2021届人教版九年级数学下册课件:第二十七章《相似》单元检测题
人教版九年级下《第二十七章相似》单元测试卷含答案
人教版九年级下《第二十七章相似》单元测试卷含答案一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 1.若y x =34,则x +y x的值为( )A .1 B.47 C.54 D.742.已知△ABC∽△A′B′C′且AB A ′B ′=12,则S △ABC ∶S △A ′B ′C ′为( )A .1∶2B .2∶1C .1∶4D .4∶13.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C 处时,她的影子正好与旗杆的影子重合,并测得AC =2米,BC =8米,则旗杆的高度是( )A .6.4米B .7米C .8米D .9米4.如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连接AE 交CD 于点F ,则图中共有相似三角形( )A .1对B .2对C .3对D .4对5.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC ,BC 相切于点D ,E ,则AD 为( )A .2.5B .1.6C .1.5D .16.如图,AD 是△ABC 的角平分线,则AB∶AC 等于( )A .BD ∶CDB .AD ∶CDC .BC ∶AD D .BC ∶AC7.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE =12DB ,作EF⊥DE 并截取EF =DE ,连接AF 并延长交射线BM 于点C.设BE =x ,BC =y ,则y 关于x 的函数解析式为( )A .-12x x -4B .-2x x -1C .-3x x -1D .-8x x -48.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE∽△AEF;③AE⊥EF;④△ADF∽△ECF.其中正确的个数为( )A .1个B .2个C .3个D .4个 二、填空题(本大题共6个小题,每小题3分,共18分)9.如果a b =c d =ef =k(b +d +f≠0),且a +c +e =3(b +d +f),那么k =________.10.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是______________________________.(写出一种情况即可)11.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是________.12.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB⊥BD,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是________米.(平面镜的厚度忽略不计)13.如图,矩形EFGH 内接于△ABC,且边FG 落在BC 上,若BC =3,AD =2,EF =23EH ,那么EH 的长为________.14.如图,一条4m 宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为________m 2.三、解答题(共9个小题,共70分)15.(5分)(2017·长春模拟)如图,在△ABC 中,D ,E 分别是AB ,AC 上一点,且∠AED =∠B.若AE =5,AB =9,CB =6,求ED 的长.16.(6分)如图所示,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF =∠C.求证:(1) ∠EAF=∠B;(2) AF2=FE·FB.17.(7分)如图所示,在正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE 绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1) 求证:△BDG∽△DEG;(2) 若EG·BG=4,求BE的长.18.(7分)如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1) 画出位似中心点O;(2) 求出△ABC与△A′B′C′的位似比;(3) 以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.19.(7分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2m,已知王亮的身高为1.6m,请帮他计算旗杆的高度(王亮眼睛距地面的高度视为他的身高).20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F 为线段DE上一点,且∠AFE=∠B.(1) 求证:∠DFA=∠ECD;(2) △ADF与△DEC相似吗?为什么?(3) 若AB=4,AD=33,AE=3,求AF的长.21.(9分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图①,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1) 求证:△AEF∽△ABC;(2) 求这个正方形零件的边长;(3) 如果把它加工成矩形零件如图②,问这个矩形的最大面积是多少?22.(9分)如图,已知AB 是⊙O 的直径,BC 是⊙O 的弦,弦ED⊥AB 于点F ,交BC 于点G ,过点C 的直线与ED 的延长线交于点P ,PC =PG.(1 )求证:PC 是⊙O 的切线;(2) 当点C 在劣弧AD 上运动时,其他条件不变,若BG 2=BF·BO.求证:点G 是BC 的中点;(3) 在满足(2)的条件下,若AB =10,ED =46,求BG 的长.23.(12分)如图,在平面直角坐标系xOy 中,抛物线y =-16x 2+bx +c 过点A(0,4)和C(8,0),P(t ,0)是x 轴正半轴上的一个动点,M 是线段AP 的中点,将线段MP 绕点P 顺时针旋转90°得线段PB ,过点B 作x 轴的垂线,过点A 作y 轴的垂线,两直线相交于点D. (1) 求b ,c 的值;(2) 当t为何值时,点D落在抛物线上;(3) 是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t 的值;若不存在,请说明理由.答案; 一、1---8 DCCCB AAB 二、 9. 310. ∠A =∠D(或BC ∶EF =2∶1) 11. 2∶3 12. 8 13. 3214. 80 三、15. 解:∵∠AED=∠B,∠A =∠A,∴△AED ∽△ABC ,∴AE AB =DEBC ,∵AE =5,AB =9,CB =6,∴59=DE 6,解得DE =10316. 证明:(1)∵AB∥CD,∴∠B =∠C,又∠C=∠EAF,∴∠EAF =∠B(2)∵∠EAF=∠B,∠AFE =∠BFA,∴△AFE ∽△BFA ,则AF BF =FE FA ,∴AF 2=FE·FB17. 解:(1)证明:∵BE 平分∠DBC,∴∠CBE =∠DBG,∵∠CBE =∠CDF ,∴∠DBG =∠CDF,∵∠BGD =∠DGE,∴△BDG ∽△DEG(2)∵△BDG∽△DEG,DG BG =EGDG ,∴DG 2=BG·EG=4,∴DG =2,∵∠EBC +∠BEC=90°,∠BEC =∠DEG,∠EBC =∠EDG,∴∠BGD =90°,∵∠DBG =∠FBG,BG =BG ,∴△BDG ≌△BFG ,∴FG =DG =2,∴DF =4,∵BE =DF ,∴BE =DF =4.18. 解:(1) 连接A′A,C ′C ,并分别延长相交于点O ,即为位似中心(2) 位似比为1∶2 (3) 略19. 解:根据题意知,AB ⊥BF ,CD ⊥BF ,EF ⊥BF ,EF =1.6 m ,CD =3 m ,FD =2 m ,BD =15 m ,过E 点作EH⊥AB,交AB 于点H ,交CD 于点G ,则EG⊥CD,EH ∥FB ,EF =DG =BH ,EG =FD ,CG =CD -EF.因为△ECG∽△EAH,所以EG EH =CG AH ,即22+15=3-1.6AH ,所以AH =11.9 m ,所以AB =AH +HB =AH +EF =11.9+1.6=13.5(m ),即旗杆的高度为13.5 m20. 解:(1)证明:∵∠AFE=∠B,∠AFE +∠DFA=180°,∠B +∠ECD=180°,∴∠DFA =∠ECD(2)△ADF∽△DEC.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠DEC,∴△ADF ∽△DEC(3)∵四边形ABCD 是平行四边形,∴AD∥BC,CD =AB =4,又∵AE⊥BC,∴AE ⊥AD ,在Rt △ADE 中,DE =AD 2+AE 2=(33)2+32=6,∵△ADF ∽△DEC ,∴AD DE =AFCD,∴336=AF4,AF =2 3 21. 解:(1)∵四边形EFHG 为正方形,∴BC ∥EF ,∴△AEF ∽△ABC(2)∵四边形EFHG 为正方形,∴EF ∥BC ,EG ⊥BC ,又∵AD⊥BC,∴EG ∥AD ,设EG =EF =x ,则KD =x ,∵BC =120 mm ,AD =80 mm ,∴AK =80-x ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即x 120=80-x 80,解得x =48,∴这个正方形零件的边长是48 mm (3)设EG =KD =m ,则AK =80-m ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即EF 120=80-m 80,∴EF =120-32m ,∴S 矩形EFHG =EG·EF=m·(120-32m)=-32m 2+120m =-32(m -40)2+2400,故当m =40时,矩形EFHG 的面积最大,最大面积为2400 mm 222. 解:(1)连接OC ,∵ED ⊥AB ,∴∠BFG =90°,∴∠B +∠BGF=90°,又∵PC =PG ,∴∠PCG =∠PGC,而∠PGC=∠BGF,∴∠B +∠PCG=90°,又∵OB=OC ,∴∠B =∠BCO.∴∠BCO+∠PCG=90°,则∠PCO=90°,即OC⊥PC,而OC 是半径,∴PC 是⊙O 的切线(2)连接OG ,∵BG 2=BF·BO,∴BG BF =BO BG ,而∠B=∠B,∴△BFG ∽△BGO ,∴∠BGO =∠BFG=90°,∴OG ⊥BC ,∴点G 是BC 的中点(3)连接OE ,∵AB 是⊙O 的直径,ED ⊥AB ,∴EF =12ED ,∵AB =10,ED =46,∴EF =26,OE =OB =12AB =5.在Rt △OEF 中,OF =OE 2-EF 2=1,∴BF =OB -OF =5-1=4,∴BG =BF ·BO =2 523. 解:(1)由抛物线y =-16x 2+bx +c 过点A(0,4)和C(8,0),可得⎩⎪⎨⎪⎧c =4,-16×64+8b +c =0,解得⎩⎪⎨⎪⎧c =4b =56(2)∵∠AOP=∠PEB=90°,∠OAP =90°-∠APO=∠EPB,∴△AOP ∽△PEB ,且相似比为AO PE =AP PB=2,∵AO =4,PE =2,OE =OP +PE =t +2,又∵DE=OA =4,∴点D 的坐标为(t +2,4),∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4,解得t =3或t =-2,∵t >0,∴t =3,故当t 为3时,点D 落在抛物线上(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似.理由:①当0<t <8时,若△POA∽△ADB,则PO AD =AO BD ,即t t +2=44-12t ,整理,得t 2+16=0,∴t 无解,若△POA∽△BDA ,同理,解得t =-2+25(负值舍去);②当t >8时,若△POA∽△ADB,则PO AD =AO BD ,即t t +2=412t -4,解得t =8+45(负值舍去),若△POA∽△BDA,同理,解得t 无解.综上所述,当t =-2+25或t =8+45时,以A ,B ,D 为顶点的三角形与△AOP 相似。
人教版九年级下册 第二十七章 相似单元练习题(含答案)
人教版九年级下册第二十七章相似单元练习题(含答案)一、选择题1.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A.=B.=C.∠A=∠ED.∠B=∠D2.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.3.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是()A.6B.8C.9D.124.如图,用放大镜将图形放大,这种图形的改变是()A.相似B.平移C.轴对称D.旋转5.下列各组图形相似的是()A.B.C.D.6.在△ABC与△A′B′C′中,有下列条件:(1)=,(2)=;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组B.2组C.3组D.4组7.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为()A.1B.C.D.28.下列说法中正确的是()①在两个边数相同的多边形中,如果各对应边成比例,那么这两个多边形相似;②两个矩形有一组邻边对应成比例,这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④9.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为()A.1∶2B.1∶4C.2∶1D.4∶110.若△ABC~△A′B′C′,面积比为1∶4,则△ABC与△A′B′C′的相似比为()A.16∶1B.1∶16C.2∶1D.1∶2二、填空题11.如图所示,C为线段AB上一点,且满足AC∶BC=2∶3,D为AB的中点,且CD=2 cm,则AB=________ cm.12.如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为(2,4),点E的坐标为(-1,2),则点P的坐标为________.13.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为__________.14.两个相似多边形,如果它们对应顶点所在的直线______________________,那么这样的两个图形叫做位似图形.15.在△ABC中,AB=6 cm,AC=5 cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE∶S四边形BCED=1∶8,则AD=__________ cm.16.如果两个相似三角形周长的比是2∶3,那么它们的相似比是____________.17.如图,AD为△ABC的中线,AE=AD,BE交AC于点F,DH∥BF,则=__________.18.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为______________尺.19.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上,以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是______________.20.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.三、解答题21.如图,AC是圆O的直径,AB、AD是圆O的弦,且AB=AD,连接BC、D C.(1)求证:△ABC≌△ADC;(2)延长AB、DC交于点E,若EC=5 cm,BC=3 cm,求四边形ABCD的面积.22.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm的竹竿的影长为60 cm;如图2:乙组:测得学校旗杆的影长为900 cm;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm,影长为300 cm.解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH与⊙O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径?23.如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE·CD=AD·CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,连接AF.求证:DF=AF.24.如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.25.如图,已知:D,E分别是△ABC的AB,AC边上的点,且△ABC∽△ADE,AD∶DB=1∶3,DE=2,求BC的长.26.将一张长、宽之比为的矩形纸ABCD依次不断对折,可得到的矩形纸BCFE,AEML,GMFH,LGPN.(1)矩形BCFE,AEML,GMFH,LGPN,长和宽的比变了吗?(2)在这些矩形中,有成比例的线段吗?(3)你认为这些大小不同的矩形相似吗?27.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP 还相似吗?为什么?28.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.答案解析1.【答案】B【解析】在△ABC和△DEF中,∵==,∴△ABC∽△DEF,故选B.2.【答案】B【解析】作DK∥BC,交AE于K.∵△ABC是等边三角形,∴AB=CB=AC,∠ABC=∠C=60°,∵∠AMD=60°=∠ABM+∠BAM,∵∠ABM+∠CBD=60°,∴∠BAE=∠CBD,在△ABE和△BCD中,∴△ABE≌△BCD,∴BE=CD,CE=AD,∵BM=DM,∠DMK=∠BME,∠KDM=∠EBM,∴△MBE≌△MDK,∴BE=DK=CD,设BE=CD=DK=a,AD=EC=b,∵DK∥EC,∴=,∴=,∴a2+ab-b2=0,∴+-1=0,∴=或(舍弃),∴==,故选B.3.【答案】D【解析】∵l1∥l2∥l3,∴=,即=,∴BC=8,∴AC=AB+BC=12,故选D.4.【答案】A【解析】根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选A.5.【答案】B【解析】A.形状不同,大小不同,不符合相似定义,故错误;B.形状相同,但大小不同,符合相似定义,故正确;C.形状不同,不符合相似定义,故错误;D.形状不同,不符合相似定义,故错误.故选B.6.【答案】C【解析】共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选C.7.【答案】C【解析】∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠A=∠D=90°,∵∠E=90°,∴∠EFG+∠EGF=90°,∴∠AFB+∠DGC=90°,∵∠AFB+∠ABF=90°,∴∠ABF=∠DGC,∴△AFB∽△DCG,∴=,∵AF∶FG∶GD=3∶2∶1,∴AF=3,DG=1,∴AB2=AF·DG=3,∴AB=.故选C.8.【答案】D【解析】①虽然各对应边成比例,但是各对应角不一定相等,所以不相似,比如:所有菱形的对应边都成比例,但是它们不一定相似;②两个矩形有一组邻边对应成比例,就可以得出四条边对应成比例,并且它们的角都是90°,所以这两个矩形相似;③有一个角对应相等的平行四边形的对应边不一定成比例,所以不一定相似;④有一个角对应相等就可以得出菱形的其他角对应相等,并且菱形的对应边是成比例的,所以相似.故选D.9.【答案】A【解析】∵△ABC∽△DEF,∴△ABC的面积:△DEF的面积=△ABC与△DEF的周长之比的平方,而△ABC的面积为1,△DEF的面积为4,∴△ABC与△DEF的周长之比=1∶2.故选A.10.【答案】D【解析】∵△ABC相似△A′B′C′,面积比为1∶4,∴△ABC与△A′B′C′的相似比为1∶2.故选D.11.【答案】20【解析】∵AC∶BC=2∶3,∴设AC=2x,则BC=3x,AB=5x,∵D为AB的中点,∴AD=2.5x,∴CD=0.5x,∵CD=2 cm,∴x=4,∴AB=5x=5×4=20 cm;12.【答案】(-2,0)【解析】∵四边形OABC是矩形,点B的坐标为(2,4),∴OC=AB=4,OA=2,∴点C的坐标为(0,4),∵矩形OABC与矩形ODEF是位似图形,P是位似中心,点E的坐标为(-1,2),∴位似比为1∶2,∴OP∶AP=OD∶AB=1∶2,设OP=x,则=,解得:x=2,∴OP=2,即点P的坐标为(-2,0).13.【答案】1【解析】∵MN∥BC,∴△AMN∽△ABC,∴=,即=,∴MN=1,故答案为1.14.【答案】相交于一点【解析】两个相似多边形,如果它们对应顶点所在的直线相交于一点,那么这样的两个图形叫做位似图形.15.【答案】2或【解析】∵S△ADE∶S四边形BCED=1∶8,∴S△ADE∶S△ABC=1∶9,∴△ADE与△ABC相似比为∶1∶3,①若∠AED对应∠B时,则=,∵AC=5 cm,∴AD=cm;②当∠ADE对应∠B时,则=,∵AB=6 cm,∴AD=2 cm;16.【答案】2∶3【解析】∵两个相似三角形周长的比是2∶3,∴两个相似三角形相似比是2∶3.17.【答案】【解析】∵DH∥BF,AD为△ABC的中线,∴CH=FH,∵DH∥BF,AE=AD,∴AF=FH.∴=,18.【答案】45【解析】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴=,解得x=45.19.【答案】(4,2)或(-4,-2)【解析】位似图形如图所示,B1(4,2),B2(-4,-2),故答案为(4,2)或(-4,2).20.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.21.【答案】(1)证明∵AC是圆O的直径,∴∠ABC=∠D=90°,在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC;(2)解由(1)知Rt△ABC≌Rt△ADC,∴CD=BC=3,AD=AB,∴DE=5+3=8,∵∠EAD=∠ECB,∠D=∠EBC=90°,∴△EAD∽△ECB,∴=,∵BE==4,∴=,∴AD=6,∴四边形ABCD的面积=S△ABC+S△ACD=2××3×6=18 cm2【解析】22.【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.【解析】(1)根据同一时刻物高与影长成正比即可求出旗杆的高度;(2)先根据同一时刻物高与影长成正比求出NG的长,再连接OM,由切线的性质可知OM⊥NH,进而可得出△NMO∽△NGH,再根据其对应边成比例列出比例式,然后用半径表示出ON,进行计算即可求出OM的长.23.【答案】证明(1)∵AE·CD=AD·CE,∴=,∵∠DAB=∠B,∴AD=BD,∴=,∴DE∥AB;(2)∵BD是DF和AB的比例中项,∴BD2=DF·AB,∵AD=BD,∴AD2=DF·AB,∴==1,∵DE∥AB,∴∠ADF=∠BAD,∴△ADF∽△DBA,∴=,∴DF=AF.【解析】24.【答案】证明(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=∠BAC=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS);(2)∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠EAF=∠ABE,∵∠AEF=∠BEA,∴△AEF∽△ABE.【解析】(1)由△ABC是等边三角形,根据等边三角形的性质可得:AB=BC,∠ABD=∠C=60°,继而根据SAS即可证得△ABD≌△BCE;(2)由△ABD≌△BCE,可证得∠BAD=∠CBE,进一步得到∠EAF=∠ABE,然后根据有两角对应相等的三角形相似,即可得△AEF∽△ABE.25.【答案】解∵AD∶DB=1∶3,∴AD∶AB=1∶4,∵△ABC∽△ADE,∴AD∶AB=DE∶BC,∵DE=2,∴BC=8.【解析】先根据AD∶DB=1∶3,变形得到AD∶AB的值,再根据相似三角形对应边成比例求解即可.26.【答案】解(1)矩形BCFE,AEML,GMFH,LGPN,长和宽的比不变;(2)在这些矩形中,有成比例的线段.(3)这些大小不同的矩形相似.【解析】(1)所有矩形的长、宽之比为;(2)第一个矩形的宽为对折后矩形的长,则得到成比例的线段;(3)根据相似多边形的定义回答.27.【答案】(1)证明如图1,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∴∠BPG+∠CPF=135°,在△BPG中,∵∠B=45°,∴∠BPG+∠BGP=135°,∴∠BGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP;(2)解△PBG与△FCP相似.理由如下:如图2,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∵∠BGP=∠C+∠CPG=45°+∠CAG,∠CPF=∠FPG+∠CAG=45°+∠CAG,∴∠AGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP.【解析】(1)如图1,先根据等腰直角三角形的性质,得∠B=∠C=∠DPE=45°,再利用平角定义得到∠BPG+∠CPF=135°,利用三角形内角和定理得到∠BPG+∠BGP=135°,根据等量代换得∠BGP=∠CPF,加上∠B=∠C,于是根据有两组角对应相等的两个三角形相似即可得到结论;(2)如图2,由于∠B=∠C=∠DPE=45°,利用三角形外角性质,得∠BGP=∠C+∠CPG=45°+∠CAG,而∠CPF=45°+∠CAG,所以∠AGP=∠CPF,加上∠B=∠C,于是可判断△PBG∽△FCP.28.【答案】证明如图所示:∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°-∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.【解析】先判断△ABC为等腰直角三角形得到∠B=∠C=45°,再利用三角形内角和得到∠1+∠2=135°,利用平角定义得到∠2+∠3=135°,则∠1=∠3,于是可根据有两角对应相等的两个三角形相似得到结论.人教版九年级下册第二十七章《相似》单元测试一、选择题1、已知=,则的值是( )A. B. C. D.2、如图,在四边形ABCD中,E,F分别在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,则FB等于()A. B. C.5 D.63、已知x:y=2:3,则(x+y):y的值为()A.2:5 B.5:2 C.5:3 D.3:54、如图所示的三个矩形中,是相似的是()A.甲与乙 B.乙与丙 C.甲与丙 D.甲乙丙都相似5、下列各组线段中,成比例线段的组是( )A.3cm,4cm,5cm,8cm B.1cm,3cm,4cm,8cmC.2.1cm,3.2cm,5.4cm,6.5cm D.0.15cm,0.18cm,4cm,4.8cm.6、如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为( )A. B. C.4 D.67、.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.8、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2); B.(3,1); C.(2,2); D.(4,2);9、为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组 B.2组 C.3组 D.4组10、如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.1211、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是().A. B. C. D.12、如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A. 60mB. 40mC. 30mD. 20m13、如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)14、如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是 ( )。
人教版数学九年级下册 第二十七章 相似 单元测试题
人教版数学九年级下册第二十七章相似单元测试题一、单选题(共10题;共20分)1.下列说法正确的是()A. 所有的等边三角形都相似B. 所有的菱形都相似C. 所有的等腰三角形都相似D. 所有的矩形都相似2.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A. B. C. D.3.在下列四组线段中,成比例线段的是( )A. 3、4 、5 、6B. 4 、8、3、5C. 5、15 、2 、6D. 8 、4 、1、354.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③ =;④AC2=AD•ABA. 1B. 2C. 3D. 45.如图,在△ABC与△ADE中,∠ACB =∠AED =90°,∠ABC=∠ADE,连接BD、CE,若AC︰BC=3︰4,则BD︰CE为()A. 5︰3B. 4︰3C. ︰2D. 2︰6.如图,在△ABC中,CD平分∠ACB,过D作BC的平行线交AC于M,若BC=m,AC=n,则DM=()A. B. C. D.7.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A. 6米B. 7米C. 8.5米D. 9米8.如图,身高为1.6 m的某学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2 m,BC=8 m,则旗杆的高度是( )A. 6.4mB. 7mC. 8mD. 9m9.如图2,以点O为位似中心,画一个四边形A'B'C'D',使它与四边形ABCD位似,且相似比为,则下列说法错误的是( )A. 四边形ABCD∽四边形A'B'C'D'B. 点C,O,C' 三点在同- -直线上C. D. OB= OB'10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正确的结论有()A. 4个B. 3个C. 2个D. 1个二、填空题(共7题;共7分)11.在比例尺为1:10000的地图上,一块面积为2平方厘米的区域表示的实际面积为________平方米。
九年级下册《第二十七章 相似》单元检测试卷及答案(共八套)
