6.3 实数(第2课时) 同步练习1
人教版七年级下册数学实数第2课时实数与数轴的关系及实数的运算 同步练习
6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。
和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。
B.2+错误!未找到引用源。
C.2错误!未找到引用源。
-1D.2错误!未找到引用源。
+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。
C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。
C.-3错误!未找到引用源。
D.-3错误!未找到引用源。
10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。
人教版七年级下册《6.3第2课时实数的运算》同步练习(含答案)
第2课时实数的运算关键问答①本题用到的运算律是什么?1.-5的绝对值是( )A .-15B .-5C. 5 D .5 2.①计算:3 2-2+2=________.3.计算:327+16-14.命题点 1 实数的大小比较 [热度:90%]4.比较大小:|3-2|________|3|+|-2|.5.数轴上表示-3.14的点在表示-π的点的________边.6.实数a 在数轴上对应的点的位置如图6-3-6所示,试确定a ,-a ,1a,a 2的大小关系.图6-3-6命题点 2 实数的性质 [热度:93%]7.4的倒数是( )A .-2 B.12C .2 D .±128.下列实数中绝对值最小的是( )A .-4B .-2C .1D .39.②实数2-1的相反数是( )A.2-1B.2+1 C .1-2D .-2-1方法点拨②a 的相反数是-a .若两个数的和为0,则这两个数互为相反数.10.计算|3-2|的结果是( ) A .2-3B.3-2 C .-2-3D .2+ 311.③观察下列各式:①a 2;②|a |+1;③-a ;④23a .取一个适当的实数作为a 的值代入求值后,不可能互为相反数的式子序号为( )A .②④B .①②C .①③D .③④解题突破③两个数的符号不同才有可能互为相反数(0除外).12.④如果一个实数的绝对值为11-5,那么这个实数为______________.易错警示 ④本题容易丢掉11-5这种情况.13.若无理数a 使得|a -4|=4-a ,则a 的一个值可以是________.14.若(x +3)2+|y -2|=0,则|x +y |=________.15.若a 是15的整数部分,b 是15的小数部分,则a -b -ab =____________.16.已知7+5=x +y ,其中x 是整数,且0<y <1,求x -y +5的相反数.17.⑤在数轴上点A 表示的数是 5.(1)若把点A 向左平移2个单位长度得到点B ,求点B 表示的数;(2)若点C 和(1)中的点B 所表示的数互为相反数,求点C 表示的数;(3)在(1)(2)的条件下,求线段OA ,OB ,OC 的长度之和.解题突破⑤求线段OA ,OB ,OC 的长度之和,即求A ,B ,C 三个点所表示的数的绝对值之和. 命题点 3 实数的运算 [热度:98%]18.若等式2□2=2 2成立,则□内的运算符号为( )A .+B .-C .×D .÷19.计算|3-4|-3-22的结果是( )A .23-8B .0C .-23D .-820.定义新运算“☆”:a ☆b =ab +1,则2☆(3☆5)=__________. 21.⑥有四个实数分别是|-9|,22,-38,2 2.请你计算其中有理数的积与无理数的积的差,结果是__________.解题突破⑥(1)先确定四个数中的有理数和无理数;(2)再分别计算它们的积;(3)最后求两个积 的差.22.⑦已知数轴上有A ,B 两点,且这两点之间的距离为4 2.若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为____________.解题突破⑦点B 在点A 的左边还是右边?23.计算: (1)19+32627-1+|3-2|-(-2)2+2 3;(2)(-1)3+||3-2+2÷23- 4.24.⑧我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,那么我们称正整数a 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数字与十位上的数字得到的新数减去原来的两位正整数所得的差为18,那么我们称t 为“吉祥数”,求所有“吉祥数”中,F (t )的最大值.解题突破⑧(1)读懂新定义的条件:一个正整数分解成两个正整数的积,且取两因数之差的绝对值最小的情况.(2)在列举的所有情况中,找出满足条件的情况.典题讲评与答案详析1.C 2.22+23.解:原式=3+4-12=132. 4.< [解析]∵|3-2|=3-2,|3|+|-2|=3+2,∴3-2<3+ 2.故填“<”.5.右 [解析] 因为3.14<π,所以-3.14>-π,所以数轴上表示-3.14的点在表示-π的点的右边.6.解:∵-1<a <0,不妨令a =-12,∴-a =12,1a =-2,a 2=14. ∵-2<-12<14<12,∴1a<a <a 2<-a . 7.B [解析] 因为4=2,所以4的倒数是12. 8.C [解析] -4的绝对值是4,-2的绝对值是2,1的绝对值是1,3的绝对值是3.因为4>3>2>1,所以这些实数中绝对值最小的是1.9.C [解析] 实数2-1的相反数是-(2-1)=1- 2.10.A [解析] 因为3<2,所以3-2<0,所以|3-2|=-(3-2)=2- 3.11.B [解析]∵a 2≥0,|a |+1≥1,∴①和②不可能互为相反数.12.11-5或5-11[解析] 因为|11-5|=11-5,|5-11|=11-5,所以这个实数为11-5或5-11.13.2(答案不唯一) [解析] 答案不唯一,只要a 是小于4的无理数即可.14.3-2 [解析] 由题意,得x =-3,y =2,所以|x +y |=|-3+2|=-(-3+2)=3- 2.15.15-415 [解析] 因为3<15<4,所以a =3,b =15-3,所以a -b -ab = 3-(15-3)-3×(15-3)=3-15+3-315+9=15-415.16.解:∵4<5<9,∴2<5<3.又∵7+5=x +y ,其中x 是整数,且0<y <1,∴x =9,y =5-2,∴x -y +5=9-(5-2)+5=11,∴x -y +5的相反数是-11.17.解:(1)点B 表示的数是5-2.(2)点C 表示的数是2- 5.(3)由题意,得点A 表示5,点B 表示5-2,点C 表示2-5,∴OA =5,OB =5-2,OC =|2-5|=5-2,∴OA +OB +OC =5+5-2+5-2=3 5-4.18.A [解析] 因为2+2=2 2,2-2=0,2×2=2,2÷2=1,所以选A.19.C [解析] 原式=4-3-3-4=-2 3.故选C. 20.3 [解析] 2☆(3☆5)=2☆(3×5+1)=2☆4=2×4+1=3.21.-20 [解析] 有理数为|-9|,-38,它们的积为|-9|×(-38)=-18.无理数为22, 2 2,它们的积为22×2 2=2.有理数与无理数积的差为-18-2=-20. 22.-2或7 2[解析] 本题要分两种情况进行分析:①当点B 在点A 的左边时, 则3 2-4 2=-2,故点B 表示的数是-2;②当点B 在点A 的右边时, 则4 2+3 2=7 2,故点B 表示的数是7 2.综上,点B 在数轴上表示的数为-2或7 2.23.解:(1)原式=13-13+2-3-4+2 3=3-2. (2)原式=-1+2-3+2×32-2=-1. 24.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数).∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=n n=1. (2)设交换t 的个位上的数字与十位上的数字得到的新数为t ′,则t ′=10y +x . ∵t 为“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=18,∴y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有13,24,35,46,57,68,79.∵F (13)=113,F (24)=46=23,F (35)=57, F (46)=223,F (57)=319,F (68)=417, F (79)=179, 又∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F (t )的最大值是57. 【关键问答】①乘法分配律的逆用.。
人教版七年级数学下册精品作业课件(RJ) 第六章 实 数 实数 第2课时 实数的比较与运算
三、解答题(共 40 分) 18.(8 分)求出下列各式中 x 的值:
(1)|x|= 5 ;
(2)|x-1|= 2 .
解:(1)x=± 5
(2)x= 2 +1 或 x=- 2 +1
19.(8 分)计算:
(1)|-5|-3 27 +(-2)2+4÷(-23 );
A.-3 与 3
B.|-3|与-13
C.|-3|与13
D.-3 与 (-3)2
4.(4 分)实数 3 -2 的相反数是_2_-___3_,绝对值是_2_-___3_.
5.(3 分)化简: (1)(襄阳中考)|1- 2 |=__2__-__1_;
(2) (1- 2)2 =_Байду номын сангаас2__-__1_.
6.(3 分)下列四个实数中,最小的是( B )
12.(8 分)计算: (1) 5 +2 2 -( 5 + 2 ); 解:原式= 2 (2)(杭州中考)|1+3 3 |+|1- 3 |; 解:原式=4 3
(3)| 3 - 5 |+3( 3 - 5 ); 解:原式=2 3 -2 5 (4)3( 2 + 3 )+3( 2 -2 3 ). 解:原式=6 2 -3 3
已知 7+3 19 的小数部分是 m,11-3 19 的小数部分为 n,求 m+n. 解:∵8<19<27,∴2<3 19 <3,∴9<7+3 19 <10,∴m=7+3 19 -9 =3 19 -2.∵2<3 19 <3,∴-3<-3 19 <-2,∴8<11-3 19 <9,∴n =11-3 19 -8=3-3 19 ,∴m+n=3 19 -2+3-3 19 =1
9.(3 分)(包头中考)计算- 4 -|-3|的结果是( B ) A.-1 B.-5 C.1 D.5
6.3 第2课时 实数的运算
关键能力突破
核心素养应用
16.计算: (1) 25+3 -64+ (-2)2; (2)[2020 秋·岳麓区校级月考]-12 020+ (-2)2-3 27+|2- 3|. 解:(1)原式=5-4+2=3; (2)原式=-1+2-3+2- 3=- 3.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
17.计算下列各式的值: (1)| 6-2|+| 2-1|+|1- 2|-|3- 6|;
(2)- 0.25÷124× (-1)12+214+3.75× 6-(3 343+3 -1)× 6. 解:(1)原式= 6-2+ 2-1+ 2-1-(3- 6)=2 6+2 2-7; (2)原式=- 14÷116×1+214+334× 6-[7+(-1)]× 6=-12×16×1+6× 6- 6× 6=-8+6 6-6 6=-8.
(3)计算:
[ 1×2]+[ 2×3]+[ 3×4]+…+[ 2 020×2 021]
1 010
.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
解:(1)∵ 1=1, 4=2, 9=3,
∴当[ 1]≤[ x]<[ 4]时,[ x]=1;
当[ 4]≤[ x]<[ 9]时,[ x]=2,
∴[ 1]+[ 2]+[ 3]+…+[ 6]=1+1+1+2+2+2=9;
020=12×2
020×(1+2 1 010
020) =2
021.
返回
全效学习 课时提优
(2)原式=5×15-6×16-(-0.3)=0.3.
