高中数学等差数列性质总结大全

合集下载

高中数学必修五-等差数列

高中数学必修五-等差数列

等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。

高中数学必修5等差数列知识点总结和题型归纳

高中数学必修5等差数列知识点总结和题型归纳

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。

等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。

—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。

≤d<3 D.<d≤36、。

在数列中,,且对任意大于1的正整数,点在直上,则=_____________。

等差数列的性质总结

等差数列的性质总结

等差数列的性质总结等差数列是数学中非常重要的概念,它在数学和现实生活中都有着广泛的应用。

在学习等差数列的性质时,我们需要了解它的一些基本特点和规律,这样才能更好地理解和运用等差数列。

首先,等差数列是指一个数列中,从第二个数开始,每个数与它的前一个数的差都相等。

这个相等的差值就是等差数列的公差,通常用字母d表示。

例如,1,3,5,7,9就是一个公差为2的等差数列。

其次,等差数列的通项公式是非常重要的。

通项公式可以用来表示等差数列中任意一项的值,它的一般形式为,an=a1+(n-1)d,其中an表示等差数列中的第n项,a1表示第一项,d表示公差,n表示项数。

通过通项公式,我们可以快速计算等差数列中任意一项的值,也可以方便地推导等差数列的各种性质。

另外,等差数列的性质还包括求和公式。

等差数列的前n项和可以用一个简洁的公式来表示,Sn=(a1+an)n/2,其中Sn表示前n项和,a1表示第一项,an表示第n项,n表示项数。

这个公式在实际问题中有着重要的应用,可以帮助我们快速计算等差数列的和。

此外,等差数列还有一些重要的性质,比如任意项的平均值等于中间项的值,等差数列的性质还包括它的性质和特点。

等差数列的性质还包括它的性质和特点。

等差数列中任意三项可以构成一个等差数列,等差数列的性质还包括它的性质和特点。

等差数列中任意三项可以构成一个等差数列,这个性质在一些证明问题中经常会用到。

总的来说,等差数列是一个非常重要的数学概念,它有着许多重要的性质和规律。

通过学习等差数列的性质,我们可以更好地理解和运用等差数列,也可以更好地解决一些与等差数列相关的数学问题。

希望通过本文的总结,大家对等差数列的性质有了更清晰的认识,也能够更好地应用等差数列的性质来解决实际问题。

高中数学数列常用结论

高中数学数列常用结论

高中数学数列常用结论
1.等差数列的通项公式:设等差数列首项为a1,公差为d,则其通项公式为an=a1+(n-1)d。

2. 等差数列的前n项和公式:设等差数列首项为a1,公差为d,第n项为an,则前n项和公式为Sn=n/2[2a1+(n-1)d]。

3. 等比数列的通项公式:设等比数列首项为a1,公比为q,则其通项公式为an=a1q^(n-1)。

4. 等比数列的前n项和公式:设等比数列首项为a1,公比为q,第n项为an,则前n项和公式为Sn=a1(1-q^n)/(1-q)。

5. 等差数列求和公式的推导:用首项与末项乘以项数的结果相加的方法进行推导。

6. 等比数列求和公式的推导:用等比数列的通项公式与求和公式进行推导。

7. 等差数列的性质:公差为d的等差数列,第n项与第(n+1)项的差为d,相邻项的平均数为(a_n+a_(n+1))/2。

8. 等比数列的性质:公比为q的等比数列,第n项与第(n+1)项的比为q,相邻项的平均数为√(a_n×a_(n+1))。

9. 通项公式的应用:可以求出数列的任意一项。

10. 前n项和公式的应用:可以求出数列前n项的和,便于计算。

11. 数列的求和公式的应用:可以求出一些特殊数列的和,如等差数列、等比数列、调和数列等。

12. 数列的递推公式:可以通过已知的前几项推导出数列的后续
项。

13. 数列的极限:数列的极限是指当项数趋近于无穷大时,数列的值趋近于一个定值。

高考数学中的等差数列

高考数学中的等差数列