九年级下册《第二十七章相似》单元检测试卷(一)一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.若yx=34,则x+yx的值为( )A.1 B.47C.54D.742.已知△ABC∽△A′B′C′且ABA′B′=12,则S△ABC∶S△A′B′C′为( )A.1∶2 B.2∶1 C.1∶4 D.4∶13.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C处时,她的影子正好与旗杆的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( ) A.6.4米 B.7米 C.8米 D.9米4.如图,E是平行四边形ABCD的边BC的延长线上的一点,连接AE交CD于点F,则图中共有相似三角形( )A.1对 B.2对 C.3对 D.4对5.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O 为圆心所作的半圆分别与AC,BC相切于点D,E,则AD为( )A.2.5 B.1.6 C.1.5 D.16.如图,AD是△ABC的角平分线,则AB∶AC等于( )A .BD ∶CDB .AD ∶CDC .BC ∶AD D .BC ∶AC7.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE =12DB ,作EF⊥DE 并截取EF =DE ,连接AF 并延长交射线BM 于点C.设BE =x ,BC =y ,则y 关于x 的函数解析式为( )A .-12x x -4 B .-2x x -1 C .-3x x -1 D .-8xx -48.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE∽△AEF;③AE⊥EF;④△ADF∽△ECF.其中正确的个数为( )A .1个B .2个C .3个D .4个 二、填空题(本大题共6个小题,每小题3分,共18分)9.如果a b =c d =ef =k(b +d +f≠0),且a +c +e =3(b +d +f),那么k =_____.10.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是________________.(写出一种情况即可) 11.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是________.12.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB⊥BD,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是________米.(平面镜的厚度忽略不计)13.如图,矩形EFGH 内接于△ABC,且边FG 落在BC 上,若BC =3,AD =2,EF =23EH ,那么EH 的长为________.14.如图,一条4m 宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为________m 2.三、解答题(共9个小题,共70分)15.(5分)如图,在△ABC 中,D ,E 分别是AB ,AC 上一点,且∠AED=∠B.若AE =5,AB =9,CB =6,求ED 的长.16.(6分)如图所示,已知AB∥CD,AD ,BC 相交于点E ,F 为BC 上一点,且∠EAF =∠C.求证: (1) ∠EAF=∠B; (2) AF 2=FE·FB.17.(7分)如图所示,在正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE 绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1) 求证:△BDG∽△DEG;(2) 若EG·BG=4,求BE的长.18.(7分)如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1) 画出位似中心点O;(2) 求出△ABC与△A′B′C′的位似比;(3) 以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.19.(7分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2m,已知王亮的身高为1.6m,请帮他计算旗杆的高度(王亮眼睛距地面的高度视为他的身高).20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1) 求证:∠DFA=∠ECD;(2) △ADF与△DEC相似吗?为什么?(3) 若AB=4,AD=33,AE=3,求AF的长.21.(9分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图①,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1) 求证:△AEF∽△ABC;(2) 求这个正方形零件的边长;(3) 如果把它加工成矩形零件如图②,问这个矩形的最大面积是多少?22.(9分)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1 )求证:PC是⊙O的切线;(2) 当点C在劣弧AD上运动时,其他条件不变,若BG2=BF·BO.求证:点G是BC的中点;(3) 在满足(2)的条件下,若AB=10,ED=46,求BG的长.23.(12分)如图,在平面直角坐标系xOy中,抛物线y=-16x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线相交于点D.(1) 求b,c的值;(2) 当t为何值时,点D落在抛物线上;(3) 是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.答案;一、1---8 DCCCB AAB二、9. 310. ∠A=∠D(或BC∶EF=2∶1)11. 2∶3 12. 8 13. 3214. 80 三、15. 解:∵∠AED=∠B,∠A =∠A,∴△AED ∽△ABC ,∴AE AB =DEBC ,∵AE =5,AB=9,CB =6,∴59=DE 6,解得DE =10316. 证明:(1)∵AB∥CD,∴∠B =∠C,又∠C=∠EAF,∴∠EAF =∠B (2)∵∠EAF=∠B,∠AFE =∠BFA,∴△AFE ∽△BFA ,则AF BF =FEFA ,∴AF 2=FE·FB17. 解:(1)证明:∵BE 平分∠DBC,∴∠CBE =∠DBG,∵∠CBE =∠CDF ,∴∠DBG =∠CDF,∵∠BGD =∠DGE,∴△BDG ∽△DEG(2)∵△BDG∽△DEG,DG BG =EG DG ,∴DG 2=BG·EG=4,∴DG =2,∵∠EBC +∠BEC=90°,∠BEC =∠DEG,∠EBC =∠EDG,∴∠BGD =90°,∵∠DBG =∠FBG,BG =BG ,∴△BDG ≌△BFG ,∴FG =DG =2,∴DF =4,∵BE =DF ,∴BE =DF =4. 18. 解:(1) 连接A′A,C ′C ,并分别延长相交于点O ,即为位似中心 (2) 位似比为1∶2 (3) 略19. 解:根据题意知,AB ⊥BF ,CD ⊥BF ,EF ⊥BF ,EF =1.6 m ,CD =3 m ,FD =2m ,BD =15 m ,过E 点作EH⊥AB,交AB 于点H ,交CD 于点G ,则EG⊥CD,EH ∥FB ,EF =DG =BH ,EG =FD ,CG =CD -EF.因为△ECG∽△EAH,所以EG EH =CG AH ,即22+15=3-1.6AH ,所以AH =11.9 m ,所以AB =AH +HB =AH +EF =11.9+1.6=13.5(m ),即旗杆的高度为13.5 m20. 解:(1)证明:∵∠AFE=∠B,∠AFE +∠DFA=180°,∠B +∠ECD=180°,∴∠DFA =∠ECD(2)△ADF∽△DEC.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠DEC,∴△ADF ∽△DEC(3)∵四边形ABCD 是平行四边形,∴AD∥BC,CD =AB =4,又∵AE⊥BC,∴AE ⊥AD ,在Rt △ADE 中,DE =AD 2+AE 2=(33)2+32=6,∵△ADF ∽△DEC ,∴AD DE =AF CD ,∴336=AF 4,AF =2 3 21. 解:(1)∵四边形EFHG 为正方形,∴BC ∥EF ,∴△AEF ∽△ABC (2)∵四边形EFHG 为正方形,∴EF ∥BC ,EG ⊥BC ,又∵AD⊥BC,∴EG ∥AD ,设EG =EF =x ,则KD =x ,∵BC =120 mm ,AD =80 mm ,∴AK =80-x ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即x 120=80-x80,解得x =48,∴这个正方形零件的边长是48 mm (3)设EG =KD =m ,则AK =80-m ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即EF 120=80-m80,∴EF =120-32m ,∴S 矩形EFHG =EG·EF=m·(120-32m)=-32m 2+120m =-32(m -40)2+2400,故当m =40时,矩形EFHG 的面积最大,最大面积为2400 mm 2 22. 解:(1)连接OC ,∵ED ⊥AB ,∴∠BFG =90°,∴∠B +∠BGF=90°,又∵PC =PG ,∴∠PCG =∠PGC,而∠PGC=∠BGF,∴∠B +∠PCG=90°,又∵OB=OC ,∴∠B =∠BCO.∴∠BCO+∠PCG=90°,则∠PCO=90°,即OC⊥PC,而OC 是半径,∴PC 是⊙O 的切线(2)连接OG ,∵BG 2=BF·BO,∴BG BF =BOBG ,而∠B=∠B,∴△BFG ∽△BGO ,∴∠BGO=∠BFG=90°,∴OG ⊥BC ,∴点G 是BC 的中点(3)连接OE ,∵AB 是⊙O 的直径,ED ⊥AB ,∴EF =12ED ,∵AB =10,ED =46,∴EF =26,OE =OB =12AB =5.在Rt △OEF 中,OF =OE 2-EF 2=1,∴BF =OB -OF=5-1=4,∴BG =BF ·BO =2 523. 解:(1)由抛物线y =-16x 2+bx +c 过点A(0,4)和C(8,0),可得⎩⎨⎧c =4,-16×64+8b +c =0,解得⎩⎨⎧c =4b =56(2)∵∠AOP=∠PEB=90°,∠OAP =90°-∠APO=∠EPB,∴△AOP ∽△PEB ,且相似比为AO PE =APPB =2,∵AO =4,PE =2,OE =OP +PE =t +2,又∵DE=OA =4,∴点D 的坐标为(t +2,4),∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4,解得t =3或t =-2,∵t >0,∴t =3,故当t 为3时,点D 落在抛物线上(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似.理由:①当0<t <8时,若△POA∽△ADB,则PO AD =AO BD ,即tt +2=44-12t ,整理,得t 2+16=0,∴t 无解,若△POA∽△BDA ,同理,解得t =-2+25(负值舍去);②当t >8时,若△POA∽△ADB,则PO AD =AO BD ,即t t +2=412t -4,解得t =8+45(负值舍去),若△POA∽△BDA,同理,解得t 无解.综上所述,当t =-2+25或t =8+45时,以A ,B ,D 为顶点的三角形与△AOP 相似九年级下册《第二十七章 相似》单元检测试卷(二)(满分:120分 时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.已知△MNP 如图271,则下列四个三角形中与△MNP 相似的是( )图271A B C D2.△ABC和△A′B′C′是位似图形,且面积之比为1∶9,则△ABC和△A′B′C′的对应边AB和A′B′的比为( )A.3∶1 B.1∶3 C.1∶9 D.1∶273.下列命题中正确的有( )①有一个角等于80°的两个等腰三角形相似;②两边对应成比例的两个等腰三角形相似;③有一个角对应相等的两个等腰三角形相似;④底边对应相等的两个等腰三角形相似.A.0个 B.1个 C.2个 D.3个4.在△ABC中,BC=15 cm,CA=45 cm,AB=63 cm,另一个和它相似的三角形的最短边长是5 cm,则最长边长是( )A.18 cm B.21 cm C.24 cm D.19.5 cm5.在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果AD∶BC=1∶3,那么下列结论中正确的是( )A.S△OCD=9S△AOD B.S△ABC=9S△ACD C.S△BOC=9S△AOD D.S△DBC=9S△AOD6.如图272,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF∶S的值为( )四边形BCEDA.1∶3 B.2∶3 C.1∶4 D.2∶5图272图2737.如图273,已知直线a ∥b ∥c ,直线m ,n 与直线a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,AC =4,CE =6,BD =3,则BF =( ) A .7 B .7.5 C .8 D .8.58.如图274,身高1.6 m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3.2 m ,CA =0.8 m ,则树的高度为( )图274A .4.8 mB .6.4 mC .8 mD .10 m9.如图275,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( ) A.AB AD =AC AE B.AB AD =BCDEC .∠B =∠D D .∠C =∠AED图275 图27610.如图276,直角梯形ABCD 中,AB ∥CD ,∠C =90°,∠BDA =90°,若AB =a ,BD =b ,CD =c ,BC =d ,AD =e ,则下列等式成立的是( ) A .b 2=ac B .b 2=ce C .be =ac D .bd =ae二、填空题(本大题共6小题,每小题4分,共24分)11.已知线段a =1,b =2,c =3,d =6,则这四条线段________比例线段(填“成”或“不成”).12.在比例尺1∶6 000 000的地图上,量得南京到北京的距离是15 cm ,这两地的实际距离是______km.13.如图277,若DE ∥BC ,DE =3 cm ,BC =5 cm ,则ADBD=________.图27714.△ABC 的三边长分别为2,2,10,△A 1B 1C 1的两边长分别为1和5,当△A 1B 1C 1的第三边长为________时,△ABC ∽△A 1B 1C 1.15.如图278,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,则这两个四边形每组对应顶点到位似中心的距离之比是__________.图278 图27916.如图279,在矩形ABCD 中,点E 是BC 的中点,且DE ⊥AC 于点O ,则CDAD=________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.如图2710,在▱ABCD 中,EF ∥AB ,FG ∥ED ,DE ∶EA =2∶3,EF =4,求线段CG 的长.图271018.如图2711,在△ABC 中,AB =8,AC =6,BC =7,点D 在BC 的延长线上,且△ACD ∽△BAD ,求CD 的长.图271119.如图2712,在水平桌面上有两个“E”,当点P1,P2,O在同一条直线上时,在点O处用①号“E”测得的视力与用②号“E”测得的视力相同.(1)图中b1,b2,l1,l2满足怎样的关系式?(2)若b1=3.2 cm,b2=2 cm,①号“E”的测试距离l1=8 cm,要使测得的视力相同,则②号“E”的测试距离应为多少?图2712四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图2713,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.图271321.如图2714,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF与直线CD延长线交于点G.求证:BC2=BG·BF.图271422.如图2715,点C,D在线段AB上,△PCD是等边三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数.图2715五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图2716,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2.(1)求CD的长;(2)求BF的长.图271624.如图2717,学校的操场上有一旗杆AB,甲在操场上的C处竖立3 m高的竹竿CD;乙从C处退到E处恰好看到竹竿顶端D与旗杆顶端B重合,量得CE=3 m,乙的眼睛到地面的距离FE=1.5 m;丙在C1处竖立3 m高的竹竿C1D1,乙从E处后退6 m到E1处,恰好看到两根竹竿和旗杆重合,且竹竿顶端D1与旗杆顶端B 也重合,量得C1E1=4 m.求旗杆AB的高.图271725.如图2718,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,过点B 作射线BB 1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于点H ,过点E 作EF ⊥AC 交射线BB 1于点F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD =AB ,并求出此时DE 的长度; (2)当△DEG 与△ACB 相似时,求t 的值.图2718参考答案1.C 2.B 3.A 4.B 5.C 6.A 7.B 8.C 9.B 10.A 解析:∵CD ∥AB ,∴∠CDB =∠DBA . 又∵∠C =∠BDA =90°,∴△CDB ∽△DBA . ∴CD DB =BC AD =BD AB ,即c b =d e =ba.A .b 2=ac ,成立,故本选项正确;B .b 2=ac ,不是b 2=ce ,故本选项错误;C .be =ad ,不是be =ac ,故本选项错误;D .bd =ec ,不是bd =ae ,故本选项错误. 11.成 12.900 13.32 14. 215.1∶ 216.22解析:∵DE ⊥AC ,BC ∥AD ,∠ADC =90°,∴∠ACB =∠EDC .又∵∠ABC =∠ECD =90°, ∴△ACB ∽△EDC .∴AB CE =BC CD. ∵AB =CD ,BC =AD , ∴CD =CE ·AD =2CE .∴CD AD =2CE 2CE =22. 17.解:∵EF ∥AB ,∴△DEF ∽△DAB . 又∵DE ∶EA =2∶3,∴DE ∶DA =2∶5.∴EF AB =DE DA =4AB =25. ∴AB =10.又∵FG ∥ED ,DG ∥EF , ∴四边形DEFG 是平行四边形. ∴DG =EF =4.∴CG =CD -DG =AB -DG =10-4=6.18.解:∵△ACD ∽△BAD ,∴CD AD =AC AB =AD BD =68=34. ∴AD =34BD ,AD =43CD .∴16CD =9BD .又∵BD =7+CD ,∴16CD =9×(7+CD ),解得CD =9.19.解:(1)因为P 1D 1∥P 2D 2,所以△P 1D 1O ∽△P 2D 2O . 所以P 1D 1P 2D 2=D 1O D 2O ,即b 1b 2=l 1l 2. (2)因为b 1b 2=l 1l 2,b 1=3.2 cm ,b 2=2 cm ,l 1=8 m , 所以3.22=8l 2.所以l 2=5 m.20.解:(1)△ADE 与△ABC 相似.∵平行于三角形一边的直线和其他两边相交,交点与公共点所构成的三角形与原三角形相似.即由DE ∥BC ,可得△ADE ∽△ABC . (2)是位似图形.由(1)知:△ADE ∽△ABC .∵△ADE 和△ABC 的对应顶点的连线BD ,CE 相交于点A , ∴△ADE 和△ABC 是位似图形,位似中心是点A . 21.证明:∵AB 是⊙O 的直径, ∴∠ACB =90°.又∵CD ⊥AB 于点D ,∴∠BCD =∠A . 又∵∠A =∠F (同弧所对的圆周角相等), ∴∠F =∠BCD =∠BCG . 在△BCG 和△BFC 中, ⎩⎨⎧∠BCG =∠F ,∠GBC =∠CBF ,∴△BCG ∽△BFC .∴BC BF =BGBC .即BC 2=BG ·BF .22.解:(1)∵△PCD 是等边三角形, ∴∠ACP =∠PDB =120°. 当AC PD =PC DB ,即AC CD =CDDB,也就是当CD 2=AC ·DB 时,△ACP ∽△PDB .(2)∵△ACP ∽△PDB ,∴∠A =∠DPB . ∴∠APB =∠APC +∠CPD +∠DPB=∠APC +∠CPD +∠A =∠PCD +∠CPD =120°. 23.解:(1)如图D100,连接OC ,在Rt △OCE 中,图D100CE =OC 2-OE 2=9-1=2 2. ∵CD ⊥AB ,∴CD =2CE =4 2. (2)∵BF 是⊙O 的切线, ∴FB ⊥AB .∴CE ∥FB . ∴△ACE ∽△AFB . ∴CE BF =AE AB ,2 2BF =26.∴BF =6 2.24.解:如图D101,连接F 1F ,并延长使之与AB 相交,设其与AB ,CD ,C 1D 1分别交于点G ,M ,N ,设BG =x m ,GM =y m. ∵DM ∥BG ,∴△FDM ∽△FBG . ∴DM BG =FM FG ,则1.5x =33+y. ①又∵ND 1∥GB ,∴△F 1D 1N ∽△F 1BG . ∴D 1N BG =F 1N F 1G ,即1.5x =4y +6+3. ② 联立①②,解方程组,得⎩⎨⎧x =9,y =15.故旗杆AB 的高为9+1.5=10.5(m).图D10125.解:(1)∵∠ACB =90°,AC =3,BC =4, ∴AB =32+42=5. ∵AD =5t ,CE =3t ,∴当AD =AB 时,5t =5,∴t =1.∴AE =AC +CE =3+3t =6,∴DE =6-5=1. (2)∵EF =BC =4,点G 是EF 的中点,∴GE =2. 当AD <AE ⎝⎛⎭⎪⎫即t <32时,DE =AE -AD =3+3t -5t =3-2t .若△DEG ∽△ACB ,则DE EG =AC BC 或DE EG =BC AC, ∴3-2t 2=34或3-2t 2=43.∴t =34或t =16.∴当AD >AE ⎝ ⎛⎭⎪⎫即t >32时,DE =AD -AE =5t -(3+3t )=2t -3.若△DEG ∽△ACB ,则DE EG =AC BC 或DE EG =BCAC, ∴2t -32=34或2t -32=43.∴t =94或t =176.综上所述,当t =16或34或94或176秒时,△DEG ∽△ACB .九年级下册《第二十七章 相似》单元检测试卷(三)班级___________姓名____________成绩一.选择题(每题5分,共35分) 1. 下列图形一定是相似图形的是( ) A .两个菱形 B .两个矩形 C .两个等腰三角形D .两个正三角形2. 如图,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( ) A .21 B .31C .41D .323.若DEF ABC ∆∆∽,1:2:=DE AB ,且ABC ∆的周长为16,则DEF ∆的周长为( ) A. 4B. 16C. 8D. 324. 如图,△ABC 中,若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )A .BC DEDB AD =B .ADEFBC BF =C .FCBFEC AE =D .BCDEAB EF =5. 如图,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD 长为( )A .1B .23C .2D .256. 如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )7. 如图所示,不能判定△ABC ∽△DAC 的条件是( ) A .∠B =∠DAC B .∠BAC =∠ADC C .AC 2=DC ·BC D .AD 2=BD ·BC二.填空题:(每题4分,共32分) 8. 若532zy x ==,则=-++z x z y x 2______. 9. 如图,□ABCD 中,G 是BC 延长线上的一点,AG 与BD 交于点E ,与DC 交于点F ,此图中的相似三角形共有______对.10. 如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距6m ,与树相距15m ,则树的高度为__________.ABC15m6m2m11. 如图,DE 是ABC ∆的中位线,M 是DE 的中点,那么NDMNBCS S ∆∆= .10题图 11题图 12题图 12. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =5,BC =12,则AD=________.13. 如图,四边形PQMN 是△ABC 内接正方形,BC =20cm , 高AD =12cm ,则内接正方形边长QM 为__________.14. 如图,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且41=EB AE ,射线CF 交AB 于E 点,则AD AF 等于______.15. 如图,正方形ABCD 的边长为2,AE=EB ,MN =1,线段MN 的两端在BC 、DC 上滑动,当MC=__________时,△AED 与以N 、M 、C 为顶点的三角形相似.三.解答题:(16、17、18题每题8分,19题9分,共33分) 16. 如图, 在正方形网格中,△ABC 的顶点和O 点都在格点上. (1)在图1中画出与△ABC 关于点O 对称的△A ′B ′C ′;(2)在图2中以点O 为位似中心,将△ABC 放大为原来的2倍(只需画出一种即可). 解:O ABCO ABCE N MABDC图1 图2结论:____________________________为所求.17. 如图,在△APM的边AP上任取两点B,C,过B作AM的平行线交PM于N,过N作MC的平行线交AP于D.求证:PA∶PB=PC∶PD.证明:18. 如图,在□ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.(1)证明:(2)解:19. 已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,请直接写出AE的长.(1)证明:(2)解:FEA DCB(3)解:AE =_________________________.答案与提示1. D2. B3. C4. D5. C6. B7. D8. -109.6 10. 7m 11. 161 12. 1325 13. 7.5cm 14. 3115.55255或 16. 略17. 提示:PA ∶PB =PM ∶PN ,PC ∶PD =PM ∶PN .18. (1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC . ∴∠B =∠ECF ,∠DAE =∠AEB. 又∵∠DAE =∠F , ∴∠AEB =∠F . ∴△ABE ∽△ECF .(2)解:∵△ABE ∽△ECF , ∴AB BE ECCF=.∵四边形ABCD 是平行四边形, ∴BC =AD =8.∴EC =BC -BE =8-2=6. ∴526CF=.∴125CF =.19.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC . (2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE(提示:当△ADE 是等腰三角形时,△ABD ≌△DCE .可得.12-=x ) 当∠ADE 为底角时:⋅=21AE九年级下册《第二十七章 相似》单元检测试卷(四)一、选择题(共10小题,每小题3分,共30分)1.(3分)已知2x=5y (y ≠0),则下列比例式成立的是( ) A .B .C .D .2.(3分)若,则等于( )A .8B .9C .10D .113.(3分)下列各组条件中,一定能推得△ABC 与△DEF 相似的是( ) A .∠A=∠E 且∠D=∠F B .∠A=∠B 且∠D=∠F C .∠A=∠E 且D .∠A=∠E 且4.(3分)如图,正方形ABCD 的边长为2,BE=CE ,MN=1,线段MN 的两端点在CD 、AD 上滑动,当DM 为( )时,△ABE 与以D 、M 、N 为顶点的三角形相似.A .B .C .或D .或5.(3分)如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )A. B. C. D.6.(3分)如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.127.(3分)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10 B.12 C. D.8.(3分)已知△ABC∽△A′B′C′且,则S△ABC :S△A'B'C′为()A.1:2 B.2:1 C.1:4 D.4:19.(3分)如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m10.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.3二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD= .12.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是.13.(3分)已知△ABC∽△DEF,且它们的面积之比为4:9,则它们的相似比为.14.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.15.(3分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD 的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).16.(3分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN= .三、解答题(共8题,共72分)17.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.18.(8分)已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.19.(8分)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.20.(8分)如图,已知A(﹣4,2),B(﹣2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1.画出平移后的图形,并写出点A的对应点A1的坐标;(2)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.21.(8分)在△ABC中,点D为BC上一点,连接AD,点E在BD上,且DE=CD,过点E作AB的平行线交AD于F,且EF=AC.如图,求证:∠BAD=∠CAD.22.(10分)如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.23.(10分)如图,已知△ABC∽△ADE,AB=30cm,AD=18cm,BC=20cm,∠BAC=75°,∠ABC=40°.(1)求∠ADE和∠AED的度数;(2)求DE的长.24.(12分)在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A 出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)已知2x=5y(y≠0),则下列比例式成立的是()A.B.C.D.【分析】本题须根据比例的基本性质对每一项进行分析即可得出正确结论.【解答】解:∵2x=5y,∴.故选B.【点评】本题主要考查了比例的性质,在解题时要能根据比例的性质对式子进行变形是本题的关键.2.(3分)若,则等于()A.8 B.9 C.10 D.11【分析】设=k,得出a=2k,b=3k,c=4k,代入求出即可.【解答】解:设=k,则a=2k,b=3k,c=4k,即===10,故选C.【点评】本题考查了比例的性质的应用,主要考查学生的分析问题和解决问题的能力.3.(3分)下列各组条件中,一定能推得△ABC与△DEF相似的是()A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且【分析】根据三角形相似的判定方法:①两角法:有两组角对应相等的两个三角形相似可以判断出A、B的正误;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出C、D的正误,即可选出答案.【解答】解:A、∠D和∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、∠A=∠E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;故选:C.【点评】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.4.(3分)如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A. B.C.或D.或【分析】根据AE=EB,△ABE中,AB=2BE,所以在△MNC中,分CM与AB和BE是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.【点评】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①DM与AB是对应边时,②当DM与BE是对应边时这两种情况.5.(3分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A. B. C. D.【分析】用平行线分线段成比例定理以及比例的性质进行变形即可得到答案.【解答】解:∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC,∴==,==,∵EF∥AB,∴=,=,∴,故选C.【点评】此题主要考查平行线分线段成比例定理的理解及运用.找准对应关系,避免错选其他答案.6.(3分)如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.12【分析】由在△ABC中,DE∥BC,根据平行线分线段成比例定理,即可得DE:BC=AD:AB,又由,DE=4,即可求得BC的长.【解答】解:∵,∴=,∵在△ABC中,DE∥BC,∴=,∵DE=4,∴BC=3DE=12.故选D.【点评】此题考查了平行线分线段成比例定理.此题难度不大,注意掌握比例线段的对应关系.7.(3分)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C 1D1的长是()A.10 B.12 C. D.【分析】由四边形ABCD∽四边形A1B1C1D1,根据相似多边形对应边的比相等列出比例式=,将AB=12,CD=15,A1B1=9代入,计算即可求出边C1D1的长.【解答】解:∵四边形ABCD∽四边形A1B1C1D1,∴=,∵AB=12,CD=15,A1B1=9,∴C1D1==.故选C.【点评】本题考查了相似多边形的性质,根据相似多边形对应边的比相等列出比例式是解题的关键.8.(3分)已知△ABC∽△A′B′C′且,则S△ABC :S△A'B'C′为()A.1:2 B.2:1 C.1:4 D.4:1【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵△ABC∽△A′B′C′,,∴=()2=,故选C.【点评】本题考查了相似三角形的性质的应用,能运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.9.(3分)如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【解答】解:设长臂端点升高x米,则=,∴解得:x=8.故选;C.【点评】此题考查了相似三角形在实际生活中的运用,得出比例关系式是解题关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.B.C.D.3【分析】根据射影定理得到:AC2=AD•AB,把相关线段的长度代入即可求得线段AD的长度.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,又∵AC=3,AB=6,∴32=6AD,则AD=.故选:A.【点评】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD= 6 .【分析】根据直角三角形中的射影定理来做:AD2=BD•CD.【解答】解:∵△ABC是直角三角形,AD是斜边BC上的高,∴AD2=BD•CD(射影定理),∵BD=4,CD=9,∴AD=6.【点评】本题主要考查了直角三角形的性质:射影定理.12.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是 2 .【分析】根据BC=AC可得=,再根据条件AD∥BE∥CF,可得=,再把DE=4代入可得EF的值.【解答】解:∵BC=AC,∴=,∵AD∥BE∥CF,∴=,∵DE=4,∴=2,∴EF=2.故答案为:2.【点评】此题主要考查了平行线分线段成比例定理,关键是掌握三条平行线截两条直线,所得的对应线段成比例.13.(3分)已知△ABC∽△DEF,且它们的面积之比为4:9,则它们的相似比为2:3 .【分析】根据相似三角形的面积的比等于相似比的平方,可直接得出结果.【解答】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,因为S△ABC :S△DEF=2:9=()2,所以△ABC与△DEF的相似比为2:3,故答案为:2:3.【点评】本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.14.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为1:4 .【分析】由AD=OA,易得△ABC与△DEF的位似比等于1:2,继而求得△ABC与△DEF的面积之比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.【点评】此题考查了位似图形的性质.注意相似三角形的面积比等于相似比的平方.15.(3分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8 米(平面镜的厚度忽略不计).【分析】由已知得△ABP∽△CDP,根据相似三角形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故答案为:8.【点评】本题综合考查了平面镜反射和相似形的知识,关键是根据相似三角形在测量中的应用分析.16.(3分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN= 4或6 .【分析】分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.【解答】解:如图1,当MN∥BC时,则△AMN∽△ABC,。
人教版九年级数学下册第27章《相似》单元检测及答案(2021新)
12.【答案】∵BC= AC,∴ ,∵AD∥BE∥CF,∴ ,∵DE=4,∴EF=2.故答案为:2.
13.【答案】因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,
因为S△ABC:S△DEF=2:9=(2:3)2,
所以△ABC与△DEF的相似比为2:3,
(1)当t=3秒时,这时,P,Q两点之间的距离是多少?
(2)若△CPQ的面积为S,求S关于t的函数关系式.
(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?
第27章《相似》单元测试卷解析
一、选择题
1.【答案】∵2x=5y,∴ .故选B.
2.【答案】设 =k,
则a=2k,b=3k,c=4k,
D、∠A=∠E且 不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;
故选:C.
4.【答案】∵四边形ABCD是正方形,∴AB=BC,
∵BE=CE,∴AB=2BE,
又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN
∴DM2+DN2=MN2=1∴DM2+ DM2=1,解得DM= ;
①当Rt△CPQ∽Rt△CAB时,CP:CA=CQ:CB,即(20-4t):20=2t:15,解得t=3秒;
②当Rt△CPQ∽Rt△CBA时,CP:CB=CQ:CA,即(20-4t):15=2t:20,解得t= 秒.
因此t=3秒或t= 秒时,以点C、P、Q为顶点的三角形与△ABC相似.
②DM与BE是对应边时,DM= DN,∴DM2+DN2=MN2=1,
即DM2+4DM2=1,解得DM= .∴DM为 或 时,△ABE与以D、M、N为顶点的三角形相似.