全效学习 课时提优
返回
基本知识必备
关键能力突破
人教版初中数学七年级下册《6.3实数》同步练习(含答案)
《实数》同步练习课堂作业1.下列实数中,是无理数的为()A3B.1 3C.0D.-32.下列说法:①带根号的数都是无理数;②无理数是开方开不尽的数;③无理数是无限小数;④数轴上的所有点都表示实数.其中,错误的有()A.1个B.2个C.3个D.4个3.如图,数轴上的点P表示的数可能是()A5B.5-C.-3.8D.10-4.在实数1.41483,0,π,2271634________个.5.如图,在数轴上的A 、B 、C 、D 四点中,与表示数3-________.6.把下列各数分别填在相应的集合中:16-3163π64 3.14159265,|25--, 4.21-,1.103030030003…. (1)有理数集合:{ …};(2)无理数集合:{ …};(3)正实数集合:{ …}:(4)负实数集合:{ …}.课后作业7.下列说法正确的是( )A .实数分为正实数和负实数B 3C 0.9D 30.018.在实数12,22,2π中,分数的个数是( ) A .0B .1C .2D .39.如图,数轴上A 、B 2 5.1,则A 、B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个10.若无理数a 满足2<a <3,请写出a 的两个可能的取值为________.1113________.12.在实数-7.51543125-15π,22(2中,设有a 个有理数,b 个无理数,________b a =.13.把下列各数分别填在相应的集合中: 53316-3|1-,27-2π-,329,0.3. (1)整数集合:{ …};(2)分数集合:{ …};(3)无理数集合:{ …};(4)负实数集合:{ …}. 14.已知a 、b 都是有理数,且(31)233a b +,求a +b 的平方根.15.如图,数轴上点A 、B 表示的数分别是12C 也在数轴上,且AC =AB ,求点C 表示的数.答案[课堂作业]1.A2.B3.B4.35.点B6.(1)有理数集合:{16-64,3.14159265,|25--, 4.21-,…} (2)无理数集合:3163π,1.103030030003…,…} (3)正实数集合:3163π64 3.14159265,1.103030030003…,…} (4)负实数集合:{16-,|25--, 4.21-,…} [课后作业]7.D8.B9.C105611.412.213.(1)整数集合:{-331-}(2)分数集合:{0.3,…}(3)无理数集合:5316-27-2π-,329,…} (4)负实数集合:{-3316-27-,2π-,…} 14.∵(31)233a b +=,3233a a b -+=.∵a 、b 都是有理数,33a =-a +2b =3.解得a =1,b =2.∴a +b =3.∴a +b 的平方根是3±15.设点C 表示的数为x .∵AC =AB ,∴121x -=.解得22x =C 表示的数是22《实数》同步练习21.下列各数中是无理数的是( )A 2B .-2C .0D .132.下列各数中,3.141 59,380.131 131 113…,-π25-17,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个3.写出一个比-2大的负无理数__________.4.下列说法正确的是( )A .实数包括有理数、无理数和零B .有理数包括正有理数和负有理数C .无限不循环小数和无限循环小数都是无理数D .无论是有理数还是无理数都是实数5.实数可分为正实数,零和__________.正实数又可分为__________和__________,负实数又可分为__________和__________.6.把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.66,0,1.101 001 000 1… 整数:{ ,…},负分数:{ ,…},无理数:{ ,…}.7.下列结论正确的是( )A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间还有无数个点8.若将三个数-3,7,17表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.9.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O ′,点O ′所对应的数值是__________.10.下列实数是无理数的是( )A .-2B .13C 4D 511.下列各数:2 ,0,90.23,227,0.303 003…(相邻两个3之间多一个0),12无理数的个数为( )A.2个B.3个C.4个D.5个12.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④17是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个参考答案1.A2.B3.答案不唯一,如:34.D5.负实数正有理数正无理数负有理数负无理数6.-6,-|-3|,0-23,-0.4π6,1.1010010001…7.D879.π10.D11.B12.B《实数》同步练习3课堂作业12的相反数是()A.2B.2 2D22.277的值为()A7B.37C.2D.03.与15+() A.4B.3C.2D.1471________1-(填“>”“<”或“=”).523的相反数是________,|3.14-π|=________.6321________.7.计算下面各式的值;(1)3333232;(2)|21|23|32|++.8.求下列各数的相反数和绝对值:32; 31125- 课后作业9.下列说法正确的是( )A .两个无理数的和一定是无理数B .无理数的相反数是无理数C .两个无理数的积一定是无理数D .无理数与有理数的乘积是无理数10.已知三个数:-π,-3,7-( )A .37-<-π<-B .37-π<-<-C .73-<-<-πD .73-π<-<-11.设实数a 、b 在数轴上对应的位置如图所示,且|a|>|b|2||a a b +的结果是( )A .2a +bB .-2a +bC .bD .2a -b12.计算:(1)3525________=; 334|4________--=.13.725-________,绝对值是________. 14.已知a 是小于35|2-a|=a -2,那么a 的所有可能值是________.15.如图,一只蚂蚁从点A 沿数轴向右爬行了2个单位长度到达点B ,点A 表示2-点B 所表示的数为m ,则|m -1|的值是________.16.求下列各式的值: (1)632343 5|35; (3)(2332)(3322)-; 1102233(精确到0.01). 17.设x 、y 是有理数,且x 、y 满足等式221742x y y +=+2016()x y 的值.答案[课堂作业]1.A2.A3.B4.<532π-3.146.±2,±3,±47.73(2)18.(1)11-111132的相反数是23,绝对值是2331125-15,绝对值是15[课后作业]9.B10.B11.C 12.(1)55(2)013725 72514.2、3、4、5152116.(1)433(3)32-(4)3.1017.由题意,知x +2y =17,-y =4,解得x =25,y =-4. ∴201620162016()(254)(54)1x y ==-=。
人教版数学七年级下册:6.3 实数 同步练习(附答案)
6.3 实数1.下列各数属于无理数的是( ) A. 2 B.38 C .0 D .12.实数37,3.101 001 000…,π,4,38中,无理数的个数是( ) A .1 B .2 C .3 D .43.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .实数可以分为正实数和负实数两类D .正实数包括正有理数和正无理数4.直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达点O ′,则点O ′所对应的实数是 .5.-3的相反数是( )A .- 3B .-33 C .± 3 D. 3 6.π是1π的( ) A .绝对值 B .倒数 C .相反数 D .平方根7.-|-2|的值为( )A. 2 B .- 2 C .± 2 D .28.写出下列各数的相反数与绝对值.9.计算:(1)33-53; (2)|1-2|+ 2.10.计算(结果精确到0.01):(1)π-2+3; (2)|2-5|+0.9.11.下列说法正确的是( ) A.33是分数 B.227是无理数 C .π-3.14是有理数 D.3-83是有理数 12.下列各组数中,互为相反数的一组是( ) A .2与(-2)2 B .-2与38C .-2与-12D .2与|-2| 13.实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a >bB .-a <bC .a >-bD .-a >b14.将实数5,π,0,-6由小到大用“<”号连起来,可表示为 .15.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 两点之间的距离是 .16.把下列各数分别填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32. (1)有理数集合:{ }; (2)无理数集合:{ };(3)正实数集合:{ };(4)负实数集合:{ }.17.求下列各式中的实数x.(1)|x|=45; (2)|x|=13. 18.计算: (1)4-3-8+25; (2)(-5)2+|2-5|- 5.19.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为4,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值.20.阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n=a ,则x 叫做a 的n 次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如:(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是 ,-243的5次方根是 ,0的10次方根是 ;(2)归纳一个数的n 次方根的情况.参考答案:1.下列各数属于无理数的是(A) A. 2 B.38 C .0 D .12.实数37,3.101 001 000…,π,4,38中,无理数的个数是(B) A .1 B .2 C .3 D .43.下列说法中,正确的是(D)A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .实数可以分为正实数和负实数两类D .正实数包括正有理数和正无理数4.直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达点O ′,则点O ′所对应的实数是-2π.5.-3的相反数是(D)A .- 3B .-33 C .± 3 D. 3 6.π是1π的(B) A .绝对值 B .倒数 C .相反数D .平方根7.-|-2|的值为(B)A. 2 B .- 2 C .± 2 D .28.写出下列各数的相反数与绝对值.9.计算:(1)33-53;解:原式=(3-5) 3=-2 3. (2)|1-2|+ 2. 解:原式=2-1+ 2=22-1.10.计算(结果精确到0.01):(1)π-2+3;解:原式≈3.142-1.414+1.732=3.46. (2)|2-5|+0.9. 解:原式=5-2+0.9≈2.236-1.414+0.9≈1.72.11.下列说法正确的是(D) A.33是分数 B.227是无理数 C .π-3.14是有理数 D.3-83是有理数 12.下列各组数中,互为相反数的一组是(B) A .2与(-2)2 B .-2与38C .-2与-12D .2与|-2| 13.实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是(D)A .a >bB .-a <bC .a >-bD .-a >b14.将实数5,π,0,-615.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 两点之间的距离是16.把下列各数分别填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32. (1)有理数集合:{-15,3.14,-327,0,0.25,…}; (2)无理数集合:{39,π2,-5.123 45…,-32,…}; (3)正实数集合:{39,π2,3.14,0.25,…}; (4)负实数集合:{-15,-327,-5.123 45…,-32,…}. 17.求下列各式中的实数x. (1)|x|=45; (2)|x|=13. 解:x =±45. 解:x =±13. 18.计算:(1)4-3-8+25;解:原式=2-(-2)+5=2+2+5=9.(2)(-5)2+|2-5|- 5.解:原式=5+5-2-5=3.19.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为4,f 的算术平方根是8,求12ab +c +d 5+e 2+3f 的值. 解:由题意可知:ab =1,c +d =0,e =±4=±2,f =64,∴e 2=(±2)2=4,3f =364=4. ∴12ab +c +d 5+e 2+3f=12×1+0+4+4 =812. 20.阅读下列材料:如果一个数的n(n 是大于1的整数)次方等于a ,这个数就叫做a 的n 次方根,即x n =a ,则x 叫做a 的n 次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如:(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0;(2)归纳一个数的n 次方根的情况.解:当n 为偶数时,一个正数的n 次方根有两个,它们互为相反数;当n 为奇数时,一个数的n 次方根只有一个.负数没有偶次方根.0的n 次方根是0.。
人教版七年级数学下册第六章《实数》同步练习(含答案)
)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )
《6.3实数》同步练习及答案(共两套)
