于H ,或过B 作//BN CA 交DF 于N 等途径来证明.证明2 (三角法)如图10,由正弦定理, 在FBD 中,有sin sin BD FB αβ=, 在CDE 中,有sin sin CE DC βγ=, 在AEF 中,有sin sin AF EA γα=, 三式相乘sin sin sin 1sin sin sin BD CE AF BD CE AF DC EA FB FB DC EA αβγβγα=== . 证明3 (面积法)如图11,联结联结,AD BE ,有面积关系DAF EAFDBF EBF S S AF FB S S ==, 得D A FE A FE A DD B FE BF E B DS S S AF FB S S S -==-.又EBDECD S BD DC S =, 图11E C DEADS CE EA S = , 三式相乘即得.证明4 (坐标法)设ABC ∆的三顶点坐标为()()()112233,,,,,A x y B x y C x y ,直线DF 的方程为 0a x b y c ++=. 又记123,,BD CE AFDC EA FBλλλ===(i λ可正可负),有21312131,1:,1x x x D y y y λλλλ+⎧=⎪+⎪⎨+⎪=⎪+⎩代入直线方程,得 21321311011x x y y a b c λλλλ⎛⎫⎛⎫++++=⎪ ⎪++⎝⎭⎝⎭,22133ax by cax by c λ++=-++.同理33211ax by cax by c λ++=-++,11122ax by cax by cλ++=-++,相乘1BD CE AFDC EA FB=- , 即 1BD CE AFDC EA FB= .逆定理: 若,,D E F 分别为ABC ∆三边,,BC AC AB 上的点(位于延长线上的点有奇数个),且1BD CE AFDC EA FB= . 则,,D E F 三点共线.证明 如图9,设EF 与BC 相交于/D ,由上证有//1BD CE AFD C EA FB=, 又由已知有1BD CE AFDC EA FB= , 两相比较,有//BD BD D C DC =, 合比 /BD BDBC BC=,得 /BD BD =,有/D 与D 重合,即,,DEF 三点共线.梅内劳斯定理逆定理是证明三点共线的有力工具.定理15 (塞瓦定理)设O 是ABC ∆内任意一点,,,AO BO CO 分别交对边于,,D E F ,则1BD CE AFDC EA FB= . 证明1 (将三个比值转化为三个值的循环比)如图12,由面积关系OBDABD ADC ODC S S BD DC S S ==, 有A B D O B DA O BA D C O D C A O CS S S BD DC S S S -==-.同理BOCAOBS CE EA S =, 图12 AOCBOCS AF FB S =,三式相乘即得. 证明2 (转化为物质重心)在,,A B C 处各放一个重物,使其重心正好在O 处,记三处的质量分别为,,A B C m m m ,则,,D E F 分别为,,BC AC AB 的重心,有C B m BD DC m =. ACm CE EA m =,B A m AF FB m =,三式相乘即得. 证明3 (用梅内劳斯定理)如图11,由梅内劳斯定理,ABD 被直线BOE 所截,有1BC DO AFCD OA FB = , ADC 被直线BOE 所截,有 1CB DO AEBD OA EC= ,相除得1B D C E A FD CE AF B= . 证明4 如图13,过点A 作//MN BC 交,BE CF 的延长线于,M N ,由,B O D M O A C O D N O A,有 BD DO CD BD AMAM OA AN CD AN==⇒=, 又由,BEC MEA NFA BFCCE BC EA AM =, 图13 AF ANFB BC=, 三式相乘即得.逆定理 在ABC ∆三边(所在直线),,AB CA BC 各取一点,,D E F ,若有1BD CE AFDC EA FB= ,则,,AD BE CF 平行或共点.(1) (2)图14证明 AD 与BE 有两种关系:或是平形或是相交. (1)若AD //BE (如图14(1)),则BC ECBD EA=代入已知得AF DCFB BC= 有AD //CF ,从而////AD BE CF .(2)若AD 与BE 相交(如图14(2)),记交点为O ,连CO 交AB 于/F ,由塞瓦定理,有//1BD CE AF DC EA F B= 与已知条件相比较,得//AF AF FB F B =,合比 /AF AF AB AB=,有 /AF AF =, 有/F 与F 重合,即,,AD BE CF 三线共点. 