人教版九年级数学下第二十七章 相似单元练习题(含答案)含答案
人教版九年级数学下第二十七章相似单元练习题(含答案)含答案一、选择题1.如图,AD∥BE∥CF,直线m,n与这三条平行线分别交于点A、B、C和点D、E、F,已知AB=5,BC=10,DE=4,则EF的长为()A.12.5B.12C.8D.42.一个数与3、4、6能组成比例,这个数是()A.2或8B.8 或4.5C.4.5 或2D.2,8或4.53.如图,已知△OAB与△OA′B′是相似比为1∶2 的位似图形,点O为位似中心,若△OAB 内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标为()A.(-x,-y)B.(-2x,-2y)C.(-2x,2y)D.(2x,-2y)4.在下列图形中,不是位似图形的是()A.B.C.D.5.如果两个相似三角形的周长比为1∶4,那么这两个三角形的相似比为()A.1∶2B.1∶4C.1∶8D.1∶166.已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于O点,对于各图中的两个三角形而言,下列说法正确的是()A.只有(1)相似B.只有(2)相似C.都相似D.都不相似7.如图,在直角坐标系xOy中,A(-4,0),B(0,2),连接AB并延长到C,连接CO,若△COB∽△CAO,则点C的坐标为()A.(1,)B.(,)C.(,2)D.(,2)8.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为()A.1∶2B.1∶4C.2∶1D.4∶19.如图,直角坐标系中,线段AB两端点坐标分别为A(4,2)、B(8,0),以原点O为位似中心,将线段AB缩小后得到对应线段A1B1,若B1的坐标为(-4,0),则A1的坐标为()A.(2,1)B.(-2,-1)C.(-1,2)D.(-4,-2)10.两个相似三角形的最短边分别是5 cm和3 cm,它们的周长之差为12 cm,那么小三角形的周长为()A.14 cmB.16 cmC.18 cmD.30 cm二、填空题11.如图,△ABC中,BC=1.若AD1=AB,且D1E1∥BC,则D1E1=;照这样继续下去,D1D2=D1B,且D2E2∥BC;D2D3=D2B,且D3E3∥BC;…;Dn-1Dn=Dn-1B,且DnEn∥BC,则DnEn =____________(用含n的式子表示).12.小红家的阳台上放置了一个晒衣架如图1.图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm.垂挂在衣架上的连衣裙总长度小于__________ cm时,连衣裙才不会拖落到地面上.图1图213.如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=________.14.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是______________.15.若==,且a+b+c=6,则a-b+c=________.16.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:________________,可以使得△FDB与△ADE相似.(只需写出一个)17.已知△ABC与△A1B1C1的相似比为2∶3,△A1B1C1与△A2B2C2的相似比为3∶5,那么△ABC 与△A2B2C2的相似比为__________.18.如图,点A1,A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,….若△A2B1B2和△A3B2B3的面积分别为1,9,则△A1007B1007A1008的面积是__________.19.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连接CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE·CO,其中正确结论的序号是________.20.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,则=__________.三、解答题21.如图,点C为线段AB上任意一点(不与A、B两点重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC与△DPM的形状有何关系,并说明理由.22.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120 mm,高AD=80 mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)加工成的正方形零件的边长是多少mm?(2)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少?请你计算.(3)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.23.如图,延长△ABC的边BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.求EC∶AC 的值.24.已知:△ABC∽△A′B′C′,它们的周长之差为20,面积比为4∶1,求△ABC和△A′B′C′的周长.25.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5,求BC、BF的长.26.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF∶S△EFC =2∶3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.27.如图,在△ABC中,D、E分别是边AB、AC的中点,F为CA延长线上一点,∠F=∠C.(1)若BC=8,求FD的长;(2)若AB=AC,求证:△ADE∽△DFE.28.如图,在△ABC中,BC的垂直平分线分别交BC,AC于点D,E,BE交AD于点F,AB=A D.(1)判断△FDB与△ABC是否相似,并说明理由.(2)AF与DF相等吗?为什么?答案解析1.【答案】C【解析】∵AD∥BE∥CF,∴=,即=,解得EF=8,故选C.2.【答案】D【解析】设这个数是x,则3x=4×6或4x=3×6或6x=3×4,解得x=8或x=4.5或x=2,所以,这个数是2,8或4.5.故选D.3.【答案】B【解析】∵P(x,y),相似比为1∶2,点O为位似中心,∴P′的坐标是(-2x,-2y).故选B.4.【答案】D【解析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选D.5.【答案】B【解析】∵两个相似三角形的周长比为1∶4,∴这两个三角形的相似比为1∶4,故选B.6.【答案】C【解析】对于图(1):180°-75°-35°=70°,则两个三角形中有两组角对应相等,所以(1)图中的两个三角形相似;对于(2)图:由于=,∠AOC=∠DOB,所以△AOC∽△DOB.故选C.7.【答案】B【解析】∵A(-4,0),B(0,2),∴OA=4,OB=2,∵△COB∽△CAO,∴====,∴CO=2CB,AC=2CO,∴AC=4CB,∴=,过点C作CD⊥y轴于点D,∵AO⊥y轴,∴AO∥CD,∴△AOB∽△CDB,∴===,∴CD=AO=,BD=OB=,∴OD=OB+BD=2+=,∴点C的坐标为.故选B.8.【答案】A【解析】∵△ABC∽△DEF,∴△ABC的面积:△DEF的面积=△ABC与△DEF的周长之比的平方,而△ABC的面积为1,△DEF的面积为4,∴△ABC与△DEF的周长之比=1∶2.故选A.9.【答案】B【解析】∵线段AB两端点坐标分别为A(4,2)、B(8,0),以原点O为位似中心,将线段AB缩小后得到对应线段A1B1,若B1的坐标为(-4,0),∴对应点在原点的两侧,且位似比为2∶1,则A1的坐标为(-2,-1).故选B.10.【答案】C【解析】根据题意,得两三角形的周长的比为5∶3,设两三角形的周长分别为5x cm,3x cm,则5x-3x=12,解得x=6,所以3x=18,即小三角形的周长为18 cm.故选C.11.【答案】1-【解析】∵D1E1∥BC,∴△AD1E1∽△ABC,∴=,∵BC=1,AD1=AB,∴D1E1=;∵D1D2=D1B,∴AD2=AB,同理可得:D2E2==1-=1-,D3E3==1-,∴DnEn=1-.12.【答案】120【解析】∵AB、CD相交于点O,∴∠AOC=∠BOD∵OA=OC,∴∠OAC=∠OCA=(180°-∠BOD),同理可证:∠OBD=∠ODB=(180°-∠BOD),∴∠OAC=∠OBD,∴AC∥BD,在Rt△OEM中,OM==30(cm),过点A作AH⊥BD于点H,同理可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴=,AH===120(cm),所以垂挂在衣架上的连衣裙总长度小于120 cm时,连衣裙才不会拖落到地面上.13.【答案】【解析】如图,连接EF.∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∴AM=BM=1,在Rt△ADM中,DM===,∵AM∥CD,∴==,∴DP=DM=,∵PF=,∴DF=DP=PF=,∵∠EDF=∠PDC,∠DFE=∠DCP,∴△DEF∽△DPC,∴=,∴=,∴DE=,∴CE=CD-DE=2-=.故答案为.14.【答案】(a+3)【解析】设点B的横坐标为x,则B、C间的横坐标的长度为-1-x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(-1-x)=a+1,解得x=(a+3).15.【答案】3【解析】设===k,则a=2k,b=3k,c=7k,∵a+b+c=6,∴2k+3k+7k=6,解得k=,所以,a=2×=1,b=3×=,c=7×=,所以,a-b+c=1-+=3.16.【答案】DF∥AC(或∠BFD=∠A)【解析】DF∥AC,或∠BFD=∠A.理由:∵∠A=∠A,==,∴△ADE∽△ACB,∴①当DF∥AC时,△BDF∽△BAC,∴△BDF∽△EAD.②当∠BFD=∠A时,∵∠B=∠AED,∴△FBD∽△AED.17.【答案】2∶5【解析】∵△ABC与△A1B1C1的相似比为2∶3,△A1B1C1与△A2B2C2的相似比为3∶5,∴AB∶A1B1=2∶3,A1B1∶A2B2=3∶5,设AB=2x,则A1B1=3x,A2B2=5x,∴AB∶A2B2=2∶5,∴△ABC与△A2B2C2的相似比为2∶5.18.【答案】34 031【解析】∵△A2B1B2和△A3B2B3的面积分别为1,9,A3B3∥A2B2,A3B2∥A2B1,∴∠B1B2A2=∠B2B3A3,∠A2B1B2=∠A3B2B3,∴△A2B1B2∽△A3B2B3,∴====,∵A3B2∥A2B1,∴△OA2B1∽△OA3B2,∴===,∴△OB1A2的面积为,△A1B1A2的面积为,△A2B2A3的面积为3,△A3B3A4的面积为27,…∴△A1 007B1 007A1 008的面积为×3(2 017-1)=34 031,故答案为34 031.19.【答案】①②③【解析】①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴=,∴CD2=CE·CO.故③正确.故答案为①②③.20.【答案】【解析】∵l1∥l2∥l3,∴=,∵=,∴=.21.【答案】(1)证明∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,∴△ACE≌△DCB(SAS).(2)解△AMC∽△DMP.理由:∵△ACE≌△DCB,∴∠CAE=∠CDB,又∵∠AMC=∠DMP,∴△AMC∽△DMP.【解析】(1)证明∠ACE=∠DCB,根据“SAS”证明全等;(2)由(1)得∠CAM=∠PDM,又∠AMC=∠DMP,所以两个三角形相似.22.【答案】解(1)如图1,设正方形的边长为x mm,则PN=PQ=ED=x,∴AE=AD-ED=80-x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=48.∴加工成的正方形零件的边长是48 mm;(2)如图2,设PQ=x,则PN=2x,AE=80-x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,∴2x=,∴这个矩形零件的两条边长分别为mm,mm;(3)如图3,设PN=x(mm),矩形PQMN的面积为S(mm2),由条件可得△APN∽△ABC,∴=,即=,解得PQ=80-x.则S=PN·PQ=x(80-x)=-x2+80x=-(x-60)2+2 400,故S的最大值为2 400 mm2,此时PN=60 mm,PQ=80-×60=40(mm).【解析】(1)设正方形的边长为x mm,则PN=PQ=ED=x,AE=AD-ED=80-x,通过证明△APN∽△ABC,利用相似比可得到=,然后根据比例性质求出x即可;(2)由于矩形是由两个并排放置的正方形所组成,则可设PQ=x,则PN=2x,AE=80-x,然后与(1)的方法一样求解;(3)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答.23.【答案】解取BC中点G,则CG=BC,连接GF,如图所示:又∵F为AB中点,∴FG∥AC,且FG=AC,∴EC∥FG,∴=,∵CG=BC,DC=BC,设CG=k,那么DC=BC=2k,DG=3k,∴==即EC=FG,∵FG=AC∴EC=AC,∴EC∶AC=1∶3.【解析】取BC中点G,则CG=BC,连接GF,得出FG∥AC,FG=AC,证出EC=FG,进而得出答案.24.【答案】解∵△ABC∽△A′B′C′,面积比为4∶1,∴相似比为2∶1,周长比为2∶1.∵周长比相差1,而周长之差为20,∴每份周长为20,∴△ABC的周长是2×20=40,△A′B′C′的周长是1×20=20.【解析】根据面积的比等于相似比的平方可求出相似比的值,相似三角形周长的比等于相似比可分别求出周长.25.【答案】解∵l1∥l2∥l3,∴=,∵AB=3,AD=2,DE=4,∴=,解得BC=6,∵l1∥l2∥l3,∴=,∴=,解得BF=2.5.【解析】由平行线分线段成比例解答即可.26.【答案】解(1)∵AC∥BD,∴=,∵AC=6,BD=4,∴==.∵△BEF和△CEF同高,且S△BEF∶S△CEF=2∶3,∴=,∴=.∴EF∥BD,∴=,∴=,∴EF=.(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴=.∵=,∴=.∵S△BEF=4,∵=,∴S△ABC=25.【解析】27.【答案】解(1)∵D、E分别是边AB、AC的中点,∴DE=BC,DE∥BC.∴∠AED=∠C.∵∠F=∠C,∴∠AED=∠F,∴FD=DE=BC=4;(2)∵AB=AC,DE∥BC.∴∠B=∠C=∠AED=∠ADE,∵∠AED=∠F,∴∠ADE=∠F,又∵∠AED=∠AED,∴△ADE∽△DFE.【解析】(1)利用三角形中位线的性质得出DE∥BC,进而得出∠AED=∠F,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠C=∠AED=∠ADE,即可得出∠ADE =∠F,即可得出△ADE∽△DFE.28.【答案】解(1)∵DE是BC垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵AB=AD,∴∠ABC=∠ADB,∴△FDB∽△ABC;(2)∵△FDB∽△ABC,∴==,∴AB=2FD,∵AB=AD,∴AD=2FD,∴DF=AF.【解析】(1)易证∠EBC=∠ECB和∠ABC=∠ADB,即可判定△FDB与△ABC相似;(2)根据相似三角形对应边比例相等的性质即可求得DF=AB,即可解题.九年级数学第27章《相似》同步提高测试(有答案)一、选择题:1、观察下列每组图形,相似图形是()2、(2018•玉林)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3 C.4:9 D.8:273、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()4、(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:95、如果五边形ABCDE∽五边形POGMN且对应高之比为3:2,那么五边形ABCDE和五边形POGMN的面积之比是()A.2:3 B.3:2 C.6:4 D.9:46、已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32 B.8 C.4 D.167、如图,路灯OP距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B处时,人影的长度()A.变长了1.5米B.变短了2.5米C.变长了3.5米D.变短了3.5米8、(2018•重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm9、如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB 于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=10、如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S211、如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.1612、如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1二、填空题:13、已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为14、(2018•邵阳)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.15、已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为16、(2018•北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.17、学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD 为18、如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=19、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为。
人教版九年级下数学第二十七章 《相似》单元练习题(含答案)
人教版九年级下数学第二十七章 《相似》单元练习题(含答案)一.选择题1.如图,在△ABC 中,DE ∥BC 分别交AB ,AC 于点D ,E ,若=,则下列说法不正确的是( )A .=B .=C .=D .=2.在平行四边形ABCD 中,点E 是边AD 上一点,且AD =3ED ,EC 交对角线BD 于点F ,则等于( )A .B .C .D .3.如图,有一块三角形余料ABC ,BC =120mm ,高线AD =80mm ,要把它加工成一个矩形零件,使矩形的一边在BC 上,点P ,M 分别在AB ,AC 上,若满足PM :PQ =3:2,则PM 的长为( )A .60mmB . mmC .20mmD . mm4.如图,在△ABC 中,AB =6,AC =8,BC =10,D 是△ABC 内部或BC 边上的一个动点(与B 、C 不重合),以D 为顶点作△DEF ,使△DEF ∽△ABC (相似比k >1),EF ∥BC .两三角形重叠部分是四边形AGDH ,当四边形AGDH 的面积最大时,最大值是多少?( )A .12B .11.52C .13D .85.已知线段AB 的长为4,点P 是线段AB 的黄金分割点(AP >BP ),则PA 的长为( )A .2﹣2B .6﹣2√5C .D .4﹣26.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,DE ∥BC ,DF ∥AC ,若△ADE 与四边形DBCE 的面积相等,则△DBF 与△ADE 的面积之比为( )A .B .C .D .7.如图,正方形OABC 的边长为8,点P 在AB 上,CP 交OB 于点Q .若S △BPQ =,则OQ 长为( )A .6B .C .D .8.在△ABC 中,点D 在边BC 上,联结AD ,下列说法错误的是( )A .如果∠BAC =90°,AB 2=BD •BC ,那么AD ⊥BCB .如果AD ⊥BC ,AD 2=BD •CD ,那么∠BAC =90°C .如果AD ⊥BC ,AB 2=BD •BC ,那么∠BAC =90°D .如果∠BAC =90°,AD 2=BD •CD ,那么AD ⊥BC 9.如图,在△ABC 中,点O 是∠ABC 和∠ACB 两个内角平分线的交点,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F ,已知△ABC 的周长为8,BC =x ,△AEF 的周长为y ,则表示y 与x 的函数图象大致是( )A .B .C .D .10.如图,已知△ABO 与△DCO 位似,且△ABO 与△DCO 的面积之比为1:4,点B 的坐标为(﹣3,2),则点C 的坐标为( )A .(3,﹣2)B .(6,﹣4)C .(4,﹣6)D .(6,4)11.在比例尺是1:8000的地图上,中山路的长度约为25cm ,该路段实际长度约为( )A .3200mB .3000mC .2400mD .2000m12.如图,△DEF 和△ABC 是位似图形,点O 是位似中心,点D ,E ,F 分别是OA ,OB ,O C 的中点,若△DEF 的周长是2,则△ABC 的周长是( )A.2 B.4 C.6 D.8二.填空题13.如图,△ABC中,D、E分别是AB、AC上的点(DE不平行BC),若使△ADE与△ABC相似,则需要添加即可(只需添加一个条件).14.如图,已知△ABC和△ADE都是等边三角形,点D在边BC上,且BD=4,CD=2,那么AF=.15.如图,矩形ABCD中,AB=2,BC=4,剪去一个矩形ABEF后,余下的矩形EFDC∽矩形BCDA,则EC的长为.16.若=,则=.17.如图,平行四边形ABCD中,点E是AD边上一点,连结EC、BD交于点F,若AE:ED=5:4记△DFE的面积为S,△BCF的面积为S2,△DCF的面积为S3,则DF:BF1=,S1:S2:S3=.18.如图,在四边形ABCD中,AD∥BC∥EF,E F分别与AB,AC,CD相交于点E,M,F,若EM:BC=2:5,则FC:CD的值是.19.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为.三.解答题20.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.21.如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE 交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.22.如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:3.求的值.23.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF 在BC上,点H,G分别在边AB、AC上,且HG=2GF.(1)求AD的长;(2)求矩形EFGH的面积.24.如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形.请在图中找出与△HBC相似的三角形,并说明它们相似的理由.25.如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=BD•EC.(1)求证:△EDF∽△EFC;(2)如果=,求证:AB=BD.参考答案一.选择题1.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,==,==,=()2=,∴=,故A、B、D选项正确,C选项错误,故选:C.2.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AD=3ED,∴=,∵AD∥BC,∴△EFD∽△CFB,∴==,故选:A.3.【解答】解:如图,设AD交PN于点K.∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k.∵四边形PQNM是矩形,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴=,∴=,解得k=20mm,∴PM=3k=60mm,故选:A.4.【解答】解:∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠EDF=∠BAC=90°,如图1延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠EDF=90°,∴四边形AGDH为矩形,∴四边形AGDH为正方形,当点D在△ABC内部时,四边形AGDH的面积不可能最大,如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图2,点D在BC上,∵△DEF∽△ABC,∴∠F=∠C,∵EF∥BC.∴∠F=∠BDG,∴∠BDG=∠C,∴DG∥AC,∴△BGD∽△BAC,∴=,∴=,∴=,∴AH=8﹣GA,S=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,矩形AGDH当AG=﹣=3时,S矩形AGDH最大,S矩形AGDH最大=12.故选:A.5.【解答】解:∵点P是线段AB的黄金分割点(AP>BP),∴PA=AB=×4=2﹣2.故选:A.6.【解答】解:∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形,∴DE=CF,∵△ADE与四边形DBCE的面积相等,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,设DE=k,BC=2k,∴BF=2k﹣k,∵DF∥AC,∴△BDF∽△BAC,∴△DBF∽△ADE,∴=()2==﹣1,故选:C.7.【解答】解:∵四边形ABCO是正方形,∴AB∥OC,∴△PBQ∽△COQ,∴=()2=,∴OC=3PB,∵OC=8,∴PB=,∵==,BO=8,∴OQ=×8=6,故选:B.8.【解答】解:A、∵AB2=BD•BC,∴=,又∠B=∠B∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,即AD⊥BC,故A选项说法正确,不符合题意;B、∵AD2=BD•CD,∴=,又∠ADC=∠BDA=90°,∴△ADC∽△BDA,∴∠BAD=∠C,∵∠DAC+∠C=90°,∴∠DAC+∠BAD=90°,∴∠BAC=90°,故B选项说法正确,不符合题意;C、∵AB2=BD•BC,∴=,又∠B=∠B∴△BAD∽△BCA,∴∠BAC=∠BDA=90°,即AD⊥BC,故C选项说法正确,不符合题意;D、如果∠BAC=90°,AD2=BD•CD,那么AD与BC不一定垂直,故D选项错误,不符合题意;故选:D.9.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:A.10.【解答】解:∵△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,∴△ABO与△DCO为1:2,∵点B的坐标为(﹣3,2),∴点C的坐标为(6,﹣4),故选:B.11.【解答】解:设它的实际长度为xcm,根据题意得:1:8000=25:x,解得:x=200000,∵200000cm=2000m,∴该路段实际长度约为2000m.故选:D.12.【解答】解:∵点D,E分别是OA,OB的中点,∴DE=AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△DBA,∴=,∴△ABC的周长=2×2=4.故选:B.二.填空题(共7小题)13.【解答】解:∵∠A是公共角,如果∠ADE=∠C或∠AED=∠B,∴△ADE∽△ABC;如果=,∠A=∠A,∴△ADE∽△ABC,故答案为:∠ADE=∠C或∠AED=∠B或=.14.【解答】解:∵△ABC和△ADE都是等边三角形,BD=4,CD=2,∴AB=AC=6,∠B=∠C=∠ADF=60°,∴∠ADB+∠BAD=∠ADB+∠CDF=120°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴=,即=,解得CF=,∴AF=AC﹣CF=6﹣=,故答案为:.15.【解答】解:∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=4,∵四边形EFCD是矩形,∴EF=CD=2,CF=DE,∵余下的矩形EFCD∽矩形BCDA,∴,即=,∴CF=1,∴EC的长===,故答案为:.16.【解答】解:设==k(k≠0),则a=2k,b=3k,所以==4.故答案是:4.17.【解答】解:∵AE:ED=5:4,∴DE:AD=4:9,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴==,∴=()2=,=,∴S1:S2:S3=16:81:36,故答案为:4:9,16:81:36.18.【解答】解:∵AD∥BC∥EF,∴△AEM∽△ABC,△CFM∽△CDA,∵EM:BC=2:5,∴==,设AM=2x,则AC=5x,故MC=3x,∴==,故答案为:.19.【解答】证明:∵AB=6,D是边AB的中点,∴AD=3,∵AG是∠BAC的平分线,∴∠BAG=∠EAF,∵∠ADE=∠C,∴△ADF∽△ACG;∴==,故答案为:.三.解答题(共6小题)20.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.21.【解答】(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.22.【解答】解:∵BG:GH:HC=2:4:3,∴设BG=2k,GH=4k,HC=3k,(k≠0)∵DE∥BC,FG∥AB,∴四边形BDFG是平行四边形,∴DF=BG=2k,∵DE∥BC,FH∥AC∴四边形EFHC是平行四边形,∴EF=HC=3k,∴DE=5k∵DE∥BC∴∠ADE=∠B,∵FG∥AB∴∠FGH=∠B,∴∠ADE=∠FGH,同理可得:∠AED=∠FHG∴△ADE∽△FGH∴=()2=,23.【解答】解:(1)设BC=3x,则AD=2x,∵△ABC的面积为12,∴×3x×2x=12,解得,x1=2,x2=﹣2(舍去),则AD的长=2x=4;(2)设GF=y,则HG=2y,∵四边形EFGH为矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得,y=,HG=2y=,则矩形EFGH的面积=×=.24.【解答】解:△DBH∽△HBC,理由:∵四边形ABGH,四边形BCFG,四边形CDEF都是正方形,∴A,B,C,D在一条直线上,∠A=90°,设AB=x,则AH=BC=CD=x,∴BH=x,BD=2x,∴,∵∠HBC=∠HBC,∴△DBH∽△HBC.25.【解答】证明:(1)∵AB=AD,AE⊥BC,∴BE=ED=DB,∵EF2=•BD•EC,∴EF2=ED•EC,即得=,又∵∠FED=∠CEF,∴△EDF∽△EFC.(2)∵AB=AD,∴∠B=∠ADB,又∵DF∥AB,∴∠FDC=∠B,∴∠ADB=∠FDC,∴∠ADB+∠ADF=∠FDC+∠ADF,即得∠EDF=∠ADC,∵△EDF∽△EFC,∴∠EFD=∠C,∴△EDF∽△ADC,∴=()2=,∴=,即 ED =AD ,又∵ED =BE =BD , ∴BD =AD ,∴AB =BD .人教版九年级下册第二十七章《相似》单元测试一、选择题1、已知=,则的值是( )A. B. C. D.2、如图,在四边形ABCD中,E,F分别在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,则FB等于()A. B. C.5 D.63、已知x:y=2:3,则(x+y):y的值为()A.2:5 B.5:2 C.5:3 D.3:54、如图所示的三个矩形中,是相似的是()A.甲与乙 B.乙与丙 C.甲与丙 D.甲乙丙都相似5、下列各组线段中,成比例线段的组是( )A.3cm,4cm,5cm,8cm B.1cm,3cm,4cm,8cmC.2.1cm,3.2cm,5.4cm,6.5cm D.0.15cm,0.18cm,4cm,4.8cm.6、如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为( )A. B. C.4 D.67、.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.8、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2); B.(3,1); C.(2,2); D.(4,2);9、为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组 B.2组 C.3组 D.4组10、如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.1211、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是().A. B. C. D.12、如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A. 60mB. 40mC. 30mD. 20m13、如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)14、如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是 ( )。
人教版九年级数学下第二十七章 《相似》单元练习题(含答案)