《6.3实数》同步练习一(第1课时)一、选择题1.下列各数中:3.14,0,,,,,,,3.1414414441…(每两个1之间依次增加一个4),无理数的个数有( ).A.3个B.4个 C.5个 D.6个考查目的:考查无理数的概念.答案:B.解析:根据无理数是无限不循环小数可知,,,,3.1414414441…(每两个1之间依次增加一个4)这四个数是无理数.目前见到的无理数有三类:含有的数、开方开不尽的数、构造性无理数(看似循环其实不循环),如上面的3.1414414441…(每两个1之间依次增加一个4).2.下列关于无理数的说法中,正确的是( ).A.无限小数都是无理数B.任何一个无理数都可以用数轴上的点来表示C.是最小的正无理数D.所有的无理数都可以写成(、互质)的形式考查目的:考查无理数的概念和性质.答案:B.解析:无理数是无限不循环小数;不存在最小的正无理数,也不存在最大的负无理数;有理数可以写成(、互质)的形式,而无理数不可以;所有的实数都可以用数轴上的点来表示.3.如图,数轴上点P表示的数可能是( ).A.- B. C.- D.考查目的:考查无理数的大小估计,以及无理数在数轴上的表示.答案:A.解析:点表示的数介于-3与-2之间,而选项中只有-在这个范围内.二、填空题4.写出一个位于和0之间的无理数:.考查目的:考查无理数的概念和对无理数的大小估计.答案:答案不唯一,如(每两个1之间依次增加一个0)等.解析:根据无理数的概念来构造无理数,本题也可以用含有根号的数表示,如:等.5.如图,在数轴上,A,B两点之间表示整数的点有______个.考查目的:考查无理数用数轴上点表示以及无理数大小的估计.答案:4.解析:∵-2<<-1,2<<3,∴在数轴上,A,B两点之间表示整数的点有-1,0,1,2一共4个.6. 1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有____个.考查目的:本题结合算术平方根与立方根的定义考查了无理数的概念以及实数的分类.答案:186解析:在,,,…,中,有理数为,,,,,,,,,,共10个;在,,,…,中,有理数为,,,,共4个,故200个实数中有14个有理数,无理数为186个.三、解答题7.把下列各数填入相应的括号里:,,,0,,,,,(每两个1之间依次增加一个0).无理数集合:{ }分数集合:{ }整数集合:{ }负实数集合:{ }.考查目的:考查实数的分类.答案:无理数集合:{,,,,…}分数集合:{,,,… }整数集合:{0,,…}负实数集合:{,,,…}.解析:在进行实数的分类的时候,需要先对数进行化简,需要注意,有限小数或无限循环小数属于分数,常见的无理数有含有的数、开方开不尽的数以及构造的无理数,即可得到答案.8.按要求分别写出一个大于9且小于10的无理数:(1)用一个平方根表示:_________________ ;(2)用一个立方根表示:_________________ ;(3)用含的式子表示:_________________ ;(4)用构造的方法表示:__________________.考查目的:考查无理数的概念和性质.答案:(1);(2);(3);(4)(每两个1之间依次增加一个0).(答案不唯一)解析:(1)(为其中的任意实数);(2)(为其中的任意实数);(3),;(4)在大于9且小于10的范围内,构造一个无限不循环小数即可.(第2课时)一、选择题1.下列各数中,最小的是( ).A.O B.1 C.-1 D.考查目的:考查实数的大小比较.答案:D.解析:根据“正数大于零,零大于负数;两个负数,绝对值大的反而小”可知,最小的数只能在-1和中找.因为,所以,故最小的数是.2.在算式()□()的□中填上运算符号,使结果最大,这个运算符号是( ).A.加号 B.减号C.乘号D.除号考查目的:考查无理数的四则运算以及实数大小比较.答案:D.解析:加法运算的结果仍然为负数,减法运算的结果为零,乘法运算的结果为,除法运算的结果为1,而运算的结果中1最大,故选择D.3.对于以下四个判断:①是无理数.②是一个分数.③-|-|和-(-)是互为相反数.④若||<||,则<.其中正确的判断的个数是( ).A.3 B.2 C.1 D.考查目的:考查实数的概念和性质.答案:C.解析:①,2是一个有理数;②是无理数;③-|-|=-,-(-)=,-与是互为相反数;④反例:,.二、填空题4.的相反数是,绝对值是.考查目的:考查实数的相反数、绝对值的意义.答案:解析:-()=, ||=-()=.5.请写出两个你喜欢的无理数,使它们的和为有理数,这两个无理数为,如果是积为有理数,那么这两个无理数又为(任意写出一组).考查目的:考查互为相反数和互为倒数的概念和应用.答案:和和.(答案不唯一)解析:若两个无理数的和为有理数,这样的两个无理数的形式可以为和,其中,,,都是有理数,>0,为无理数,也可以为;若两个无理数的积为有理数,这样的两个无理数的形式可以为,,其中,为有理数,>0,也可以为.6.计算:-=_____________ .考查目的:考查算术平方根的运算和绝对值的化简计算.答案:-1.14.解析:由于<0,<0,所以-===-1.14.三、解答题7.创新设计题:如图所示的集合中有5个实数,请计算其中的有理数的和与无理数的积的差.考查目的:考查实数的分类以及实数的运算.答案:1-2.解析:有理数为:,,无理数为: ,,,由题意可得:()-(××)=1-2.8.观察下列推理过程:∵<<,即2<<3,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为,的小数部分为,求的值.考查目的:考查无理数的小数部分的表示,以及实数的运算.答案:.解析:的小数部分为=-1,的小数部分为=-1,故有=.《6.3实数》同步练习二第1课时实数课前预习:要点感知1 无限________小数叫做无理数,________和_______统称为实数. 预习练习1-1 下列说法:①有理数都是有限小数;②有限小数都是有理数;③无理数都是无限小数;④无限小数都是无理数,正确的是( )A.①②B.①③C.②③D.③④1-2实数-2,0.3,17,2,-π中,无理数的个数是( )A.2B.3C.4D.5要点感知2 实数可以按照定义和正负性两个标准分类如下:⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎭⎨⎩⎪⎧⎫⎪⎪⎨⎬⎪⎪⎭⎩⎩正有理数零负有理数实数正无理数负无理数⎧⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正分数正无理数实数负整数负有理数负分数负无理数预习练习2-1 给出四个数-1,0,0.5,其中为无理数的是( )要点感知3 __________和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个__________.预习练习3-1 和数轴上的点一一对应的是( ) A.整数 B.有理数 C.无理数 D.实数 3-2 如图,在数轴上点A 表示的数可能是( )A.1.5B.-1.5C.-2.6D.2.6当堂练习:知识点1 实数的有关概念 1.下列各数中是无理数的是( )B.-2C.0D.132.下列各数中,3.141 59,,0.131 131 113…,-,-17,无理数的个数有( )A.1个B.2个C.3个D.4个 3.写出一个比-2大的负无理数__________. 知识点2 实数的分类 4.下列说法正确的是( ) A.实数包括有理数、无理数和零 B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数5.实数可分为正实数,零和__________.正实数又可分为__________和__________,负实数又可分为__________和__________.6.把下列各数填在相应的表示集合的大括号内.-6,π,-23,-|-3|,227,-0.4,1.6,0,1.101 001 000 1… 整数:{ ,…}, 负分数:{ ,…}, 无理数:{ ,…}.知识点3 实数与数轴上的点一一对应 7.下列结论正确的是( ) A.数轴上任一点都表示唯一的有理数 B.数轴上任一点都表示唯一的无理数 C.两个无理数之和一定是无理数 D.数轴上任意两点之间还有无数个点8.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.9.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O ′,点O ′所对应的数值是__________.课后作业:10.下列实数是无理数的是( )A.-2B.1311.下列各数:2 ,00.23,227,0.303 003…(相邻两个3之间多一个0),中,无理数的个数为( ) A.2个 B.3个 C.4个 D.5个12.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( ) A.0个 B.1个 C.2个 D.3个 13.若a 为实数,则下列式子中一定是负数的是( )A.-a 2B.-(a+1)22+1)14.如图,( )A.点PB.点QC.点MD.点N 15.下列说法中,正确的是( )都是无理数B.无理数包括正无理数、负无理数和零C.实数分为正实数和负实数两类D.绝对值最小的实数是016.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )17.在下列各数中,选择合适的数填入相应的集合中.-152,3.14,,0,-5.123 45. 有理数集合:{ ,…} 无理数集合:{ ,…} 正实数集合:{ ,…} 负实数集合:{ ,…} 18.有六个数:0.142 7,(-0.5)3,3.141 6,227,-2π,0.102 002 000 2…,若无理数的个数为x,整数的个数为y,非负数的个数为z,求x+y+z 的值.挑战自我19.是无理数,的点呢?的点,如图.小颖作图说明了什么?参考答案 课前预习要点感知1 不循环 有理数 无理数 预习练习1-1 C1-2 A要点感知2 有理数 有限小数或无限循环小数 无理数 无限不循环小数 正实数 零 负实数预习练习2-1 D要点感知3 实数 实数预习练习3-1 D3-2 C当堂训练1.A2.B3.答案不唯一,如:4.D5.负实数 正有理数 正无理数 负有理数 负无理数6.-6,-|-3|,0 -23,-0.4 1.101 001 000 1…7.D 9.π课后作业10.D 11.B 12.B 13.D 14.C 15.D 16.B17.-152π,-5.123 45 (2)π,3.14,15…18.由题意得无理数有2个,所以x=2;整数有0个,所以y=0,非负数有4个,所以z=4,所以x+y+z=2+0+4=6.19.①每一个无理数都可以用数轴上的一个点表示出来,也就是数轴上的点有些表示有理数,有些表示无理数;②到原点距离等于某一个数的实数有两个.第2课时 实数的运算课前预习:要点感知1 实数a 的相反数是__________;一个正实数的绝对值是它__________;一个负实数的绝对值是它的__________;0的绝对值是__________.即:|a|=0.aaa⎧⎪⎪⎨⎪⎪⎩>=<,当时;,当时;,当时预习练习1-1的相反数是( )1-2的绝对值是( )要点感知2 正实数__________0,负实数__________0.两个负实数,绝对值大的实数__________.预习练习2-1 在实数0,,-2中,最小的是( )要点感知3 实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且__________可以进行开平方运算,__________可以进行开立方运算.预习练习3-1的结果是( )A.4B.0C.8D.12当堂练习:知识点1 实数的性质1. -34的倒数是( )A.43B.34C.-34D.-432.无理数( )3.下列各组数中互为相反数的一组是( )A.-|-2|与与知识点2 实数的大小比较4.在-3,0,4这四个数中,最大的数是( )5.如图,在数轴上点A,B对应的实数分别为a,b,则有( )A.a+b>0B.a-b>0C.ab>0D.ab>06.,则实数a在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D.原点或原点右侧7.比较大小:;(填“>”或“<”).知识点3 实数的运算8.计算:=( )9.计算:=__________.的相反数是__________,绝对值是__________. 11.计算:(1)-2|; (2(3.12.计算:(1)π(精确到0.01);保留两位小数).课后作业:13.的相反数是( )14.若|a|=a ,则实数a 在数轴上的对应点一定在( )A.原点左侧B.原点右侧C.原点或原点左侧D.原点或原点右侧15.比较2的大小,正确的是( )<216.如图,数轴上的点A ,B 分别对应实数a ,b,下列结论正确的是( )A.a>bB.|a|>|b|C.-a<bD.a+b<017.下列等式一定成立的是( )±=918.如果0<x<1,那么1x2中,最大的数是( )A.xB.1x D.x 219.点A 在数轴上和原点相距3个单位,点B 则A,B 两点之间的距离是__________.20.若(x 1,y 1)※(x 2,y 2)=x 1x 2+y 1y 2,则※)=________. 21.计算:;-1|.22.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米?(球的体积V=43πr3,π取3.14,结果精确到0.1米)23.如图所示,某计算装置有一数据入口A和一运算结果的出口B,下表给出的是小红输入的数字及所得的运算结果:若小红输入的数为49,输出的结果应为多少?若小红输入的数字为a,你能用a 表示输出结果吗?24.12,我们把1-1.利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?(2)挑战自我25.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是__________,-243的5次方根是__________,0的10次方根是__________;(2)归纳一个数的n次方根的情况.参考答案课前预习要点感知1 -a 本身相反数 0 a 0 -a 预习练习1-1 C1-2 A要点感知2 大于小于反而小预习练习2-1 A要点感知3 正数以及0 任意一个实数预习练习3-1 B当堂训练1.D2.B3.C4.C5.A6.C7.(1)< (2)> (3)>8.C 9.111.(1)原式)=4.(2)原式=2+0-12=32.(3)原式.12.(1)π≈3.142-1.414+1.732≈3.46;(2)原式≈2.236-1.414+0.9≈1.72.课后作业13.C 14.D 15.C 16.C 17.B 18.B 19.20.-221.(1)原式;(2)原式-1=1.22.把V=13.5,π=3.14代入V=43πr3,得13.5=43×3.14r3,r≈1.5(米).所以球罐的半径r约为1.5米.23.-1=6;若小红输入的数字为a≥0).24.(1)因为343;(2)因为9109-9.25.(1)±2 -3 0(2)当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.。
人教版七年级数学下册说课稿6.3第2课时《实数》
人教版七年级数学下册说课稿6.3 第2课时《实数》一. 教材分析人教版七年级数学下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,对实数概念的进一步拓展。
本节课主要介绍了实数的分类,包括有理数、无理数和零。
同时,学生还将学习实数与数轴的关系,以及实数的运算规则。
教材通过丰富的实例和练习,帮助学生理解和掌握实数的概念和性质,培养学生的数学思维能力。
二. 学情分析学生在进入七年级之前,已经学习了有理数和无理数的基本概念,对数的运算有一定的了解。
但是,对于实数的分类和实数与数轴的关系,可能还存在一定的困惑。
因此,在教学过程中,我需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 说教学目标1.知识与技能目标:学生能够理解实数的分类,掌握实数与数轴的关系,熟练运用实数的运算规则进行计算。
2.过程与方法目标:通过观察实例,学生能够自主探究实数的性质,培养学生的观察能力和推理能力。
3.情感态度与价值观目标:学生能够体验到数学与实际生活的紧密联系,培养学生的学习兴趣和合作意识。
四. 说教学重难点1.教学重点:实数的分类,实数与数轴的关系,实数的运算规则。
2.教学难点:实数的分类,实数与数轴的关系,实数的运算规则的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法,引导学生主动探究,培养学生的数学思维能力。
2.教学手段:利用多媒体课件,生动展示实数的性质和运算规则,提高学生的学习兴趣。
六. 说教学过程1.导入:通过复习有理数和无理数的概念,引导学生思考实数的分类,激发学生的学习兴趣。
2.实数的分类:引导学生观察实例,发现实数的分类规律,总结实数的分类。
3.实数与数轴的关系:通过数轴展示实数的位置,引导学生理解实数与数轴的对应关系。
4.实数的运算规则:讲解实数的加减乘除运算规则,并通过练习让学生熟练掌握。
5.巩固练习:设计具有代表性的练习题,让学生运用所学知识解决问题,巩固学习成果。
2019-2020学年人教版七年级下学期《6.3 实数》同步测试卷及答案解析