塞瓦定理的逆定理是证明三线共点的有力工具. 定理16(三角形的特殊点)(1)三角形的三条中线相交于一点(三角形的重心) 证明 当,,D E F 为ABC ∆各边的中点时,有1BD CE AFDC EA FB ===, 得1BD CE AFDC EA FB= . 又因 180EBC FCB ABC ACB ∠+∠<∠+∠<, 故BE 与CF 相交,得,,AD BE CF 三线共点.(2)三角形的三条角平分线相交于一点(三角形的内心)证明 当,,AD BE CF 为ABC ∆各内角平分线时,由角平分线定理,有,,BD AB CE BC AF ACDC AC EA AB FB BC ===, 相乘 1BD CE AF AB BC ACDC EA FB AC AB BC== .又因 180EBC FCB ABC ACB ∠+∠<∠+∠< , 故BE 与CF 相交,得,,AD BE CF 三线共点. (3)三角形的三条高线相交于一点(三角形的垂心)证明 先证锐角三角形成立.如图15,当,,AD BE CF 为ABC ∆各边的高线时,有BD ABRt ABD Rt CBF BF BC ⇒=, CE BCRt BCE Rt ACD DC AC ⇒= ,AF ACRt CAF Rt BAE AE AB ⇒= ,相乘得sin sin sin 1sin sin sin BD CE AF DC EA FB βαγαγβ== . 图15 又因 180EBC FCB ABC ACB ∠+∠<∠+∠<, 故BE 与CF 相交,得,,AD BE CF 三线共点.再证钝角三角形成立. 如图16,ABC ∆中,A ∠为钝角,设高线,B E C F延长相交于G ,则GBC 为锐角三角形,由上证,它的三条高线相交于一点,因为,BE CF 已相交于A ,所以,过G 而垂直于BC 的高线经过A ,也就是A B C ∆的三条高线,,AD BE CF相交于点G . 图16最后,直角三角形显然成立.因而对任意三角形都有三条高线共点.(4)三角形的三条垂直平分线相交于一点(三角形的外心)证明 对ABC ∆,作其中位线DEF ,由上证,DEF 的三条高线共点,得ABC ∆的三条垂直平分线相交于一点.定理17 (斯特沃尔特定理)在ABC ∆中,D 是BC 上一点,则222BD AC DC AB AD BD DC BC⋅+⋅=-⋅.证明 如图17,在ABD 与ABC 中,用余弦定理,有2222cos AD AB BD AB BD B =+- , ① 图17222cos 2AB BC AC B AB BC+-= , ②代入消去cos B ,得222222AB BC AC AD AB BD BD BC+-=+-()()22BD AC BC BD AB BD BC BD BC+-=--22BD AC DC AB BD DC BC+=- .也可以将余弦定理①、②2222cos AD AB BD AB BD B =+- ,2222cos AC AB BC AB BC B =+- , 看成齐次线性方程组()()2222220,0,AB BD AD x BDy AB BC AC x BCy ⎧+-+=⎪⎨+-+=⎪⎩,有非零解1,2cos x y AB B ==-,得系数行列式为0222222AB BD AD BD AB BC AC BC +-=+-,化简即得.推论1三角形中线长a m =. 证明 在斯特沃尔特定理中取BD DC =,有 222224AC AB BC AD +=-,即a m == 推论2 三角形角平分线长a t =()12p a b c =++.证明 在斯特沃尔特定理中取BD ABDC AC=,即 ,AB ACBD BC DC BC AB AC AB AC==++ ,有 ()222AB AC BC AD AB AC AB AC =-+ ()()222AB ACAB AC BC AB AC ⎡⎤=+-⎣⎦+ ()()()2AB ACAB AC BC AB AC BC AB AC =+++-+ .令()12p a b c =++,得a t =推论3 三角形高线长a h =,其中()12p a b c =++.证明 当D 为垂足时,如图17,有22222,,BD DC a AD b CD c BD +==-=-由 2222,,BD DC a BD CD c b +=⎧⎨-=-⎩可解得 222222,2,2a b c BD aa b c CD a ⎧-+=⎪⎪⎨+-⎪=⎪⎩从而 222222222a b c AD b CD b a ⎛⎫+-=-=- ⎪⎝⎭()()22222221224ab a b c ab a b c a⎡⎤⎡⎤=++--+-⎣⎦⎣⎦ ()()()()()()()()()22222221414,4a b c c a b aa b c a b c c a b c a b p p c p b p a a a ⎡⎤⎡⎤=+---⎣⎦⎣⎦=+++-+--+=---得a h =.