人教版九年级数学下第二十七章《相似》单元练习题(含答案)一、选择题1.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC 放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方2.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC 的面积比为()A.1∶3B.1∶4C.1∶8D.1∶93.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是()A.5 cmB.10 cmC.15 cmD.30 cm4.若矩形ABCD∽矩形EFGH,相似比为2∶3,已知AB=3 cm,BC=5 cm,则矩形EFGH的周长是()A.16 cmB.12 cmC.24 cmD.36 cm5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使△ABC∽△CAD,只要CD等于()A.B.C.D.6.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点AB.点BC.点CD.点D7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺8.已知A、B两地的实际距离AB=5 km,画在图上的距离A′B′=2 cm,则图上的距离与实际距离的比是()A.2∶5B.1∶2 500C.250 000∶1D.1∶250 000二、填空题9.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=2 cm,则线段BC=________ cm.10.已知:如图,A′B′∥AB,A′C′∥AC,AA′的延长线交于BC于点D,△ABC与△A′B′C′是__________图形,其中____________点是位似中心.11.已知△ABC∽△A′B′C′,且S△ABC∶S△A′B′C′=16∶9,若AB=4,则A′B′=__________.12.已知△ABC∽△DEF,=,且AD为BC边上的中线,DG为EF边上的中线,则AD∶DG =__________.13.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.14.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.15.若a∶b∶c=1∶3∶2,且a+b+c=24,则a+b-c=________.16.如图,用放大镜将图形放大,应属于哪一种变换:______________(请选填:对称变换、平移变换、旋转变换、相似变换).三、解答题17.有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.(1)设CE=x(厘米),EF=a(厘米),求出由x和a表示y的计算公式;(2)现有一男生,站在某一位置尽力跳起时,刚好触到斜杆.已知该同学弹跳时站的位置为x =150厘米,且a=205厘米.若规定y≥50,弹跳成绩为优;40≤y<50时,弹跳成绩为良;30≤y<40时,弹跳成绩为及格,那么该生弹跳成绩处于什么水平?18.已知MN∥EF∥BC,点A、D为直线MN上的两动点,AD=a,BC=b,AE∶ED=m∶n;(1)当点A、D重合,即a=0时(如图1),试求EF.(用含m,n,b的代数式表示)(2)请直接应用(1)的结论解决下面问题:当A、D不重合,即a≠0,①如图2这种情况时,试求EF.(用含a,b,m,n的代数式表示)图1图2图3②如图3这种情况时,试猜想EF与a、b之间有何种数量关系?并证明你的猜想.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?解:设矩形蔬菜种植区域的宽为x_m,则长为2x m,根据题意,得x·2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12,所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB 与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.20.如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,垂足为H.问:(1)∠PDC与∠HDC是否相等,为什么?(2)图中有哪几组相等的线段?(3)当△ABC满足什么条件时,△CPD∽△CBA,为什么?21.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′的顶点都在格点上.(1)求证:△ABC∽A′B′C′;(2)A′B′C′与△ABC是位似图形吗?如果是,在图形上画出位似中心并求出位似比.第二十七章《相似》单元练习题答案解析1.【答案】C【解析】∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.2.【答案】D【解析】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴==,∴==,∴△A′B′C′与△ABC的相似比为1∶3,∴△A′B′C′与△ABC的面积的比1∶9,故选D.3.【答案】C【解析】∵△ABC和△DEF相似,∴△DEF的三边之比为3∶4∶5,∴△DEF的最短边和最长边的比为3∶5,设最长边为x,则3∶5=9∶x,解得x=15,∴△DEF的最长边为15 cm,故选C.4.【答案】C【解析】∵AB=3 cm,BC=5 cm,∴矩形ABCD的周长=2×(3+5)=16 cm,∵矩形ABCD∽矩形EFGH,相似比为2∶3,∴矩形ABCD与矩形EFGH的周长比2∶3,∴矩形EFGH的周长为24 cm,故选C.5.【答案】A【解析】假设△ABC∽△CAD,∴=,即CD==,∴要使△ABC∽△CAD,只要CD等于,故选A.6.【答案】A【解析】如图,位似中心为点A.故选A.7.【答案】B【解析】依题意有△ABF∽△ADE,∴AB∶AD=BF∶DE,即5∶AD=0.4∶5,解得AD=62.5,BD=AD-AB=62.5-5=57.5尺.故选B.8.【答案】D【解析】∵5千米=500 000厘米,∴比例尺=2∶500 000=1∶250 000;故选D.9.【答案】6【解析】如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,即=,∴BC=6 cm.10.【答案】位似O【解析】∵A′B′∥AB,A′C′∥AC,∴∠A′B′C′=∠B,∠A′C′B′=∠C,∴△A′B′C′∽△ABC,∵AA′的延长线交于BC于点D,∴△ABC与△A′B′C′是位似图形,其中O点是位似中心.11.【答案】3【解析】∵△ABC∽△A′B′C′,且S△ABC∶S△A′B″C′=16∶9,∴AB∶A′B′=4∶3,∵AB=4,∴A′B′=3.12.【答案】【解析】∵△ABC∽△DEF,∴BC∶EF=AD∶DG,∵=,∴BC∶EF=3∶2,∴AD∶DG=3∶2.13.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.14.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.15.【答案】8【解析】∵a∶b∶c=1∶3∶2,∴设a=k,则b=3k,c=2k,又∵a+b+c=24,∴k+3k+2k=24,∴k=4,∴a+b-c=k+3k-2k=2k=2×4=8.16.【答案】相似变换【解析】由一个图形到另一个图形,在改变的过程中形状不变,大小产生变化,属于相似变化.17.【答案】解(1)过A作AM⊥BD于点M,交GE于N.∵AC⊥CD,GE⊥CD,∴四边形ACEN为矩形,∴NE=AC,又∵AC=200,EF=a,FG=y,∴GN=GE-NE=a+y-200,∵DM=AC=200,∴BM=BD-DM=300-200=100,又∵GN∥BD,∴△ANG∽△AMB,∴=,即=,∴y=x-a+200;(2)当x=150 cm,a=205 cm时,y=×150-205+200=45( cm),y=45>40.故该生弹跳成绩处于良好水平.【解析】(1)利用相似三角形的判定与性质得出△ANG∽△AMB,进而得出=,即可得出答案;(2)当x=150 cm,a=205 cm时,直接代入(1)中所求得出即可.18.【答案】解(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∵=,∴=,又BC=b,∴=,∴EF=;(2)①如图2,连接BD,与EF交于点H,由(1)知,HF=,EH=,∵EF=EH+HF,∴EF=;②猜想:EF=,证明:连接DE,并延长DE交BC于G,由已知,得BG=,EF=,∵GC=BC-BG,∴EF=(BC-BG)==.【解析】(1)由EF∥BC,即可证得△AEF∽△ABC,根据相似三角形的对应边成比例,即可证得=,根据比例变形,即可求得EF的值;(2)①连接BD,与EF交于点H,由(1)知,HF=,EH=,又由EF=EH+HF,即可求得EF的值;②连接DE,并延长DE交BC于G,根据平行线分线段成比例定理,即可求得BG的长,又由EF=与GC=BC-BG,即可求得EF的值.19.【答案】解(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为x m,则长为2x m.则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.∵==2,∴矩形蔬菜种植区域的长与宽之比为2∶1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要=,即=,即=,即2AB-2(b+d)=2AB-(a+c),∴a+c=2(b+d),即=2.【解析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由,所以应设矩形蔬菜种植区域的宽为x m,则长为2x m,然后由题意得==2,矩形蔬菜种植区域的长与宽之比为2∶1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得=,即=,然后利用比例的性质,即可求得答案.20.【答案】解(1)相等.理由如下:∵CD为∠ACF的角平分线(已知),∴∠DCP=∠DCH,DP⊥AC,DH⊥BF.∴∠DPC=∠DHC=90°.∴∠PDC=∠HDC.(2)PC=HC,DP=DH,AP=BH,AD=BD.(3)∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.∵∠CPD=90°,∴∠ABC=90°.∵CD为∠ACF的角平分线,∠PCD=∠DCF=∠ACB,∴∠ACB=60°.∴∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.【解析】(1)根据角平分线与垂线的性质证明角相等;(2)发现全等三角形,根据全等三角形的对应边相等证明出线段相等;(3)根据其中一个是直角三角形得到AC必须是直径.再根据另一对角对应相等,结合利用平角发现必须都是60°才可.21.【答案】(1)证明∵AB=,BC=,AC=2,A′B′=2,B′C′=2,A′C′=4,∴==,∴△ABC∽A′B′C′;(2)解如图所示:两三角形对应点的连线相交于一点,故A′B′C′与△ABC是位似图形,O即为位似中心,位似比为2.【解析】(1)分别求出三角形各边长,进而得出答案;(2)利用位似图形的性质得出答案.人教新版九年级下学期《第27章相似》单元测试卷一.选择题1.已知=,那么下列等式中一定正确的是()A.=B.=C.=D.=2.已知a:b=3:2,则a:(a﹣b)=()A.1:3 B.3:1 C.3:5 D.5:33.在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为()A.320cm B.320m C.2000cm D.2000m4.已知线段AB=1,C是AB的黄金分割点,AC>BC,则BC的长为()A.﹣1 B.C.D.5.如图,若DC∥FE∥AB,则有()A.B.C.D.6.我们已经学习了相似三角形,也知道,如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长、对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形,是相似图形的有()A.①③B.①②C.①④D.②③7.如图的两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°8.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.2:1 C.1:4 D.4:19.如图,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射线BC上的动点(点E与点B不重合),M是线段DE的中点,连结BD,交线段AM于点N,如果以A、N、D 为顶点的三角形与△BME相似,则线段BE的长为()A.3 B.6 C.3或8 D.2或810.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10 11.1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米,此时,若某电视塔的影长为100米,则此电视塔的高度应是()A.80米B.85米C.120米D.125米12.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=3,BD=1,则BC的值是()A.2B.C.2 D.413.如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OB:OB'=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:二.填空题14.已知线段a=10cm,b=2m,则=.15.若,则=.16.若b=2,c=8,且a是b和c的比例中项,则a=.17.黄金分割比是==0.61803398…,将这个分割比用四舍五入法精确到0.001的近似数是.18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB =3:2,那么BF:FC=.19.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.20.已知两个相似多边形的相似比为5:7,若较小的一个多边形的周长为35,则较大的一个多边形的周长为;若较大的一个多边形的面积是4,则较小的一个多边形的面积是.21.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是.22.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)23.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM=AB.若四边形ABCD的面积为,则四边形AMCD的面积是.24.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是米.25.在方格纸中,每个小格的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在如图5×5的方格纸中,以A,B为顶点作格点三角形ABC与△OAB相似(相似比不能为1),则另一个顶点C的坐标为.26.如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB ,AD =4,BD =1,则CD 的长为 .27.如图,在直角坐标系中,举行你OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的,B 的坐标是(4,2),那么点B ′的坐标是 .28.如图,在平面直角坐标系中,矩形AOCB 的两边OA ,OC 分别在x 轴和y 轴上,且OA =2.OC =1,则矩形AOCB 的对称中心的坐标是 ;在第二象限内,将矩形AOCB以原点O 为位似中心放大为原来的倍,得到矩形A 1OC 1B 1,再将矩形A 1OC 1B 1以原点O 为位似中心放大倍,得到矩形A 2OC 2B ,…,按此规律,则矩形A 4OC 4B 4的对称中心的坐标是 .三.解答题29.若x 、y 、z 满足===k ,求k 的值.30.已知:==,求的值.31.如图1,点C 将线段AB 分成两部分,如果,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在△A BC中,若点D为AB边上的黄金分割点(如图2),则直线CD 是△ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC 于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD 的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.32.如果一个矩形ABCD(AB<BC)中,≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.33.如图所示,在矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连接DE交OC于点F,作FG⊥BC于G.(1)说明点G是线段BC的一个三等分点;(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作图痕迹,不必证明).34.在△ABC中,D为BC边的中点,E为AC边上的任意一点,BE交AD于点O.某学生在研究这一问题时,发现了如下的事实:(1)当时,有(如图)(2)当时,有(如图)(3)当时,有(如图)在图中,当时,参照上述研究结论,请你猜想用n表示的一般结论,并给出证明(其中n是正整数)35.下列每组图形状是否相同?若相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.36.下框中是小明对一道题目的解答以及老师的批改.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.37.如图,四边形ABCD为平行四边形,AE平分∠BAD交BC于点E,过点E作EF∥AB,交AD于点F,连接BF.(1)求证:BF平分∠ABC;(2)若AB=6,且四边形ABCD∽四边形CEFD,求BC长.38.将两块全等的含30°角的三角尺如图①摆放在一起,它们的较短直角边长为6(1)将△DCE沿直线l向右平移到图②的位置,使E点落在AB上,则平移的距离CC′=;(2)将△DCE绕点C按顺时针方向旋转到图③的位置,使点E落在AB上,则△DCE旋转的度数=;(3)将△DCE沿直线AC翻折到图④的位置,ED′与AB相交于点F,求证:BF=EF.39.如图,在△ABC中,∠ACB=90°,CD⊥AB,(1)图1中共有对相似三角形,写出来分别为(不需证明);(2)已知AB=10,AC=8,请你求出CD的长;(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q出B 点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.40.如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;(2)在(1)的条件下,当DF•DB=CD2时,求∠CBD的大小;(3)若AB=2AE,且CD=12,求△BCD的面积.41.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=b,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.42.如图,等腰梯形ABCD是儿童公园中游乐场的示意图.为满足市民的需求,计划建一个与原游乐场相似的新游乐场,要求新游乐场以MN为对称轴,且与原游乐场的相似比为2:1.请你画出新游乐场的示意图.43.如图,以原点O为位似中心,把△OAB放大后得到△OCD,求△OAB与△OCD的相似比.44.如图△ABC中,AB=80cm,高CD=60cm,矩形EFGH中E、F在AB边上,G在BC 边上,H在三角形内,且EF:GF=2:1(1)在△ABC内画出矩形GFEH的位似形,使其顶点在△ABC的边上.(保留作图痕迹)(2)求所作的矩形的面积.参考答案一.选择题1.【解答】解:A、3x•2=9y,则2x=3y,所以A选项正确;B、5(x+3)=6(y+3),则5x﹣6y=3,所以B选项错误;C、2y(x﹣3)=3x(y﹣2),则xy﹣6x+6y=0,所以C选项错误;D、2(x+y)=5x,则3x=2y,所以D选项错误.故选:A.2.【解答】解:∵=,∴==3.故选:B.3.【解答】解:设它的实际长度为x,则:=x=200000cm=2000m.故选:D.4.【解答】解:根据黄金分割的概念得:AC=AB=,∴BC=AB﹣AC=.故选:C.5.【解答】解:∵DC∥FE∥AB,∴OD:OE=OC:OF(A错误);OF:OE=OC:OD(B错误);OA:OC=OB:OD(C错误);CD:EF=OD:OE(D正确).故选:D.6.【解答】解:①两个圆,形状相同,而大小不一定相同,符合相似形的定义,故正确;②两个菱形,属于不唯一确定图形,不一定相似,故错误;③两个长方形,属于不唯一确定图形,不一定相似,故错误;④两个正六边形,形状相同,而大小不一定相同,符合相似形的定义,故正确.故选:C.7.【解答】解:∵两个四边形相似,∴∠1=138°,∵四边形的内角和等于360°,∴∠α=360°﹣60°﹣75°﹣138°=87°,故选:A.8.【解答】解:∵两个相似三角形的面积之比为1:4,∴它们的相似比为1:2,∴它们的周长之比为1:2.故选:A.9.【解答】解:因为如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因为AD∥BC,如果两角相等,那么M与D重合,显然不合题意,故应分两种情况进行讨论.①如图1,当∠ADN=∠BEM时,那么∠ADB=∠BEM,作DF⊥BE,垂足为F,tan∠ADB=tan∠BEM.AB:AD=DF:FE=AB:(BE﹣AD).即2:4=2:(x﹣4).解得x=8.即BE=8.②如图2,当∠ADB=∠BME而∠ADB=∠DBE,∴∠DBE=∠BME,∵∠E是公共角,∴△BED∽△MEB,∴=,BE2=DE•EM,∴BE2=[22+(x﹣4)2],∴x1=2,x2=﹣10(舍去),∴BE=2.综上所述线段BE为8或2,故选:D.10.【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选:D.11.【解答】解:设电视塔的高度应是x,根据题意得:,解得:x=125米.故选:D.12.【解答】解:根据射影定理得BC2=BD•BA,即BC2=1×(1+3),所以BC=2.故选:C.13.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OB:OB′=2:3,∴AB:A′B′=OB:OB′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.二.填空题(共15小题)14.【解答】解:根据题意,b=2m=200cm,则==,故填.15.【解答】解:根据题意,设x=2k,y=3k,z=4k,则=,故答案为:.16.【解答】解:∵b=2,c=8,且a是b和c的比例中项,∴a2=bc=2×8,∴a=±4.17.【解答】解:0.61803398在四舍五入后,精确到0.001的近似值为0.618.18.【解答】解:∵DE∥BC,∴=,∵AD:DB=3:2,AB=AD+DB,∴=,∴=,∵DE∥BC,EF∥AB,∴四边形DEBF是平行四边形,∴DE=BF,∵BC=BF+CF,=,∴=,∴BF:CF=3:2,故答案为3:2;19.【解答】解:因为原图中边长为5cm的一个等边三角形放大成边长为20cm的等边三角形,所以放大前后的两个三角形的周长比为5:20=1:4,故答案为:1:4.20.【解答】解:∵两个相似多边形的相似比为5:7,较小的一个多边形的周长为35.∴较大的一个多边形的周长为35×=49;∵面积之比等于相似比的平方,即=.则较大的一个多边形的面积是4,则较小的一个多边形的面积是4×=.21.【解答】解:如果两点同时运动,设运动t秒时,以点A、D、E为顶点的三角形与△ABC 相似,则AD=t,CE=2t,AE=AC﹣CE=12﹣2t.①当D与B对应时,有△ADE∽△ABC.∴AD:AB=AE:AC,∴t:6=(12﹣2t):12,∴t=3;②当D与C对应时,有△ADE∽△ACB.∴AD:AC=AE:AB,∴t:12=(12﹣2t):6,∴t=4.8.故当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是3秒或4.8秒.22.【解答】解:∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.故答案为AB∥DE.23.【解答】解:如图所示:延长BA、CD,交点为E.∵CM平分∠BCD,CM⊥AB,∴MB=ME,又∵AM=AB,∴BM=2AM.EM=2AM,∴AM=AE,∴AE=AB,∴AE=BE,∵AD∥BC,∴△EAD∽△EBC,∴=,∴S 四边形ADCB =S △EBC =,∴S △EBC =,∴S △EAD =×=,∴S 四边形AMCD =S △EBC ﹣S △EAD =﹣=1,故答案为:1.24.【解答】解:∵AB ⊥BH ,CD ⊥BH ,EF ⊥BH ,∴AB ∥CD ∥EF ,∴△CDG ∽△ABG ,△EFH ∽△ABH ,∴=,=,∵CD =DG =EF =2m ,DF =52m ,FH =4m ,∴=,=,∴=,解得BD =52m ,∴=,解得AB =54m .故答案为:54.25.【解答】解:∵OA =2,OB =1,AB =,∴当AB 与AC 对应时,有或者,∴AC =或AC =5∵C 在格点上∴AC =不合题意,则AC =5∴C 点坐标为(5,2)同理当AB与BC对应时,可求得BC=或者BC=5,也是只有后者符合题意,此时C点坐标为(4,4)∴C点坐标为(5,2)或者(4,4).故答案为:(5,2)或者(4,4).26.【解答】解:∵如图,在Rt△ABC中,∠C=90°,CD⊥AB,AD=4,BD=1,∴由射影定理得:CD2=BD•AD=1×4=4,∴CD=2(舍去负值).故答案是:2.27.【解答】解:∵矩形OA′B′C′的面积等于矩形OABC面积的,∴两矩形面积的相似比为:1:2,∵B的坐标是(4,2),∴点B′的坐标是:(2,1)或(﹣2,﹣1).故答案为:(2,1)或(﹣2,﹣1).28.【解答】解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).三.解答题(共16小题)29.【解答】解:①当x +y +z =0时,y +z =﹣x ,∴k ===﹣1;②x +y +z ≠0时,k ===2.30.【解答】解:设===k (k ≠0),则a =2k ,b =3k ,c =4k ,则==.31.【解答】解:(1)直线CD 是△ABC 的黄金分割线.理由如下:设△ABC 的边AB 上的高为h .则,,,∴,. 又∵点D 为边AB 的黄金分割点,∴,∴.故直线CD 是△ABC 的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,∴,即,故三角形的中线不可能是该三角形的黄金分割线.(3)∵DF ∥CE ,∴△DFC 和△DFE 的公共边DF 上的高也相等,∴S △DFC =S △DFE ,∴S △ADC =S △ADF +S △DFC =S △ADF +S △DFE =S △AEF ,S △BDC =S 四边形BEFC .又∵,∴.因此,直线EF也是△ABC的黄金分割线.(7分)(4)画法不惟一,现提供两种画法;画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是平行四边形ABCD的黄金分割线.(9分)32.【解答】解:矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴==﹣1==.∴矩形ABFE是黄金矩形.33.【解答】解:(1)∵OE⊥BC,CD⊥BC,∴OE∥CD.∵△OEF∽△CDF,∴.∵四边形ABCD是矩形,∴AD∥BC.∴.∴G是BC的三等分点;(2)依题意画图如右.34.【解答】解:过D作DF∥BE交AC于F,∴AO:AD=AE:AF.∵D为BC边的中点,∴CF=EF=0.5EC.∵,∴AE:(AE+2EF)=1:(1+n),AE+2EF=AE+AEnAEn=2EF,∴AE:EF=2:n.∴AE:AF=2:(n+2).∴=2:(n+2).35.【解答】解:(1)正△ABC与正△DEF的形状相同.它们的对应角相等,都是60°.根据正三角形的边长相等可以得到对应边的比相等.(2)正方形ABCD与正方形EFGH的形状相同.它们的对应角相等,都是90°.根据正方形的边长相等可以得到对应边的比相等.36.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.37.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠FAE=∠AEB,∵EF∥AB,∴四边形ABEF是平行四边形,∵AE平分∠BAD,∴∠FAE=∠BAE,∴∠BAE=∠AEB,∴AB=EB,∴四边形ABEF是菱形,∴BF平分∠ABC;(2)解:∵四边形ABEF为菱形;∴BE=AB=6,∵四边形ABCD∽四边形CEFD,∴,即,解得:BC=3±3(负值舍去),∴BC=3+3.38.【解答】解:(1)在直角△ABC中,AC=BC•tan60°=6.∵△BEC′∽△BAC,∴=即=,解得:BC′=2,∴CC′=BC﹣BC′=6﹣2;(2)∵△BCE中,CE=CB,∠EBC=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠ACE=90﹣60=30°,即△DCE旋转的度数是30度.(3)∵AC=CD′,CE=CB,∴AE=BD′,又∵∠AFE=∠D′FB,∠A=∠ED′C,∴△AEF≌△D′BF,∴BF=EF.39.【解答】解:(1)图1中共有3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD.故答案为3,△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD;(2)如图1,在△ABC中,∵∠ACB=90°,AB=10,AC=8,∴BC==6.∵△ABC的面积=AB•CD=AC•BC,∴CD===4.8;(3)存在点P,使以点B、P、Q为顶点的三角形与△ABC相似,理由如下:在△BOC中,∵∠COB=90°,BC=6,OC=4.8,∴OB==3.6.分两种情况:①当∠BQP=90°时,如图2①,此时△PQB∽△ACB,∴=,∴=,解得t=2.25,即BQ=CP=2.25,∴BP=BC﹣CP=6﹣2.25=3.75.在△BPQ中,由勾股定理,得PQ===3,∴点P的坐标为(1.35,3);②当∠BPQ=90°时,如图2②,此时△QPB∽△ACB,∴=,∴=,解得t=3.75,即BQ=CP=3.75,BP=BC﹣CP=6﹣3.75=2.25.过点P作PE⊥x轴于点E.∵△QPB∽△ACB,∴=,即=,∴PE=1.8.在△BPE中,BE===1.35,∴OE=OB﹣BE=3.6﹣1.35=2.25,∴点P的坐标为(2.25,1.8).综上可得,点P的坐标为(1.35,3)或(2.25,1.8).40.【解答】解:(1)如图,过O作OH⊥CD于H,∵点D为弧EC的中点,∴弧ED=弧CD,∴∠OCH=45°,∴OH=CH,∵圆O的半径为2,即OC=2,∴OH=;(2)∵当DF•DB=CD2时,,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,由(1)可得∠DCF=45°,∴∠DBC=45°;注:也可以由点D为弧EC的中点,可得弧ED=弧CD,即可得出∠DCF=∠DBC=45°;(3)如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB∥CD,∴∠ABO=90°=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴,即AB2=AE×AC,∴AC=,设AE=x,则AB=2x,∴AC=4x,EC=3x,∴OE=OB=OC=,∵CD=12,∴CH=6,∵AB∥CH,∴△AOB∽△COH,∴,即,解得x=5,OH=4.5,OB=7.5,∴BH=BO+OH=12,∴△BCD的面积=×12×12=72.41.【解答】解:(1)由题意可知:AB∥OP,∴△ABC∽△OPC.∴,∵OP=b,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)根据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度与路程成正比。
九年级数学下册《第二十七章-相似》单元检测卷及答案-人教版
九年级数学下册《第二十七章 相似》单元检测卷及答案-人教版一、选择题1.下列各组图形,一定相似的是( )A .两个等腰梯形B .两个正方形C .两个菱形D .两个矩形2.若线段a =2cm ,线段b =8cm ,则a ,b 的比例中项c 为( )A .4cmB .5cmC .6cmD .32cm3.如图,已知ABC EDC ∽,23AC EC =::若AB 的长度为6,则DE 的长度为( )A .4B .9C .12D .13.54.如图,它是物理学中小孔成像的原理示意图,已知物体30AB =,根据图中尺寸()AB CD ,则CD 的长应是( )A .15B .30C .20D .105.如图,五边形ABCDE 与五边形A B C D E '''''是位似图形,O 为位似中心12OD OD ='则A B AB '':为( )A .2:3B .3:2C .1:2D .2:16.在ABC 中,点D 、E 分别在AB 、AC 上,如果AD :1BD =:3,那么下列条件中能够判断//DE BC 的是( )A .14DE BC = B .14AD AB = C .14AE AC = D .14AE EC = 7.如图,ABC 为等边三角形,点D ,E 分别在边BC ,AB 上60ADE ∠=︒,若4BD DC =和2.4DE =则AD 的长为( )A .1.8B .2.4C .3D .3.28.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高为1.5m ,测得AB =3m ,BC =7m ,则建筑物CD 的高是( )mA . 3.5B .4C .4.5D .59.如图,ABC 是等边三角形,ABD 是等腰直角三角形90BAD ∠=︒,AE BD ⊥于点E ,连接CD 分别交AE ,AB 于点F ,G 过点A 作AH CD ⊥分别交CD ,BD 于点P ,H 则下列结论不正确的是( )A .4BAC ADC ∠=∠B .DF AH =C .2BH PF =D .若23CG BG =,则32AG FG =10.如图,小明在边长均为1的正方形网格中,分别作了ABC 和111A B C ,其中ABC 三个顶点坐标分别为()01A ,,()22B ,和()31C ,,若ABC 和111AB C 是以原点O 为位似中心的位似图形,则11ABA B =( )A .14B .13C .12D .32二、填空题11.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A B C D E ''''',已知5cm OA =10cm OA '=五边形ABCDE 的周长为50cm ,则五边形A B C D E '''''的周长是 cm .12.如图,直线AD ,BC 交于点O ,AB EF CD 若2AO =,1OF =和2FD =.则BEEC的值为 .13.如图,点P 在反比例函数()0ky k x=>的图象上,PA x ⊥轴于点A PB y ⊥,轴于点B PA PB =,一次函数1y x =+与PB 交于点D ,若D 为PB 的中点,则k 的值为 .14.为了测量校园水平地面上一棵不可攀爬的树的高度,小明利用物理学中“光的反射定律”做了如下的探索:如图,找一面很小的镜子放在合适的位置(点E 处),小明站在点D 处刚好能在镜子里看到树梢顶点,此时小明看镜子的视线与地面的夹角为30︒(即30CED ∠=︒),镜子到大树的水平距离BE 为30米,则树的高度为 米(注:反射角等于入射角,结果若有根号则保留根号).三、解答题15.如图,四边形ABCD∽四边形A 1B 1C 1D 1,∽A =80°,∽B =75°,∽C =125°,求x ,∽D 1.16.如图,ABC 是O 的内接三角形,点D 是AC 的中点,弦BD 交AC 于点E.CDE 与BDC相似吗?为什么?17.如图,小树AB 在路灯O 的照射下形成投影BC .若树高2m AB =,树影3m BC =,树与路灯的水平距离4m BP =,求路灯的高度OP .18.已知:∽ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度)( 1 )画出∽ABC 向下平移4个单位得到的∽A 1B 1C 1;( 2 )以B 为位似中心,在网格中画出∽A 2BC 2,使∽A 2BC 2与∽ABC 位似,且位似比2:1,直接写出C 2点坐标是 ;( 3 )∽A 2BC 2的面积是 平方单位.四、综合题19.如图,ABCD 中,BAD ∠的平分线交BC 于点E ,ABC ∠的平分线交AD 于点F .(1)求证:ABEF 是菱形: (2)若ABCD FDCE ∽,则BCCD的值为 . 20.如图,AB 为∽O 的直径,E 为∽O 上一点,点C 为EB 的中点,过点C 作CD∽AE ,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是∽O 的切线;(2)若DE=1,DC=2,求∽O 的半径长.21.如图,已知点()36B -,,()30C -,以坐标原点O 为位似中心,在第四象限将OBC 缩小为原来的三分之一(即新图形与原图形的相似比为13:).(1)画出缩小后的图形; (2)写出B 点的对应点坐标;(3)如果OBC 内部一点M 的坐标为()x y ,,写出点M 经位似变换后的对应点坐标.22.如图,O 是ABC 的外接圆,BC 是O 的直径,点D 是O 外一点,AC 平分BCD ∠,过点A 作直线CD 的垂线,垂足为点D ,连接AD ,点E 是AB 的中点,连接OE .(1)求证:AD 是O 的切线;(2)若O 的直径为10,3OE =,求CD 的长.参考答案与解析1.【答案】B【解析】【解答】解:A 、两个等腰梯形不一定相似,故A 不符合题意;B 、两个正方形一定相似,故B 符合题意;C 、两个菱形不一定相似,故C 不符合题意;D 、两个矩形不一定相似,故D 不符合题意; 故答案为:B【分析】等腰梯形不一定相似,可对A 作出判断;正方形的四个角相等,四条边相等,所有的正方形都相似,可对B 作出判断;菱形的四边相等,两个菱形不一定相似,可对C 作出判断;矩形的四个角相等,两个矩形不一定相似,可对D 作出判断.2.【答案】A 【解析】【解答】解:c 是a b ,的比例中项,且0c >,2c ab ∴=, 28a b ==,, 216c ∴=,4c ∴=, (负根舍去) 故答案为:A【分析】由c 是a b ,的比例中项,可得2c ab =,继而求解.3.【答案】B【解析】【解答】解:∵ABC EDC ∽∴23AB AC ED EC == ∵AB 的长度为6 ∴DE=9 故答案为:B【分析】根据相似三角形的性质即可求解。