2019-2020学年人教版七年级下学期《6.3 实数》同步测试卷1.把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3.,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{ …};分数{ …};无理数{ …}.2.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.143.把下列各数填入相应的括号内:﹣,﹣,π,3.14,﹣,无理数集合:{…};正实数集合:{…}.4.在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{…},分数集合{…},无理数集合{…}.5.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.6.数学课上,好学的小明向老师提出了一个问题:无限循环小数是无理数吗?以0.为例,老师给小明做了以下解答(注:0.即0.33333…):设0.为x,即:0.3=x等式两边同时乘10,得:3.=10x即:3+0.=10x因为0.=x所以3+x=10x解得:x=即0.=因为分数是有理数,所以0.是有理数,同学们,你们学会了吗?请根据上述阅读,解决下列问题:(1)无限循环小数0.写成分数的形式是(2)请用解方程的办法将0.写成分数.7.把下列各数填入相应的集合里:﹣3,|﹣5|,+(﹣),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),,﹣|﹣|,3π整数集合:{…}负分数集合:{…}无理数集合:{…}非负数集合:{…}.8.把下列各数填在表示它所在的数集的圈内:3π,﹣12,+6,3.8,﹣6,,8.7,2002,﹣,0,﹣4.2,3.1415,﹣1000,1.21121112…9.把下列各数填入相应的大括号里﹣0.78,5,+,﹣0.87,﹣10,﹣,0,,0.,﹣2.121121112…负整数:{…}分数:{…}非负数:{…}无理数:{…}.10.求下列各数的相反数(1)2.5(2)﹣(3)﹣(4)1﹣.11.求下列各数的绝对值(1)(2)(3)﹣1.7(4)1.4﹣.12.(1)已知|x|=|﹣y|,且|x+y|=﹣x﹣y,求x﹣y的值(2)已知数a与b互为相反数,c与d互为倒数,x+2=0,求式子(a+b)2009﹣的值.(3)已知=x,=2,z是9的算术平方根,求2x+y﹣z的平方根.13.已知与互为相反数,求2a+b的立方根.14.一个正数x的两个不同的平方根分别是2a﹣1和﹣a+2.(1)求a和x的值;(2)化简:2|a+|﹣|3a+x|.15.已知a2=(﹣3)2,与互为相反数,求代数式2a2﹣b的值.16.已知x2=5,|y|=,求x+y的值.17.按要求写出下列各数:①倒数是它本身的数是,②相反数是它本身的数是,③绝对值是它本身的数是,④平方是它本身的数是,⑤平方根是它本身的数是,⑥算术平方根是它本身的数是,⑦立方是它本身的数是,⑧立方根是它本身的数是.18.已知A=是3x﹣7的立方根,而B=是A的相反数,求x2﹣y的立方根.19.如表所示,请分别写出字母A、B、C、D所表示的数值,并求其中最大与最小的两个数的和.字母所表示的数字母所表示的数A的相反数C整式的系数B的平方根D1﹣的绝对值20.求下列各数的相反数和绝对值:(1)﹣(2)(3)﹣2 (4).21.数轴上有A,B,C,D四个实数,如图所示,它们表示的数在以下四个数中,﹣1.5,π,,﹣,请指出A,B,C,D各表示什么数?22.实数a、b在数轴上对应点A、B的位置如图,化简:|a+b|﹣﹣.23.如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:﹣|a﹣b|+﹣|b﹣c|24.已知:表示a、b两个实数的点在数轴上的位置如图所示,请你化简.25.如图,数轴上表示1、的对应点分别为A、B,点C在OA上,且AC=AB,试求点C所表示的实数.26.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,再直爬向C点停止,已知点A表示﹣,点C表示2,设点B所表示的数为m.(1)求m的值;(2)求BC的长.27.在数轴上表示与它的相反数.28.如图,直径为1的圆从原点沿数轴向左滚动一周,圆上与原点重合的点O到达O′,设点O′表示的数为a(1)求a的值;(2)求﹣(a﹣)﹣π的算术平方根.29.已知数轴上有A,B,C三点,它们表示的有理数分别为6,﹣4,x.(1)若x=﹣10,求AC+BC的值;(2)若AC=3BC,求x的值.30.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为.31.比较下列各组数的大小:(1)与7;(2)﹣π与﹣;(3)2与3.32.估算比较大小:(填“>”或“<”)(1)﹣﹣3.2;(2)5;(3);(4).33.比较下列各数的大小.(1)与1.732;(2)与;(3)与﹣3.34.已知a=,b=,c=,比较a、b、c大小.35.在数轴上表示数,﹣3,0,﹣,π,并比较它们的大小,用“<”连接;36.(1)求出下列各数:①﹣,②(﹣2)2,③|﹣2.5|,④﹣(+1.5)(2)将(1)中求出的每个数精准地表示在数轴上.(3)将(1)中求出的每个数按从小到大的顺序排列,并用“<”.37.用“>”或“<”比较下列一组数的大小﹣,﹣(﹣3),π,(﹣2)3,﹣0.01,2,2020,﹣|﹣15|,0,﹣5%38.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③的平方根.(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.39.设的整数部分和小数部分分别是x、y,试求x﹣y的值.40.在两个连续整数a和b之间(a<b),即a<<b,求3a+4b的立方根.41.一个正方形的面积是15,试估计它的边长大小.42.估算下列各数的大小:(1)(误差小于100);(2)(误差小于10);(3)(误差小于1);(4)(误差小于0.1).43.分别写出所有适合下列条件的数.(1)小于的正整数;(2)和之间的整数;(3)大于3小于4的一个无理数.44.写出所有适合下列条件的数.(1)大于﹣且小于的所有整数;(2)小于的所有正整数;(3)大于﹣的所有负整数.45.求符合下列各条件中的x的值:(1);(2);(3)(x﹣4)2=4;(4);(5)满足|x|<π的整数x;(6)满足<x<的整数.46.计算:(1)﹣(﹣)2+(﹣1)2018;(2)+﹣.47.计算:(1)+;(2)++.48.计算:(1)﹣;(2)﹣+|3﹣π|;(3)×+×÷.49.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2009+﹣|﹣5|++.50.用计算器计算(精确到0.01)(1)(2)2019-2020学年人教版七年级下学期《6.3 实数》同步测试卷参考答案与试题解析一.解答题(共50小题)1.把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3.,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{ …};分数{ …};无理数{ …}.【分析】根据实数的定义即可作出判断.【解答】解:整数{﹣|﹣3|,0…};分数{,﹣3.…};无理数{,,1﹣,1.1010010001…(两个1之间依次多1个0)…}.故答案是:﹣|﹣3|,0;;,,1﹣,1.1010010001…(两个1之间依次多1个0).【点评】此题主要考查了实数的分类,理解无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.14【分析】根据有理数与无理数的定义看判定求解.【解答】解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).【点评】本题主要考查了有理数与无理数的定义.有理数是整数与分数的统称;无理数是无限不循环小数.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.开方开不尽的数也是无理数.3.把下列各数填入相应的括号内:﹣,﹣,π,3.14,﹣,无理数集合:{π,﹣,…};正实数集合:{π,3.14,…}.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数集合:{π,﹣,…};正实数集合:{π,3.14,…},故答案为:π,﹣,;π,3.14,.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{…},分数集合{…},无理数集合{…}.【分析】根据无理数、整数、分数的定义即可作答.【解答】解:整数集合{0,﹣};分数集合{,3.14};无理数集合{,﹣,7.151551…}.【点评】此题主要考查了无理数、分数、无理数的定义注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.【分析】先设=,再由已知条件得出,a2=5b2,又知道b是整数且不为0,所以a不为0且为5的倍数,再设a=5n,(n是整数),则b2=5n2,从而得到b也为5的倍数,与a,b是互质的正整数矛盾,从而证明了答案.【解答】解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.【点评】本题考查了无理数的概念,解题的关键是根据所给事例模仿去做,做到举一反三.6.数学课上,好学的小明向老师提出了一个问题:无限循环小数是无理数吗?以0.为例,老师给小明做了以下解答(注:0.即0.33333…):设0.为x,即:0.3=x等式两边同时乘10,得:3.=10x即:3+0.=10x因为0.=x所以3+x=10x解得:x=即0.=因为分数是有理数,所以0.是有理数,同学们,你们学会了吗?请根据上述阅读,解决下列问题:(1)无限循环小数0.写成分数的形式是(2)请用解方程的办法将0.写成分数.【分析】(1)根据给出的例子,设0.为x,即:0.=x,再根据解方程的方法,即可得到0.=;(2)根据给出的例子,设0.为x,即:0.=x,再根据解方程的方法,即可得到0.=.【解答】解:(1)设0.为x,即:0.=x,等式两边同时乘10,得:2.=10x,即:2+0.=10x,因为0.=x,所以2+x=10x,解得:x=,即0.=,故答案为:;(2)设0.为x,即:0.=x,等式两边同时乘100,得:21.=100x,即:21+0.=100x,因为0.=x,所以21+x=100x,解得:x=,即0.=.【点评】此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成整数形式.7.把下列各数填入相应的集合里:﹣3,|﹣5|,+(﹣),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),,﹣|﹣|,3π整数集合:{﹣3,|﹣5|,0,…}负分数集合:{+(﹣),﹣3.14,﹣|﹣|,…}无理数集合:{﹣1.2121121112…,3π…}非负数集合:{|﹣5|,0,﹣(﹣2.5),,3π,…}.【分析】根据整数、负分数、无理数、非负数的概念选出即可.【解答】解:整数集合:{﹣3,|﹣5|,0,…},负分数集合:{+(﹣),﹣3.14,﹣|﹣|,…},无理数集合:{﹣1.2121121112…,3π,…},非负数集合:{|﹣5|,0,﹣(﹣2.5),,3π,…},故答案为:﹣3,|﹣5|,0,+(﹣),﹣3.14,﹣|﹣|,﹣1.2121121112…,3π,|﹣5|,0,﹣(﹣2.5),,3π.【点评】本题考查了实数的有关内容,能熟记整数、负分数、无理数、非负数等概念是解此题的关键.8.把下列各数填在表示它所在的数集的圈内:3π,﹣12,+6,3.8,﹣6,,8.7,2002,﹣,0,﹣4.2,3.1415,﹣1000,1.21121112…【分析】根据有理数、无理数、非正数、非负整数的意义选出即可.【解答】解:.【点评】本题考查了有理数、无理数、非正数、非负整数的意义,能熟记有理数、无理数、非正数、非负整数的意义是解此题的关键.9.把下列各数填入相应的大括号里﹣0.78,5,+,﹣0.87,﹣10,﹣,0,,0.,﹣2.121121112…负整数:{﹣10…}分数:{﹣0.78,+,﹣0.87,﹣,0.…}非负数:{5,+,0,,0.…}无理数:{,﹣2.121121112…}…}.【分析】根据实数的分类和性质进行判断即可.【解答】解:负整数:{﹣10}分数:{﹣0.78,+,﹣0.87,﹣,0.}非负数:{5,+,0,,0.}无理数:{,﹣2.121121112…}.故答案为:﹣10;﹣0.78,+,﹣0.87,﹣,0.;5,+,0,,0.;,﹣2.121121112….【点评】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.10.求下列各数的相反数(1)2.5(2)﹣(3)﹣(4)1﹣.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:(1)2.5的相反数是﹣2.5;(2)﹣的相反数是;(3)﹣的相反数是﹣;(4)1﹣的相反数是﹣1.【点评】本题考查了实数的性质,熟记只有符号不同的两个数叫做互为相反数是解题的关键.11.求下列各数的绝对值(1)(2)(3)﹣1.7(4)1.4﹣.【分析】根据绝对值的性质解答即可.【解答】解:1)的绝对值是2;(2)的绝对值;(3)﹣1.7的绝对值﹣1.7;(4)1.4﹣的绝对值﹣1.4.【点评】本题考查了实数的性质,熟记绝对值的性质是解题的关键.12.(1)已知|x|=|﹣y|,且|x+y|=﹣x﹣y,求x﹣y的值(2)已知数a与b互为相反数,c与d互为倒数,x+2=0,求式子(a+b)2009﹣的值.(3)已知=x,=2,z是9的算术平方根,求2x+y﹣z的平方根.【分析】(1)由已知分别得到x=y或x=﹣y,x+y<0,进而确定x=y满足题意;(2)由已知可知a+b=0,cd=1,z=﹣2,代入所求式子即可;(3)由已知可知x=5,y=4,z=3,代入所求式子即可.【解答】解:(1)∵|x|=|﹣y|,∴x=y或x=﹣y,∵|x+y|=﹣x﹣y,∴x+y<0,∴x=y,∴x﹣y=0;(2)∵a与b互为相反数,∴a+b=0,∵c与d互为倒数,∴cd=1,∵x+2=0,∴x=﹣2,∴(a+b)2009﹣=0﹣=;(3)∵=x,∴x=5,∵=2,∴y=4,∵z是9的算术平方根,∴z=3,∴2x+y﹣z=10+4﹣3=11.【点评】本题考查实数的性质;熟练掌握相反数、倒数、平方根、绝对值的性质是解题的关键.13.已知与互为相反数,求2a+b的立方根.【分析】根据与互为相反数,可得:8a+15=﹣(4b+17),据此求出2a+b的值是多少,进而求出2a+b的立方根是多少即可.【解答】解:∵与互为相反数,∴8a+15=﹣(4b+17),∴8a+4b=﹣17﹣15=﹣32,∴2a+b=﹣8,∴2a+b的立方根是:=﹣2.【点评】此题主要考查了实数的性质,以及立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.14.一个正数x的两个不同的平方根分别是2a﹣1和﹣a+2.(1)求a和x的值;(2)化简:2|a+|﹣|3a+x|.【分析】(1)根据一个正数的两个平方根互为相反数可得关于a的方程,解出即可得到a 的值,代入求得x的值.(2)根据(1)中求得的a的值去绝对值即可.【解答】解:(1)由题意,得(2a﹣1)+(﹣a+2)=0,解得a=﹣1.∴x=(2a﹣1)2=(﹣3)2=9;(2)原式=2|﹣1+|﹣|3×(﹣1)+9|=2﹣2﹣6=.【点评】本题考查平方根的知识,解决问题的关键是掌握一个正数的两个平方根互为相反数.15.已知a2=(﹣3)2,与互为相反数,求代数式2a2﹣b的值.【分析】由已知条件得到a=±3;然后由与互为相反数得到3a﹣2b+a+b =0,易得b的值,代入求值即可.