高考数学中的等差数列数学作为高中学习的必修课程,对于每一个学生来说都是一道难以逾越的高山。

而在数学知识体系之中,等差数列可谓是非常重要的一部分。

在高考数学中,等差数列的考察相对比较频繁,因此掌握等差数列的特点以及解题方法,不仅可以提高数学成绩,更有助于提升数学思维能力。

一、什么是等差数列等差数列是指一个数列中,任意两项之间的差都相等,这个差值叫做公差。

例如,1,3,5,7,9...就是一个公差为2的等差数列,公差为2可以表示为d=2,而数列的首项则是a1=1。

二、等差数列的性质1. 公差的计算公差d可以通过数列中前两项的差得出,即d=a2-a1,或者通过数列中任意两项之差得出。

2. 等差数列的通项公式等差数列的通项公式是指可以通过已知等差数列的首项和公差,来计算出数列中任意一项的数值。

等差数列的通项公式为an=a1+(n-1)d。

3. 总和公式等差数列的总和公式是指可以通过已知等差数列的首项和公差,以及数列项数来计算数列的总和。

等差数列的总和公式为S=n(a1+an)/2。

三、等差数列的解题方法1. 求等差数列中的某一项已知等差数列的首项a1和公差d,以及要求第n项,那么根据等差数列的通项公式an=a1+(n-1)d,就可以求出任意一项的数值。

例如,已知等差数列的首项为3,公差为5,要求该数列中的第8项的值,那么a8=3+(8-1)×5=43,因此这个等差数列中的第8项是43。

2. 求等差数列的和已知等差数列的首项和公差,以及数列的项数n,那么根据等差数列的总和公式S=n(a1+an)/2,就可以求出该等差数列的总和。

例如,已知等差数列的首项为2,公差为3,数列的项数为10,那么这个等差数列的总和为S=10(2+29)/2=155。

四、等差数列的应用等差数列在实际生活中有着广泛的应用。

其中,最为常见的应用就是计算数列中每个数的平均值。

当我们需要计算一组数据的平均数时,如果这组数据是等差数列,那么我们可以根据等差数列的通项公式和总和公式,直接计算出这组数据的平均值。

高三数学数列知识点总结归纳

高三数学数列知识点总结归纳

高三数学数列知识点总结归纳数列作为数学中的重要概念,在高中数学中占据着重要的地位。

掌握数列的相关知识点是高三学生成功应对数学考试的关键。

本文将对高三数学数列知识点进行总结归纳,帮助同学们更好地理解和应用数列知识。

一、等差数列等差数列是高中数学中最常见的数列类型之一。

等差数列的特点是,数列中每两个相邻的数之间的差都相等,这个差被称为公差。

1.通项公式等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

2.前n项和公式等差数列的前n项和公式为:Sn = [n/2] * (a1 + an),其中Sn表示前n项和,[]表示取整函数。

二、等比数列等比数列是另一种常见的数列类型。

等比数列的特点是,数列中每两个相邻的数之间的比值都相等,这个比值被称为公比。

1.通项公式等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。

2.前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。

三、数列的性质与判断除了上述常见的等差数列和等比数列,数列还有一些重要的性质,学生们需要掌握如下内容:1.递推公式数列的递推公式是指通过前一项或多项来求得下一项的公式。

对于等差数列和等比数列而言,递推公式分别为an = an-1 + d和an = an-1 * r。

2.数列的有界性数列的有界性是指数列中的数是否有上界或下界。

有界数列是指存在上界或下界的数列,无界数列是指没有上界或下界的数列。

3.数列的单调性数列的单调性是指数列中的数的排列顺序是否单调递增或单调递减。

如果数列中的数依次递增,则称该数列是递增数列;如果数列中的数依次递减,则称该数列是递减数列。

四、数列的应用数列在实际问题中有广泛的应用,以下是其中一些常见的应用场景:1.复利问题等比数列可应用于复利问题中,比如银行存款利息的计算等。

(完整版)等差数列知识点总结

(完整版)等差数列知识点总结

(完整版)等差数列知识点总结1. 等差数列的定义等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都相等的数列。