人教版九年级数学下《第二十七章相似》单元测试题含答案
的A 处,则小明的影子 AM 的长为m.第二十七章相似一、填空题(每题3分,共18分) 1. 若两个相似六边形的周长比是3 : 2,其中较大六边形的面积为81,则较小六边形的面积为 _________ .2. ________________________________________________________________________ 如图27— Z — 1,在△ ABC 中,点D ,E 分别在边 AB,AC 上,请添加一个条件: _______________ 使厶ABC s△ AED.3. ________________________ 如图27 — Z — 2, AE , BD 相交于点C , BA 丄AE 于点A , ED 丄BD 于点D 若AC = 4, AB = 3, CD = 2,贝U CE = .图 27 — Z — 24. 如图27— Z — 3,以点0为位似中心,将五边形ABCDE 放大后得到五边形 AB'C'D E ' 已知0A = 10 cm , OA ' = 20 cm ,则五边形 ABCDE 的周长与五边形 A B C D E 的周长的比 值是 _________ .图 27 — Z —35.如图27 — Z — 4,路灯距离地面 8 m ,身高1.6 m 的小明站在距离灯的底部 (点 0)20 m图 27 — Z — 1图 27 — Z — 66.如图27— Z — 5,矩形ABCD 中,AB = 3, BC = . 6,点E 在对角线 BD 上,且BECF=1.8,连接AE 并延长交DC 于点F ,则 —= ________________ .二、选择题(每题4分,共32分)7.由5a = 6b (a ^ 0, b 丰0),可得比例式()F 列各组中的四条线段成比例的是 ( )9.如图27 — Z — 6,△ ACD 和厶ABC 相似需具备的条件是 ( )AC _ AB CD _ BC A.CD = BC B.AD = ACC . 4 cm , 5 cm , 6 cm 2 cm , 3 cm , 5 cm 4 cm , 5 cm , 6 cm2 cm , 2 cm , 4 cm图 27 — Z — 4A MB图 27 — Z —54 cm , 1 cm , 3 cm , 1 cm , B2 2C . AC 2= AD AB D • CD 2= AD BD10•如图27- Z — 7,在厶ABC 中,点D , E , F 分别在边CFEF // AB.若 AD = 2BD ,贝U 的值为()B F1112B.3C.4 D ・3中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )12. 已知△ ABC 在直角坐标系中的位置如图 27 — Z — 10所示,以O 为位似中心,把△ ABC 放大为原来的2倍得到△ A'B'C',那么点A 的坐标为()图 27 — Z — 10A . (— 8, — 4)B . (— 8, 4)C . (8, — 4)D . (— 8, 4)或(8, — 4)AB , AC , BC 上,且 DE // BC,11. 如图 27 — Z — 8, △ ABC 中,/A = 78° ,AB = 4, AC = 6•将△ ABC 沿图 27— Z —9 图 27 — Z — 7图 27 — Z —8图 27 — Z — 9图 27 — Z — 1313.将两个三角尺(含45°角的三角尺 ABC 与含30°角的三角尺 DCB )按图27- Z — 11 所示方式叠放,斜边交点为0,则厶AOB 与厶COD 的面积之比等于()图 27— Z — 1114. 如图27 — Z — 12,已知O 0是等腰直角三角形 ABC 的外接圆,D 是AC 上一点,BD 4交AC 于点E ,若BC = 4, AD =,则AE 的长是()5图 27 — Z — 12A . 3B . 2C . 1D . 1.2 三、解答题(共50分)15. (10 分)已知:如图 27 — Z — 13 , △ ABC 中,/ ABC = 2/ C , BD 平分/ ABC. 求证:AB BC = AC CD.16. (12分)如图27- Z — 14,在平面直角坐标系中,将△ ABC 进行位似变换得到△ A i B i C i . ⑴△ A i B i C i 与厶ABC 的相似比是 _________ ; (2)画出△ A i B i C i 关于y 轴对称的厶A 2B 2C 2;⑶设P (a ,力为厶ABC 内一点,则依上述两次变换后,点P 在厶A 2B 2C 2内的对应点 P 2 的坐标是 _________________.B图27 —Z —i4i7. (i2分)如图27 —Z —i5, AB是半圆0的直径,P是BA的延长线上一点,PC是O O 的切线,切点为C,过点B作BD丄PC交PC的延长线于点D,连接BC.求证:⑴/PBC=Z CBD;(2)BC2= AB BD.图27 —Z —i518. (16 分)如图27 —Z—16,在Rt △ ABC 中,/ ACB = 90° , AC = 5 cm,/ BAC = 60° , 动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C 出发,在CB 边上以每秒cm的速度向点B匀速运动,设运动时间为t(0<t<5)秒,连接MN.(1) 若BM = BN ,求t的值;(2) 若厶MBN与厶ABC相似,求t的值;(3) 当t为何值时,四边形ACNM的面积最小?并求出最小面积.图27 —Z —16教师详解详析1. 36 [解析]•••两个相似六边形的周长比是 3 : 2,•••它们的面积比为9 : 4.•••较大六边形的面积为81,•较小六边形的面积为81 X 4= 36.故答案为36.2. / B =/AEB(答案不唯一)[解析]I/B = /AEB, / A =Z A,• △ABC s^ AED.故添加条件/ B=/ AEB即可使得厶ABCAED.3. 2.5 [解析]T BA丄AE, AC = 4, AB = 3, • BC = .32+ 42= 5.•/ BA丄AE, ED 丄BD,A=/ D = 90° .又•••/ ACB =/ DCE ,• △ABC s^ DEC ,•AC=CD'BC= CE,即4= 2CE,• CE= 2.5. 故答案为2.5.14i5. 5 [解析]如图,设路灯为点C.由题意可得△ MAB s\ MOC ,所以ABCOAMO M,即譽悬,解得AM = 5.163[解析「•四边形ABCD是矩形,•••/ BAD = 90° .又T AB=, BC= :J6,•AD = BC = .;6,•BD = AB2+ AD2= 3.•/ BE= 1.8,•DE = 3 — 1.8 = 1.2.T AB// CD ,•DF = DE 即DF = 12…AB = BE,即3= 1.8,解得DF = 23&,3贝U CF = CD —DF =学,3•CF = 3_ = 1•CD — 3 = 3.7. D 8.D9. C [解析]•••在△ ACD 和厶ABC 中,/ A=Z A,•根据两边对应成比例,且夹角相等的两三角形相似,得出需添加的条件是ACABADAC,• AC2= AD AB.故选C.10. A [解析]V DE // BC, EF // AB,•••四边形BDEF是平行四边形,/ FEC = Z A, / C=Z AED ,•••△EFCADE ,.CF _ EF■D E=A D,• CF _ CF _ EF _ BD _ 1…BF =DE =AD =AD =2.故选A.11. C [解析]A项,阴影部分的三角形与原三角形有两个角相等,故两三角形相似, 故本选项不符合题意;B项,阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;C项,两三角形的对应边不成比例,故两三角形不相似,故本选项符合题意;D项,两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意.故选C.12. D13. D [解析]由题意,知/ABC = Z BCD = 90° ,• AB// CD ,• △AOB s^ COD.设BC = a,贝V AB = a, CD = 3a,• AB : CD = 1 : .3,S A AOB :S A COD = 1 : 3.故选D.14. C [解析]•••△ ABC是等腰直角三角形,BC = 4,• AB 为O O 的直径,AC = 4, AB = 4 2,4在Rt△ ABD 中,AD = 5 AB = 4 2,BD = 285 '•••/ D =Z C, / DAC = Z CBE,• △ADE s\ BCE.4•/ AD : BC = : 4= 1 : 5,5•△ ADE与厶BCE的相似比为1 : 5.设AE= x,则BE= 5x,28 =--DE = ——5x,5• CE= 28 —25x.•/ AC= 4,• x+ 28 —25x= 4,解得x= 1.15. 证明:•••/ABC = 2/ C, BD 平分/ ABC, •/ ABD = Z DBC = Z C,• BD = CD.在厶ABD和厶ACB中,/ A=Z A, / ABD = Z C,•△ ABDACB ,• AB = BD…AC= BC ,即AB BC= AC BD ,• AB • BC = AC CD.16•解:⑴△ A i B i C i与厶ABC的相似比=欝 =4=2•故答案为2.AB 2⑵如图所示:(3)P(a, b)为厶ABC内一点,依次经过上述两次变换后,点P的对应点P2的坐标为(—2a, 2b).故答案为(—2a, 2b).17.证明:(1)如图,连接0C,••• PC与O 0相切,••• OC X PC ,即/ OCP = 90•/ BD 丄PD ,•••/ BDP = 90° ,•••/ OCP=Z BDP,• OC // BD ,•••/ BCO=Z CBD.•/ OB= OC,•••/ PBC=Z BCO,•••/ PBC=Z CBD.⑵如图,连接AC,•/ AB为O O的直径,•••/ ACB= 90°=/ CDB.又•••/ ABC =/ CBD ,•••△ ABC s^ CBD ,.BC = AB…BD = BC ,即 BC 2= AB BD.18.解:⑴•••在 Rt △ ABC 中,/ACB = 90 AC = 5 cm , / BAC = 60° ,• AB = 10 cm , BC = 5 3 cm.由题意知 BM = 2t cm , CN = 3t cm ,• BN = (5 3— 3t)cm.由 BM = BN ,得 2t = 5 .3— . 3t ,⑵①当△ MBNABC 时,MB = BNAB = BC ,即 2t = 5 3— 3t10 5 ,'3.•.当 t = 5或 t = 15时,△ MBN 与^ ABC 相似. ⑶过点M 作MD 丄BC 于点D ,可得MD = t.设四边形ACNM 的面积为y cm 2,5解得t=]②当△ NBM ABC 时, NB = BM AB = BC , 5 ,3— .‘3t 10 2t 5 .3,解得t =157 . 解得t =5 .3 2+ .3 =10 3 — 15. (ii)则y = &ABC—BMN=2AC BC- 2BN MD1 1=2X5X 5 3-2X(5 3- 3t)t宁t+专=承-1)2+75 3.根据二次函数的性质可知,当t= 2时,y的值最小,为785 3,四边形ACNM的面积最小,最小面积为75 3 cm2.即当t=8 、。
人教版九年级数学下第二十七章 相似单元练习题(含答案)
人教版九年级数学下第二十七章相似单元练习题(含答案)一、选择题1.如图,路灯OP距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B处时,人影的长度()A.变长了1.5米B.变短了2.5米C.变长了3.5米D.变短了3.5米2.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1∶2,则△ABC与△A′B′C′的面积比是()A.1∶1B.1∶2C.1∶3D.1∶43.如图,测量小玻璃管口径的量具ABC,AB的长为12 cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是()A.8 cmB.10 cmC.20 cmD.60 cm4.下列四边形ABCD和四边形EFGD是位似图形,它们的位似中心是()A.点EB.点FC.点GD.点D5.如图,D、E分别在△ABC的边AB、AC上,要使△AED∽△ABC,不能添加的条件是()A.DE∥BCB.AD·AC=AB·AEC.AD∶AC=AE∶ABD.AD∶AB=DE∶BC6.下面各组的两个比不能组成比例的是()A.8∶7和16∶14B.0.6∶0.2和3∶1C.19∶110和10∶9D.0.2∶1.2和∶2.47.在比例尺是1∶500的图纸上,测得一块长方形的土地长5厘米,宽4厘米,这块地的实际面积是()A.20平方米B.500平方米C.5 000平方米D.500 000平方米8.如图,线段BC的两端点的坐标分别为B(3,7),C(6,3),以点A(1,0)为位似中心,将线段BC 缩小为原来的后得到线段DE,则端点D的坐标为()A.(1,)B.(2,)C.(1,2)D.(2,2)9.已知2∶x=3∶9,则x等于()A.2B.3C.4D.610.已知△ABC∽△DEF,且相似比为1∶2,则△ABC与△DEF的面积比为()A.1∶4B.4∶1C.1∶2D.2∶1二、填空题11.如图,小强和小华共同站在路灯下,小强的身高EF=1.8 m,小华的身高MN=1.5 m,他们的影子恰巧等于自己的身高,即BF=1.8 m,CN=1.5 m,且两人相距4.7 m,则路灯AD 的高度是____________.12.已知P是x轴的正半轴上的点,△ADC是由等腰直角三角形EOG以P为位似中心变换得到的,如图,已知EO=1,OD=DC=2,则位似中心P点的坐标是____________.13.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是______________.14.如图,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,为使△PQR∽△ABC,则点R应是甲乙丙丁四点中的__________.15.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是__________.16.如图,根据所给信息,可知的值为______________.17.已知△ABC的三边之比为2∶3∶4,若△DEF与△ABC相似,且△DEF的最大边长为20,则△DEF的周长为__________.18.如图,方格纸中的每一个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B的坐标为(-1,-1),在方格纸中把△ABC以点A为位似中心放大,使放大前后对应边的比为1∶2,则点B的对应点B′的坐标为______________.19.一个矩形的长为a,宽为b(a>b),如果把这个矩形截去一个正方形后所余下的矩形与原矩形相似,那么=__________.20.如图是临时暂停修建的一段乡村马路,高的一边已经修好,低的一边才刚做好路基.一辆汽车在高的一边沿箭头方向行驶时偏离了正常行驶路线后停止,但一侧的两个轮子已经驶入低的一边,经检查,地板AB刚接触到高的一边的路面边缘P,已知AB=130 cm,轮子A、B处在地板以下部分与地面的距离AC=BD=30 cm,两路面的高度差为50 cm.设路面是水平的,则PC的长是____________ cm.三、解答题21.如图,若△ADE∽△ABC,DE和AB相交于点D,和AC相交于点E,DE=2,BC=5,S△ABC =20,求S△ADE.22.如图所示,Rt△ABC~Rt△DFE,CM、EN分别是斜边AB、DF上的中线,已知AC=9 cm,CB=12 cm,DE=3 cm.(1)求CM和EN的长;(2)你发现的值与相似比有什么关系?得到什么结论?23.将下列各图形的变换与变换的名称用线连起来:24.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2∶1.(3)求出A2B2、C2三点的坐标.25.如图,△ABC三边长分别为AB=3 cm,BC=3.5 cm,CA=2.5 cm;△DEF三边长分别为DE=3.6 cm,EF=4.2 cm,FD=3 cm.△ABC与△DEF是否相似?为什么?26.如图,已知,直线l1,l2,l3依次截直线l4于点A、B、C,截直线l5于点E、B、F,截直线l6于点G、H、F,且l1∥l2∥l3,BE=2,BF=4,AB=2.5,FG=9.求BC、FH、GH的长.27.如图,已知E是平行四边形ABCD中DA边的延长线上一点,且AE=AD,连接EC分别交AB,BE于点F、G.(1)求证:BF=AF;(2)若BD=12 cm,求DG的长.28.如图,已知△ABC内接于⊙O,D是⊙O上一点,连结BD、CD,AC、BD交于点E.(1)请找出图中的相似三角形,并加以证明(不添加其他线条的情况下);(2)若∠D=45°,BC=4,求⊙O的面积.答案解析1.【答案】D【解析】设小明在A处时影长为x,B处时影长为y.∵AD∥OP,BC∥OP,∴△ADM∽△OPM,△BCN∽△OPN,∴=,=,即=,∴x=5;又=,∴y=1.5,∴x-y=3.5,故变短了3.5米.故选D.2.【答案】D【解析】∵△ABC∽△A′B′C′,且相似比为1∶2,∴△ABC与△A′B′C′面积比是1∶4.故选D.3.【答案】A【解析】∵DE∥AB,∴CD∶AC=DE∶AB,∴40∶60=DE∶12,∴DE=8 cm,故选A.4.【答案】D【解析】四边形ABCD和四边形EFGD是位似图形,它们的位似中心是点D.故选D.5.【答案】D【解析】A.当DE∥BC,则△AED∽ACB,所以A选项错误;B.当AD·AC=AB·AE,即AD∶AB=AE∶AC,而∠A公共,则△AED∽ACB,所以B选项错误;C.当AD∶AC=AE∶AB,而∠A公共,则△AED∽△ABC,所以C选项错误;D.AD∶AB=DE∶BC,而它们的夹角∠ADE和∠ABC不确定相等,则不能判断△AED与△ABC 相似,所以D选项正确.故选D.6.【答案】C【解析】8∶7=16∶14,0.6∶0.2=3∶1,0.2∶1.2=0.4∶2.4,而19∶110≠10∶9,所以A、B、D选项中的比可组成比例,而C选项中的比不能组成比例.故选C.7.【答案】B【解析】∵比例尺是1∶500,长方形的土地长5厘米,宽4厘米,∴实际长为5÷=2 500厘米=25米,宽为4÷=2 000厘米=20米,∴实际面积为25×20=500平方米,故选B.8.【答案】B【解析】∵将线段BC缩小为原来的后得到线段DE,以点A(1,0)为位似中心,点B的坐标为(3,7),∴点D的坐标为(4×,7×),即(2,),故选B.9.【答案】D【解析】∵2∶x=3∶9,∴3x=18,∴x=6,故选D.10.【答案】A【解析】∵△ABC∽△DEF,且相似比为1∶2,∴△ABC与△DEF的面积比为1∶4,故选A.11.【答案】4 m【解析】设路灯的高度为x m,∵EF∥AD,∴△BEF∽△BAD,∴=,即=,解得DF=x-1.8,∵MN∥AD,∴△CMN∽△CAD,∴=,即=,解得DN=x-1.5,∵两人相距4.7 m,∴FD+ND=4.7,∴x-1.8+x-1.5=4.7,解得x=4.12.【答案】(,0)【解析】∵EO=1,DC=2,∴△ACD与△GOE的位似比是2∶1,∴AD∶OG=2∶1,∵△ADC是等腰直角三角形,∴AD⊥x轴,∴AD∥OG,∴△OPG∽△DPA∴PD∶OP=2∶1,∵OD=2,∴OP=,∴位似中心P点的坐标是(,0).13.【答案】(4,2)或(-4,-2)【解析】如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是(4,2)或(-4,-2).14.【答案】丙【解析】应该为丙,因为当R在丙的位置时,若设每一个小正方形的边长为1,则△PQR的三边分别为4,2,2.△ABC的各边分别为2,,.各边对应成比例且比例相等均为2,则可以得到两三角形相似.15.【答案】②③【解析】①所有的等腰三角形都相似,错误;②所有的正三角形都相似,正确;③所有的正方形都相似,正确;④所有的矩形都相似,错误.16.【答案】【解析】由题意可得:△ABC∽△A′B′C′,且=,故的值为.17.【答案】45【解析】∵△DEF∽△ABC,△ABC的三边之比为2∶3∶4,∴△DEF的三边之比为2∶3∶4,又∵△DEF的最大边长为20,∴△DEF的另外两边分别为10,15,∴△DEF的周长为10+15+20=45,18.【答案】(-5,-5)或(11,11)【解析】当B在第三象限,点B的对应点B′的坐标为(-5,-5),当B在在第一象限,点B的对应点B′的坐标为(11,11).19.【答案】【解析】由题意,得=,整理,得a2-ab-b2=0,解得a=b,则=,20.【答案】72【解析】已知如图:由题意可知四边形BEFD是矩形,AC=30 cm,CF=50 cm,∴BD=EF=30 cm,∴CE=20 cm,∵AB=130 cm,AE=50 cm,∴BE==120 cm,∵CP∥BE,∴△ACP∽△AEB,∴=,∴=,∴CP=72 cm.21.【答案】解∵△ADE∽△ABC,∴S△ABC∶S△ADE=,∴20∶S△ADE=,解得S△ADE=.【解析】由于△ADE∽△ABC,利用相似三角形面积比等于相似比的平方,可求S△ADE.22.【答案】解(1)在Rt△ABC中,AB===15,∵CM是斜边AB的中线,∴CM=AB=7.5,∵Rt△ABC~Rt△DFE,∴=,即==,∴DF=5,∵EN为斜边DF上的中线,∴EN=DF=2.5;(2)∵==,相似比为==,∴相似三角形对应中线的比等于相似比.【解析】(1)根据相似三角形的判定和性质解答即可;(2)根据相似三角形的性质解答即可.23.【答案】解【解析】旋转的基本特征是图形旋转前后“对应点到旋转中心的距离相等,并且各组对应点与旋转中心连线的夹角都等于旋转的角度”,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同;平移和旋转都是在平面内,图形变换前后的图形是全等的,对应线段相等,对应角相等,对应点的排列次序相同;由一个图形变为另一个图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫作图形轴对称变换.24.【答案】解(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A2、(3,6);B2(5,2);C2(11,4);【解析】(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;(3)直接利用图形得出各点坐标即可.25.【答案】解△ABC∽△DEF.∵==,==,==,∴==.∴△ABC∽△DEF.【解析】三边对应成比例的两个三角形是相似三角形,根据题目给出的三角形的三边长可求出解.26.【答案】解∵l1∥l2∥l3,∴==,即=,∴BC=5,=.∵FG=9,∴GH=3,HF=6.【解析】由l1∥l2∥l3,得到==,代入数据即可得到结果.27.【答案】(1)证明∵平行四边形ABCD,∴AD∥BC,AD=BC.∴∠E=∠BCF.∵AE=AD,∴AE=BC.∵∠AFE=∠BFC,∴△AEF≌△BCF.∴BF=AF.(2)解∵BC∥DE,∴BC∶DE=BG∶DG.∵DE=2BC,∴DG=2BG.∴DG=BD.∵BD=12,【解析】(1)欲证BF=AF,只需证△AEF≌△BCF即可.(2)DG是BD的一部分,要找DG与BD的关系,可找DG与BG的关系,由BC∥DE可以得出.28.【答案】解(1)结论:△ABE∽△DCE,证明:在△ABE和△DCE中,∵∠A=∠D,∠AEB=∠DEC,∴△ABE∽△DCE.(2)作⊙O的直径BF,连接CF,∴∠F=∠D=45°,∠BCF=90°.∴△BCF是等腰直角三角形.∵FC=BC=4,∴BF=4.∴OB=2.∴S⊙O=OB2·π=8π.【解析】(1)容易发现:△ABE与△DCE中,有两个角对应相等,根据相似三角形的判定可得到它们相似;(2)求⊙O的面积,关键是求⊙O的半径,为此作⊙O的直径BF,连接CF,得出△BCF是等腰直角三角形,由BC=2,求出BF的长,从而求出⊙O的面积.人教版初中数学九年级下册第二十七章《相似》单元测试一、选择题1. 下列图形一定是相似图形的是()A. 任意两个菱形B. 任意两个正三角形C. 两个等腰三角形D. 两个矩形2. 下列各组线段,是成比例线段的是()A. 3 cm,6 cm,7 cm,9 cmB. 2 cm,5 cm,0.6 dm,8 cmC. 3 cm,9 cm,6 cm,1.8 dmD. 1 cm,2 cm,3 cm,4 cm3. 下列说法不正确的是()A. 有一个角等于60°的两个等腰三角形相似B. 有一个底角等于30°的两个等腰三角形相似C. 有一个锐角相等的两个等腰三角形相似D. 有一个锐角相等的两个直角三角形相似4. 如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A. 3米B. 4米C. 4.5米D. 6米第4题第5题5. 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF并延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A. 2B. 3C. 4D. 56. 如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′.已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A. 1∶3B. 1∶4C. 1∶8D.1∶9第6题第7题7. 如图,E,F分别为矩形ABCD的边AD,CD上的点,∠BEF=90°,则图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个三角形中一定相似的是()A. Ⅰ和ⅡB. Ⅰ和ⅢC. Ⅱ和ⅢD. Ⅲ和Ⅳ8. 如图,三角形ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,AD∶DB=1∶2,BC=30 cm,则FC的长为()A. 10 cmB. 20 cmC. 5 cmD.6 cm第8题第9题9. 如图,D,E分别是△ABC的边AB,BC上的点,且DE∥AC,AE,CD相交于点O,若S△DOE∶S△COA=1∶25,则S△BDE与S△CDE的比是()A. 1∶3B. 1∶4C. 1∶5D. 1∶2510. 为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50 cm,镜面中心C距离旗杆底部D的距离为4 m,如图所示.已知小丽同学的身高是1.54 m,眼睛位置A距离小丽头顶的距离是4 cm,则旗杆DE的高度等于()A. 10 mB. 12 mC. 12.4 mD. 12.32 m二、填空题11. 如图,在△ABC中,点D为AC上一点,且CDAD=12,过点D作DE∥BC交AB于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF=.第11题第12题12. 如图,已知△ABC和△AED均为等边三角形,点D在BC边上,DE与AB相交于点F,如果AC=12,CD=4,那么BF的长度为.13. 如图,P为线段AB上一点,AD与BC交于点E,∠CPD=∠A=∠B,BC交PD于点F,AD交PC于点G,则图中相似三角形有对.第13题第14题14. 如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M 作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.15. 如图,已知D,E,F是△ABC三边上的点,AE=6 cm,CE=3 cm,BF=2 cm,且DE∥BC,DF∥AC,则CF的长度为cm.第15题第16题16. 某课外活动小组的同学在研究某种植物标本(如图所示)时,测得叶片①最大宽度是8 cm,最大长度是16 cm;叶片②最大宽度是7 cm,最大长度是14 cm;叶片③最大宽度约为6.5 cm,请你用所学数学知识估算叶片③的完整叶片的最大长度,结果约为cm.17. 如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.第17题第18题18. 如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则MNPQ AEFGS S 正方形正方形的值等于 .三、解答题19. 已知:如图,在△ABC 中,AB =AC ,且AG GD =AFFB,EG ∥CD . 证明:AE =AF .20. 如图,在平行四边形ABCD 中,点E 为边BC 上一点,连接AE 并延长交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F . 求证:DF FC =DMCD.21. 如图,在平面直角坐标系中,△ABC 和△A 1B 1C 1关于点E 成中心对称, (1)在图中标出点E ,点E 的坐标为 ;(2)点P (a ,b )是△ABC 边AB 上一点,△ABC 经过平移后点P 的对应点P ′的坐标为(a -6,b +2),请画出上述平移后的△A 2B 2C 2,此时A 2的坐标为 ,C 2的坐标为 ;(3)若△A 1B 1C 1和△A 2B 2C 2关于点F 成位似三角形,则点F 的坐标为 .22. 如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.23. 如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由;(2)若AB=6,AD=12,BE=8,求DF的长.24. 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD,AE=6,求AF的长.25. 在矩形ABCD中,E为CD的中点,H为BE上的一点,EHBH=3,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:ECBG=EHBH;(2)若∠CGF=90°,求ABBC的值.参考答案1. B2. C3. C4. D5. B6. D7. D8. B9. B 10. B 11.103 12. 83 13. 3 14. 4或6 15. 4 16. 13 17. 1112 18. 8919. 证明:因为EG ∥CD ,所以AG GD =AE EC ,因为AG GD =AF FB ,所以AE EC =AFFB,所以AE AE EC +=AF AF FB +,即AE AC =AFFB,因为AB =AC ,所以AE =AF .20. 证明:因为GF ∥BC ,所以DF FC =DGBG,因为四边形ABCD 是平行四边形,所以AB =CD ,AB ∥CD ,所以DM AB =DG BG ,所以DF FC =DMCD.21. 解:(1)如图,连接BB 1,线段BB 1的中点即为点E ,因为B (1,1),B 1(-1,-3),所以E (0,-1).(2)如图,因为点P (a ,b )是△ABC 边AB 上一点,△ABC 经过平移后点P 的对应点P ′的坐标为(a -6,b +2),所以△ABC 向左平移6个单位,再向上平移2个单位,又因为A (3,2),C (4,0),所以A 2(-3,4),C 2(-2,2).(3)因为对应顶点的连线A 1A 2与B 1B 2交于点(-3,0),所以F (-3,0).22. (1)证明:因为AB =AD ,AC 平分∠BAD ,所以AC ⊥BD ,所以∠ACD +∠BDC =90°,因为AC =AD ,所以∠ACD =∠ADC ,因为PD ⊥AD ,所以∠ADC +∠PDC =90°,所以∠BDC =∠PDC .(2)解:过点C 作CM ⊥PD 于点M ,因为∠BDC =∠PDC ,所以CE =CM ,因为∠CMP =∠ADP =90°,∠P =∠P ,所以△CPM ∽△APD ,所以CM AD =PCPA,设CM =CE =x ,因为CE ∶CP =2∶3,所以PC =32x ,因为AB =AD =AC =1,所以1x =32312xx +,解得x =13,所以AE =1-13=23.23. 解:(1)△ABE 与△ADF 相似.理由如下:因为四边形ABCD 为矩形,DF ⊥AE ,所以∠ABE =∠AFD =90°,∠AEB =∠DAF ,所以△ABE ∽△DF A . (2)因为△ABE ∽△DF A ,所以AE AD =ABDF,因为在Rt △ABE 中,AB =6,BE =8,所以AE =10,所以DF =AB AD AE ´=61210´=7.2,答:DF 的长为7.2. 24. (1)证明:因为四边形ABCD 是平行四边形,所以AD ∥BC ,AB ∥CD ,所以∠ADF =∠CED ,∠B +∠C =180°;因为∠AFE +∠AFD =180°,∠AFE =∠B ,所以∠AFD =∠C ,所以△ADF ∽△DEC .(2)解:因为CD =AB =8,AE ⊥BC ,所以AE ⊥AD ,∠EAD =90°,在Rt △ADE 中,DE ==12,因为△ADF ∽△DEC ,所以AD DE =AF CD ;所以=8AF,所以AF 25. (1)证明:因为四边形ABCD 是矩形,所以CD ∥AB ,所以△CEH ∽△GBH ,所以EC BG =EHBH. (2)略人教版九年级下第27章节 三角形提高拓展专题练习(附答案)一、选择题1.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( )A .8,3B .8,6C .4,3D .4,6 2.如图,等边ABC △的边长为3,P 为BC 上一点, 且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( )A .32B .23C .12D .343.如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( )①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④BC:AC:AB=3:4:5,⑤CD BC BD AC ⋅=⋅ A .1 B .2 C .3 D .44.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形D .四边形MBCO 和四边形NDCO 都是等腰梯形5.如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( ) A. 2 cm 2 B. 4 cm 2 C. 8 cm 2 D. 16 cm 26.