【解答】解:∵a2=(﹣3)2=9,∴a=±3.当a=3时,由与互为相反数得到3a﹣2b+a+b=0,即b=4a=4×3=12.此时2a2﹣b=2×9﹣12=6.当a=﹣3时,由与互为相反数得到3a﹣2b+a+b=0,即b=4a=﹣3×4=﹣12.此时2a2﹣b=2×9+12=30.综上所述,代数式2a2﹣b的值是6或30.【点评】考查了实数的性质,解题的关键是利用相反数的性质求得b的值.16.已知x2=5,|y|=,求x+y的值.【分析】根据绝对值和平方根的定义,先确定x.y的值,再代入代数式,即可解答.【解答】解:∵x2=5,|y|=,∴x=±,y=±.(1)当x=,y=时,x+y=+=2;(2)当x=,y=﹣时,x+y=+(﹣)=0;(3)当x=﹣,y=时,x+y=﹣+=0;(4)当x=﹣,y=﹣,时,x+y=(﹣)+(﹣)=﹣2.综上所述,x+y的值是2或0或﹣2.【点评】此题主要是考查了绝对值和平方根的定义,注意结果有四种情况,勿漏.17.按要求写出下列各数:①倒数是它本身的数是±1,②相反数是它本身的数是0,③绝对值是它本身的数是非负数,④平方是它本身的数是0,1,⑤平方根是它本身的数是0,⑥算术平方根是它本身的数是0,1,⑦立方是它本身的数是1,0,﹣1,⑧立方根是它本身的数是﹣1,0,1.【分析】根据平方根、立方根,可得答案.【解答】解:①倒数是它本身的数是±1,②相反数是它本身的数是0,③绝对值是它本身的数是非负数,④平方是它本身的数是0,1,⑤平方根是它本身的数是0,⑥算术平方根是它本身的数是0,1,⑦立方是它本身的数是1,0,﹣1,⑧立方根是它本身的数是﹣1,0,1,故答案为:±1,0,非负数,0,1;0;0,1;1,0,﹣1;﹣1,0,1.【点评】本题考查了实数的性质,利用平方根、立方根是解题关键.18.已知A=是3x﹣7的立方根,而B=是A的相反数,求x2﹣y的立方根.【分析】根据立方根,可得方程组,根据解方程组,可得x,y的值,根据开立方,可得答案.【解答】解:由题意得,解得.∴==3.【点评】本题考查了实数的性质,利用立方根互为相反数得出方程组是解题关键.19.如表所示,请分别写出字母A、B、C、D所表示的数值,并求其中最大与最小的两个数的和.字母所表示的数字母所表示的数A的相反数C整式的系数B的平方根D1﹣的绝对值【分析】根据实数的性质,可得答案.【解答】解:的相反数是﹣,=,整式的系数﹣,|1﹣|=﹣1,最大与最小的两个数的和﹣1+(﹣)=﹣1.【点评】本题考查了实数的性质,利用实数的性质得出的相反数是﹣,=,整式的系数﹣,|1﹣|=﹣1是解题关键.20.求下列各数的相反数和绝对值:(1)﹣(2)(3)﹣2 (4).【分析】根据相反数和绝对值的定义得出即可.【解答】解:(1)﹣的相反数是,绝对值是;(2)的相反数是﹣,绝对值是;(3)﹣2的相反数是2﹣,绝对值是2﹣;(4)的相反数是﹣,绝对值是.【点评】本题考查了相反数和绝对值,能熟记相反数和绝对值的定义是解此题的关键.21.数轴上有A,B,C,D四个实数,如图所示,它们表示的数在以下四个数中,﹣1.5,π,,﹣,请指出A,B,C,D各表示什么数?【分析】先分别得到﹣1.5,π,,﹣在哪两个相邻的整数之间,依此即可求解.【解答】解:由数轴可知,A是π,B是﹣,C是﹣1.5,D是.【点评】考查了实数与数轴,关键是得到﹣1.5,π,,﹣值的范围.22.实数a、b在数轴上对应点A、B的位置如图,化简:|a+b|﹣﹣.【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后利用算术平方根和绝对值的性质解答即可.【解答】解:由图可知,b<0<a,且|a|<|b|,所以,a+b<0,所以,|a+b|﹣﹣=﹣a﹣b﹣a﹣(a﹣b)=﹣a﹣b﹣a﹣a+b=﹣3a.【点评】本题考查了实数与数轴,准确识图判断出a、b的正负情况是解题的关键.23.如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:﹣|a﹣b|+﹣|b﹣c|【分析】利用数轴可得出a﹣b>0,c>0,b﹣c<0,a+b<0,进而取绝对值开平方得出即可.【解答】解:由数轴可得:a﹣b>0,c>0,b﹣c<0,a+b<0,﹣|a﹣b|+﹣|b﹣c|=c﹣a+b+a+b+b﹣c=3b.【点评】此题主要考查了数轴与实数,得出各项符号利用绝对值的性质化简是解题关键.24.已知:表示a、b两个实数的点在数轴上的位置如图所示,请你化简.【分析】根据数轴去绝对值,然后合并同类项即可.【解答】解:由图示知,b<a<0.则a﹣b>0,a+b<0.所以原式=a﹣b﹣(a+b)=﹣2b.【点评】本题考查了实数与数轴.解答此题的关键是熟知:数轴上的任意两个数,右边的数总比左边的数大.25.如图,数轴上表示1、的对应点分别为A、B,点C在OA上,且AC=AB,试求点C所表示的实数.【分析】设C点表示的数是x,再根据中点坐标公式即可得出结论.【解答】解:设C点表示的数是x,∵数轴上表示1、的对应点分别为A、B,∴=1,解得x=2﹣.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.26.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,再直爬向C点停止,已知点A表示﹣,点C表示2,设点B所表示的数为m.(1)求m的值;(2)求BC的长.【分析】(1)根据数轴两点间的距离公式得到m﹣2=﹣,然后解方程即可得到m的值;(2)根据两点间的距离,即可解答.【解答】解:(1)m﹣2=﹣,m=2﹣.(2)BC=|2﹣(2﹣)|=|2﹣2+|=.【点评】本题考查了实数与数轴:实数与数轴上的点是一一对应关系;任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.27.在数轴上表示与它的相反数.【分析】由勾股定理可知=,然后构造以1个单位长度和2个单位长度为直角边的直角三角形,然后以O为圆心以斜边长为半径作弧即可求得答案.【解答】解:如图所示:【点评】本题主要考查的是勾股定理的应用,依据勾股定理构造出以1个单位长度和2个单位长度为直角边的直角三角形是解题的关键.28.如图,直径为1的圆从原点沿数轴向左滚动一周,圆上与原点重合的点O到达O′,设点O′表示的数为a(1)求a的值;(2)求﹣(a﹣)﹣π的算术平方根.【分析】(1)由直径为1的圆从原点沿数轴向左滚动一周,圆上与原点重合的点O到达O′,可知OO’的长度等于直径为1的圆的周长,从而求出a的值;(2)先把a的值代入题目所给的代数式,化简出其值,从而易得其算术平方根.【解答】解:(1)由题意可知,OO’的长度等于直径为1的圆的周长,∴OO′=π,∵点O′在原点左侧,∴a=﹣π.故a的值为﹣π.(2)把a=﹣π代入﹣(a﹣)﹣π得:﹣(a﹣)﹣π=﹣(﹣π﹣)﹣π==4,∵4的算术平方根为2,∴﹣(a﹣)﹣π的算术平方根为2.【点评】本题属于动圆在数轴上滚动求值的问题,只要明确滚动一周正好是圆的周长,就不难求解;本题还考查了化简求值及算术平方根的计算,总体难度不大.29.已知数轴上有A,B,C三点,它们表示的有理数分别为6,﹣4,x.(1)若x=﹣10,求AC+BC的值;(2)若AC=3BC,求x的值.【分析】(1)直接利用数轴上两点之间的距离求法得出答案;(2)利用当C在B点左侧时以及当C在B点右侧时,分别得出答案.【解答】解:(1)如图1所示:AC+BC=(6+10)+(﹣4+10)=22;(1)如图2所示:当C在B点左侧时,则6﹣x=3(﹣4﹣x),解得:x=﹣9;当C在B点右侧时,则6﹣x=3(x+4),解得:x=﹣1.5,综上所述:x的值为﹣1.5或﹣9.【点评】此题主要考查了实数与数轴,正确表示出两点之间的距离是解题关键.30.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为﹣1﹣2.【分析】(1)根据正方体的体积格式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D在数轴上表示的数.【解答】解:(1).答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:×2×2×4=8,边长为:=2.答:阴影部分的面积是8,边长是2.(3)D在数轴上表示的数为﹣1﹣2.故答案为:﹣1﹣2.【点评】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.31.比较下列各组数的大小:(1)与7;(2)﹣π与﹣;(3)2与3.【分析】(1)比较50与7.5的平方的大小即可;(2)两个负数比较大小绝对值大的反而小;(3)利用平方法比较即可.【解答】解:(1)∵50<56.25,∴.(2)∵π<,∴﹣π>﹣.(3)∵=60,,∴.【点评】本题主要考查的是比较实数的大小,掌握比较两个实数大小的方法是解题的关键.32.估算比较大小:(填“>”或“<”)(1)﹣>﹣3.2;(2)>5;(3)<;(4)<.【分析】(1)求出3,.2的平方,再根据实数的大小比较法则比较即可;(2)下求出5的立方,再比较即可;(3)先估算和的范围,即可求出﹣1<+1,即可得出答案;(4)先估算的范围,即可得出答案.【解答】解:(1)∵3.2==,∴﹣>﹣3.2,故答案为:>;(2)∵5==,∴>,故答案为:>;(3)∵2<<3,∴1<﹣1<2,∵1<<2,∴2<+1<3,∴﹣1<+1,∴<,故答案为:<;(4)∵1<<2,∴0<﹣1<1,∴0<<,故答案为:<.【点评】本题考查了实数的大小比较和估算无理数的大小的应用,主要考查学生能否选择适当的方法比较两个数的大小.33.比较下列各数的大小.(1)与1.732;(2)与;(3)与﹣3.【分析】(1)求出1.732=,再比较即可;(2)求出<,两边都除以2即可;(2)根据数的正负,即可比较两个数的大小.【解答】解:(1)∵1.732=,∴>1.732;(2)∵×6=3=>×6=2=,∴>;(3)∵>0,﹣3<0,∴>﹣3.【点评】本题考查了实数的大小比较的应用,主要考查学生能否选择适当的方法比较两个实数的大小.34.已知a=,b=,c=,比较a、b、c大小.【分析】分别计算出a=,b=,c=的近似结果,再比较大小即可求解【解答】解:∵a=≈1.732﹣1.414=0.318,b=≈2﹣1.732=0.268,c=≈2.236﹣2=0.236,0.318>0.268>0.236,∴a>b>c.【点评】考查了实数大小比较,本题关键是熟悉≈1.414,≈1.732,≈2.236.35.在数轴上表示数,﹣3,0,﹣,π,并比较它们的大小,用“<”连接;【分析】首先把各个数在数轴上表示出来,再根据右边的数总是大于左边的数,即可将它们按从小到大的顺序用“<”连接.【解答】解:根据题意画图如下:﹣3<﹣<0<<π.【点评】本题主要考查了数轴上表示数的方法,以及利用数轴表示数的大小关系,是一个基础题.36.(1)求出下列各数:①﹣,②(﹣2)2,③|﹣2.5|,④﹣(+1.5)(2)将(1)中求出的每个数精准地表示在数轴上.(3)将(1)中求出的每个数按从小到大的顺序排列,并用“<”.【分析】先化简各式,把各点在数轴上表示出来,再从左到右用“<”连接起来即可.【解答】解:(1)①﹣=﹣3,②(﹣2)2=4,③|﹣2.5|=2.5,④﹣(+1.5)=﹣1.5;(2)如图所示,(3)由图可知,﹣3<﹣1.5<2.5<4.【点评】本题考查的是实数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.37.用“>”或“<”比较下列一组数的大小﹣,﹣(﹣3),π,(﹣2)3,﹣0.01,2,2020,﹣|﹣15|,0,﹣5%【分析】先化简符号,再根据有理数的大小比较法则比较即可.【解答】解:∵﹣(﹣3)=3,(﹣2)3=﹣8,﹣|﹣15|=﹣15,∴2020>π>﹣(﹣3)>2>0>﹣0.01>﹣5%>>(﹣2)3>﹣|﹣15|.【点评】本题考查了相反数,绝对值和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.38.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③的平方根.(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.【分析】(1)利用算术平方根、平方根、立方根定义计算即可求出;(2)将各数表示在数轴上,按照从小到大顺序排列即可.【解答】解(1)①2的算术平方根是;②﹣27的立方根是﹣3;③=4,4的平方根是±2.(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣2<<2.【点评】此题考查了实数大小比较,以及实数与数轴,熟练掌握运算法则是解本题的关键.39.设的整数部分和小数部分分别是x、y,试求x﹣y的值.【分析】根据2<<3,可得x、y的值,根据实数的运算,可得答案.【解答】解:由2<<3,得x=2,y=﹣2,x﹣y=2﹣(﹣2)=2﹣+2=4﹣.【点评】本题考查了估算无理数的大小,利用2<<3得出x、y的值是解题关键.40.在两个连续整数a和b之间(a<b),即a<<b,求3a+4b的立方根.【分析】由于9<10<16,可得3<<4,从而易求a、b的值,再把ab代入所求式子计算即可.【解答】解:∵9<10<16,∴<<,即3<<4,∴a=3,b=4,∴3a+4b=25,∴3a+4b的立方根是.【点评】此题考查无理数的估算,立方根的意义,注意利用夹逼法取整.41.一个正方形的面积是15,试估计它的边长大小.【分析】根据开方运算,可得边长,根据,可得答案.【解答】解:一个正方形的面积是15,边长是,,34.【点评】本题考查了估算无理数的大小,是解题关键.42.估算下列各数的大小:(1)(误差小于100);(2)(误差小于10);(3)(误差小于1);(4)(误差小于0.1).【分析】借助“夹逼法”先将其范围确定在两个整数之间,再通过取中点的方法逐渐逼近要求的数值,当其范围符合要求的误差时,取范围的中点数值,即可得到答案.【解答】解:(1)∵5002=250000,6002=360000,∴≈500(误差小于100);(2)∵202=400,302=900,∴≈20(误差小于10);(3)∵23=8,33=27,∴≈3(误差小于1);(4)∵1.42=1.96,1.52=2.25,∴≈1.4(误差小于0.1).【点评】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.43.分别写出所有适合下列条件的数.(1)小于的正整数;(2)和之间的整数;(3)大于3小于4的一个无理数.【分析】(1)根据42<19<52得出,即可得出答案;(2)关键和,即可得出和之间的整数;(3)根据,,即可得出大于3小于4的无理数.【解答】解:(1)∵42<19<52,∴,故小于的正整数有1,2,3,4.(2)∵,而,∴和之间的整数有﹣2,﹣1,0,1,2.(3)∵,,∴大于3小于4的无理数,….【点评】本题考查了估算无理数的大小的应用,主要考查学生的估算能力.44.写出所有适合下列条件的数.(1)大于﹣且小于的所有整数;(2)小于的所有正整数;。
新版北师大版八年级数学上册第2章《实数》同步练习及答案—21认识无理数(1)
级数学上册第2章《实数》同步练习及答案—2.1认识无理数(1)
专题无理数近似值的确定
1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()
A.x是有理数 B.x取0和1之间的实数
C.x不存在 D.x取1和2之间的实数
2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?
(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.
参考答案:
1.D 【解析】∵面积为3的正方形的边长为x,∴x2=3,而12=1,22=4,∴1<x2<4,∴1<x<2,故选D.
(2)设大正方形的边长为x,∵大正方形的面积=32+32=18,而42=16,52=25,
∴16<x2<25,∴4<x<5,故正方形的边长不是整数,它的值在4和5之间.