定理18 (西姆松定理)过三角形外接圆上任意一点作三边的垂线,则三垂足共线(西姆松线).反之,若一点到三角形三边所在直线的垂足共线,则该点在三角形的外接圆上.证明 如图18,ABC 外接圆上任意一点P 到三边所在直线的垂足为,,D E F ,连,DE DF 及,,PA PB PC ,由,,PD BC PE AC PF AB ⊥⊥⊥知,点,,,P B F C 与点,,,P D C E 分别共圆,有180PDF PBF ∠+∠=, ①PDE PCE ∠=∠. ②又由,,,P A B C 共圆,有PCE PBF ∠=∠. ③ 图18由①、②、③得180PDF PDE ∠+∠=. ④从而,,,D E F 三点共线.反之,若,,D E F 三点共线,由①、②、④可得③成立,于是,,,P A B C 共圆,即点P 在ABC 的外接圆上.定理19 (托勒密定理)圆内接四边形中,两对边的乘积之和等于它的对角线的乘积.反之,若四边形的两对边的乘积之和等于它的对角线的乘积,则该四边形内接于一圆.证明 如图19,在圆内接四边形ABCD 的对角线AC 上取一点E ,使ADE BDC ∠=∠,又由ADE BDC ∠=∠,得A D EB DC = ,有 AE BCAD BC AE BD AD BD=⇒= . ①再由,ADB EDC ABD ECD ∠=∠∠=∠,得ABD ECD = ,有 A B C EA B C D C E B D B D C D=⇒= . ②②+①得()AB CD AD BC AE EC BD AC BD +=+= .反之,若四边形ABCD 中,有AB CD AD BC AC BD += . 图19如图20设点D 到ABC 三边所在直线的垂足为111,,A B C ,连111111,,A B AC B C ,因为11,,,A C B D 四点共圆,且AD 是直径,所以,在11ABC 中用正弦定理有1111sin sin 2BCB C AD B DC AD BAC AD R=∠=∠= . 其中,R 为ABC 的外接圆半径.同理, 1111,22AB AC A B CD A C BD R R==, 这时,若D 不在ABC 的外接圆上,则由西姆松定理知111,,A B C 图20不共线,得 111111A B BC AC +>,即 222A B B C A C C DA DB D R R R+> , 得 AB CD AD BC AC BD +>. 与已知AB CD AD BC AC BD += 矛盾,故D 在ABC 的外接圆上,即四边形为ABCD 圆内接四边形.托勒密定理的推广:四边形ABCD 中,有AB CD AD BC AC BD +≥. 证明 视,,,A B C D 为复平面上的复数,由恒等式()()()()()()A B C D A D B C A C B D --+--=--,A B CDE求模得不等式()()()()()()()()()()A B C D A D B C A B C D A D B C A C B D --+--≥--+--=--即 A B C D A D B C A C B D --+--≥--,得AB CD AD BC AC BD +≥定理20(费马点)在锐角三角形所在平面上求一点,使它到三角形三顶点的距离之和为最小. 证明 设P 为锐角ABC 内一点,现将APB 绕点A 向外旋转60 ,得A Q D ,由于,60A P A Q P A Q =∠=,所以,APQ 是等边三角形,有 PQ PA =,得 PA PB PC BP PO QD BD ++=++≥.由于,60A D ABC AD =∠=,所以,D 为定点,当,,,B P Q D共线时PA PB PC ++取最小值BD ,此时 图21 180120APB APQ ∠=-∠= .同样讨论可知,当120APB APC BPC ∠=∠=∠=时,PA PB PC ++取最小值.定理21 (欧拉线)在任一三角形中,外心,重心和垂心共线,且垂心到重心两倍于外心到重心的距离. 证明 在ABC 中,设O 为外心,G 为的重心,M 为AB 的中点,连结CM ,则G 在CM 上,且有 2CG GM =.连结OM ,则OM AB ⊥.连结OG 并延长到H ,使 2HG OG =,连CH ,有CGH MGO ,得GCH GMO ∠∠ ,推出 //CH OM ,但OM AB ⊥,所以CH AB ⊥.同理,AH BC ⊥. 图22 所以,H 为三角形垂心. 