专题4 等比数列-2018年北京高考理科数学分析及相似模拟题训练Word版含解析

合集下载

2018高考北京卷理科数学(含答案)

2018高考北京卷理科数学(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)(B)(C)(D)(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为(A)(B)(C)(D)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1 (B)2(C)3 (D)4(6)设a,b均为单位向量,则“”是“a⊥b”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为(A)1 (B)2(C)3 (D)4(8)设集合则(A)对任意实数a,(B)对任意实数a,(2,1)(C)当且仅当a<0时,(2,1)(D)当且仅当时,(2,1)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9)设是等差数列,且a1=3,a2+a5=36,则的通项公式为__________.(10)在极坐标系中,直线与圆相切,则a=__________.(11)设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.(12)若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.(13)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.(14)已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.三、解答题共6小题,共80分。

2018年高考真题理科数学(北京卷) Word版含解析

2018年高考真题理科数学(北京卷) Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.5. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6. 设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1.详解:P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2018年北京市高考数学试卷(理科)(解析版)

2018年北京市高考数学试卷(理科)(解析版)

2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. (5.00 分)已知集合A={刈x|<2}, B={ -2, 0, 1, 2},则AH B=()A. {0, 1}B. { - 1, 0, 1}C. { -2, 0, 1, 2}D. {-1,0, 1, 2}2. (5.00分)在复平面内,复数一L的共腕复数对应的点位于()i-iA.第一象限B.第二象限C.第三象限D.第四象限3. (5.00分)执行如图所示的程序框图,输出的s值为()A BT C•卷D- T74. (5.00分)十二平均律”是通用的音律体系,明代朱载堵最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于I 辆.若第一个单音的频率为f,则第八个单音的频率为()A.- -fB. : f C「「f D. - f5. (5.00分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.6. (5.00分)设;,E均为单位向量,则口-豆|二|3鼻同|”是的(A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7. (5.00分)在平面直角坐标系中,记d为点P (cos 9 sin »到直线x-my- 2=0的距离.当8、m变化时,d的最大值为()A. 1B. 2C. 3D. 48. (5.00 分)设集合A={(x, y) |x-y>1, ax+y>4, x- ay<2},贝U ()A.对任意实数a, (2, 1) CAB.对任意实数a, (2, 1) ?AC.当且仅当a<0时,(2, 1) ?AD.当且仅当a0二时,(2, 1) ?A二、填空题共6小题,每小题5分,共30分。

2018年北京市高考数学试卷(理科)【附答案解析】

2018年北京市高考数学试卷(理科)【附答案解析】

2018年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2} D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D.f5.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.46.(5分)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.48.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分。

9.(5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.10.(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=.11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.12.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.13.(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.14.(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.三、解答题共6小题,共80分。

2018北京高考卷数学[理科]试题和答案解析

2018北京高考卷数学[理科]试题和答案解析

2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。

2018年北京卷高考数学(理)试题含答案解析

2018年北京卷高考数学(理)试题含答案解析

2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合2A x x,2,0,1,2B x ,则A BI (A )01,(B )-101,,(C )-201,,(D )-1012,,,2.在复平面内,复数i 1i的共轭复数对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.执行如图所示的程序框图,输出的s 值为().A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为().A .32fB.322fC.1252fD.1272f5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为().A.1B.2C.3D.4a b a b”是“a b”的6.设a b,均为单位向量,则“33(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件7. 在平面直角坐标系中,记d为点P cos,sin到直线20x my的距离.当,m变化时,d的最大值为(A)1(B)2 (C)3 (D)4A x y x y ax y x ay,则8. 设集合,|1,4,2A对任意实数a,2,1A B对任意实数a,2,1AC 当且仅当0a 时,2,1AD 当且仅当32a时,2,1A二.填空(9)设n a 是等差数列,且13a ,2536a a ,则n a 的通项公式为。

(10)在极坐标系中,直线cossin(0)a a与圆2cos相切,则a。

(11)设函数cos6f xx0。

2018年高考北京卷理科数学(含答案)

2018年高考北京卷理科数学(含答案)

2018年高考北京卷理科数学(含答案)(A)1 (B)2(C)3 (D)4(6)设a,b均为单位向量,则“33a b a b”是“a⊥b”-=+的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线20--=的距离,当θ,m变化时,d的最大值为x my(A)1 (B)2(C)3 (D)4(8)设集合{(,)|1,4,2},=-≥+>-≤则A x y x y ax y x ay(A)对任意实数a,(2,1)A∈(B)对任意实数a,(2,1)A∉(C)当且仅当a<0时,(2,1)A∉(D)当且仅当32a ≤时,(2,1)A ∉第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9)设{}na 是等差数列,且a 1=3,a 2+a 5=36,则{}na 的通项公式为__________.(10)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________. (11)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.(12)若x ,y 满足x +1≤y ≤2x ,则2y –x 的最小值是__________.(13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. (14)已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________. 三、解答题共6小题,共80分。

(精校版)2018年北京理数高考试题文档版(含答案)

(精校版)2018年北京理数高考试题文档版(含答案)