一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张 C.第6张 D .第7张7.如图,在平行四边形ABCD 中,69AB AD ==,,BAD ∠的平分线交BC 于点E ,交DB C AN M O ADC P B60°DC 的延长线于点F ,BG AE ⊥,垂足为G ,若BG =则C E F △的周长为( ) A .8B .9.5C .10D .11.5二、填空题8.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影长为___________米.9. 在□ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = .10.如图,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 .11.如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是3,则△A ′B ′C ′的面积是________________.ADGBC FEOA MB12. 将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .13.如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.三、解答题 14.(1)把两个含450角的直角三角板如图1放置,点D 在BC 上,连接BE 、AD ,AD 的延长线交BE 于点F ,求证:AF ⊥BE(2)把两个含300角的直角三角板如图2放置,点D 在BC 上,连接BE 、AD ,AD 的延长线交BE 于点F ,问AF 与BE 是否垂直?并说明理由.15.在Rt ABC △中,90ACB ∠=°,D 是AB 边上一点,以BD 为直径的O ⊙与边AC 相切于点E ,连结DE 并延长,与BC 的延长线交于点F . (1)求证:BD BF =;(2)若64BC AD ==,,求O ⊙的面积.16.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对; (2)连结FG ,如果α=45°,AB=AF =3,求FG 的长.ADEFCB图1图2DBEFACN MDC B A 17.正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM=x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN , 求此时x 的值.18.已知∠ABC=90°,AB=2,BC=3,AD ∥BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足ABADPC PQ =(如图1所示). (1)当AD=2,且点Q 与点B 重合时(如图2所示),求线段PC 的长; (2)在图1中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示△APQ 的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图3所示),求QPC ∠的大小.ADPCBQ 图1DAPCB (Q )图2图3C ADPBQ巩固训练答案 一、选择题1、A2、B3、C4、C5、C6、C7、A 二、填空填8、5 9、3:5 10、(2-,0) 11、6 12、712或2 13、32 三、解答题14、(1)证明:在△ACD 和△BCE 中,AC=-BC ,∠DCA=∠ECB=900,DC=EC ∴△ACD ≌△BCE ,∴∠DAC=∠EBC ∵∠ADC=∠BDF∴∠EBC+∠BDF=∠DAC+∠ADC=900 ∴∠BFD=900,∴AF ⊥BE (2)AF ⊥BE ,理由如下:∵∠ABC=∠DEC=300,∠ACB=∠DCB=900 ∴060tan ==DCECAC BC ∴△DCA ∽△ECB ,∴∠DAC=∠EBC ∵∠ADC=∠BDF∴∠EBC+∠BDF=∠DAC+∠ADC=900 ∴∠BFD=900,∴AF ⊥BE15、(1)证明:连结OE . AC 切O ⊙于E , OE AC ∴⊥, 又90ACB ∠=°,即BC AC ⊥, OE BC ∴∥OED F ∴∠=∠. 又OD OE =,ODE OED ∴∠=∠, ODE F ∴∠=∠, BD BF ∴=.(2)设O ⊙半径为r ,由OE BC ∥得AOE ABC △∽△.AO OE AB BC ∴=,即4246r rr +=+,2120r r ∴--=,解之得1243r r ==-,(舍). 2π16πO S r ∴==⊙.16、(1)证:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM以下证明△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠BF∴△AMF ∽△BGM .(2)解:当α=45°时,可得AC ⊥BC 且AC =BC∵M 为AB 的中点,∴AM =BM=又∵AMF ∽△BGM ,∴AF BMAM BG=∴3832222=⨯=⋅=AF BM AM BG又4AC BC ===,∴84433CG =-=,431CF =-=∴53FG =17、(1)证明:∵四边形ABCD 是正方形,∴∠B=∠C=90°,∠AMB+∠BAM=90°∵∠ABM+∠CMN+∠AMN=180°,∠AMN=90°∴∠AMB+∠CMN=90°∴∠BAM=∠CMN∴Rt △ABM ∽Rt △MCN (2)∵Rt △ABM ∽Rt △MCN ,∴AB =MC BM CN ,即44-x x CN=解得:(4)4x x CN -= ∵()1=CN+AB BC 2S 梯形 ∴1(4)y=4424x x -⎡⎤+⨯⎢⎥⎣⎦, 即:82212++-=x x y 又∵10)2(218)444(218221222+--=+-+--=++-=x x x x x y ∴当x=2时,y 有最大值10.∴当M 点运动到BC 的中点时,四边形ABCN 的面积最大,最大面积是10. (3)解法一:∵Rt △ABM ∽Rt △AMN ,∴A BB M A M M N=,即=化简得:()()21620x x +-=,解得:x=2∴当M 点运动到BC 的中点时Rt △ABM ∽Rt △AMN ,此时x 的值为2.解法二:90B AMN ∠=∠=°,∴要使ABM AMN △∽△,必须有AM ABMN BM=,由(1)知AM ABMN MC=, BM MC ∴=,∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.18、(1)∵Rt △ABD 中,AB=2,AD=2, ∴ABADPC PQ ==1,∠D=45° ∴PQ=PC 即PB=PC , 而∠PBC=∠D=45° ∴PC=PB=223 (2)在图1中,过点P 作PE ⊥BC ,PF ⊥AB 于点F 。
人教版九年级数学下册第二十七章 相似单元测试题
人教版九年级数学下册第二十七章 相似单元测试题第一卷 (选择题 共30分)一、选择题(每题3分,共30分)1.以下各组中的四条线段是成比例线段的是( )A .4 cm ,4 cm ,5 cm ,6 cmB .1 cm ,2 cm ,3 cm ,5 cmC .3 cm ,4 cm ,5 cm ,6 cmD .1 cm ,2 cm ,2 cm ,4 cm2.在比例尺是1∶38000的黄浦江交通旅游图上,某隧道长约7 cm ,那么它的实践长度约为( )A .266 kmB .26.6 kmC .2.66 kmD .0.266 km3.假定△ABC 的每条边长添加各自的10%得△A ′B ′C ′,那么∠B ′的度数与其对应角∠B 的度数相比( )A .添加了10%B .增加了10%C .添加了(1+10%)D .没有改动4.假设两个相似五边形的面积和等于65 cm 2,其中一组对应边的长区分为3 cm 和4.5 cm ,那么较大五边形的面积为( )A .26 cm 2B .39 cm 2C .20 cm 2D .45 cm 25.如图27-Z -1,每个小正方形网格的边长均为1,将△ABC 的三边区分扩展一倍失掉△A 1B 1C 1(顶点均在格点上),假定它们是以点P 为位似中心的位似图形,那么点P 的坐标是( )图27-Z -1A .(-3,-4)B .(-3,-3)C .(-4,-4)D .(-4,-3)6.为测量某河(两岸相互平行)的宽度,小军在河对岸选定一个目的点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E .如图27-Z -2所示,假定测得BE =90 m ,EC =45 m ,CD =60 m ,那么这条河的宽AB 等于( )图27-Z -2A .120 mB .67.5 mC .40 mD .30 m 7.如图27-Z -3所示,在△ABC 中,D 为AC 边上一点,假定∠DBC =∠A ,BC =6,AC =3,那么CD 的长为( )图27-Z -3A .1 B.32 C .2 D.528.如图27-Z -4,在△ABC 中,中线BE ,CD 相交于点O ,衔接DE ,有以下结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OEOB . 图27-Z -4其中正确的有( )A .0个B .1个C .2个D .3个9.在研讨相似效果时,甲、乙同窗的观念如下:甲:将边长区分为3,4,5的三角形按图27-Z -5①的方式向外扩张,失掉新的三角形,它们的对应边间距均为1,那么新三角形与原三角形相似.乙:将邻边区分为3和5的矩形按图②的方式向外扩张,失掉新的矩形,它们的对应边间距均为1,那么新矩形与原矩形不相似.关于两人的观念,以下说法正确的选项是( )图27-Z -5A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对10.如图27-Z -6,在△ABC 中,E ,D 是BC 边的三等分点,F 是AC 的中点,BF 区分交AD ,AE 于点G ,H ,那么BG ∶GH ∶HF 等于( )图27-Z -6A .1∶2∶3B .3∶5∶2C .5∶3∶2D .5∶3∶1第二卷 (非选择题 共70分)二、填空题(每题3分,共18分)11.如图27-Z -7,D 是BC 上一点,△ABC ∽△DBA ,E ,F 区分是AC ,AD 的中点,且AB =28,BC =36,那么BE ∶BF =________.图27-Z -712.如图27-Z -8,直线l 1∥l 2∥l 3,另两条直线区分交l 1,l 2,l 3于点A ,B ,C 及点D ,E ,F ,且AB =3,DE =4,EF =2,那么DE·BC =________.图27-Z -813.如图27-Z -9,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等份,那么图中阴影局部的面积是△ABC 的面积的________.图27-Z -9 14.如图27-Z -10,在Rt △ABC 中,AB =BC ,∠B =90°,AC =10 2.四边形BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上),那么此正方形的面积是________.图27-Z -1015.«九章算术»是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九〝勾股〞章,主要讲述了以测量效果为中心的直角三角形三边互求的关系.其中记载:〝今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?〞译文:〝如图27-Z -11,今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰恰能望见这棵树?〞(注:1里=300步)你的计算结果是:出南门________步而见木.图27-Z -1116.如图27-Z -12,在钝角三角形ABC 中,AB =6 cm ,AC =12 cm ,动点D 从点A 动身到点B 中止,动点E 从点C 动身到点A 中止,点D 运动的速度为1 cm /s ,点E 运动的速度为2 cm /s ,假设两点同时运动,运动________s 时,△AED ∽△ABC.图27-Z -12三、解答题(共52分)17.(5分)四边形ABCD ∽四边形A′B′C′D′,且AB ∶BC ∶CD ∶DA =20∶15∶9∶8,四边形A′B′C′D′的周长为26,求四边形A′B′C′D′各边的长.18.(5分)阅读与计算:请阅读以下资料,并完成相应的效果.角平分线分线段成比例定理:如图27-Z -13①,在△ABC 中,AD 平分∠BAC ,那么AB AC =BD CD.下面是这个定理的局部证明进程.证明:如图②,过点C 作CE ∥DA ,交BA 的延伸线于点E.… 义务:请依照下面的证明思绪,写出该证明的剩余局部.图27-Z -1319.(5分)如图27-Z -14,△ABC 在直角坐标平面内,三个顶点的坐标区分为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长都是1个单位长度).(1)画出△ABC 向下平移4个单位长度后失掉的△A 1B 1C 1,点C 1的坐标是________; (2)以点B 为位似中心,在该网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且相似比为2∶1,点C 2的坐标是________;(3)△A 2B 2C 2的面积是________平方单位.图27-Z -1420.(5分)如图27-Z -15,四边形ABCD ∽四边形EFGH ,衔接AC ,EG.求证:ACEG =AD EH. 图27-Z -1521.(7分)如图27-Z -16,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延伸线于点D.(1)求证:△ABC ∽△BDC ;(2)假定AC =8,BC =6,求△BDC 的面积.图27-Z -1622.(7分)如图27-Z -17,在Rt △ABC 中,∠C =90°,翻折∠C ,使点C 落在斜边AB 上的某一点D 处,折痕为EF(点E ,F 区分在边AC ,BC 上).(1)假定△CEF 与△ABC 相似.①当AC =BC =2时,AD 的长为________; ②当AC =3,BC =4时,AD 的长为________.(2)当D 是AB 的中点时,△CEF 与△ABC 相似吗?说明理由.图27-Z -1723.(9分)一块资料的外形是锐角三角形ABC ,边BC =12 cm ,高AD =8 cm ,把它加工成矩形零件如图27-Z -18,要使矩形的一边在BC 上,其他两个顶点区分在AB ,AC 上,且矩形的长与宽的比为3∶2,求这个矩形零件的边长.图27-Z -1824.(9分):在四边形ABCD 中,E ,F 区分是AB ,AD 边上的点,DE 与CF 相交于点G.(1)如图27-Z -19①,假定四边形ABCD 是矩形,且DE ⊥CF.求证:AD DE =CGCD ;(2)如图②,假定四边形ABCD 是平行四边形,试探求:当∠B 与∠EGC 满足什么关系时,AD DE =CGCD成立?并证明你的结论;(3)如图③,假定BA =BC =9,DA =DC =12,∠BAD =90°,DE ⊥CF.求DECF的值. 图27-Z -19详解详析1.D [解析] 选项A 中,44≠56,故不成比例.选项B 中,12≠35,故不成比例.选项C中,34≠56,故不成比例.选项D 中,12=24,故成比例.应选D.2.C [解析] 设隧道的实践长度是x cm ,依据题意,得7∶x =1∶38000,解得x =266000(cm)=2.66 km.3.D [解析] ∵△ABC 的每条边长添加各自的10%得△A ′B ′C ′, ∴△ABC 与△A ′B ′C ′的三边对应成比例, ∴△ABC ∽△A ′B ′C ′, ∴∠B ′=∠B .4.D [解析] 设较大五边形与较小五边形的面积区分是m cm 2,n cm 2.那么n m =(34.5)2=49,∴n =49m . 依据面积之和是65 cm 2,失掉m +49m =65,解得m =45,即较大五边形的面积为45 cm 2.5.D [解析] 衔接两对对应点,发现它们所在的直线相交于点(-4,-3),因此位似中心的坐标为(-4,-3).6.A [解析] ∵AB ⊥BC ,CD ⊥BC ,∴△BAE ∽△CDE ,∴AB CD =BECE .∵BE =90 m ,CE =45 m ,CD =60 m ,∴AB 60=9045,解得AB =120(m). 7.C [解析] ∵∠DBC =∠A ,∠C =∠C , ∴△CBD ∽△CAB ,∴CD BC =BCAC ,∴CD 6=63, ∴CD =2. 8.C [解析] ①∵DE 是△ABC 的中位线,∴DE =12BC ,即DE BC =12,故①正确;②∵DE 是△ABC 的中位线,∴DE ∥BC ,∴△DOE ∽△COB ,∴S △DOE S △COB =⎝⎛⎭⎫DE BC 2=⎝⎛⎭⎫122=14,故②错误;③∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DEBC .又∵DE ∥BC ,∴△DOE ∽△COB ,∴OE OB =DE BC ,∴AD AB =OEOB,故③正确.综上,①③正确. 9.A [解析] 甲:如图①,依据题意,得AB ∥A ′B ′,AC ∥A ′C ′,BC ∥B ′C ′,∴∠A =∠A ′,∠B =∠B ′, ∴△ABC ∽△A ′B ′C ′, ∴甲的说法正确;乙:如图②,依据题意,得AB =CD =3,AD =BC =5,那么A ′B ′=C ′D ′=3+2=5,A ′D ′=B ′C ′=5+2=7,∴AB A ′B ′=CD C ′D ′=35,AD A ′D ′=BC B ′C ′=57, ∴AB A ′B ′≠AD A ′D ′, ∴新矩形与原矩形不相似. ∴乙的说法正确.10.C [解析] 设BC =6a ,那么BD =DE =EC =2a ,如图,过点F 作FN ∥BC 交AE 于点M ,交AD 于点N . ∵F 是AC 的中点,∴MF =12EC =a .∵FM ∥BC ,∴△FMH ∽△BEH , ∴HF BH =MF BE =14, ∴HF =14BH ,那么HF =15BF .∵FN ∥BC ,∴△ANF ∽△ADC . ∵F 是AC 的中点,∴FN =12DC =2a .∵FN ∥BC ,∴△BGD ∽△FGN , ∴BG FG =BD FN =1,∴BG =FG ,那么BG =12BF , ∴GH =BF -BG -HF =310BF ,∴BG ∶GH ∶HF =12BF ∶310BF ∶15BF =5∶3∶2.11.9∶7 [解析] 由于△ABC ∽△DBA , 所以BC AB =BE BF =97.12.6 [解析] 由l 1∥l 2∥l 3,可得AB BC =DE EF ,所以BC =32,所以DE ·BC =6. 13.13 [解析] ∵AB 被截成三等份, ∴△AEH ∽△AFG ∽△ABC , ∴AE AF =12,AE AB =13, ∴S △AFG ∶S △ABC =4∶9,S △AEH ∶S △ABC =1∶9, ∴S 阴影局部=49S △ABC -19S △ABC =13S △ABC .14.25 [解析] ∵在Rt △ABC 中,AB 2+BC 2=AC 2,AB =BC ,AC =10 2,∴2AB 2=200,∴AB =BC =10.设EF =x ,那么AF =10-x . ∵EF ∥BC ,∴△AFE ∽△ABC ,∴EF BC =AF AB ,即x 10=10-x 10,∴x =5,即EF =5,∴此正方形的面积为5×5=25.15.315 [解析] 如图,由题意得EG ⊥AB ,FH ⊥AD ,HG 经过A 点, ∴F A ∥EG ,EA ∥FH , ∴∠HF A =∠AEG =90°,∠FHA =∠EAG , ∴△GEA ∽△AFH ,∴EG F A =EA FH .∵AB =9里,DA =7里,EG =15里, ∴F A =3.5里,EA =4.5里,∴153.5=4.5FH ,解得FH =1.05(里),即FH =315步.16.245 [解析] 设运动x s 时,△AED ∽△ABC ,那么AE AB =ADAC ,即12-2x 6=x 12,解得x =245,即运动245s 时,△AED ∽△ABC . 17.解:∵四边形ABCD ∽四边形A ′B ′C ′D ′,且AB ∶BC ∶CD ∶DA =20∶15∶9∶8, ∴A ′B ′∶B ′C ′∶C ′D ′∶D ′A ′=20∶15∶9∶8.设A ′B ′=20x ,B ′C ′=15x ,C ′D ′=9x ,D ′A ′=8x ,由四边形A ′B ′C ′D ′的周长为26,得20x +15x +9x +8x =26, 解得x =12.∴A ′B ′=10,B ′C ′=7.5,C ′D ′=4.5,D ′A ′=4.18.证明:过点C 作CE ∥DA ,交BA 的延伸线于点E . ∵CE ∥AD ,∴AB AE =BDCD ,∠2=∠ACE ,∠1=∠E .∵∠1=∠2,∴∠ACE =∠E , ∴AE =AC ,∴AB AC =BDCD.19.解:(1)如下图,C 1(2,-2). (2)如下图,C 2(1,0).(3)∵A 2C 22=20,B 2C 22=20,A 2B 22=40,A 2C 22+B 2C 22=A 2B 22,∴△A 2B 2C 2是等腰直角三角形,∴△A 2B 2C 2的面积是12×2 5×2 5=10(平方单位).故填:10.20.证明:∵四边形ABCD ∽四边形EFGH , ∴AD EH =CDGH,∠D =∠H , ∴△ADC ∽△EHG ,∴AC EG =ADEH.21.解:(1)证明:∵⊙O 是△ABC 的外接圆,圆心O 在AB 上, ∴AB 是⊙O 的直径,∴∠ACB =90°, ∴∠CAB +∠ABC =90°.∵BD 切⊙O 于点B ,∴∠ABD =90°, 即∠CBD +∠ABC =90°,∴∠CAB =∠CBD . 又∵∠ACB =∠BCD =90°, ∴△ABC ∽△BDC .(2)由(1)知△ABC ∽△BDC , ∴S △ABC S △BDC =(AC BC)2=(86)2=169.又∵S △ABC =12AC ·BC =12×8×6=24,∴S △BDC =916S △ABC =916×24=272.22.解:(1)①2 ②1.8或2.5(2)相似.理由:衔接CD ,与EF 交于点O . ∵CD 是Rt △ABC 的中线, ∴CD =DB =12AB ,∴∠DCB =∠B .由折叠知∠COF =∠DOF =90°, ∴∠DCB +∠CFE =90°. 又∵∠B +∠A =90°,∴∠CFE =∠A . 又∵∠FCE =∠ACB ,∴△CEF ∽△CBA . 23.解:∵四边形PQMN 是矩形, ∴BC ∥PQ ,∴△APQ ∽△ABC , ∴PQ BC =AH AD. ∵矩形的长与宽的比为3∶2,分两种状况讨论:①假定PQ 为长,PN 为宽,设PQ =3k ,PN =2k ,那么3k 12=8-2k8,解得k =2,∴PQ =6 cm ,PN =4 cm ;②假定PN 为长,PQ 为宽,设PN =3k ,PQ =2k , 那么2k 12=8-3k 8,解得k =2413,∴PN =7213 cm ,PQ =4813cm.综上所述,这个矩形零件的长为6 cm ,宽为4 cm 或长为7213 cm ,宽为4813 cm.24.解:(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°, ∴∠ADE +∠CDG =90°.∵DE ⊥CF ,∴∠CDG +∠DCF =90°, ∴∠ADE =∠DCF .又∵∠A =∠CGD =90°, ∴△ADE ∽△GCD ,∴AD CG =DE CD ,即AD DE =CGCD. (2)当∠B =∠EGC 或∠B +∠EGC =180°时,AD DE =CGCD成立.证明:当∠B =∠EGC 时,过点C 作DE 的平行线,过点D 作CF 的平行线,两线交于点M ,如图①,∴四边形CMDG 是平行四边形,∴CG =DM ,∠M =∠CGD ,∠CDG =∠DCM .∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC , ∴∠A +∠B =180°,∠FCB =∠CFD . ∵∠B =∠EGC ,∴∠A +∠EGC =180°. ∵∠EGC +∠CGD =180°,∴∠A =∠CGD , ∴∠A =∠CGD =∠M .∵AB ∥CD ,∴∠AED =∠CDG .∵∠CDG =∠DCM ,∴∠AED =∠DCM , ∴△ADE ∽△MDC ,∴AD DM =DE CD. ∵CG =DM ,∴AD CG =DE CD ,即AD DE =CG CD; 当∠B +∠EGC =180°时,过点C 作DE 的平行线,过点D 作CF 的平行线,两线交于点M ,如图②,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠CFD =∠BCF . ∵∠B +∠EGC =180°, ∴∠GEB +∠BCF =180°,∴∠BCF =∠AED ,∴∠CFD =∠AED . ∵∠ADE =∠GDF ,∴△FDG ∽△EDA ,∴DG AD =DF DE ,即DF DG =DE AD. ∵AB ∥CD ,∴∠AED =∠CDE , ∴∠CFD =∠CDE .∵∠FCD =∠DCG ,∴△FCD ∽△DCG , ∴DF DG =CD CG ,∴DE AD =CD CG ,即AD DE =CG CD. (3)如图③,过点C 作CN ⊥AD 于点N ,CM ⊥AB 交AB 的延伸线于点M ,衔接BD ,设CN =x ,∵∠BAD =90°,∴∠A =∠M =∠CNA =90°, ∴四边形AMCN 是矩形, ∴AM =CN ,AN =CM .∵在△BAD 和△BCD 中,⎩⎪⎨⎪⎧DA =DC ,BA =BC ,BD =BD ,∴△BAD ≌△BCD ,∴∠BCD =∠A =90°, ∴∠ABC +∠ADC =180°. ∵∠ABC +∠MBC =180°, ∴∠MBC =∠ADC . ∵∠CND =∠M =90°,∴△BCM ∽△DCN , ∴CM CN =BC CD ,即CM x =912,∴CM =34x .在Rt △CMB 中,CM =34x ,BM =AM -AB =x -9,由勾股定理,得BM 2+CM 2=BC 2, ∴(x -9)2+(34x )2=92,解得x 1=0(舍去),x 2=28825,∴CN =28825.∵∠A =∠FGE =90°, ∴∠AED +∠AFG =180°. ∵∠AFG +∠NFC =180°, ∴∠AED =∠NFC . ∵∠A =∠CNF =90°, ∴△AED ∽△NFC , ∴DE CF =AD CN =1228825=2524.。
人教版九年级数学下第二十七章相似检测题含答案解析
第二十七章相似检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共24分)1.(北京中考)如图所示,为估算某河的宽度,在河对岸边选定一个目标点,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE20 m,EC=10 m,CD=20 m,则河的宽度AB等于()A.60 mB.40 mC.30 mD.20 m2.(哈尔滨中考)如图所示,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN的面积比为()A. B.C. D.3.(2014·南京中考)若△ABC∽△A′B′C′,相似比为1∶2,则△ABC与△A′B′C′的面积的比为()A. 1∶2B. 2∶1C. 1∶4D. 4∶14.(2015·江苏南通中考)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为( )A.2.5B.2.8C.3D.3.2第1题图第2题图第4题图第5题图5.(2014·天津中考)如图所示,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF︰FC等于()A.3︰2B.3︰1C.1︰1D.1︰26. (2014·南京中考)如图所示,在矩形AOBC中,点A的坐标是﹙-2,1﹚,点C的纵坐标是4,则B,C两点的坐标分别是()A.32,3,,423⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭B.31,3,,422⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭C.772,,,4423⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭D.771,,,4422⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭7.如图所示,在矩形中,=4,,平分,,则等于( )A. B.1 C. D.2第6题图8.(2015•山东东营中考)如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,点D 是线段AB 上的一点,连接CD ,过点B 作BG ⊥CD ,分别交CD ,CA 于点E ,F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF .给出以下四个结论:①;②若点D 是AB 的中点,则AF =AB ;③当B ,C ,F ,D 四点在同一个圆上时,DF =DB ;④若,则=9.其中正确的结论序号是( )A.①②B.③④C.①②③D.①②③④二、填空题(每小题3分,共30分)9.(2013·乌鲁木齐中考)如图所示,AB ∥GH ∥CD ,点在BC 上,AC 与BD 交于点,AB =2,CD =3,则GH 的长为 .第9题图第10题图10.(2015·江苏南通中考)如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,,△CEF 的面积为,△AEB 的面积为,则的值等于 .第8题图ABCD F第7题图第11题图11.(天津中考)如图所示,在边长为9的正三角形ABC 中,BD =3,∠ADE =60°,则AE 的长为 .12.若,则= .13.已知一个三角形的三边长分别为6、8、10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k = . 14.在△中,12 cm ,=18 cm ,24 cm ,另一个与它相似的△的周长为18 cm ,则△各边长分别为 .15.如图所示,一束光线从点出发,经过轴上的点反射后经过点,则光线从点到点经过的路线长是 . 16.四边形与四边形位似,点为位似中心,若,则= .17.(1)若两个相似三角形的面积比为1∶2,则它们的相似比 为 ;(2)若两个相似三角形的周长比为3∶2,则这两个相似三角形 的相似比为 ;(3)若两个相似三角形对应高的比为2∶3,它们周长的差是25,则较大三角形的周长是 .18.(2015·广东珠海中考)如图,在△中,已知=7,=4,=5,依次连接△的三边中点,得△,再依次连接△的三边中点得△,…,则△的周长为 . 第18题图三、解答题(共46分)19.(6分)已知是△的三边,,且,试判断△的形状.20.(6分)如图所示,已知△∽△,,EOxyCB (1,0) A (3,3),,求:度数;(2)的长.21.(8分)(2013·广东中考)如图所示,在矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点.(1)设Rt △CBD 的面积为,Rt △BFC 的面积为,Rt △DCE 的面积为,则(用“”“”“”填空);(2)写出图中的三对相似三角形,并选择其中一对进行证明.22.(8分)(2015·呼和浩特中考)如图,⊙O 是△ABC 的外接圆,P 是⊙O 外的一点,AM 是⊙O 的直径,∠P AC =∠ABC . (1)求证:P A 是⊙O 的切线;(2)连接PB 与AC 交于点D ,与⊙O 交于点E ,F 为BD 上的一点,若M 为的中点,且∠DCF =∠P ,求证:==.23.(10分)某小区的居民筹集资金1 600元,计划在一块上、 下底分别为10 m 、20 m 的梯形空地上种花(如图所示). (1)它们在△和△地带上种植太阳花,单价为8元/.当△地带种满花后(图中阴影部分)花了160元,请计算种满△BMC 地带所需的费用; (2)若△和△地带要种的有玫瑰花和茉莉花可供选择,单价分别为12元/和10元/,应选择哪种花,刚好用完所筹集的资金?24.(8分)(2015•湖北宜昌中考)如图,在Rt △ABC 中,∠ACB =90,AC =6,BC =8.点D 为边CB 上的一个动点(点D 不与点B 重合)过D 作DO ⊥AB ,垂足为O ;点B ′在边AB 上,且与点B 关于直线DO 对称,连接DB ′,AD . (1)求证:△DOB ∽△ACB ;MADBC第23题图第21题图第22题图(2)若AD 平分∠CAB ,求线段BD 的长;(3)当△AB ′D 为等腰三角形时,求线段BD 的长.第24题图第二十七章 相似检测题参考答案1.B 解析:∵ AB ⊥BC ,CD ⊥BC ,∴ AB ∥CD ,∴ ∠A =∠D ,∴ △BAE ∽△CDE ,∴ =.∵ BE20 m ,EC10 m ,CD20 m ,∴ =,∴ AB =40 m.2.B 解析:∵ 在△ABC 中,点M ,N 分别是边AB ,AC 的中点,∴ MN ∥BC ,MN =BC , ∴ △AMN ∽△ABC , ∴ ==,∴ =. 点拨:三角形的中位线平行于第三边,且等于第三边的一半.3.C 解析:根据相似三角形的面积比等于相似比的平方的性质直接得出结果: △ABC 与 △A ′B ′C ′的面积的比为1∶4.故选C.4.B 解析:如图,连接BD 、CD , ∵ AB 为⊙O 的直径,∴ ∠ADB =90°, ∴ BD =.∵ 弦AD 平分∠BAC ,∴ ∠DAB =∠CAD .∵ ∠CAD =∠CBD ,∴ ∠CBD =∠DAB . 第4题答图在△ABD 和△BED 中,∠BAD =∠EBD ,∠ADB =∠BDE , ∴ △ABD ∽△BED ,∴,即,解得DE =,∴ AE =AD -DE =5-=2.8.5.D 解析:∵ AD ∥BC ,∴ DEF BCF ∠=∠,EDF CBF ∠=∠,∴ △DEF ∽△BCF ,∴EF EDCF BC =. 又∵ AD BC =,∴12ED BC =,1.2EF FC =6.B 解析:如图所示,分别过点A,B,C 作x 轴的垂线,垂足分别为点E,F,M ,过点A 作AN ⊥y 轴,垂足为点N ,与CM 交于点D ,可得△ACD ≌△OBF ,所以BF=CD=3.又△AOE ∽△OBF ,所以=OE AE BF OF ,所以3==2BF AE OF OE ⋅,所以AD=OF=32,31==2=22DN AN AD --,所以点B ,C 的坐标分别为31,3,,422⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭. 7.C 解析:∵ ,∴. 又∵ ∴ △≌△∴在△,∴∴ .由△∽△得,即∴.8. C 解析:AG AB ⊥, 90GAB ∴∠=︒.又90ABC ∠=︒,∴AG ∥BC , G FBC ∴∠=∠,GAF BCF ∠=∠,∴△GAF ∽△BCF ,∴AG AFCB CF=. 又AB =BC ,AG AFAB FC=,故①正确; G GBA ∠+∠90=︒,90CDB GBA ∠+∠=︒,∴G CDB ∠=∠.GAB DBC ∠=∠90=︒,AB BC =,∴△GAB ≌△DBC , GA DB ∴=12AB =,设DB a =,则AB =BC =2a , AC ∴=22AB BC +22a =.由①知△GAF ∽△BCF ,∴AG CB AF CF =,∴12AF CF =,13AF AF CF =+,即13AF AC =,∴22a AF =,∴AF AB =2232aa 2=,故②正确; 当B ,C ,D ,F 四点在同一个圆上时,90DBC ∠=︒,∴DC 是圆的一条直径.DC BF ⊥, DC ∴平分BF 并且平分BF 所对的弧,∴DF =DB ,故③正确;当△ADF 和△BDF 分别以AD 和DB 为底时,高相等,∴12DB AD ==,第6题答图设=S ,则,∴ 3S =.