三、基本方法数学竞赛中的几何题几乎涉及所有的平面几何方法,主要有三大类:综合几何法、代数法和几何变换法.1.综合几何方法:如全等法、相似法、面积法等,证逆命题时常用到同一法,反证法.2.代数方法:如代数计算法、复数法、坐标法、三角法、向量法等.另有些几何不等式经过变换(图23) ⎪⎩⎪⎨⎧+=+=+=x z c z y b y x a ,,C图23之后,就成为正数的代数不等式了,反之,也可以把代数问题转化为几何问题.3.几何变换方法:如平移、旋转、反射、位似、反演等. 解几何题举例.例1 (2005、全国高中数学联赛) 如图24,设AB AC >,过A 作ABC 的外接圆的切线l ,又以A 为圆心,AC 为半径作圆分别交线段AB 于D ,交直线l 于E ,F .证明:DE ,DF 通过ABC 内心和一个旁心.分析:只考虑内心.第1.题目的条件是什么,一共有几个,其数学含义如何.(1),CAE ABC DAF ACB ∠=∠∠=∠, (2)DEF 中,1122DEF DAF ACB ∠=∠=∠, ()1122DFE DAE ABC BAC ∠=∠=∠+∠, 图2490EDF ∠= .(3)等腰ADE 中,()()111180180222ADE DAE ABC BAC ACB ∠=-∠=-∠-∠=∠(4)等腰ADF 中,()11802ADF AFD DAF ∠=∠=-∠ 1902ACB =-∠ .第2.弄清题目的结论是什么,一共有几个,其数学含义如何.结论成立需要什么?(1)结论有两个:,DE DF 一个通过ABC 的内心,一个通过ABC 的旁心.什么是通过,数学实质是证三线共点.①应是DE 通过ABC 的内心 ②应是DF 通过ABC 的旁心(2)放下旁心,立即想“内心”的定义,这导致我们作ABC 的内角平分线.由于B 点的信息量最少,因而优先考虑,A C ∠∠的平分线,这就出现了A ∠的平分线IA ,联结IC ,问题转化为证IC 是C ∠的平分线. 即12A C I A CB ∠=∠. 第3.弄清题目的条件与结论有哪些数学联系,是一种什么样的结构.题目的条件和结论是两个信息源.从条件发出的信息,预示可知并启发解题手段,从结论出发的信息预告需知并诱导解题方向,抓住条件和结论“从何处下手、向何方前进”就有一个方向(1)由结论12ACI ACB ∠=∠的需要,联想何处能提供12ACB ∠?想到 1122ADE AED DAF ACB ∠=∠=∠=∠问题转化为证12ACI ADE ACI AED ACI DAF ∠=∠∠=∠∠=∠ 其中之一(2)由于,AC AD AI =公共,CAI DAI ∠=∠,故ACI ADI = ,所以ACI ADI ∠=∠是可以实现的.证明 如图25,作BAC ∠的平分线交DE 于I ,联结IC ,由,AC AD AI =公共,CAI DAI ∠=∠,得 ACI ADI = ,有 A C I A D I ∠=∠.但是 A D I A E D ∠=∠(等腰三角形的两个底角相等) 12D A F =∠(圆周角等于同弧圆心角的一半) 12A CB =∠(弦切角定理)得 12A C I A CB ∠=∠, 图25 两条角平分线的交点I 必为ABC 的内心,所以DE 通过ABC 的内心.例2 证明:对任意三角形,一定存在两条边,它们的长,u v满足1u v ≤<. (“《数学周刊》杯”2007全国初中数学竞赛试题)讲解 有两种思维水平的处理.水平1 (参考答案)设任意ABC 的三边长为,,a b c ,不妨设a b c ≥≥.若结论不成立,则必有a b ≥, ①b c ≥ 5分 ② 记,b c s a b t c s t =+=+=++,显然0,0s t >>,代入①得c s t c s ++≥+,11s tc c s c++≥+ 令,s tx y c c==,则1112x y x ++≥+ ③由a b c <+,得c s t c s c ++<++,即t c <,于是1ty c=<.由②得112b c s x c c ++==+≥④ 由③,④得()5111y x ⎫≥+≥=⎪⎪⎝⎭, ⑤ 此式与1y <矛盾,从而命题得证. 15分评析 这个证明写得很曲折,其实③式就是①式、④式就是②式,解题的实质性进展在两个知识的应用上.(1)三角形基本定理:三角形两边之和大于第三边.使用“增量法”,引进四个参数,,,s t x y 推出1tc<是基本定理的变形(1a b c -<),构成矛盾也是与基本定理的变形1a by c-=<矛盾.(2)特征数据12的性质.这表现在⑤式用到的两个运算+=1 1=. 抓住这两点,立即可得问题的改进解法:若结论不成立,则存在ABC ,满足a b c ≥≥,且使12a b ≥,12b c ≥ 同时成立,得5111.a b c c b b b +≤<=+≤==矛盾.