(精校版)2018年北京理数高考试题文档版(含答案)绝密★启用前2019年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B= (A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分(A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9)设{}na 是等差数列,且a 1=3,a 2+a 5=36,则{}na 的通项公式为__________.(10)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.(11)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.(12)若x ,y 满足x +1≤y ≤2x ,则2y −x 的最小值是__________.(13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.(14)已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.三、解答题共6小题,共80分。

北京高考理科数学2018模拟试题1(含答案、详细评标及试题难度系数分析)

北京高考理科数学2018模拟试题1(含答案、详细评标及试题难度系数分析)

普通高等学校招生全国统一考试模拟试卷1(北京卷)理科数学本试卷共4页,150分。

考试时长120分钟,考生务必将答案填写在答题卡上,在试卷上作答无效。

考试结束后,将本试卷、答题卡和草稿纸一并收回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合2{|20}A x x x =-=,{0,1,2}B =,若A B =A .{0}B .{0,1}C .{0,2}D .{0,1,2} 2.下列函数中,在区间(0,}+∞上为增函数的是 A .1y x =+ B .2=(1)y x - C .2x y -= D .0.5log (1)y x =+3.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的 A .充分且不必要条件 B .必要且不充分条件 C .充分且必要条件 D .既非充分也非必要条件4.设a ,b R ∈,若a b >,则 A .11a b< B .lg lg a b > C . 22a b> D .sin sin a b > 5.若输出的S 的值为64,则判断框内应填入的条件是 A .3?k ≤ B .3?k < C .4?k ≤ D .4?k > 6.某三棱锥的三视图如图所示,则该三棱锥的体积为A .19B .16C .13D .12注:1-4页为试题,5-11页为详细答案及评分标准,12-13页为试题难度说明. 本试卷配套标准答题纸可在百度文库本试卷作者处免费获得. 印发时,请删去本标注.7.甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为( ) A .12B .40C .60D .808.某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查''''OM ON O M O N ===; 项目③:打开过程中(如图2),检查''''OK OL O K O L ===; 项目④:打开后(如图3),检查123490∠=∠=∠=∠=︒; 项目⑤:打开后(如图3),检查''''AB A B C D CD ===.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”( ) A .①②③B .②③④C .②④⑤D .③④⑤第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(精校版)2018年北京理数高考试题文档版(含答案)-文档资料

(精校版)2018年北京理数高考试题文档版(含答案)-文档资料

绝密★启用前2019年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A ={x ||x |<2},B ={–2,0,1,2},则AB =(A ){0,1}(B ){–1,0,1} (C ){–2,0,1,2}(D ){–1,0,1,2}(2)在复平面内,复数11i -的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(3)执行如图所示的程序框图,输出的s 值为(A )12 (B )56 (C )76(D )712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 学&科网 (A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年北京市高考数学理试题有答案【高考】

2018年北京市高考数学理试题有答案【高考】

2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01,(B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限(B )第二象限 (C )第三象限(D )第四象限3.执行如图所示的程序框图,输出的s 值为().A .12B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为().ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为(). A .1 B .2 C .3 D .46.设a b r r ,均为单位向量,则“33a b a b -=+r r r r ”是“a b ⊥r r”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈()B 对任意实数a ,()2,1A ∉ ()C 当且仅当0a <时,()2,1A ∉()D 当且仅当32a ≤时,()2,1A ∉二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题4 等比数列-2018年北京高考理科数学分析及相似模拟题训练【母题原题】【2018北京理4】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A B C.D.【答案】D【名师点睛】此题以数学文化为载体考查等比数列的基本概念及运用,解决本题的关键是能够判断单音成等比数列,然后运用通项公式求特定项,需要一定的运算能力;等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列. 【变式1】【2017课标II理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【答案】B【解析】设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()71238112x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B 。

【名师点睛】以数学文化为载体考查等比数列的应用,关键是合理建立数列模型,判断是等差数列还是等比数列模型;求解时,要明确目标,即搞清是求和、求通项问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后经过数学推理与计算得出的结果,放回到实际问题中进行检验,最终得出结论。

【变式2】【2017课标3理14】设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 【答案】8-【解析】设等比数列的公比为q ,很明显1q ≠- ,结合等比数列的通项公式和题意可得方程组:()()12121311113a a a q a a a q ⎧+=+=-⎪⎨-=-=-⎪⎩,①,②,由 ②① 可得:2q =- ,代入①可得11a =, 由等比数列的通项公式可得:3418a a q ==- .【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 【变式3】【2018年理新课标I 卷】记为数列的前项和,若,则_____________.【答案】【名师点睛】该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.【命题意图】高考对本部分内容的考查以中档题为主,重点为考查等比数列的通项公式、前n 项和公式及性质,等比数列的证明也是考查的热点。