3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.。
七年级数学下册第六章实数6.3实数练习卷含解析新版新人教版
6.3 实数一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.54.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..307.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个10.下列各式计算正确的是()A.B.C.D.2+11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.614.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为.22.已知的小数部分是a,的整数部分是b,则a+b=.23.的小数部分是.24.=.25.化简﹣﹣得.26.计算﹣﹣||﹣=27.若和互为相反数,求的为.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.三.解答题(共1小题)30.计算:﹣.人教新版七年级下学期《6.3 实数》2020年同步练习卷参考答案与试题解析一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定【分析】先估算出的范围,再进行变形即可.【解答】解:∵2<<3,∴1<﹣1<2,∴<<1,即,故选:A.【点评】本题考查了实数的大小比较和估算无理数的大小,能估算出的范围是解此题的关键.2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a【分析】根据正数大于0,0大于负数,可得答案.【解答】解:∵,,∴,故选:D.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.5【分析】先估算出的大小,再估算出+1的大小,从而得出整数n的值.【解答】解:∵2<<3,∴3<+1<4,∴整数n为3;故选:B.【点评】此题考查了估算无理数的大小,解题的关键是估算出的大小.4.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③【分析】利用正方形的面积公式得到a=,则可对①②进行判断,利用4<5<9可对③进行判断.【解答】解:∵边长为a的正方形的面积为5,∴a=,所以a为无理数,a可以用数轴上的一个点来表示;2<a<3.故选:A.【点评】本题考查了估算无理数的大小:用有理数逼近无理数,求无理数的近似值.6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..30【分析】先估算出的取值范围,得出m、n的值,进而可得出结论.【解答】解:∵9<10<16,∴3<<4,∴m=4,n=5,∴mn=4×5=20;故选:C.【点评】本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.7.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应【分析】利用算术平方根定义,乘方的意义,以及实数、无理数的性质判断即可.【解答】解:A、=9,9的平方根为±3,不符合题意;B、(﹣1)2010=1,不是最小的自然数,不符合题意;C、两个无理数的和不一定是无理数,例如﹣+=0,不符合题意;D、实数与数轴上的点一一对应,符合题意,故选:D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个【分析】利用实数的性质及平方根定义判断即可.【解答】解:(1)实数和数轴上的点一一对应,不符合题意;(2)不带根号的数不一定是有理数,不符合题意;(3)负数有立方根,不符合题意;(4)﹣是17的平方根,符合题意;(5)两个无理数的和不一定是无理数,不符合题意,则正确的说法有1个,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个【分析】直接利用实数的性质结合无理数的定义以及相反数的定义分别分析得出答案.【解答】解:①实数与数轴上的点一一对应,正确,故此选项不合题意;②|a|一定是正数或0,错误,故此选项符合题意;③近似数8.96×104精确到百位,错误,故此选项符合题意;④(﹣2)8有平方根,错误,故此选项符合题意;⑤绝对值等于本身的数是正数或0,错误,故此选项符合题意;⑥带根号的一定是无理数,错误,例如,故此选项符合题意;⑦在1和3之间的无理数有,,,,1.4…等无数个,错误,故此选项符合题意,⑧2﹣的相反数是﹣2,正确,故此选项不合题意.故选:C.【点评】此题主要考查了实数的性质、无理数的定义以及相反数的定义,正确把握相关定义是解题关键.10.下列各式计算正确的是()A.B.C.D.2+【分析】根据同类二次根式的概念与合并法则及二次根式的性质和化简逐一计算可得.【解答】解:A.=2≠﹣2,此选项错误;B.与不能合并,即,此选项错误;C.=2,此选项正确;D.2与2不是同类二次根式,不能合并,此选项错误;故选:C.【点评】本题主要考查二次根式的化简和加减运算,解题的关键是掌握二次根式的运算性质和运算法则.11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i【分析】根据已知得出变化规律进而求出答案.【解答】解:∵i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,∴每4个数据一循环,∵2019÷4=504…3,∴i2019=i3=﹣i.故选:D.【点评】此题主要考查了新定义,正确理解题意是解题关键.12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.【分析】根据倒数的定义作答.【解答】解:实数a的倒数是==2﹣.故选:B.【点评】考查了实数的性质,乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab =1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.6【分析】根据无理数的三种形式求解.【解答】解:=2,=8,无理数有:,,0.131131113…,,共4个.故选:B.【点评】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.14.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;021212121,,是有限小数,属于有理数;|﹣2|=2,,是整数,属于有理数;2003003003…(相邻两个3之间有2个0)是循环小数,属于有理数.无理数有:,﹣π,60.12345..(小数部分由相继的正整数组成)共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个【分析】根据立方根、算术平方根进行计算,根据无理数的概念判断.【解答】解:,0.1010010001…(相邻两个1中间一次多1个0)是无理数,故选:A.【点评】本题考查的是无理数的概念、立方根、算术平方根,掌握无限不循环小数叫做无理数是解题的关键.16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数【分析】根据立方根的定义即可求出答案.【解答】解:一个数的立方根正好与本身相等,这个数是0,±1,故选:C.【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个【分析】根据无理数的定义,相反数的定义,平方根的定义,分析(1)(2)(3)(4),选出说法正确的即可.【解答】解:(1)无理数是无限不循环小数,π也属于无理数,即(1)不合题意, (2)零不属于无理数,即(2)不合题意,(3)1的平方根为±1,即(3)不合题意,(4)与相加得零,即(4)符合题意,说法正确的个数是1个,故选:A.【点评】本题考查了实数和相反数,正确掌握无理数的定义,相反数的定义,平方根的定义是解题的关键.18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根【分析】根据实数的概念解答即可.【解答】解:A、实数包括正实数、零、负实数,正确;B、正整数、0和负整数统称为整数,错误;C、无理数一定是无限小数,正确;D、2是4的平方根,正确;故选:B.【点评】此题考查实数的问题,关键是根据实数的概念解答.19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【解答】解:∵直径为单位1的圆的周长=2π•=π,∴OA=π,∴点A表示的数为﹣π.故选:D.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应.也考查了实数的估算.20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.【分析】由于数轴上两点间的距离应让较大的数减去较小的数,所以根据数轴上两点间距离的公式便可解答.【解答】解:由勾股定理得:正方形的对角线为,设点A表示的数为x,则2﹣x=,解得x=2﹣.故选B.【点评】此题主要考查了实数与数轴之间的对应关系,解题时求数轴上两点间的距离应让较大的数减去较小的数即可.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为答案不唯一,如:2 .【分析】根据算术平方根的概念得到1<<2,4<<5,根据题意解答.【解答】解:∵1<<2,4<<5,a为整数,∴2≤a<5,∴满足<a<的整数a的值可以为2,故答案为:2(答案不唯一).【点评】本题考查的是估算无理数的大小,掌握算术平方根的概念是解题的关键.22.已知的小数部分是a,的整数部分是b,则a+b=.【分析】先分别求出和的范围,得到a、b的值,再代入a+b计算即可.【解答】解:∵2<<3,2<<3,∴a=﹣2,b=2,a+b=﹣2+2=,故答案为.【点评】本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.23.的小数部分是﹣4 .【分析】先估算出的范围,即可得出答案.【解答】解:∵4<<5,∴的小数部分是﹣4,故答案为:﹣4.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.24.=﹣4 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=﹣3﹣﹣﹣1+=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.25.化简﹣﹣得8 .【分析】直接利用立方根的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=10﹣﹣0.5=8.故答案为:8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.26.计算﹣﹣||﹣=﹣+【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=3﹣3﹣(2﹣)﹣=3﹣3﹣2+﹣=﹣+故答案为:﹣ +.【点评】此题主要考查了实数运算,正确化简各数是解题关键.27.若和互为相反数,求的为.【分析】由立方根的性质可知,两个立方根互为相反数则被开方数互为相反数.【解答】解:∵和互为相反数,∴2a与b互为相反数,∴2a=﹣b,∴=﹣,故答案为﹣.【点评】本题考查立方根的性质和实数的性质;能够将立方根互为相反数转化为被开方数互为相反数是解题的关键.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.【分析】根据勾股定理求出正方形的对角线的长,再根据旋转的性质求出A点的数,进而得出B点所表示的数;根据中点的定义可得点C所表示的数.【解答】解:对角线的长:,根据旋转前后线段的长分别相等,则A点表示的数=对角线的长=,B点所表示的数是,∵点C到A点的距离与点C到原点的距离相等,∴,即点C所表示的数是.故答案为:;.【点评】本题考查了实数与数轴,勾股定理和旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改,要求学生了解常见的数学思想、方法.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.【分析】根据数轴求出点A表示的数,再分别分两种情况讨论求解点B所对应的数即可.【解答】解:∵数轴上A、B两点的距离是,点A在数轴上对应的数是2,∴点B在数轴上对应的数是.故答案为:【点评】本题考查了数轴,主要利用了数轴上数的表示,难点在于分情况讨论.三.解答题(共1小题)30.计算:﹣.【分析】本题涉及立方根、二次根式化简2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣=2﹣=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、二次根式等考点的运算.。
沪科版七年级数学下册第六章 6.2 实数同步练习题(含答案)
6.2 实数同步练习题第1课时 实数的概念及分类基础题知识点1 无理数1.以下说法正确的是(B)A .无限小数都是无理数B .无限不循环小数是无理数C .无理数是带根号的数D .分数是无理数2.(2019·池州期末)下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是(C) A .4 B .3 C .2 D .1知识点2 实数的概念及分类3.下列说法正确的是(D)A .实数包括有理数、无理数和零B .有理数包括正有理数和负有理数C .无限不循环小数和无限循环小数都是无理数D .无论是有理数还是无理数都是实数4.在①3.1414;②27;③-227;④3-64;⑤2.0·1·;⑥-π中,属于有理数的有①③④⑤,属于正无理数的有②,属于负无理数的有⑥.(填序号)知识点3 循环小数与分数互化5.0.7·化成分数为(A)A.79B.710C.97D.1176.57化成小数为0.7·14__285·__. 易错点 对无理数的判断有误7.下列说法正确的是(D) A.33是分数 B.227是无理数 C.π-3.14是有理数 D.3-83是有理数 中档题8.(2019·马鞍山期末)下列结论正确的是(D)A .带根号的数都是无理数B .立方根等于本身的数是0C .-18没有立方根 D .无理数是无限不循环小数9.(2018·滁州月考)有一个数值转换器,原理如下,当输入的x 为64时,输出的y 是(B)A .8 B.8 C.12 D.1810.把下列各数分别填在相应的横线上.5,-3,0,34,0.3,227,-1.732,25,3-16,3-1,-27,-π2,3+29,0.1010010001…(两个1之间依次增加一个0).(1)(2)分数:0.3,227,-1.732; (3)70.101__001__000__1…(两个1之间依次增加一个0); (4)2(5)有理数:-3,0,0.3 ,722 31-; (6)20.101__001__000__1…(两个1之间依次增加一个0).第2课时实数的运算与大小比较基础题知识点1 相反数、倒数、绝对值1.(2019·淮南期中)-3的相反数是(C)A.33B.-33C. 3 D.- 32.15的倒数是(A)A. 5 B.- 5 C.55D.-553.-2是2的(A)A.相反数 B.倒数 C.绝对值 D.算术平方根4.(2019·遂宁)-|-2|的值为(B)A. 2 B.- 2 C.± 2 D.25.3-2知识点2 实数与数轴6.(2019·合肥期末)将四个数-3,2,3,5表示在数轴上,被如图所示的墨迹覆盖的数是(D)A.- 3 B. 2 C. 3 D. 57.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为(C)A.a+b B.a-b C.b-a D.-a-b8.(教材P20复习题B组T5变式)如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是(D)A.π-1 B.-π-1C.-π+1 D.π-1或-π-19.(2018·安徽月考)如图,在数轴上点A和点B表示的数之间的整数是2.知识点3 实数的近似计算10.(教材P15练习T4变式)(2019·马鞍山期末)无理数5+1在两个整数之间,下列结论正确的是(B)A.在2~3之间 B.在3~4之间C.在4~5之间 D.在5~6之间11.近似计算(精确到0.1):(1)2+3;解:原式≈1.41+1.73=3.14≈3.1.(2)37× 5.解:原式≈1.91×2.24=4.2784≈4.3.知识点4 实数的大小比较12.(2019·荆州)下列实数中最大的是(D)A.32B.π C.15 D.|-4|13.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是(C)A.a<b B.a=b C.a>b D.ab>014.(教材P16习题T4(4)变式)(2018·合肥四十五中期中) 5.4.(填“>”“<”或“=”)15.(2019·淮南期中)16.在数轴上作出表示下列各数的点,比较它们的大小,并用“<”连接它们.2,-1.5,5,π,3,|-25|.解:数轴略.-1.5<2<5<3<π<|-25|.中档题17.下列各组数中互为相反数的一组是(C)A.-|-2|与3-8B.-4与-(-4)2C.-32与|3-2|D.-2与1 218.(2019·蚌埠期末)若整数n满足n<26<n+1,则n的值为(A) A.4 B.5 C.6 D.719.