故对任意三角形,一定存在两条边,它们的长,u v 满足1u v ≤< 这还只是局部上的修修补补,更关键的是抓住实质性的知识可以构造不等式0()a b c >-+ (提供不等式)a b c =-+⎝⎭⎝⎭ )=a b ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭⑥ 据此可以成批得出本题的证明.另证 记任意ABC 的三边长为,,a b c ,不妨设a b c ≥≥,又设,a b x min b c ⎧⎫=⎨⎬⎩⎭,则1,1,,a b bx x a b x c b c x≤≤≤≤⇒≥≤,代入基本定理,有 210,b a b c bx a b c b x x x <+⇒<<+<+⇒--<解得1x ≤<. 说明 对比这两种思维水平,所用到的知识是相同的,结论也都正确.但水平一仍然停留在浅层结构的认识上,有在外围兜圈子之嫌,而水平二则更接近问题的深层结构,思路清晰而简明.例3 (斯坦纳定理)两条角平分线相等的三角形为等腰三角形. 证明 如图,在ABC 中,,BD CE 为角平分线,且BD CE =. 不妨设B C ∠≥∠,在EO 上取一点M ,使O B M O C D ∠=∠,记BM 的延长线交AC 于N ,则NBD NCM ,有1NB BD BDNC CM CE =≥=, 有 N B N C >. 图26 在NBC 中,由大边对大角,得NBC NCB ∠≤∠OBC OCB ⇒∠≤∠即 1122B C B C ∠≤∠⇒∠≤∠,得 B C B C B C ∠≥∠⎫⇒∠=∠⎬∠≤∠⎭.例4 (蝴蝶定理)设AB 是圆的一根弦,过AB 的中点M 作两弦,,CD EF 设,ED CF 分别交AB 于,P Q .求证PM MQ =.证明1 如图27,设,PM x QM y ==,AM BM a ==,有有显然的面积等式1QEM QDMCMP PFM CMP QEM PFM QDMS S S S S S S S = , 即s i n s i ns i ns i n1s i n s i ns i n s i nC P C M Q M E M F P F M Q MD M P M C ME Q E M P MF M D Q D M αγβδδαγβ=,得 22CP FP QM EQ DQ PM = .由相交弦订立又有()()22CP FP AP PB a x a x a x ==-+=-()()22EQ DQ AQ QB a y a y a y ==+-=-图27得 ()()222222a x y a y x -=-可得x y =即PM QM =.证明2 以AB 所在的直线为x 轴,以M 为原点建立直角坐标系,则圆的方程可以表示为()222x y b R +-=,(R b > ①而,CD EF 的方程为11220,0a y b x a y b x -=-=,相乘()()11220a y b x a y b x --= ②则过,,,C D E F 四点的曲线系方程为()()()22211220x y b R a y b x a y b x λ⎡⎤+--+--=⎣⎦.这也包括退化为直线,DE CF 的情况,令0y =,可得曲线系与x 轴的交点横坐标所满足的方程 图28()2221210bb x b R λ-+-=. ③因为,CF ED 分别交AB 于,P Q ,所以二次方程③必有两个实根12,x x ,且由方程的常数项为0知, 恒有 120x x +=,(中点不变性) 即 PM QM =.例6 (垂足三角形)锐角三角形的所有内接三角形中,周长最小的一个是其垂足三角形. 证明 设Z 是AB 边上的任意定点,作Z 关于AC 的对称点K ,再作Z 关于BC 的对称点H ,连KH 交,CA CB 于,Y X ,则X Y Z 是以Z 为定点的内接三角形中周长最短的一个.现固定,X Y ,由于CZ 与CK 关AC 对称,CZ 与CH 关于BC 对称,所以图29,,ZCA KCA ZCB HCB ∠=∠∠=∠得 2K C H A C B ∠=∠.所以,KCH 是顶角为定值、腰长等于CZ 的等腰三角形,当腰长最短时,KH 也最短,易知,当CZ AB ⊥(即Z 是AB 边上的垂足)时CZ 取最小值,此时XYZ 的周长最短.同样的讨论知,X 是BC 边上的垂足、Y 是AC 边上的垂足时,内接XYZ 的周长最短.所以,锐角三角形的所有内接三角形中,周长最小的一个是其垂足三角形.例8 (厄尔多斯—摩德尔定理)设P 是ABC ∆内一点,其到三边的距离分别为,,x y z ,则)(2PF PE PD PC PB PA ++≥++.等号成立当且仅当ABC ∆为正三角形,且P 是ABC ∆的重心.