△GAF ∽△BCF ,∴GF GABF BC=.又△GAB ≌△DBC ,GA DB ∴=,∴GF DBBF BC=. 又AB =BC ,∴GF DBBF AB==13DB AD DB =+,当△GAF 和△ABF 分别以GF 和BF 为底时,高相等,∴ ,∴.△GAF ∽△BCF ,∴,∴,∴,,故④不正确.9. 解析:∵ AB ∥GH ∥CD ,∴ △CGH ∽△CAB , △BGH ∽△BDC , ∴,∴,即,解得.10. 解析:设AD =BC =a ,∵ ,则AB =CD =2a .在Rt △ACB 中,AC =a .∵ BF ⊥AC ,∴ △CBE ∽△CAB ,△AEB ∽△ABC , ∴=CE ·CA ,=AE ·AC , ∴ =CE ·a ,=AE ·a ,∴ CE =a ,AE =a ,∴ .∵ △CEF ∽△AEB ,∴ .11.7 解析:本题考查了等边三角形的性质、相似三角形的判定和性质,∵ ∠B =60°,∠ADE =60°,∴ ∠BAD +∠BDA =180°-∠B =120°,∠CDE +∠BDA =180°∠ADE =120°,∴ ∠BAD =∠CDE .又∵ ∠B =∠C ,∴ △BDA ∽△CED ,∴ =.∵ AB =9,BD =3,CD =BC -BD =6,∴ EC =2,AE =AC -EC =7.12. 解析:设,则. 把代入,得13. 解析:已知一个三角形的三边长是6、8、10,与其相似的三角形的最短边长为18.根据相似比的意义可知.点拨:本题关键是找准对应边,本题中两个相似三角形的最短边是对应边.14.4 cm ,6 cm ,8 cm 解析:.由题意,得,解得= ;,解得=;,解得=.∴ △的各边长分别为,.15.5 解析:过作轴于.设,则.由△∽△,得,∴.∴,.∴.16.1∶3 解析:因为位似的图形一定相似,所以四边形与四边形的相似,所以1∶3.17.(1)(2)3∶2 (3)75解析:(1)相似三角形面积的比等于相似比的平方,∴∵ ,∴ (2)相似三角形周长的比等于相似比,∵ 周长比为3∶2,∴ 相似比为3∶2.(3)相似三角形周长的比等于对应高的比,等于相似比,设较大三角形的周长为,则,解得.18.1 解析:111A B C △的周长是16,∵ 222A B C △∽111A B C △,∴ 111A B C △与222A B C △的周长的比是2∶1,则222A B C △的周长是8,同理可得333A B C △的周长是4,444A B C △的周长是2,555A B C △的周长是1.19.解: 设,则因为,所以.解得.所以因为,所以.所以△为直角三角形.20.解:(1)因为△∽△,所以由相似三角形的对应角相等得.在△中,,即,所以.(2)因为△∽△,所以由相似三角形的对应边成比例得,即,所以.点拨:正确把握相似三角形的定义及找准对应边、对应角是解决问题的关键.21.分析:(1)由矩形BDEF知=BD·DE=EF·DE=FC·DE+CE·DE=FC·BF+CE·DE=.(2)△BCF∽△DBC∽△CDE,证明两个三角形相似,利用“两个角对应相等的两个三角形相似”进行证明.解:(1)(2)△BCF∽△DBC∽△CDE.选△BCF∽△CDE,证明如下:在矩形ABCD中,∠BCD=90°,又点在边EF上,∴∠BCF+∠DCE=90°.在矩形BDEF中,∠=∠=90°,∴∠CBF+∠BCF=90°,∴∠CBF=∠DCE,∴△BCF∽△CDE.22.证明:(1)如图,连接CM,∵∠P AC=∠ABC,∠M=∠ABC,∴∠P AC=∠M.∵AM为⊙O的直径,∴∠M+∠MAC=90°,∴∠P AC+∠MAC=90°,即∠MAP=90°,∴MA⊥AP.∴ P A是⊙O的切线.(2)如图,连接AE.∵M为的中点,AM为⊙O的直径,∴AM⊥BC.∵AM⊥AP,∴AP∥BC,∴△ADP∽△CDB. 第22题答图∴=.∵AP∥BC,∴∠P=∠CBD.∵∠CBD=∠CAE,∴∠P=∠CAE.∵∠P=∠DCF,∴∠DCF=∠CAE.∵∠ADE=∠CDF,∴△ADE∽△CDF,∴=.∴==.23.分析:(1)要求种满△地带所需费用,先求出△的面积.由于△与△相似,可先求△的面积,由单价为8元/,得△的面积为,再根据相似三角形面积比等于相似比的平方,即可求得△的面积.(2)先求出△和△的面积,再作选择.解:(1)∵四边形是梯形,∴∥,∴△∽△,∴.∵种满△AMD地带花费160元,∴,∴,∴种满△地带所需的费用为80×8=640(元).(2)∵△∽△,∴.∵△与△等高,∴,∴.同理可求.当△和△地带种植玫瑰花时,所需总费用为160+640+80×12=1 760(元),当△和△地带种植茉莉花时,所需总费用为160+640+80×10=1 600(元).∴种植茉莉花刚好用完所筹资金.24. (1)证明:∵DO⊥AB,∴∠DOB=90°,∴∠ACB=∠DOB=90°.又∵∠B=∠B,∴△DOB∽△ACB.(2)解:∵AD平分∠CAB,DC⊥AC,DO⊥AB,∴DO=DC.∵在Rt△ABC中,AC=6,BC=8,∴AB=10.∵△DOB∽△ACB,∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶5.设BD=x,则DO=DC=x,BO=x.又∵CD+BD=8,∴x+x=8,解得x=5,即BD=5.第24题答图(3)解:∵点B与点B′关于直线DO对称,∴∠B=∠OB′D,BD=B′D=x,BO=B′O=x.又∵∠B为锐角,∴∠OB′D也为锐角,∴∠AB′D为钝角,∴当△AB′D是等腰三角形时,AB′=DB′.∵AB′+B′O+BO=10,∴x+解得x=,即BD=.所以,当△AB′D为等腰三角形时,BD=.。
2018-2021年人教版九年级数学下册第27章《相似》经典题型单元测试题
2018-2021年人教版九年级数学下册第27章《相似》经典题型单元测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法中不正确的是()A.相似多边形对应边的比等于相似比B.相似多边形对应角平线的比等于相似比C.相似多边形周长的比等于相似比D.相似多边形面积的比等于相似比2.一个三角形的三条边长分别为:5,12,13,把这个三角形的三条边长同时扩大到原来的2倍,那么这个三角形的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定形状3.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则NM:MC 等于()A.1:2 B.1:3 C.1:4 D.1:54.如图,在△ABC中,点D、E分别在边AB、AC上,联结DE,如果AD:BD=2:3,那么下列条件中能判断DE//BC的是()A.AEEC =32B.CEAC=35C.DEBC=25D.ABBD=535.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则ADAB为()A .12 B C .14 D 6.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,AC 、BD 、EF 相交于点O ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对7.如图,点D ,E 分别在△ABC 的AB ,AC 边上,增加下列哪些条件,①∠AED=∠B ,②AE DE AB BC=,③AD AE AC AB =,使△ADE 与△ACB 一定相似( )A .①②B .②C .①③D .①②③ 8.如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB =1:2,CF =6,那么BF 等于( )A .1B .2C .3D .49.如图,在平行四边形ABCD 中,E 、F 分别是BC 边,CD 边的中点,AE 、AF 分别交BD 于点G ,H ,设△AGH 的面积为S 1,平行四边形ABCD 的面积为S 2,则S 1:S 2的值为( )A.16B.15C.27D.1810.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F,给出以下结论:①△AED≌△BFA;②DE﹣BF=EF;③△BGF∽△DAE;④DE﹣BG=FG,其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.若a cb d=,其中a=3,b=6,c=2,则d=_____.12.如图,△ABC中,D在BC上,F是AD的中点,连CF并延长交AB于E,已知32 CDBD=,则AEBE等于_____.13.从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.8cm,下身长约94cm,她要穿约_____cm的高跟鞋才能达到黄金比的美感效果(精确到1cm).14.在平面直角坐标系中,已知点A(-4,2),B(-2,-2),以原点为位似中心,位似比为12,把△AOB缩小,则点A的对应点A′的坐标是___________.15.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上,如果BC=5,△ABC的面积是10,那么这个正方形的边长是_____.16.如图,OC是∠AOB的平分线,点P在OC上且OP=4,∠AOB=60°,过点P的动直线DE交OA于D,交OB于E,那么1OD +1OE=_____.三、解答题17.已知:△ABC在平面直角坐标系内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是__________;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;四边形AA2C2C的面积是__________平方单位.18.如图,实验中学某班学生在学习完《利用相似三角形测高》后,利用标杆BE测量学校体育馆的高度.若标杆BE的高为1.5米,测得AB=2米,BC=14米,求学校体育馆CD的高度.19.如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.(1)求证:△ADE∽△BEC.(2)若AD=1,BC=3,AE=2,求AB的长.20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.(1)求证:△AEF∽△ABC:(2)求正方形EFMN的边长.21.如图,△ABC∽△DEC,CA=CB,且点E在AB的延长线上.(1)求证:AE=BD;(2)求证:△BOE∽△COD;(3)已知CD=10,BE=5,OD=6,求OC的长.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AE的长.23.已知:正方形ABCD中,AB=4,E为CD边中点,F为AD边中点,AE交BD于G,交BF于H,连接DH.(1)求证:BG=2DG;(2)求AH:HG:GE的值;(3)求BHHD的值.参考答案1.D【分析】根据相似多边形的性质判断即可.【详解】若两个多边形相似可知:①相似多边形对应边的比等于相似比;②相似多边形对应角平线的比等于相似比③相似多边形周长的比等于相似比,④相似多边形面积的比等于相似比的平方,故选D.【点睛】本题考查了相似多边形的性质,即相似多边形对应边的比相等、应面积的比等于相似比的平方.2.A【分析】直接利用勾股定理的逆定理分析得出答案.【详解】∵一个三角形的三条边长分别为:5,12,13,把这个三角形的三条边长同时扩大到原来的2倍,∴扩大后三角形三边长分别为:10,24,26,∵102+242=676,262=676,∴102+242=262,∴这个三角形的形状为直角三角形.故选A.【点睛】本题考查了勾股定理的逆定理,正确把握勾股定理的逆定理是解题关键.3.B【解析】∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∵M是DE的中∴DM=ME=BC,∴,故选B.4.B【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,由相似推出∠ADE=∠B,再由平行线的判定得出即可.【详解】解:只有选项B正确,理由是:∵AD:BD=2:3,∴ADAB =25,∵CEAC =35,∴AEAC =25,∴ADAB =AEAC=25,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、C、D的条件都不能推出DE∥BC,故选B.【点睛】本题考查了相似三角形的判定,能熟练转移比例线段得三角形相似是解此题的关键.5.D【分析】先证明△ADE ∽△ABC ,然后根据相似三角形的面积的比等于相似比的平方求解即可.【详解】∵BC ∥DE ,∴△ADE ∽△ABC ,∵DE 把△ABC 分成的两部分面积相等,∴△ADE :△ABC =1:2,∴AD AB . 故选D.【点睛】本题主要考查了相似三角形的判定与性质,平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;相似三角形面积的比等于相似比的平方. 6.C【分析】找图中的相似三角形,根据相似三角形的判定方法,有两组对应角相等的三角形相似即可判定.【详解】AB ∥CD ,∴,,,ABO CDO OAB OCD AOE FOC BOE FOD ∠=∠∠=∠∠=∠∠=∠∴.AEO CFO ABO CDO BEO DFO ∽,∽,∽∴共有3对相似三角形.故选:C.【点睛】考查相似三角形的判定,有两组对应角相等的三角形相似是判定两个三角形相似的常用方法.7.C【分析】根据相似三角形的判定方法即可一一判断;【详解】解:∵∠A=∠A ,∠AED=∠B ,∴△AED ∽△ABC ,故①正确,∵∠A=∠A ,AD AE AC AB= , ∴△AED ∽△ABC ,故③正确,由②无法判定△ADE 与△ACB 相似,故选C .【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键. 8.C【分析】根据平行线分线段成比例定理列出比例式,得到AE :EC =AD :DB =1:2,BF :FC =AE :EC =1:2,计算即可.【详解】解:∵DE ∥BC ,∴AE :EC =AD :DB =1:2,∵EF ∥AB ,∴BF :FC =AE :EC =1:2,∵CF =6,∴BF =3,故选C .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 9.A【分析】由平行可得ABH FDH ~,ADG EBG ~,从而得到对应线段成比例,推得BG=GH=DH ,最后利用等底等高的三角形面积相等推理得解.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∴BAF AFD ∠=∠ ,ABD BDC ∠=∠ ,ABH FDH ∴~ ,同理,ADG EBG ∴~,∵DF=CF ,BE=CE , ∴11,22DH DF BG BE HB AB DG AD ==== , ∴13DH BG BD BD == , ∴BG=GH=DH ,∵△AGH 的面积为S 1,∴S △ABG =S △AGH =S △ADH =S 1,∴S 平行四边形ABCD =6S 1,∴S 1:S 2,=1:6,故选A .【点睛】本题考查平行线分线段成比例定理,灵活转移线段的条件是解题的关键.10.C【分析】由四边形ABCD 是正方形,可得AB=AD ,由DE ⊥AG ,BF ∥DE ,易证得BF ⊥AG ,又由同角的余角相等,可证得∠BAF=∠ADE ,则可利用AAS 判定△AED ≌△BFA ;由全等三角形的对应边相等,易证得DE-BF=EF ;有两角对应相等的三角形相似,可证得△BGF ∽△DAE ;利用排除法即可求得答案.【详解】解:∵四边形ABCD 是正方形,∴AB=AD ,AD ∥BC ,∵DE ⊥AG ,BF ∥DE ,∴BF ⊥AG ,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE ,∴△AED ≌△BFA (AAS );故A 正确;∴DE=AF,AE=BF,∴DE-BF=AF-AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE-BG=FG正确.故D错误(也可以用排除法判断);故选C.【点睛】此题考查了相似三角形的判定、正方形的性质、全等三角形的判定与性质以及直角三角形的性质.熟练掌握相关知识点是解题关键.11.4.【分析】把a=3,b=6,c=2代入a cb d=,进行计算即可求解.【详解】解:a cb d=,a=3,b=6,c=2,∴326d =,解得d=4.故答案为4.【点睛】本题考查了比例线段,代值计算即可.12.35.【分析】作DG∥CE,如图,利用平行线分线段成比例定理,由DG∥CE得到23BG BDGE DC==,设BG=2x,则GE=3x,由EF∥DG得到AE AFEG FD==1,所以AE=EG=3x,从而得到AEBE的值.【详解】解:如图,作DG∥CE,∵DG∥CE,∴23 BG BDGE DC==,设BG=2x,则GE=3x,∵EF∥DG,F是AD的中点,∴AE AFEG FD==1,∴AE=EG=3x,∴33325 AE xBE x x==+.故答案为35.【点睛】本题考查平行线分线段成比例及三角形的中位线的知识,注意参量的引入在解题中的运用.13.6.【分析】设她要穿xcm的高跟鞋,根据题意列出方程,解方程得到答案.【详解】解:设她要穿xcm的高跟鞋,由题意得,61.80.618 94x=+,解得x=6,故答案为6.【点睛】本题考查的是黄金分割的知识,根据题意列出方程是解题的关键.14.(-2,1)或(2,-1)【解析】试题解析:∵点A(-4,2),B(-2,-2),以原点O为位似中心,相似比为12,把△AOB缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).15.209.【分析】作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=4,设正方形DEFG 的边长为x,则GF=x,MH=x,AM=4-x,再证明△AGF∽△ABC,则根据相似三角形的性质得方程,然后解关于x的方程即可.【详解】解:如图,作AH⊥BC于H,交GF于M,∵△ABC的面积是10,∴12BC•AH=10,∴AH=4,设正方形DEFG的边长为x,则GF=x,MH=x,AM=4-x,∵GF∥BC,∴△AGF∽△ABC,∴GFBC =AMAH,∴x5=4−x4,解得x=209.故答案为:209.【点睛】本题考查了相似三角形的判定与性质及正方形的性质,添加合适的辅助线是解题的关键.16.√34.【分析】过点P 作PM ⊥OD 于M ,PN ⊥OE 于N ,作EH ⊥OD 于H ,再用OE 表示出EH ,求出S △DOE ,根据角平分线的性质分别求出PM ,PN ,求出S △DOE ,列式计算即可.【详解】解:过点P 作PM ⊥OD 于M ,PN ⊥OE 于N ,作EH ⊥OD 于H ,在Rt △EOH 中,∠AOB=60°,∴EH=√32OE , ∴S △DOE =12×OD×EH=√34×OD×OE , ∵OC 是∠AOB 的平分线,OP=4,∴∠MOP=∠NOP=30°,PM=PN=12OP=2,∴S △DOE =S △DOP +S △POE =12×OD•PM+12×OE•PN=OD+OE , ∴√34×OD×OE=OD+OE , ∴1OD +1OE =√34 . 故答案为√34【点睛】本题考查的是角平分线的性质,直角三角形的性质,三角形的面积计算,掌握角平分线的性质定理,利用不同方法表示出三角形的面积是解题的关键.17.(1)画图见解析,(2,–2); (2)画图见解析,7.5.【解析】【分析】(1)将△ABC 向下平移4个单位长度得到的△A 1B 1C 1,如图所示,找出所求点坐标即可; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可;根据四边形的面积等于两个三角形面积之和解答即可.【详解】(1)如图所示,画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是(2,﹣2);(2)如图所示,以B 为位似中心,画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,四边形AA 2C 2C 的面积是=12×5×1+12×5×2=7.5.故答案为:(1)(2,﹣2);(2)7.5.【点睛】本题考查了作图﹣位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解答本题的关键.18.CD=12.【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可.【详解】解:依题意得90EBA DCA ∠=∠= ,又A A ∠=∠ ,∴△AEB ∽△ADC , ∴AB BE CD CD =,即2 1.5214CD=+, 则CD=12.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形. 19.(1)详见解析;(2)72. 【分析】(1)首先得出∠A =∠B =90°,再根据已知得到∠ADE=∠CEB ,利用两角对应相等的两个三角形相似即可得证;(2)利用相似三角形的性质得出BE的长,进而得出答案即可.【详解】(1)∵AD∥BC,AB⊥BC,∴AB⊥AD,∠A=∠B=90°,∴∠ADE+∠AED=90°,∵∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC;(2)∵△ADE∽△BEC,∴BE BC AD AE=,∵AD=1,BC=3,AE=2,∴3 12 BE=,∴BE=32,∴AB=AE+BE=7 2 .【点睛】本题考查了相似三角形的判定与性质,熟练掌握相关知识是解题的关键. 20.(1)详见解析;(2)正方形的边长为8cm.【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)利用相似三角形的性质,构建方程即可解决问题;【详解】(1)证明:∵四边形EFMN是正方形,∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴△AEF∽△ABC.(2)解:设正方形EFMN的边长为xcm.∴AP=AD-x=12-x(cm)∵△AEF ∽△ABC , AD ⊥BC , ∴EF AP BC AD=, ∴122412x x -=, ∴x=8,∴正方形的边长为8cm .【点睛】本题考查相似三角形的判定和性质、正方形的性质等知识,解题的关键是熟练掌握基本知识.21.(1)详见解析;(2)详见解析;(3)CO=7.【分析】(1)利用相似三角形的性质:对应边的比值相等可证明CE=CD ,再根据全等三角形的判定方法可证明△ACE ≌△CBD ,进而证明AE=BD ;(2)利用有两对角相等的两三角形相似即可证明:△BOE ∽△COD .(3)根据相似三角形的性质解答即可.【详解】证明:(1)∵△ABC ∽△DEC ,CA=CB , ∴1CA CD CB CE== ∴CE=CD ,∠ACB=∠ECD ,∴∠ACB+∠BCE=∠ECD+∠BCE ,∴∠ACE=∠BCD ,在△ACE 和△BCD 中,CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE=BD ;(2)∵△ACE ≌△BCD .∴∠AEC=∠BDC ,∵∠DOC=∠EOB ,∴△COD ∽△BOE ,(3)∵△BOE∽△COD.∴CDBE=ODEO,∵CD=10,BE=5, OD=6,∴105=6EO∴OE=3∴CO=CE﹣OE=CD﹣OE=10﹣3=7.【点睛】本题考查了相似三角形的性质和判定以及全等三角形的性质和判定,熟练掌握相关知识是解题关键.22.(1)见解析(2)6【分析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∴∠C+∠B=180°,∠ADF=∠DEC∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴AD AF DE CD=,∴AD CDDE12AF⋅===在Rt△ADE中,由勾股定理得:AE6===23.(1)详见解析;(2)AH:HG:GE =6:4:5;(3.【分析】(1)利用平行线分线段成比例定理即可解决问题;(2)分别求出AH、GH、GE即可解决问题;(3)作DM⊥AE于M.分别求出DH、BH即可;【详解】(1)证明:∵四边形ABCD是正方形,∵AB∥CD,AB=CD,∵E为CD边中点,∴1122DE DC AB== ,∴12 DE DGAB BG==,∴BG=2DG.(2)解:∵AB∥CD,AB=CD,∵E为CD边中点,∴1122 DE DC AB ==∴12 DE DG EGAB BG AG===,∴13EG AE= ,在Rt△ADE中,∵AD=4,DE=2,∴AE=∴同理可得BF=∵AB=AD,∠BAF=∠ADE,AF=DE,∴△BAF≌△ADE,∴∠ABF=∠DAE,∵∠DAE+∠BAH=90°,∴∠ABF+∠BAH=90°,∴∠AHB=90°,∴AE ⊥BF , ∴11··22ABF S AF AB BF AH == ,∴AH=52AB AF BF ==,∴HG=5315-=2,∴AH :HG :=6:4:5. (3)作DM ⊥AE 于M .由(2)可知: 在Rt △DME 中,∴∴-, 在Rt △DHM 中,∴=5, 在Rt △AHB 中,∵,∴BHHD【点睛】本题考查相似三角形的性质、正方形的性质、勾股定理,解题的关键是灵活运用所学知识解决问题.。
人教版九年级数学下册第二十七章相似单元测试题
人教版九年级数学下册第二十七章相似单元测试题一、选择题(本大题共7小题,每题4分,共28分)1.在比例尺为1∶10000的地图上,一块面积为2 cm 2的区域的实践面积是( )A .2021000 cm 2B .20210 m 2C .4000000 m 2D .40000 m 22.如图27-Z -1,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线区分交于点A ,B ,C 和点D ,E ,F .AB =1,BC =3,DE =2,那么EF '的长为( )图27-Z -1A .4B .5C .6D .83.如图27-Z -2所示,P 是△ABC 的边AC 上一点,衔接BP ,以下条件中不能判定△ABP ∽△ACB 的是( )图27-Z -2A.AB AP =AC ABB.AC AB =BC BPC .∠ABP =∠CD .∠APB =∠ABC4.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的相似比是1∶2,△ABC 的面积是3,那么△A ′B ′C ′的面积是( )A .3B .6C .9D .125.如图27-Z -3所示,在△ABC 中,假定DE ∥BC ,EF ∥AB ,那么以下比例式正确的选项是( )图27-Z -3A.AD DB =DE BCB.BF BC =EF ADC.AE EC =BF FCD.EF AB =DE BC6.如图27-Z -4,∠A =∠B =90°,AB =7,AD =2,BC =3,在边AB 上取点P ,使得△P AD 与△PBC 相似,那么这样的点P 共有( )图27-Z -4A .1个B .2个C .3个D .4个7.假定两个扇形满足弧长的比等于它们半径的比,那么称这两个扇形相似.如图27-Z -5,假设扇形AOB 与扇形A 1O 1B 1相似,且半径OA ∶O 1A 1=k (k 为不等于0的常数),衔接AB ,A 1B 1.那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③ABA1B1=k;④扇形AOB与扇形A1O1B1的面积之比为k2.其中成立的有()图27-Z-5A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每题5分,共25分)8.假定△ABC∽△A′B′C′,∠A=35°,∠C′=85°,那么∠B=________°,∠B′=________°.9.假定两个相似三角形的一组对应边区分为3 cm和5 cm,且较小三角形的周长为15 cm,那么较大三角形的周长为________cm.10.如图27-Z-6,⊙O的两条弦AB,CD相交于点P,衔接AC,BD.假定S△ACP∶S△DBP=16∶9,那么AC∶BD=________.图27-Z-611.如图27-Z-7所示,小明用长为3 m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿、旗杆顶端的影子恰恰在空中的同一点O,此时点O与竹竿的距离DO=6 m,竹竿与旗杆的距离DB=12 m,那么旗杆AB的高为________ m.图27-Z-712.将三角形纸片(△ABC)按如图27-Z-8所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.AB=AC=3,BC=4,假定以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长是________.图27-Z-8三、解答题(本大题共4小题,共47分)13.(11分)如图27-Z-9,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,树立如下图的平面直角坐标系.(1)将△ABC向左平移7个单位长度后再向下平移3个单位长度,请画出经过两次平移后失掉的△A1B1C1;(2)以原点O为位似中心,将△ABC增加,使变换后失掉的△A2B2C2与△ABC对应边的比为1∶2.请在网格内画出在第三象限内的△A2B2C2,并写出点A2的坐标.图27-Z-914.(12分)如图27-Z-10所示,点C,D在线段AB上,△PCD是等边三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP ∽△PDB 时,求∠APB 的度数.图27-Z -1015.(12分)如图27-Z -11所示,BE 是△ABC 的外接圆⊙O 的直径,CD 是△ABC 的高.(1)求证:AC ·BC =BE ·CD ;(2)假定CD =6,AD =3,BD =8,求⊙O 的直径BE .图27-Z -1116.(12分)如图27-Z -12所示,在△ABC 中,BA =BC =20 cm ,AC =30 cm ,点P 从点A 动身,沿AB 以每秒4 cm 的速度向点B 运动,同时点Q 从点C 动身,沿CA 以每秒3 cm 的速度向点A 运动,设运动时间为x 秒.(1)当x 为何值时,PQ ∥BC?(2)△APQ 能否与△CQB 相似?假定能,求出AP 的长;假定不能,请说明理由.图27-Z -12详解详析1.[解析] B 设实践面积是x ,那么2x =(110000)2,解得x =202100000(cm 2),即20210 m 2. 2.C3.[解析] B A 正确,契合两边成比例且夹角相等的两个三角形相似.B 不正确,不契合两边成比例且夹角相等的两个三角形相似.C 正确,契合两角区分相等的两个三角形相似.D 正确,契合两角区分相等的两个三角形相似.应选B.4.[解析] D ∵△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的相似比是1∶2,△ABC 的面积是3,∴△ABC 与△A ′B ′C ′的面积比为1∶4,那么△A ′B ′C ′的面积是12.应选D.5.[解析] C ∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴DE =BF ,BD =EF .∵DE ∥BC ,∴AD AB =AE AC =BF BC .∵EF ∥AB ,∴EF AB =CF BC =CE AC .∵EF ∥AB ,∴AE EC =BF FC.应选C. 6.[解析] C 设AP =x ,那么有PB =AB -AP =7-x ,当△PDA ∽△CPB 时,DA AP =PB BC ,即2x =7-x 3,解得x =1或x =6, 当△PDA ∽△PCB 时,AD BC =AP PB ,即23=x 7-x ,解得x =145. 故这样的点P 共有3个.应选C.7.D8.[答案] 60 60[解析] 相似三角形的对应角相等,故∠A =∠A ′=35°,∠C =∠C ′=85°,所以∠B =∠B ′=60°.9.2510.[答案] 4∶3[解析] 由圆周角定理可得∠A =∠D ,∠C =∠B ,∴△ACP ∽△DBP ,∴S △ACP S △DBP =⎝⎛⎭⎫AC DB 2. 又∵S △ACP ∶S △DBP =16∶9,∴⎝⎛⎭⎫AC DB 2=169,∴AC ∶BD =4∶3.11.[答案] 9[解析] 由题意,得CD ∥AB ,∴△OCD ∽△OAB ,∴CD AB =OD OB, 即3AB =66+12,解得AB =9(m). 12.[答案]127或2 [解析] 设BF =x ,那么FC =4-x .(1)当△CFB ′∽△CBA 时,x 3=4-x 4,解得x =127;(2)当△CFB ′∽△CAB 时,FB ′=FC ,即x =4-x ,解得x =2.综上所述,BF =127或2. 13.解:(1)△A 1B 1C 1如下图.(2)△A 2B 2C 2如下图,点A 2的坐标为(-1,-4).14.解:(1)当CD 2=AC ·DB 时,△ACP ∽△PDB .∵△PCD 是等边三角形,∴∠PCD =∠PDC =60°,∴∠ACP =∠PDB =120°.假定CD 2=AC ·DB ,由PC =PD =CD 可得PC ·PD =AC ·DB ,即PC BD =AC PD. 又∠ACP =∠PDB ,∴△ACP ∽△PDB .(2)当△ACP ∽△PDB 时,∠APC =∠PBD ,由题意可知∠PDC =60°,∴∠BPD +∠PBD =60°,∴∠APC +∠BPD =60°,∴∠APB =∠CPD +∠APC +∠BPD =120°,即∠APB 的度数为120°.15.解:(1)证明:衔接CE .由BE 为⊙O 的直径知∠ECB =90°.在△ADC 和△ECB 中,∵∠A =∠E ,∠ADC =∠ECB =90°,∴△ADC ∽△ECB ,∴AC BE =CD BC, ∴AC ·BC =BE ·CD .(2)由勾股定理,知AC =AD 2+CD 2=3 5,BC =BD 2+CD 2=10. 又∵AC ·BC =BE ·CD ,∴3 5×10=6BE ,解得BE =5 5.16.解:(1)∵PQ ∥BC ,∴∠AQP =∠C .又∵∠A =∠A ,∴△APQ ∽△ABC ,∴AP AB =AQ AC, 即4x 20=30-3x 30, 解得x =103. 即当x =103时,PQ ∥BC . (2)能相似.∵AB =BC ,∴∠A =∠C ,∴△APQ 和△CQB 相似能够有以下两种状况:①△APQ ∽△CQB ,可得AP CQ =AQ CB, 即4x 3x =30-3x 20, 解得x =109. 经检验,x =109是上述方程的解. ∴当AP =4x =409cm 时,△APQ ∽△CQB ; ②△APQ ∽△CBQ ,可得AP CB =AQ CQ ,即4x 20=30-3x 3x, 解得x =5或x =-10(舍去).经检验,x =5是上述方程的解.∴当AP =4x =20 cm 时,△APQ ∽△CBQ .综上所述,当AP 的长为409 cm 或20 cm 时,△APQ 与△CQB 相似.。
人教版九年级数学下册第27章《相似》单元检测及答案【Word版】
之比为
.
E D
A B
O
CF
15.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点
P 处放一水平的平面镜,光
线从点 A 出发经过平面镜反射后刚好射到古城墙 CD 的顶端 C 处,已知 AB ⊥ BD ,CD⊥ BD ,且测
得 AB=1.2 米, BP=1.8 米, PD=12 米,那么该古城墙的高度是
14.【 答案 】∵以点 O 为位似中心,将△ ABC 放大得到△ DEF, AD=OA , ∴ AB : DE=OA : OD=1 : 2, ∴△ ABC 与△ DEF 的面积之比为: 1: 4.
故答案为: 1: 4.
15.【 答案 】由题意知:光线 AP 与光线 PC,∠ APB= ∠CPD,∴ Rt△ABP ∽ Rt△CDP , ∴ AB:BP=CD:PD,,∴ CD=1.2 × 12÷ 1.8=8(米). 故答案为: 8.