在近年数列的考题中常常与数学文化相结合。

数列作为一种特殊的函数,常常与方程、不等式、最值等问题相联系,意在考查考生的抽象能力、运算能力、逻辑推理能力及应用意识。

【命题规律】这类试题在考查题型上,通常以选择题、填空题及解答题的形式出现,属于中档题。

高考对等比的考查主要有以下三个命题角度:(1)等比数列的基本运算;(2)等比数列的性质及其应用;(3)等比数列的判定与证明;【答题模板】解答本类题目,一般有两个基本思路:一是利用基本量,由等数比列的前n项和公式及通项公式;若已知a1,d,n,a n,S n中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.【知识与方法总结】1.等比数列2.易错辨析(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数;(2)由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0;(3)在运用等比数列的前n 项和公式时,必须注意对1q =与1≠q 分类讨论,防止因忽略1q =这一特殊情形导致解题失误.1.【2018北京模拟】设数列{}n a 满足()132n n a a n -=≥,且13a =,则20a =( ) A. 173 B. 183 C. 193 D. 203 【答案】D【解析】 由()132n n a a n -=≥,可得数列{}n a 是以3为首项, 3为公比的等比数列, 所以191920201333a a q ==⋅=,故选D.2.【2018东城一模理】已知等比数列{a n }的公比为正数,且a 3a 9=2a 25,a 2=2,则a 1=( ) A.12 B.22 C. 2 D .2 【答案】C3.【2016高考北京】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D【解析】对等比数列}{n a ,若1>q ,则当01<a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C.4.【2018大连模拟】在等比数列{}n a 中, 1a 和2018a 是方程2220180x x +-=的两个根,则42015a a ⋅=( )A . 2018-B . 2018C . 1009D . 1009-【答案】D【解析】1a 和2018a 是方程2220180x x +-=的两个根,根据韦达定理得120181009a a ⋅=-, 在等比数列{}n a 中, 42015a a ⋅= 120181009a a ⋅=-,故选D5.【2018兰州模拟】等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为( ) A.-2或1B.-1或2C.-2D.1【答案】C6.【2018莆田一中模拟】某工厂去年产值为a ,计划今后5年内每一年比上一年增长%10,这5年的最后 一年产值为( )A .a ∙41.1B .a ∙51.1C .a ∙61.1 D .a ∙+)1.11(5【答案】 B【解析】由题得第一年的产值为1 1.1a a =,所以5145511.1 1.1 1.1 1.1a a a a -=⋅=⋅=⋅,故选择B .7.【2018北京大兴模拟】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .9 【答案】D【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .8.【2018成都七中模拟】一个等比数列{a n }的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项 【答案】B9.【2018北京市东城区高三期末】已知{}n a 为等比数列.下面结论中正确的是( )A .1322a a a +…B .2221322a a a +… C .若13a a =,则12a a = D .若31a a >,则42a a > 【答案】B【解析】取特殊值可排除A 、C 、D ,由均值不等式可得2221313222a a a a a +⋅=…. 10.【2018衡水金卷】已知三角形的三边构成等比数列,它们的公比为q ,则q 的一个可能的值是( ) A.52 B.12 C .2 D.32【答案】D 【解析】由题意可设三角形的三边分别为aq,a ,aq ,因为三角形的两边之和大于第三边,所以有a q +a >aq ,即q 2-q -1<0(q >1),解得1<q <1+52,所以q 的一个可能值是32,故选D 。

11.【2018江西南昌模拟】在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n +1-2 B .3n C .2n D .3n-1【答案】C【解析】设等比数列{a n }的公比为q ,由于{a n +1}也是等比数列,所以(a 2+1)2=(a 1+1)(a 3+1), 即a 22+2a 2+1=a 1a 3+a 1+a 3+1,即2a 2=a 1+a 3,即2q =1+q 2,解得q =1, 所以数列{a n }是常数数列,所以S n =2n.12.【安徽省蒙城县2018届高三“五校”联考】已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( )A .158或5 B .3116或5 C .3116 D .158【答案】C13.【2018北京模拟】若等比数列{}n a 满足24a a +=20,35a a +=40,则公比q = ;前n 项和n S = .【答案】12,22n +-【解析】由35a a +=()24q a a +得2q =;()()3241a a a q q +=+=20,得12a =;∴()12122212n n n S +-==--14.【2017北京高考】若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b =_____. 【答案】1【解析】设{}n a 的公差为d ,{}n b 的公比为q ,由题意3138d q -+=-=,所以3d =,2q =-,所以22131(2)a b -+==--. 15.【2018广州模拟】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .【答案】50【解析】因{}n a 是等比数列,∴1201011912a a a a a a ==,由512911102e a a a a =+得∴5120a a e =,∴1220ln ln ln a a a +++=50.16.【2018大连模拟】设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++= . 【答案】15【解析】12341,2,4,8a a a a ==-==-,∴ 1234||||a a a a +++=15.17.【2018武汉模拟】已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比 . 【答案】2【解析】设公比为q ,若q =1,则S 2mS m=2,与题中条件矛盾,故q ≠1. ∵S 2m S m =a 1(1-q 2m )1-q a 1(1-q m )1-q=q m +1=9,∴q m=8.∴a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1, ∴m =3,∴q 3=8,∴q =2.18.【2016高考新课标1卷】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .【答案】6419.【2018合肥模拟】在各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值是__________。

相关文档
最新文档