若a,b均为正整数,且a>7,b<32,则a+b的最小值是(B)A.3 B.4 C.5 D.620.【数形结合思想】(2018·安徽月考)如图,数轴上表示2,5的对应点分别为C,B,点C是AB的中点,则点A表示的数是(C)A.- 5 B.2- 5 C.4- 5 D.5-221.请写出两个你熟悉的大于2且小于3的无理数:答案不唯一,如:5,6.22.对于任意两个不相等的实数a,b,定义一种运算如下:a b=a+ba-b,如32=3+23-2=5,那么85=133.23.比较下列各组两个数的大小:(1)-7和-3;解:-7>-3.(2)6和3 215;解:6>3 215.(3)2和11+1 2.解:2<11+12.24.近似计算(精确到0.01):(1)23-37+π;解:原式≈-1.33.(2)2-13-10 5.解:原式≈-22.22.综合题25.(1)比较下列各算式的大小:42+32>2×4×3;(-2)2+12>2×(-2)×1;(2)2+(12)2>2×2×12;(3)2+(3)2=2×3×3;…(2)通过观察归纳,用字母表示你发现的规律:a 2+b 2≥2ab.小专题(一) 实数大小比较的几种常用方法方法1 利用数轴比较实数大小【例1】 在数轴上作出表示下列各数的点,比较它们的大小,并用“<”连接它们.0,π,-2,23,|-1|,38,42. 【解答】 在数轴上表示各数略. -2<0<23<|-1|<38<π<42.利用数轴比较实数大小时,首先应找到实数在数轴上对应的位置,再根据“数轴上右边的点所表示的数总是大于左边的点所表示的数”比较大小即可.1.在数轴上表示下列各数,再用“>”把它们连接起来.-3,12,-3,|-4|,9,3-64. 解:在数轴上表示各数略.|-4|>9>12>-3>-3>3-64.方法2 利用平方法比较实数大小【例2】 比较3和10的大小.【解答】 因为32=9,(10)2=10,9<10,所以3<10.比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据“在a >0,b >0时,可由a 2>b 2得到a>b”比较大小.也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数.2.比较-326和-3的大小.解:因为(326)3=26,33=27,26<27,所以326<3.所以-326>-3.方法3 利用作差法比较实数大小【例3】 比较7-13和23的大小. 【解答】 因为7-13-23=7-33,7<3,所以7-33<0.所以7-13<23.对于含有无理数的分数或小数比较大小时,通常用作差法.设a ,b 为任意两个实数,先求出a 与b 的差,再根据“当a -b <0时,a <b ;当a -b =0时,a =b ;当a -b >0时,a >b”来比较a 与b 的大小.3.比较1-2和1-3的大小.解:因为1-2-(1-3)=3-2>0,所以1-2>1- 3.方法4 利用近似值法比较实数大小【例4】 比较-23和-64的大小. 【解答】 因为-23≈-0.67,-64≈-2.454≈-0.61,-0.67<-0.61,所以-23<-64.在比较两个实数的大小时,如果有计算器,可以先用计算器求出它们的近似值,不过取近似值时,要使它们的精确度相同,再通过比较它们的近似值的大小,从而确定它们的大小.4.比较π和392的大小. 解:因为π≈3.14,392≈6.242=3.12,3.14>3.12, 所以π>392.。
人教版七年级数学下册《6.3第1课时实数的概念》同步练习(含答案)
6.3 实数第1课时 实数的有关概念关键问答①无理数有几种常见的表现形式?②数轴上的每一点都可以表示一个什么样的数? 1.①2017·滨州 下列各数中是无理数的是( ) A. 2 B .0 C.12017D .-12.②如图6-3-1,半径为1个单位长度的圆片上有一点Q 与数轴上的原点重合(提示:圆的周长C =2πr ),把圆片沿数轴向左滚动1周,点Q 到达数轴上点A 的位置,则点A 表示的数是________,属于__________(填“有理数”或“无理数”).图6-3-1命题点 1 无理数 [热度:90%] 3.③下列说法正确的是( ) A .无理数就是无限小数 B .无理数就是带根号的数 C .无理数都是无限不循环小数D .无理数包括正无理数、0和负无理数 易错警示③(1)无理数的特征:无理数的小数部分位数无限且不循环,不能表示成分数的形式. (2)常见的无理数有三种表现形式:化简后含π的数;有规律的无限不循环小数,如:1.3131131113…;含有根号且开方开不尽的数,如5,36.4.④在下列各数:0.51525354…,0,0.2,3π,227,9,39,13111,27中,是无理数的有________________________.方法点拨④一个数不是有理数就是无理数,识别一个数是不是有理数,只需看其是不是整数或分数即可.5.有一个数值转换器,原理如图6-3-2所示:当输入的x 为256时,输出的y 是________.图6-3-26.⑤在1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有多 少个?方法点拨⑤分别找出1~100这100个自然数的算术平方根和立方根中有理数的个数,即可得出无理数的个数.命题点 2 实数的概念与分类 [热度:95%] 7.⑥下列说法中,正确的是( ) A .正整数、负整数统称整数 B .正数、0、负数统称有理数C .实数包括无限小数与无限不循环小数D .实数包括有理数与无理数 易错警示⑥实数包括有理数和无理数,即有限小数、无限循环小数、无限不循环小数. 8.⑦有下列说法:①两个无理数的和还是无理数;②无理数与有理数的积是无理数;③有理数与有理数的和不可能是无理数;④无限小数是无理数;⑤不是有限小数的数不是有理数.其中正确的有( )A .0个B .1个C .2个D .3个 解题突破⑦两个无理数的和或差不一定是无理数.9.⑧实数13,24,π6中,分数有( )A .0个B .1个C .2个D .3个 方法点拨⑧分数是两个整数作商,不能整除的数. 10.下列说法错误的是( ) A.14是有理数 B.2是无理数 C .-3-27是正实数 D.22是分数11.在数轴上,表示实数2与10的点之间的整数点有________个;表示实数2与10之间的实数点有________个.12.将下列各数填在相应的集合里:3512,π,3.1415926,-0.456,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),0,511,-321,(-13)2,0.1.有理数集合:{_____________________________________________…}; 无理数集合:{_____________________________________________…}; 正实数集合:{_____________________________________________…}; 整数集合:{_______________________________________________…}. 命题点 3 实数与数轴 [热度:98%] 13.下列说法中正确的是( )A .每一个整数都可以用数轴上的点表示,数轴上的每一个点都表示一个整数B .每一个有理数都可以用数轴上的点表示,数轴上的每一个点都表示一个有理数C .每一个无理数都可以用数轴上的点表示,数轴上的每一个点都表示一个无理数D.每一个实数都可以用数轴上的点表示,数轴上的每一个点都表示一个实数14.⑨如图6-3-3,数轴上的A,B,C,D四个点表示的数中,与-3最接近的是()图6-3-3A.点A B.点B C.点C D.点D解题突破⑨-3介于哪两个连续的整数之间?这两个连续的整数中哪个整数的平方与3的差的绝对值小?15.2018·宁晋县期中如图6-3-4,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()图6-3-4A.π-1 B.-π-1C.-π-1或π-1 D.-π-1或π+116.⑩在同一数轴上表示2的点与表示-3的点之间的距离是________.方法点拨⑩数轴上两点间的距离等于右边的点表示的数减去左边的点表示的数.17.⑪如图6-3-5所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长度,且在圆周的三等分点处分别标上了数字0,1,2)上.先让原点与圆周上0所对应的点重合,再将数轴的正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样数轴的正半轴上的整数就与圆周上的数字建立了一种对应关系.图6-3-5(1)圆周上数字a与数轴上的数字5对应,则a=__________;(2)数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是________.模型建立⑪数轴绕过圆周n圈(n为正整数)后,一个整数落在圆周上数字2所对应的位置,这个整数是3n+2.18.阅读下面的文字,解答问题.大家都知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,所以将2减去其整数部分,差就是其小数部分.(1)你能求出5+2的整数部分和小数部分吗?(2)已知10+3=x +y ,其中x 是整数,且0<y <1,请求出x -y 的相反数.19.⑫定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作是分母为1的有理数;反之为无理数.如2不能表示为两个互质的整数的商,所以2是无理数.可以这样证明:设2=a b ,a 与b 是互质的两个整数,且b ≠0,则2=a 2b 2,a 2=2b 2.因为b 是整数且不为0,所以a 是不为0的偶数.设a =2n (n 是整数),所以b 2=2n 2,所以b 也是偶数,这与a ,b 是互质的两个整数矛盾,所以2是无理数.仔细阅读上文,求证:5是无理数.方法点拨⑫从结论的反向出发,经推理,推得与基本事实、定义、定理或已知条件相矛盾的结果,这样的方法称为反证法.典题讲评与答案详析1.A 2.-2π 无理数 3.C4.0.51525354…,3π,39,27 [解析] 因为0是整数,0.2可化成分数,9=3,是整数,13111,227是分数,所以这五个数都是有理数.0.51525354…,3π,39,27都是无理数.5.2 [解析] 由题图中所给的程序可知,把256取算术平方根,结果为16,因为16是有理数,所以再取算术平方根,结果为4,是有理数.再取4的算术平方根,结果为2,是有理数.再取算术平方根,结果为2,2是无理数,所以y = 2.6.解:∵12=1,22=4,32=9,…,102=100,∴1,2,3,…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有 90个.∵13=1,23=8,33=27,43=64, 53= 125,且64<100,125>100,∴1,2,3,…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个, ∴1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186(个).7.D [解析] 正整数、负整数、0统称为整数;有理数分为正有理数、0和负有理数;有理数包括无限循环小数和有限小数;实数包括有理数和无理数.8.B [解析] 两个无理数的和不一定是无理数,如2和-2;无理数与有理数的积也不一定是无理数,如2和0;有理数与有理数的和一定是有理数;无限不循环小数是无理数;有限小数和无限循环小数是有理数.9.B [解析] 分数是两个整数作商,不能整除的数,因此只有13是分数.10.D [解析]A 项,14=12是有理数,故选项正确;B 项,2是无理数,故选项正确;C 项,-3-27=3是正实数,故选项正确;D 项,22是无理数,故选项错误.故选D.11.2 无数12.有理数集合:{3512,3.1415926,-0.456,0,511,(-13)2,…};无理数集合:{π,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),-321,0.1,…};正实数集合:{3512,π,3.1415926,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),511,(-13)2,0.1,…};。
6.3 实数 人教版数学七年级下册重难点专项练习(含答案)
6.3《实数》重难点题型专项练习考查题型一实数的分类典例1.下列各数中:,3.1415926,,(每两个2中间依次增加1个0),,,无理数的个数有( )个.A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的概念进行辨别、分类.【详解】解:,3.1415926,是有理数,,(每两个2中间依次增加1个0),是无理数,所有数字中无理数的个数有3个,故选:C.【点睛】此题考查了无理数的定义,关键是掌握无限不循环小数叫做无理数.变式1-1.下列四个数中,不是无理数的是()A.B.C.D.【答案】C【分析】根据无理数的概念,即无理数是无限不循环小数,常见的无理数有含的最简式子,开不尽方的二(三)次根式,特殊结果的数(如:),由此即可求解.【详解】解:选项,是无理数,不符合题意;选项,是开不尽方的二次根式,是无理数,不符合题意;选项,是分数,是有理数,符合题意;选项,是开不尽方的三次根式,是无理数,不符合题意.故选:.【点睛】本题主要考查无理数的概念,掌握无理数的概念,识记常见的无理数形式是解题的关键.变式1-2.(2022春·山东威海·七年级校联考阶段练习)下列各数,,,,其中无理数的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的分类和无理数的定义:无限不循环小数解答即可.【详解】解:在,,,,中,有理数是:,,共2个;无理数是:,,,共3个.故选:C.【点睛】本题考查了实数的分类和无理数的定义,属于基础题型,熟练掌握基本知识是解题关键.变式1-3.(2020春·浙江绍兴·七年级校考期中)下列实数中,有理数是()A.πB.C.D.6.101001000(两个“1”之间依次多一个“0”)【答案】B【分析】直接根据有理数的定义判断即可.【详解】解:,只有B是有理数,故选B.【点睛】本题考查了有理数的定义、实数的分类,熟练掌握有理数的定义是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.考查题型二实数的绝对值典例2.(2022春·陕西西安·七年级西安市铁一中学校考期中)的绝对值是( )A.B.C.5D.【答案】A【分析】根据绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即可求解.【详解】故选:A.【点睛】本题主要考查了实数的绝对值,掌握绝对值的性质是解题的关键.变式2-1.实数﹣2,,0,﹣5中绝对值最大的数是( )A.﹣2B.C.0D.﹣5【答案】D【分析】根据绝对值的性质以及正实数和0的大小比较即可求解.【详解】∵且,∴所给的几个数中,绝对值最大的数是.故选:D.【点睛】此题主要考查了实数大小比较的方法以及绝对值的性质,要熟练掌握.变式2-2.(2022·湖北黄石·统考中考真题)的绝对值是()A.B.C.D.【答案】B【分析】根据绝对值的意义求解即可.【详解】解:∵>1,∴||=,故选:B.【点睛】本题考查绝对值,估算无理数,熟练掌握一个正数的绝对值是它的本身,一个负数的绝对值是它的相反相数,0的绝对值中0是解题的关键.变式2-3.(2022秋·湖北十堰·七年级统考期末)实数-的绝对值是()A.B.-C.D.【答案】A【分析】根据绝对值的意义:负数的绝对值等于它的相反数,即可求解.【详解】解:实数-的绝对值是,故选:A.【点睛】本题考查绝对值,熟练掌握绝对值的意义是解题的关键.考查题型三实数的相反数典例3.(2022·河南洛阳·统考一模)实数的相反数是( )A.3B.C.D.【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:实数的相反数是.故选:B.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.变式3-1.的相反数是()A.B.C.D.【答案】C【分析】根据相反数的定义求解即可.【详解】解:∵的相反数是,故选C.【点睛】本题考查了相反数的定义,解决本题的关键是掌握其定义:只有符号不同的两个数互为相反数.变式3-2.(2022秋·江西宜春·七年级统考阶段练习)的相反数是()A.B.3.5C.D.【答案】A【分析】根据相反数的定义求解即可.【详解】解:的相反数是,故选:A.【点睛】本题考查实数与相反数,理解相反数的定义是正确解答的关键.变式3-3.的相反数是()A.2B.-2C.4D.-4【答案】B【分析】先化简,再求解相反数即可.【详解】解:的相反数是.故选:B【点睛】本题考查的是算术平方根的含义,相反数的含义,掌握“求解一个数的算术平方根与相反数”是解本题的关键.考查题型四实数与数轴典例4.(2022春·广东惠州·七年级校考期末)如图是实数a,b,c,d在数轴上的对应点的位置,则正确的结论是( )A.B.C.D.【答案】C【分析】根据数轴上点的位置关系,可得,,,的大小,根据有理数的运算,绝对值的性质,可得答案.【详解】解:由数轴上点的位置,得.A、,故A不符合题意;B、,故B不符合题意;C、,,,故C符合题意;D、,故D不符合题意;故选:C.【点睛】本题考查了实数与数轴,利用数轴上点的位置关系得出,,,的大小是解题关键.变式4-1.(2020春·浙江绍兴·七年级校考期中)已知实数在数轴上的位置如图所示,下列式子中成立的是()A.B.C.D.【答案】D【分析】先根据数轴求出a和b的关系,再判断即可.【详解】由数轴可知:,,可得即,故选D.