BC
A
D
E
B
C
18.(本题 8 分) 已知:平行四边形 ABCD , E 是 BA 延长线上一点, CE 与 AD 、 BD 交于 G、F. 求证: CF2=GF?EF .
E
G A
D
F
B
C
19.(本题 8 分) 如图,在△ ABC 中, AB=AC ,∠ A=36 °,BD 为角平分线, DE⊥ AB ,垂足为 E.
∵ DE∥ BC ,∴ AD AE BF , EF CE BC , AB AC BC AB AC DE
∵ EF∥ AB ,∴ AE BF EC FC
故选 C.
6.【答案】 ∵ AD 1 ,∴ AD 1 ,
DB 2
AB 3
∵在△ ABC 中, DE∥ BC,∴ DE
人教版九的级数学下册第二十七章 相似单元练习题(含答案)
人教版九的级数学下册第二十七章相似单元练习题(含答案)一、选择题1.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示的图形,其中AB⊥BE,EF⊥BE,AF交BE于点D,C在BD上,有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A、B间距离的有()A.4组B.3组C.2组D.1组2.如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10B.12C.D.3.如图,为了估计河的宽度,在河的对岸选定一个目标点A,在近岸取点B,C,D,E,使点A,B,D在一条直线上,且AD⊥DE,点A,C,E也在一条直线上且DE∥BC.如果BC=24 m,BD=12 m,DE=40 m,则河的宽度AB约为()A.20 mB.18 mC.28 mD.30 m4.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1∶2,那么S△AOD∶S△BOC是()A.1∶3B.1∶4C.1∶5D.1∶65.如图,在平面直角坐标系中,已知点A(-4,8),B(-10,-3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(-2,4)B.(-8,16)C.(-2,4)或(2,-4)D.(-8,16)或(8,-16)6.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.=B.=C.=7.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是()A.6B.8C.9D.128.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA·OC=OB·OD;③OC·G=OD·F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个9.在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()B.(,6)C.(3,)或(-3,)D.(,6)或(,-6)10.下列各组图形相似的是()A.B.C.D.二、填空题11.两三角形的相似比为1∶4,它们的周长之差为27 cm,则较小三角形的周长为__________.12.如图,在△ABC与△ADE中,=,要使△ABC与△ADE相似,还需要添加一个条件,这个条件是__________.13.已知△ABC∽△DEF,△ABC的周长为1,△DEF的周长为3,则△ABC与△DEF的面积之比为________.14.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,要使△ABE∽△ACD,则需要添加的一个条件是:________________.15.已知△ABC∽△DEF,且S△ABC=4,S△DEF=25,则=________.16.如图,根据所给信息,可知的值为______________.17.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.18.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是______________.19.一个等腰直角三角形和一个正方形如图摆放,被分割成了5个部分. ①,②,③这三块的面积比依次为1∶4∶41,那么④,⑤这两块的面积比是____________.20.将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义为“白银矩形”.事实上,“白银矩形”在日常生活中随处可见.如,我们常见的A4纸就是一个“白银矩形”.请根据上述信息求A4纸的较长边与较短边的比值.这个比值是__________.三、解答题21.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF·DA.22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点)和直线l,按要求画图.(1)作出四边形ABCD关于直线l成轴对称的四边形A′B′C′D′;(2)以B为位似中心,在点B的下方将四边形ABCD放大2倍得到四边形A1B1C1D1,画出四边形A1B1C1D1.23.如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PBD;(2)求证:PC2=PA·PB;(3)若PA=2,PC=2,求阴影部分的面积(结果保留π).24.△ABC∽△A′B′C,顶点A、B、C分别与A′、B′、C′对应,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC、AC、A′B′、A′C′的长度.25.如图,在△ABC中,DE∥BC.(1)与有什么关系?过E点作EF∥AB,与有什么关系?(2)由(1)可知与有什么关系?根据三角形相似的定义可知△ABC与△ADE相似吗?(3)你能根据上面的结论证明三组对应边的比相等的两个三角形相似吗?26.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.27.如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.图1图2(1)如图1,若AB=AC,求证:BE=CF;(2)若图2,若AB≠AC,①(1)中的结论是否成立?请给出你的判断并说明理由;②求证:=.28.如图,△AED∽△ABC,相似比为1∶2.若BC=6,则DE的长是多少?答案解析1.【答案】B【解析】①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③因为△ABD∽△EFD,可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选B.2.【答案】C【解析】∵四边形ABCD∽四边形A1B1C1D1,∴=,∵AB=12,CD=15,A1B1=9,∴C1D1==.故选C.3.【答案】B【解析】∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴AB=18.故选B.4.【答案】B【解析】∵在梯形ABCD中,AD∥BC,而且S△ACD∶S△ABC=1∶2,∴AD∶BC=1∶2;∵AD∥BC,∴△AOD~△BOC,∵AD∶BC=1∶2,∴S△AOD∶S△BOC=1∶4.故选B.5.【答案】C【解析】以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(-4×,8×)或,即点A′的坐标为(-2,4)或(2,-4).故选C.6.【答案】C【解析】只有选项C正确,理由是:∵AD=2,BD=4,=,∴===,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,故选C.7.【答案】D【解析】∵l1∥l2∥l3,∴=,即=,∴BC=8,∴AC=AB+BC=12,故选D.8.【答案】D【解析】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴=,由旋转的性质,得OB=OB1,OA=OA1,∴OA·OC=OB·OD,故②正确;由杠杆平衡原理,OC·G=OD·F1,故③正确;∴===是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.9.【答案】C【解析】∵△ABC与△A′B′C′的相似比为,∴△A′B′C′与△ABC的相似比为,∵位似中心为原点O,∴A′(2×,3×)或A′(-2×,-3×),即A′(3,)或A′(-3,-).故选C.10.【答案】B【解析】A.形状不同,大小不同,不符合相似定义,故错误;B.形状相同,但大小不同,符合相似定义,故正确;C.形状不同,不符合相似定义,故错误;D.形状不同,不符合相似定义,故错误.故选B.11.【答案】9 cm【解析】令较大的三角形的周长为x cm.小三角形的周长为(x-27) cm,由两个相似三角形对应中线的比为1∶4,得1∶4=(x-27)∶x,解之得x=36,x-27=36-27=9 cm.12.【答案】∠B=∠E【解析】添加条件:∠B=∠E;∵=,∠B=∠E,∴△ABC∽△AED,13.【答案】1∶9【解析】∵△ABC∽△DEF,△ABC的周长为1,△DEF的周长为3,∴△ABC与△DEF的周长比为1∶3,∴△ABC与△DEF的相似比为1∶3,∴△ABC与△DEF的面积之比为1∶9,14.【答案】∠B=∠C(答案不唯一)【解析】要使△ABE∽△ACD,则需要添加的一个条件是:∠B=∠C,理由如下:∵∠A=∠A,∠B=∠C,∴△ABE∽△ACD,15.【答案】【解析】∵△ABC∽△DEF,且S△ABC=4,S△DEF=25,∴==.16.【答案】【解析】由题意可得:△ABC∽△A′B′C′,且=,故的值为.17.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.18.【答案】(4,2)或(-4,-2)【解析】如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是(4,2)或(-4,-2).19.【答案】9∶14【解析】由题意,得①、②、④都是等腰直角三角形,∵①,②这两块的面积比依次为1∶4,∴设①的直角边为x,∴②的直角边为2x,设正方形的边长为y,∵①,③这两块的面积比依次为1∶41,∴①∶(①+③)=1∶42,即x2∶3xy=1∶42,∴y=7x,∴④的面积为6x·6x÷2=18x2,⑤的面积为4x·7x=28x2,∴④,⑤这两块的面积比是18x2∶28x2=9∶14.20.【答案】【解析】由题意,得四边形ABFE∽四边形ADCB,∴=,∴AB2=,∴=.21.【答案】证明(1)如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF·DA,∴DE2=DF·DA【解析】22.【答案】解(1)如图,四边形A′B′C′D′即为所求;(2)如图,四边形A1B1C1D1即为所求.【解析】(1)分别作出点A、B、C、D关于直线l的对称点,顺次连接即可得;(2)延长AB到A1,使BA1=2BA,同理分别作出点D、C的对应点,顺次连接即可得.23.【答案】(1)证明连接OC,∵PD切⊙O于点C,∴OC⊥PD,∵BD⊥PD,∴BD∥OC,∴∠DBC=∠BCO,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠CBD,∴BC平分∠PBD;(2)证明连接AC,∵AB是半圆O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠ACO+∠ABC=90°,∵∠PCA+∠ACO=90°,∴∠ACP=∠ABC,∵∠P=∠P,∴△ACP∽△CBP,∴=,∴PC2=PA·PB;(3)解∵PC2=PA·PB,PA=2,PC=2,∴PB=6,∴AB=4,∴OC=2,PO=4,∴∠POC=60°,∴S=S△POC-S扇形=×2×2-=2-π.阴影【解析】24.【答案】解∵△ABC∽△A′B′C,它们的周长分别为60 cm和72 cm,∴两三角形相似之比为60∶72=5∶6,∵AB=15 cm,∴=,∴A′B′=18(cm),∵B′C′=24 cm,∴A′C′=72-18-24=30(cm),∴==,解得BC=20(cm),AC=25(cm),答:BC、AC、A′B′、A′C′的长度分别为20 cm,25 cm,18 cm,30 cm.【解析】根据相似三角的性质得出相似比,进而得出A′B′的长,即可分别得出BC、AC、A′C′的长度.25.【答案】解(1)∵DE∥BC,∴=;∵EF∥AB,∴=;(2)∵DE∥BF,EF∥AB,∴四边形BFED为平行四边形,∴DE=BF,∴=,∴=,∴根据三角形相似的定义可知,△ABC与△ADE相似;(3)两个三角形三组对应边的比相等的三角形相似.【解析】(1)根据平行线分线段成比例定理,由DE∥BC得到=;由EF∥AB得到=;(2)由DE∥BF,EF∥AB,则可判断四边形BFED为平行四边形,所以DE=BF,则=,所以=,于是根据三角形相似的定义可知,△ABC与△ADE相似;(3)两个三角形三组对应边的比相等的三角形相似.26.【答案】证明如图所示:∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°-∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.【解析】先判断△ABC为等腰直角三角形得到∠B=∠C=45°,再利用三角形内角和得到∠1+∠2=135°,利用平角定义得到∠2+∠3=135°,则∠1=∠3,于是可根据有两角对应相等的两个三角形相似得到结论.27.【答案】(1)证明∵AB=AC,∴∠EBC=∠FCB,在△BCE与△CBF中,∴△BCE≌△CBF,∴BE=CF;(2)解①成立,理由如下:作∠A的平分线交BC于点D,连接DE、DF,则∠DAF=∠DAE=∠A,∵∠1=∠2=∠A,∴∠DAF=∠DAE=∠1=∠2,∴A、B、D、F四点与A、E、D、C四点分别共圆,∴BD=DF,DE=DC,∵∠BDE=∠A,∠CDF=∠A,∴∠BDE=∠CDF,在△DEB与△DCF中,∴△DEB≌△DCF,∴BE=CF;②由上面的证明易知,△DFB与△DEC均为等腰三角形,∵∠1=∠2,∴△DFB∽△DEC,∴=,∵AD是△ABC的内角平分线,∴=,∴=.【解析】28.【答案】解∵△AED∽△ABC,∴DE∶CB=1∶2,∵BC=6,∴DE∶6=1∶2,∴DE=3.【解析】由△AED∽△ABC,相似比为1∶2,可得DE∶CB=1∶2,又由BC=6,即可求得DE的长.人教版九年级下册第二十七章相似单元练习题(含答案)一、选择题1.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是()A.=B.=C.∠A=∠ED.∠B=∠D2.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.3.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是()A.6B.8C.9D.124.如图,用放大镜将图形放大,这种图形的改变是()A.相似B.平移C.轴对称D.旋转5.下列各组图形相似的是()A.B.C.D.6.在△ABC与△A′B′C′中,有下列条件:(1)=,(2)=;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组B.2组C.3组D.4组7.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为()A.1B.C.D.28.下列说法中正确的是()①在两个边数相同的多边形中,如果各对应边成比例,那么这两个多边形相似;②两个矩形有一组邻边对应成比例,这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④9.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为()A.1∶2B.1∶4C.2∶1D.4∶110.若△ABC~△A′B′C′,面积比为1∶4,则△ABC与△A′B′C′的相似比为()A.16∶1B.1∶16C.2∶1D.1∶2二、填空题11.如图所示,C为线段AB上一点,且满足AC∶BC=2∶3,D为AB的中点,且CD=2 cm,则AB=________ cm.12.如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为(2,4),点E的坐标为(-1,2),则点P的坐标为________.13.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为__________.14.两个相似多边形,如果它们对应顶点所在的直线______________________,那么这样的两个图形叫做位似图形.15.在△ABC中,AB=6 cm,AC=5 cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE∶S四边形BCED=1∶8,则AD=__________ cm.16.如果两个相似三角形周长的比是2∶3,那么它们的相似比是____________.17.如图,AD为△ABC的中线,AE=AD,BE交AC于点F,DH∥BF,则=__________.18.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为______________尺.19.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上,以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是______________.20.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.三、解答题21.如图,AC是圆O的直径,AB、AD是圆O的弦,且AB=AD,连接BC、D C.(1)求证:△ABC≌△ADC;(2)延长AB、DC交于点E,若EC=5 cm,BC=3 cm,求四边形ABCD的面积.22.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm的竹竿的影长为60 cm;如图2:乙组:测得学校旗杆的影长为900 cm;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm,影长为300 cm.解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH与⊙O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径?23.如图,已知△ABC中,点D在边BC上,∠DAB=∠B,点E在边AC上,满足AE·CD=AD·CE.(1)求证:DE∥AB;(2)如果点F是DE延长线上一点,且BD是DF和AB的比例中项,连接AF.求证:DF=AF.24.如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.25.如图,已知:D,E分别是△ABC的AB,AC边上的点,且△ABC∽△ADE,AD∶DB=1∶3,DE=2,求BC的长.26.将一张长、宽之比为的矩形纸ABCD依次不断对折,可得到的矩形纸BCFE,AEML,GMFH,LGPN.(1)矩形BCFE,AEML,GMFH,LGPN,长和宽的比变了吗?(2)在这些矩形中,有成比例的线段吗?(3)你认为这些大小不同的矩形相似吗?27.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP 还相似吗?为什么?28.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.答案解析1.【答案】B【解析】在△ABC和△DEF中,∵==,∴△ABC∽△DEF,故选B.2.【答案】B【解析】作DK∥BC,交AE于K.∵△ABC是等边三角形,∴AB=CB=AC,∠ABC=∠C=60°,∵∠AMD=60°=∠ABM+∠BAM,∵∠ABM+∠CBD=60°,∴∠BAE=∠CBD,在△ABE和△BCD中,∴△ABE≌△BCD,∴BE=CD,CE=AD,∵BM=DM,∠DMK=∠BME,∠KDM=∠EBM,∴△MBE≌△MDK,∴BE=DK=CD,设BE=CD=DK=a,AD=EC=b,∵DK∥EC,∴=,∴=,∴a2+ab-b2=0,∴+-1=0,∴=或(舍弃),∴==,故选B.3.【答案】D【解析】∵l1∥l2∥l3,∴=,即=,∴BC=8,∴AC=AB+BC=12,故选D.4.【答案】A【解析】根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选A.5.【答案】B【解析】A.形状不同,大小不同,不符合相似定义,故错误;B.形状相同,但大小不同,符合相似定义,故正确;C.形状不同,不符合相似定义,故错误;D.形状不同,不符合相似定义,故错误.故选B.6.【答案】C【解析】共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选C.7.【答案】C【解析】∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠A=∠D=90°,∵∠E=90°,∴∠EFG+∠EGF=90°,∴∠AFB+∠DGC=90°,∵∠AFB+∠ABF=90°,∴∠ABF=∠DGC,∴△AFB∽△DCG,∴=,∵AF∶FG∶GD=3∶2∶1,∴AF=3,DG=1,∴AB2=AF·DG=3,∴AB=.故选C.8.【答案】D【解析】①虽然各对应边成比例,但是各对应角不一定相等,所以不相似,比如:所有菱形的对应边都成比例,但是它们不一定相似;②两个矩形有一组邻边对应成比例,就可以得出四条边对应成比例,并且它们的角都是90°,所以这两个矩形相似;③有一个角对应相等的平行四边形的对应边不一定成比例,所以不一定相似;④有一个角对应相等就可以得出菱形的其他角对应相等,并且菱形的对应边是成比例的,所以相似.故选D.9.【答案】A【解析】∵△ABC∽△DEF,∴△ABC的面积:△DEF的面积=△ABC与△DEF的周长之比的平方,而△ABC的面积为1,△DEF的面积为4,∴△ABC与△DEF的周长之比=1∶2.故选A.10.【答案】D【解析】∵△ABC相似△A′B′C′,面积比为1∶4,∴△ABC与△A′B′C′的相似比为1∶2.故选D.11.【答案】20【解析】∵AC∶BC=2∶3,∴设AC=2x,则BC=3x,AB=5x,∵D为AB的中点,∴AD=2.5x,∴CD=0.5x,∵CD=2 cm,∴x=4,∴AB=5x=5×4=20 cm;12.【答案】(-2,0)【解析】∵四边形OABC是矩形,点B的坐标为(2,4),∴OC=AB=4,OA=2,∴点C的坐标为(0,4),∵矩形OABC与矩形ODEF是位似图形,P是位似中心,点E的坐标为(-1,2),∴位似比为1∶2,∴OP∶AP=OD∶AB=1∶2,设OP=x,则=,解得:x=2,∴OP=2,即点P的坐标为(-2,0).13.【答案】1【解析】∵MN∥BC,∴△AMN∽△ABC,∴=,即=,∴MN=1,故答案为1.14.【答案】相交于一点【解析】两个相似多边形,如果它们对应顶点所在的直线相交于一点,那么这样的两个图形叫做位似图形.15.【答案】2或【解析】∵S△ADE∶S四边形BCED=1∶8,∴S△ADE∶S△ABC=1∶9,∴△ADE与△ABC相似比为∶1∶3,①若∠AED对应∠B时,则=,∵AC=5 cm,∴AD=cm;②当∠ADE对应∠B时,则=,∵AB=6 cm,∴AD=2 cm;16.【答案】2∶3【解析】∵两个相似三角形周长的比是2∶3,∴两个相似三角形相似比是2∶3.17.【答案】【解析】∵DH∥BF,AD为△ABC的中线,∴CH=FH,∵DH∥BF,AE=AD,∴AF=FH.∴=,18.【答案】45【解析】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴=,解得x=45.19.【答案】(4,2)或(-4,-2)【解析】位似图形如图所示,B1(4,2),B2(-4,-2),故答案为(4,2)或(-4,2).20.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.21.【答案】(1)证明∵AC是圆O的直径,∴∠ABC=∠D=90°,在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC;(2)解由(1)知Rt△ABC≌Rt△ADC,∴CD=BC=3,AD=AB,∴DE=5+3=8,∵∠EAD=∠ECB,∠D=∠EBC=90°,∴△EAD∽△ECB,∴=,∵BE==4,∴=,∴AD=6,∴四边形ABCD的面积=S△ABC+S△ACD=2××3×6=18 cm2【解析】22.【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.【解析】(1)根据同一时刻物高与影长成正比即可求出旗杆的高度;(2)先根据同一时刻物高与影长成正比求出NG的长,再连接OM,由切线的性质可知OM⊥NH,进而可得出△NMO∽△NGH,再根据其对应边成比例列出比例式,然后用半径表示出ON,进行计算即可求出OM的长.23.【答案】证明(1)∵AE·CD=AD·CE,∴=,∵∠DAB=∠B,∴AD=BD,∴=,∴DE∥AB;(2)∵BD是DF和AB的比例中项,∴BD2=DF·AB,∵AD=BD,∴AD2=DF·AB,∴==1,∵DE∥AB,∴∠ADF=∠BAD,∴△ADF∽△DBA,∴=,∴DF=AF.【解析】24.【答案】证明(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=∠BAC=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS);(2)∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠EAF=∠ABE,∵∠AEF=∠BEA,∴△AEF∽△ABE.【解析】(1)由△ABC是等边三角形,根据等边三角形的性质可得:AB=BC,∠ABD=∠C=60°,继而根据SAS即可证得△ABD≌△BCE;(2)由△ABD≌△BCE,可证得∠BAD=∠CBE,进一步得到∠EAF=∠ABE,然后根据有两角对应相等的三角形相似,即可得△AEF∽△ABE.25.【答案】解∵AD∶DB=1∶3,∴AD∶AB=1∶4,∵△ABC∽△ADE,∴AD∶AB=DE∶BC,∵DE=2,∴BC=8.【解析】先根据AD∶DB=1∶3,变形得到AD∶AB的值,再根据相似三角形对应边成比例求解即可.26.【答案】解(1)矩形BCFE,AEML,GMFH,LGPN,长和宽的比不变;(2)在这些矩形中,有成比例的线段.(3)这些大小不同的矩形相似.【解析】(1)所有矩形的长、宽之比为;(2)第一个矩形的宽为对折后矩形的长,则得到成比例的线段;(3)根据相似多边形的定义回答.27.【答案】(1)证明如图1,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∴∠BPG+∠CPF=135°,在△BPG中,∵∠B=45°,∴∠BPG+∠BGP=135°,∴∠BGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP;(2)解△PBG与△FCP相似.理由如下:如图2,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∵∠BGP=∠C+∠CPG=45°+∠CAG,∠CPF=∠FPG+∠CAG=45°+∠CAG,∴∠AGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP.【解析】(1)如图1,先根据等腰直角三角形的性质,得∠B=∠C=∠DPE=45°,再利用平角定义得到∠BPG+∠CPF=135°,利用三角形内角和定理得到∠BPG+∠BGP=135°,根据等量代换得∠BGP=∠CPF,加上∠B=∠C,于是根据有两组角对应相等的两个三角形相似即可得到结论;(2)如图2,由于∠B=∠C=∠DPE=45°,利用三角形外角性质,得∠BGP=∠C+∠CPG=45°+∠CAG,而∠CPF=45°+∠CAG,所以∠AGP=∠CPF,加上∠B=∠C,于是可判断△PBG∽△FCP.28.【答案】证明如图所示:∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∴∠B=∠C=45°,∴∠1+∠2=180°-∠B=135°,∵∠ADE=45°,∴∠2+∠3=135°,∴∠1=∠3,∵∠B=∠C,∴△ABD∽△DCE.【解析】先判断△ABC为等腰直角三角形得到∠B=∠C=45°,再利用三角形内角和得到∠1+∠2=135°,利用平角定义得到∠2+∠3=135°,则∠1=∠3,于是可根据有两角对应相等的两个三角形相似得到结论.人教版九年级下册第二十七章《相似》单元测试(含答案)一、选择题1、如图,AD∥BE∥CF,直线m,n与这三条平行线分别交于点A、B、C和点D、E、F,已知AB=5,BC=10,DE=4,则EF的长为()A.12.5 B.12 C.8 D.42、已知线段AB=4,点P是它的黄金分割点,AP>PB,则PB=()A. B. C.2﹣4 D.6﹣23、已知=,那么的值为()A. B. C. D.4、矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣15、正方形ABCD的边长为4,P为BC边上的动点,连接AP,作PQ⊥PA交CD边于点Q.当点P从B运动到C时,线段AQ的中点M所经过的路径长()A.2 B.1 C.4 D.6、如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. B. C. D.7、如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:98、如图,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△DAE的是()A.∠B=∠D B. = C.AD∥BC D.∠BAC=∠D9、如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是()A. B. C. D.二、填空题10、已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= .11、在比例尺为1:1000 000的地图上,量得两地间的距离为3厘米,那么两地间的实际距离是__________千米.12、如图,△ABC内接于⊙O,AB=BC,直径MN⊥BC于点D,与AC边相交于点E,若⊙O的半径为2,OE=2,则OD的长为.13、如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,A P= .14、如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,四边形DEFB是菱形,AB=6,BC=4,那么AD= .15、如图,点O为四边形ABCD与四边形A1B1C1D1的位似中心,OA1=3OA,若四边形ABCD的面积为5,则四边形A1B1C1D1的面积为.16、如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5),若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.17、如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE= .三、简答题18、如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(﹣2,3),将点O,A,B,C的横坐标、纵坐标都乘以﹣2.(1)画出以变化后的四个点为顶点的四边形;(2)由(1)得到的四边形与四边形OABC位似吗?如果位似,指出位似中心及与原图形的相似比.19、如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.20、如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求证:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的长.21、已知,如图,Rt△ABC中∠B=90°,Rt△DEF中∠E=90°,OF=OC,AB=6,BF=2,CE=8,CA=0,DE=15.(1)求证:△ABC∽△DEF;(2)求线段DF,FC的长.22、我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1) 等边三角形“內似线”的条数为;(2) 如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3) 在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF的长.参考答案一、选择题1、C解:∵AD∥BE∥CF,∴=,即=,解得,EF=8,2、D解:∵点P是线段AB的黄金分割点,AP>PB,AB=4,∴PB=4×=6﹣2;3、B解:∵=,∴设a=2k,则b=3k,则原式==.4、D解:∵宽与长的比是的矩形叫做黄金矩形,∴=,∴a=2,b=﹣1,5、B解:如图,连接AC,设AC的中点为O′.设BP的长为xcm,CQ的长为ycm.∵四边形ABCD是正方形,∴∠B=∠C=90°∵PQ⊥AP,∴∠APB+∠QPC=90°∠APB+∠BAP=90°∴∠BAP=∠QPC∴△ABP∽△PCQ∴=,即=,∴y=﹣x2+x=﹣(x﹣2)2+1(0<x<4);∴当x=2时,y有最大值1cm易知点M的运动轨迹是M→O→M,CQ最大时,MO=CQ=,∴点M的运动轨迹的路径的长为2OM=1,6、D解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴,A错误;∴,C错误;∴,D正确;不能得出,B错误;7、A解:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴=8、A解:∵∠C=∠AED=90°,∠B=∠D,∴△ABC∽△ADE,故A选项不能证明相似;∵∠C=∠AED=90°,,∴,即sin∠B=sin∠DAE,∴∠B=∠DAE,∴△ABC∽△DAE,故选项B可以证明相似;∵AD∥BC,∴∠B=∠DAE,∵∠C=∠AED=90°,∴△ABC∽△DAE,故选项C可以证明相似;∵∠BAC=∠D,∠C=∠AED=90°,∴△ABC∽△DAE,故选项D可以证明相似;9、C二、填空题10、6.解:若b是a、c的比例中项,即b2=ac.则b===6.11、30 .【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,可知实际距离=图上距离÷比例尺.【解答】解:根据题意,3÷=3000 000厘米=30千米.即实际距离是30千米.故答案为:30.【点评】本题考查了比例线段的定义及比例尺,属于基础题型,比较简单.12、2.【解答】解:连接BO并延长交AC于F,如图,∵BA=BC,∴=,∴BF⊥AC,∵直径MN⊥BC,∴BD=CD,∵∠BOD=∠EOF,∴Rt△BOD∽Rt△EOF,∴===,设OF=x,则OD=x,∵∠DBO=∠DEC,∴Rt△DBO∽Rt△DEC,∴=,即=,而BD=CD,∴DB2=x(x+2)=3x2+2x,在Rt△OBD中,3x2+2x+3x2=(2)2,解得x1=,x2=﹣(舍去),∴OD=x=2.故答案为13、3【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.14、;解:∵四边形DEFB是菱形,∴BD=BF=DE,DE∥BF,∴△ADE∽△ABC,∴,即,解得:AD=15、45解:∵点O为四边形ABCD与四边形A1B1C1D1的位似中心,OA1=3OA,∴四边形ABCD与四边形A1B1C1D1的相似比为:1:3,∴四边形ABCD与四边形A1B1C1D1的面积比为:1:9,∵四边形ABCD的面积为5,∴四边形A1B1C1D1的面积为:5×9=45.16、(3,4)或(0,4).【解答】解:设直线AC的解析式为:y=kx+b,∵△ABC的顶点坐标分别为(4,0),(8,2),(6,4),∴,解得:,∴直线AC的解析式为:y=2x﹣8,同理可得:直线AB的解析式为:y=x﹣2,直线BC的解析式为:y=﹣x+10,∵△A1B1C1的两个顶点的坐标为(1,3),(2,5),∴过这两点的直线为:y=2x+1,∴过这两点的直线与直线AC平行,①若A的对应点为A1(1,3),C的对应点为C1(2,5),则B1C1∥BC,B1A1∥BA,设直线B1C1的解析式为y=﹣x+a,直线B1A1的解析式为y=x+b,∴﹣2+a=5,+b=3,解得:a=7,b=,∴直线B1C1的解析式为y=﹣x+7,直线B1A1的解析式为y=x+,则直线B1C1与直线B1A1的交点为:(3,4);②若C的对应点为A1(1,3),A的对应点为C1(2,5),则B1A1∥BC,B1C1∥BA,设直线B1C1的解析式为y=x+c,直线B1A1的解析式为y=﹣x+d,∴×2+c=5,﹣1+d=3,解得:c=4,d=4,∴直线B1C1的解析式为y=x+4,直线B1A1的解析式为y=﹣x+4,则直线B1C1与直线B1A1的交点为:(0,4).∴△A1B1C1的第三个顶点的坐标为(3,4)或(0,4).。