2. 等差数列的通项公式设等差数列的首项为 a1,公差为 d,则第 n 项的通项公式为 an = a1 + (n - 1) * d。

3. 等差数列的前 n 项和公式设等差数列的首项为 a1,末项为 an,项数为 n,公差为 d,则前 n 项的和公式为 Sn = n * (a1 + an) / 2。

4. 判断数列是否为等差数列- 检查数列中连续两项的差是否相等,即是否满足等差数列的定义。

- 可以通过计算数列的前 n 项和是否满足 Sn = n * (a1 + an) / 2 来判断。

5. 求等差数列的公差设等差数列的首项为 a1,第二项为 a2,则公差可以通过计算差值 d = a2 - a1 获得。

6. 求等差数列的项数设等差数列的首项为 a1,末项为 an,公差为 d,则项数可以通过以下公式计算:n = (an - a1 + d) / d。

7. 求等差数列的首项设等差数列的第一项为 a1,公差为 d,已知项数为 n,末项为an,则首项可以通过以下公式计算:a1 = an - (n - 1) * d。

8. 求等差数列的末项设等差数列的首项为 a1,公差为 d,已知项数为 n,末项可以通过以下公式计算:an = a1 + (n - 1) * d。

9. 等差数列的性质- 等差数列的任意三项成等差数列。

- 等差数列中的取任意几项可以组成一个等差数列。

- 等差数列的平均数等于首项与末项的平均数。

10. 应用场景等差数列的应用非常广泛,常见的应用场景包括:- 数学题中的数列问题,如求和、推导等。

- 统计学中的数据分析,如平均数、标准差等。

- 金融学中的投资计算,如等额本息还款、定期存款等。

- 工程学中的时间序列分析,如温度变化、电压波动等。

以上是等差数列的一些重要知识点总结,希望能对你有所帮助!。

高中数学必修5等差数列知识点总结和题型归纳

高中数学必修5等差数列知识点总结和题型归纳

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S aS a +=奇偶.②若项数为()*21n n -∈N,则()2121n n Sn a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .523.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( )A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 2 5、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n 项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( ) A. 0991>+a a B. 0991<+a a C. 0991=+a a D. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S ,则=n 。

完整版等差数列知识点总结

完整版等差数列知识点总结

完整版等差数列知识点总结等差数列是数学中的重要概念,它在各个领域都有广泛的应用。

本文将对等差数列的定义、通项公式、前n项和等差数列的性质等知识点进行全面总结。

一、等差数列的定义等差数列是指一个数列中相邻两项之差都相等的数列。

数列中的每一项我们称之为等差数列的项,其中第一项通常用a1表示,等差用d表示。

例如,数列2,5,8,11,14就是一个等差数列,其中a1=2,d=3。

二、等差数列的通项公式等差数列通项公式是指根据等差数列的首项和公差,求出任意一项的求值公式。

通项公式的推导有多种方法,这里我们介绍其中一种常用的方法。

设等差数列的首项是a1,公差是d,第n项是an,则通项公式可以表示为:an = a1 + (n-1)d根据这个公式,我们可以轻松地求得等差数列中任意一项的值。

三、等差数列前n项和公式在等差数列中,求前n项和也是一个常见的问题。

我们可以通过求和公式来解决这个问题。

设等差数列的首项是a1,公差是d,第n项是an,前n项和用Sn表示,则前n项和公式可以表示为:Sn = (n/2)(a1 + an)利用前n项和公式,我们可以方便地求得等差数列的前n项和。