【点睛】本题考查了用数轴比较数的大小,能够根据数轴找到a和b的关系是解题的关键.变式4-2.(2022春·北京房山·七年级统考期末)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )A.B.C.D.【答案】C【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【详解】解:由数轴上点的位置,得,A.,故A不符合题意;B.,故B不符合题意;C.∵,∴,故C符合题意;D.,故D不符合题意;故选:C.【点睛】本题考查了实数与数轴以及绝对值,观察数轴,逐一分析四个选项的正误是解题的关键.变式4-3.(2022春·广东深圳·七年级校考期中)实数,,,在数轴上对应点的位置如图所示,正确的结论是( )A.B.C.D.【答案】D【分析】观察数轴,找出,,,四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【详解】解:根据数轴,,,,,A.∵,,∴,故此选项不符合题意;B.∵,,∴,故此选项不符合题意;C.∵,,∴,故此选项不符合题意;D.∵,∴,又∵,∴,故此选项符合题意.故选:D.【点睛】本题考查实数与数轴,绝对值,实数的大小比较,数轴的特征.一般来说,当数轴方向朝右时,右边的数总比左边的数大.观察数轴,利用所学知识逐一分析四个选项的正误是解题的关键.考查题型五实数的大小比较典例5.实数a,b在数轴上的位置如图所示,把a,b,,按照从小到大的顺序排列正确的是( )A.B.C.D.【答案】C【分析】先求解,再根据,及,互为相反数的特点,分别在数轴上描出:a,b,,,结合数轴可得答案.【详解】解:∵,则,根据,及,互为相反数的特点,分别在数轴上描出:a,b,,如下图:∴,故选:C.【点睛】本题考查了实数与数轴的相关知识,相反数的含义,化简绝对值,做题关键要掌握数轴上的点表示的数的特点.变式5-1.三个数,,的大小顺序是()A.B.C.D.【答案】B【分析】根据实数比较大小的方法求解即可.【详解】解:,∴,故选:B【点睛】本题考查了无理数大小的估算及比较两个负数大小的方法,即两个负数相比较,绝对值大的反而小.变式5-2.(2020·贵州遵义·统考一模)在数,,,0中,最小的一个是()A.2B.C.D.0【答案】C【分析】根据实数的大小比较即可求解.【详解】解:∵,∴最小的一个是,故选:C【点睛】本题考查了实数的大小比较,掌握实数的大小比较的方法是解题的关键.变式5-3.(2022秋·重庆铜梁·七年级校考期中)下列各数中最小的数是()A.3B.C.-πD.-3【答案】C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵−π<−3<<3,∴所给的各数中,最小的数是−π.故选:C.【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.考查题型六无理数的估算典例6.(2022秋·重庆渝中·七年级重庆巴蜀中学校考阶段练习)估算:的值在( )A.到之间B.到之间C.到之间D.到之间【答案】B【分析】先估算出的值的范围,然后再估算出的值的范围,即可解答.【详解】解:,,,的值在与之间,故选:B.【点睛】本题考查了估算无理数的大小,熟练掌握完全平方数是解题的关键.变式6-1.(2022秋·广东肇庆·七年级校考期中)估算的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】C【分析】根据估算无理数的大小解答即可.【详解】解:∵,∴,即在7和8之间,故选:C.【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.变式6-2.(2022秋·重庆云阳·七年级校考阶段练习)估计的值在( )A.5和6之间B.4和5之间C.3和4之间D.2和3之间【答案】C【分析】先判断,从而可得,从而可得答案.【详解】解:,,,故C正确.故选:C.【点睛】本题主要考查的是无理数的估算,掌握“无理数的估算方法”是解本题的关键.变式6-3.(2022秋·湖南邵阳·七年级校考期中)如图,数轴上有A,B,C,D四点,则所表示的数与最接近的是()A.点A B.点B C.点C D.点D【答案】D【分析】根据二次根式的性质和无理数的估算方法求出的范围即可得到答案.【详解】解:由题意可得,∵,∴,∴,∴D点离得近一些,故选D.【点睛】本题考查实数在数轴上的位置及无理数的估算,解题的关键是根据根式的性质求出其取值范围.考查题型七无理数的整数部分和小数部分典例7.(2022·云南昆明·云大附中校考模拟预测)若的整数部分为,小数部分为,则的值为______.【答案】【分析】无理数是无限不循环小数,包括整数部分和小数部分,由此即可求解.【详解】解:∵,∴,∴,,∴,故答案是:.【点睛】本题主要考查无理数的估算的运算,掌握无理数是无限不循环小数,包括整数部分和小数部分并理解其表示形式是解题的关键.变式7-1.(2022春·浙江杭州·七年级杭州市十三中教育集团(总校)校考期中)已知的整数部分是x,小数部分是y,则_____.【答案】【分析】根据算术平方根的定义估算无理数的大小,确定x、y的值,再代入计算即可.【详解】解:,而,∴,∴的整数部分,小数部分,∴,故答案为:.【点睛】本题考查估算无理数的大小,掌握算术平方根是正确解答的前提.变式7-2.(2021春·浙江杭州·七年级校考期中)已知m,n分别是的整数部分和小数部分,那么的值是______.【答案】12【分析】首先求出m和n的值,然后代入求解即可.【详解】∵∴,∴的整数部分为4,的小数部分为∴,∴.故答案为:12.【点睛】此题考查了估算无理数的大小,解答本题的关键利用“夹逼法”得出,求出m,n的值,难度一般.变式7-3.(2022春·浙江宁波·七年级宁波市第十五中学校考期中)已知的整数部分是的小数部分是,则_____.【答案】【分析】估计和的范围即可确定,的值,进而求得的值.【详解】解:∵,∴的整数部分是,,∵的整数部分是的小数部分是,∴,,∴,故答案为:【点睛】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.考查题型八与实数有关的规律的探究典例8.(2022春·四川内江·七年级校考阶段练习)若干个数,第一个数记为,规定运算:,,,,…,按上述方法计算:当时,的值等于()A.B.C.D.3【答案】D【分析】把代入计算,得出规律:的值每三个一循环,而2022÷3=674,则,即可得出答案.【详解】解:当时,则,,,,…由此可知,的值每三个一循环,∵2022÷3=674,∴,故选:D.【点睛】本题考查数式运算规律型,通过计算观察发现规律是解题的关键.变式8-1.(2022春·甘肃兰州·七年级校考期中)求的值,可令,则,因此2S﹣S=22017﹣1,S=22017﹣1.参照以上推理,计算的值为( )A.42020﹣1B.42020﹣4C.D.【答案】C【分析】设,然后可以得到4S,再作差变形,即可得到所求式子的值【详解】解:设,则4,∴4S﹣S=42020﹣4,∴3S=42020﹣4,∴S=,即的值为.故选:C.【点睛】本题考查有理数的混合运算,解题的关键是找出其中的规律,利用错位相减法求解.变式8-2.(2021春·湖南永州·七年级校考期中)已知=3 ,10,,……观察以上计算过程,寻找规律计算的值为( )A.56B.54C.52D.50【答案】A【分析】根据题意,得出对于来讲,等于一个分式,其中分母是从1到的个数相乘,分子是从开始乘,乘个连续自然数数.【详解】解:,,,.故选:A.【点睛】此题主要考查了数字的变化规律,解题的关键是利用已知得出分子与分母之间的规律,利用规律进行求解.变式8-3.(2022春·福建三明·七年级统考期中)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22022的末位数字是( ).A.2B.4C.6D.8【答案】B【分析】观察发现此列数的末尾数是2,4,8,6的循环,据此规律可推断22022的尾数.【详解】解:观察21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,发现尾数是2,4,8,6的循环,∵2022÷4=505……2,∴22022的尾数是循环中的第2个数,即为4,∴22022的尾数是4,故选:B.【点睛】本题考查了数字的规律问题,根据题意找出末位数的规律是解答此题的关键.考查题型九新定义下的实数运算典例9.(2022春·福建漳州·七年级统考期中)我们规定:,例如:,则的值为()A.B.C.D.【答案】D【分析】根据代入相应数字即可计算出的值.【详解】解:,,故选:D.【点睛】本题考查有理数的混合运算、新定义,解答本题的关键是会用新定义解答问题.变式9-1.(2022春·山东菏泽·七年级统考期中)定义运算,例如,则的值为()A.7B.17C.20D.23【答案】A【分析】根据新运算的定义以及有理数的混合运算的运算方法,求出的值是多少即可.【详解】解:∵,∴故选:A【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.变式9-2.(2022秋·山西吕梁·七年级统考期中)用“”表示一种新运算:对于任意正实数•,例如10•21=,那么的运算结果为()A.13B.7C.4D.5【答案】C【分析】根据新运算的定义计算即可.【详解】解:∵•,∴======4,故选:C.【点睛】本题考查新定义,算术平方根,理解运用新运算是解题的关键.变式9-3.(2022秋·广西钦州·七年级统考期末)对任意两个实数a,b定义两种运算:a⊕b,a⊗b ,并且定义运算顺序仍然是先做括号内的,例如(﹣2)⊕3=3,(﹣2)⊗3=﹣2,[(﹣2)⊕3] ⊗2=2,那么(⊕2)⊗的值为( )A.2B.C.3D.3【答案】B【分析】根据定义新运算方法,直接代入数据计算即可.【详解】解:∵,∴⊕2=,∵=3>,∴(⊕2) ⊗=.故答案为B.【点睛】本题考查了实数大小比较以及代数式求值,其中掌握实数的大小比较是解答本题的关键.考查题型十实数的混合运算典例10.(2020秋·浙江台州·七年级校考期中)计算:(1);(2).【答案】(1)(2)【分析】(1)根据实数的混合运算,二次根式的运算即可求解;(2)根据二次根式,三次根式的运算,绝对值的性质即可求解.【详解】(1)解:.(2)解:.【点睛】本题主要考查实数的混合运算,掌握求一个数的算术平方根,求一个数的立方根及实数的混合运算法则是解题的关键.变式10-1.(2022秋·重庆渝中·七年级重庆巴蜀中学校考阶段练习)实数的计算:(1);(2).【答案】(1)(2)【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【详解】(1)解:(2).【点睛】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.变式10-2.计算:(1)(2)【答案】(1)(2)【分析】(1)根据二次根式,三次根式的性质化简,再根据实数的混合运算即可求解;(2)根据乘方运算,绝对值性质,二次根式的性质,三次根式的性质化简,再根据实数的运算即可求解.【详解】(1)解:,故答案为:.(2)解:,故答案为:.【点睛】本题主要考查二次根式,三次根式的性质,绝对值的性质,幂的运算,实数的混合运算,掌握二次根式,三次根式的性质,实数的混合运算是解题的关键.变式10-3.计算(1)(2)【答案】(1)(2)【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.【详解】(1)解:原式;(2)解:原式.【点睛】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.。
人教版数学七年下册第六章6.3 实数 精选课时练习(含答案)-5
1 2
(1
1 ); 3
第
2
个等式:
a2
1 35
1 2
(1 3
1 ); 5
第
3
个等式:
a3
1 57
1 2
( 1 5
1 ); 7
第
4
个等式: a 4
1 79
1 2
( 1 7
1 ); 9
…
请解答下列问题:
(1)按以上规律列出第 5 个等式:a5= = ;
(2)用含有 n 的代数式表示第 n 个等式:an= =
35.写出一个比 2 大比 3 小的无理数(用含根号的式子表示)_____. 36.对于实数 a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1) ※(x﹣2)=6,则 x 的值为_____. 37.如图所示是计算机某计算程序,若开始输入 x=3,则最后输出的结果是_____.
则 3※5 的值为______.
31.已知 x,y 为两个连续的整数,且 x< 20 <y,则 5x+y 的平方根为_____.
22
32.实数 ,
7
3 , 7 ,
36 中,无理数有_____________________;
33.比较大小: 5 1 _________ 1 (填“>”或“<”)
2
2
34.若 6 13 的整数部分为 x ,小数部分为 y ,则 (2x 13) y 的值是___.
2 中,最小的实数是(
).
A. 2
B.-1
C.0
1
D.
3
5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是
6.3 实数(2)(作业)-七年级数学下册同步备课系列(人教版)
6.3实数(2)作业一、选择题1.下列说法正确是()A .不存在最小的实数B .有理数是有限小数C .无限小数都是无理数D .带根号的数都是无理数2.下列实数:.20 3.1415922.9532p --,,,,中无理数有()个。
A .2B .3C .4D .53.对于以下四全判断:是无理数.②2是一个分数.③(--是互为相反数.④若a b <,则a <b .其中正确的判断的个数是().A .3B .2C .1D .44.已知738.128.53=,1738.03=a ,则a 的值为()A .0.528B .0.0528C .0.00528D .0.0005285.无理数的绝对值是()A B CD .6.下列各组数中互为相反数的一组是()A .2--B .4--与C .D .的整数部分为a ,小数部分为b ,则b 2为()A .2B .20C .20-D .20+8.a =-,则实数a 在数轴上的对应点一定在()A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧9.实数a 、b 、c 在数轴上的位置如图,则化简a b c -+的结果是()。
A .a –b –cB .a –b +cC .–a +b –cD .–a +b +c10.如图所示,数轴上表示2,5的点分别为C ,B ,点C 是AB 的中点,则点A 表示的数是()A .B .2-C .4D .2-二、填空题11的相反数是____________,绝对值是________________.12.请你任意写出三个无理数:;13.满足32<<-x 的整数是.14.2_________.p -=15.点A 在数轴上和原点相距3个单位,点B A ,B 两点之间的距离是__________.16.观察下列式子,根据你得到的规律回答:=3;=33;=333;…….请你说出的值是.三、解答题17.计算:(1;(2)12-+-+-.18.若xy =-2,x -y =1-,求(x +1)(y -1)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3《实数》同步测试(第2课时)
一、选择题
1.下列各数中,最小的是( ).
A.O B.1 C.-1 D.
考查目的:考查实数的大小比较.
答案:D.
解析:根据“正数大于零,零大于负数;两个负数,绝对值大的反而小”可知,最小的数只能在-1和中找.因为,所以,故最小的数是.
2.在算式()□()的□中填上运算符号,使结果最大,这个运算符号是( ).
A.加号B.减号C.乘号 D.除号
考查目的:考查无理数的四则运算以及实数大小比较.
答案:D.
解析:加法运算的结果仍然为负数,减法运算的结果为零,乘法运算的结果为,除法运算的结果为1,而运算的结果中1最大,故选择D.
3.对于以下四个判断:
①是无理数.②是一个分数.
③-|-|和-(-)是互为相反数.④若||<||,则<.
其中正确的判断的个数是( ).
A.3 B.2 C.1 D.考查目的:考查实数的概念和性质.
答案:C.
解析:①,2是一个有理数;②是无理数;③-|-|=-,-(-)=,-
与是互为相反数;④反例:,.
二、填空题
4.的相反数是,绝对值是.
考查目的:考查实数的相反数、绝对值的意义.
答案:
解析:-()=, ||=-()=.
5.请写出两个你喜欢的无理数,使它们的和为有理数,这两个无理数为,如果是积为有理数,那么这两个无理数又为(任意写出一组).
考查目的:考查互为相反数和互为倒数的概念和应用.
答案:和和.(答案不唯一)
解析:若两个无理数的和为有理数,这样的两个无理数的形式可以为和,其中,,,都是有理数,>0,为无理数,也可以为;若两个无理数的积为有理数,这样的两个无理数的形式可以为,,其中,为有理数,>0,也可以为.
6.计算:-=______________ .
考查目的:考查算术平方根的运算和绝对值的化简计算.
答案:-1.14.
解析:由于<0,<0,所以-=
==-1.14.
三、解答题
7.创新设计题:
如图所示的集合中有5个实数,请计算其中的有理数的和与无理数的积的差.
考查目的:考查实数的分类以及实数的运算.
答案:1-2.
解析:有理数为:,,无理数为: ,,,由题意可得:
()-(××)=1-2.
8.观察下列推理过程:∵<<,即2<<3,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为,的小数部分为,求的值.
考查目的:考查无理数的小数部分的表示,以及实数的运算.
答案:.
解析:的小数部分为=-1,的小数部分为=-1,故有=
.。