证明 如图21,过作直线 MN 交AB 于M ,交AC 于N ,使 AMN ACB ∠=∠,得AMN ACB = ,有,AM AC b AN AB cMN BC a MN BC a ====. 又 12AMN MN AP S ≥1122AMP ANP S S AM z AN y =+=+ , 图30得 A M A N b cP A z y z y M N M N a a ≥+=+ . ①同理 c aPB x z b b ≥+ , ②a bPC y x c c≥+ , ③相加 PA PB PC ++c b a c b a x y z b c c a a b ⎛⎫⎛⎫⎛⎫≥+++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2x y z ≥++ ④其中④式取等号a b c ⇔==,①式取等号AP MN ⇔⊥,这时ABC ∆为正三角形,且P 是ABC∆的重心.例9 (1995 536-IMO )设ABCDEF 是凸六边形,满足CD ,BC AB ==FA ,EF DE == 060BCD EFA ∠=∠=.设G 是H 是这六边形内部的两点,使得0120=∠=∠DHE AGB .证明 如图,将六边形以BE 为轴作一对称图形,11E BDF AC 有 图31.11CF F C =由于,1200=∠=∠DHE AGB 所以11,,,,,,F D H E G B C A 及切四点共圆,连1C .H F ,G C 11则,GB AG G C 1+= ① .HE DH HF 1+= ②从而 HE DH GH GB AG ++++1111C G GH HF C F CF =++≥=评析 此例通过对称,将需比较大小的6条线段集中在一起,当中的①、②两式也可以用旋转变换来证明.例10 (1986 227-IMO )在平面上给定点0P 和321A A A ∆,且约定当4≥S 时,3-=S S A A .构造点列,,,,210 P P P 使得1+k P 为点k P 绕中心1+k A 顺时针旋转120所到达的位置,,,2,1,0 =k 求证,如果01986P P =,则321A A A ∆为等边三角形.证明 引进复平面,以各点的字母表示各点上的复,并设())120sin(120cos -+-=i ωi 2321--=则01,123=++=ωωω依题意,有(如图32)().111ω+++-=-k k k k A P A P有 ()11-+-=n n n p A P ωω ()()]1[121--+-+-=n n n P A A ωωωω()()2211--++-=n n n P A A ωωω=……()o n n n n n P A A A A ωωωωω+++++-=---][111221当n =1986时,由于,,1,1,1986233o S S P P A A =--===-ωωω有 ()()o P A A A P +++-=122319861662ωωω ()()().][166219861213P A A A A +-+--=ωω 得 ()()()60sin 60cos 122113i A A A A A A +-=-=-ω这说明,A 1A 3可由A 1A 2绕A 1逆时针旋转60°得到,故321A A A ∆为正三角形.例11 在凸四边形ABCD 中,若AB 大于其余三边,BC 小于其余三边,则,BAD BCD ∠∠的关系为( )P k+1 P 1图32(A )BAD BCD ∠<∠ (B ) BAD BCD ∠=∠ (C )BAD BCD ∠>∠ (D )不能确定解 如图5,取一个平行四边形ABCD ,使CBD 为等腰直角三角形,作CBD 的外接圆O ,以D 为圆心、以DC 为半径,画弧交AB 延长线于E ,连DE 交O 于1C ,交BC 于2C ;又在线段1C E 内取点3C ,连13,BC BC ,则在四边形()1,2,3i ABC D i =中,AB 大于其余三边,i BC 小于其余三边,有2BAD BC D ∠<∠,1BAD BC D ∠=∠,3BAD BC D ∠>∠,选(D ). 图5 错在哪里?四、组合几何组合几何诞生于20世纪五六十年代,是组合数学的成果来解决几何学中的问题,所牵涉的类型包括计数、分类、构造、覆盖、递推关系以及相邻、相交、包含等拓扑性质.这类问题离不开几何知识的运用、几何结构的分析,但关键是精巧的构思.不仅在组合设计中需要,在组合计数中也少不了构思.竞赛中的组合几何主要有四类问题:计数问题,结构问题,覆盖问题,染色问题. 求解竞赛中的组合几何问题既需要一般性的常规方法、又需要特殊性的奥林匹克技巧(1)常规方法(一般性),如探索法、构造法、反证法、数学归纳法、待定系数法、换元法、消元法、配方法等.(2)奥林匹克技巧(特殊性),如构造、对应、递推、区分、染色、配对、极端原理、对称性分析、包含与排出、特殊化、一般化、数字化、有序化、不变量、整体处理、变换还原、逐步调整、奇偶分析、优化假设、计算两次、辅助图表等.1.计数问题(数数问题. sh u ∨`shu )⑴ 基本含义:计算具有某种几何结构的几何对象有多少个,如满足某种性质的点、边、角、三角形、圆有多少个.有时,也会求方法数.⑵ 基本方法.求解几何中的计数问题,通常要经历两步:①进行几何结构的分析.包括所给定的图形结构分析与所计数的几何性质的结构分析, 明确所给定图形的几何结构,明确所求解图形的几何结构.②根据几何结构的分析采用计数方法求出结果,可以直接计算、分类计算(加法原理)、例1 分正方形的每条边为4等分,取分点(不包括正方形的顶点)为顶点可以画出多少个三角形? 解法1 (1)几何结构的分析:图形是怎样组成?三角形的顶点与正方形的关系? ①三点在四条边上(×)②三点在三条边上:四边取三边,每边中三点取一点4×3×3×3=108③三点在两条边上:四边取一边,这边中三点取两点,另九点取一点4×3×9=108。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试时间:2011年10月16日 8:00—9:20
一、填空题:本大题共8小题,每小题8分,共64分。

把答案填在横线上.
1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .
2.函数1
1)(2-+=x x x f 的值域为 . 3.设b a ,为正实数,2211≤+b
a ,32)(4)(a
b b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .
5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)
6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .
7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .
8.已知=n a C ())95,,2,1(2162003200 =⎪⎪⎭⎫ ⎝⎛⋅⋅-n n
n n ,则数列}{n a 中整数项的个数为 . 二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.
9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)2
1()(++-
=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值. 10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121
)1(2)32(11-+--+-=++n n n n n n t a t t a t a ∈n (N )*.
(1)求数列}{n a 的通项公式;
(2)若0>t ,试比较1+n a 与n a 的大小.
11.(本小题满分20分)作斜率为31的直线l 与椭圆C :14
362
2=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.
(1)证明:△PAB 的内切圆的圆心在一条定直线上;
(2)若︒=∠60APB ,求△PAB 的面积.
考试时间:2011年10月16日 9:40—12:10
一、(本题满分40分)如图,Q P ,分别是圆内接四边形ABCD 的对角线BD AC ,的中点.若DPA BPA ∠=∠,证明:CQB AQB ∠=∠.
二、(本题满分40分)证明:对任意整数4≥n ,存在一个n 次多项式
0111)(a x a x a x x f n n n ++++=-- 具有如下性质:
(1)110,,,-n a a a 均为正整数;
(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有
)()()()(21k r f r f r f m f ≠.
三、(本题满分50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a j k i
j ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n . 证明:4
)(2
n r f n <.
四、(本题满分50分)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值.
A B
C
D
Q
P。

相关文档
最新文档