四、等差数列的性质等差数列具有一些特点和性质,我们在解题过程中可以利用它们来简化计算。

1. 通项差是公差的倍数:an - an-1 = d这个性质意味着等差数列中,相邻两项之差都是公差的倍数。

2. 对称性:an = a1 + (n-1)d,an+k = a1 + (n+k-1)d根据等差数列的通项公式,我们可以发现等差数列具有对称性。

一个等差数列中的第k项和倒数第k项之和等于第一项与最后一项之和。

3. 求和公式与项数有关:Sn = (n/2)(a1 + an)求和公式中的项数n对和值Sn有影响,这个公式可以帮助我们快速计算一个等差数列的前n项和。

五、等差数列的应用领域等差数列在数学中有广泛的应用,它们不仅仅出现在数学题目中,还出现在其他许多领域。

高中数学知识点总结等差数列与等比数列的求和性质

高中数学知识点总结等差数列与等比数列的求和性质

高中数学知识点总结等差数列与等比数列的求和性质等差数列(Arithmetic Progression)和等比数列(Geometric Progression)是高中数学中常见的数列类型,它们在数学和实际问题的解决中起到了重要的作用。

本文将对等差数列和等比数列的求和性质进行总结和讨论。

一、等差数列的求和性质等差数列是指一个数列中每个相邻的两个数之差都相等的数列。

设等差数列的首项为a₁,公差为d,第n项为aₙ,则该数列的通项公式为:aₙ = a₁ + (n-1)d等差数列的前n项和(即等差数列的求和)可以通过以下公式来计算:Sₙ = (a₁ + aₙ)n/2其中,Sₙ表示前n项和。

例如,若我们有等差数列:2,4,6,8,10,则首项a₁为2,公差d为2。

若我们要计算前5项的和,则利用公式可以得到:S₅ = (2 + 10) × 5/2 = 12 × 5/2 = 30所以,该等差数列的前5项和为30。

二、等比数列的求和性质等比数列是指一个数列中每个相邻的两个数之比都相等的数列。

设等比数列的首项为a₁,公比为r,第n项为aₙ,则该数列的通项公式为:aₙ = a₁ × r^(n-1)等比数列的前n项和可以通过以下公式来计算:Sₙ = a₁ × (1 - rⁿ)/(1 - r)其中,Sₙ表示前n项和。

例如,若我们有等比数列:3,6,12,24,48,则首项a₁为3,公比r为2。

若我们要计算前4项的和,则利用公式可以得到:S₄ = 3 × (1 - 2⁴)/(1 - 2) = 3 × (1 - 16)/(-1) = 3 × (-15) = -45所以,该等比数列的前4项和为-45。

以上就是等差数列和等比数列的求和性质的总结。

这些性质在解决数学问题时非常有用,可以帮助我们计算数列的和,从而更好地理解和应用这些数列。

通过掌握这些概念和公式,我们能够更加高效地解决与等差数列和等比数列相关的问题。

高中数学:等差数列、等比数列知识点总结

高中数学:等差数列、等比数列知识点总结

高中数学:等差数列、等比数列知识点总结数列基础知识归纳等差数列定义与性质定义:an+1-an=d (d为常数),an= a1+(n-1)d等差中项:x , A , y成等差数列: 2A=x+y前n项和:性质:{an}是等差数列(1)若m+n=p+q,则am+an=ap+aq ;(2)数列{a2n-1},{a2n},{a2n+1}仍为等差数列,Sn,S2n-Sn,S3n-S2n,等仍为等差数列,公差为n2d ;(3)若三个成等差数列,可设为a-d,a,a+d ;(4)若an,bn是等差数列,且前n项和分别为Sn,Tn,则(5){an}为等差数列,则Sn=an2+bn(a,b为常数,是关于n的常数项为0的二次函数),Sn的最值可求二次函数Sn=an2+bn的最值;或者求出{an}中的正、负分界项,即:当a1>0,d<0,解不等式组:可得Sn达到最大值时的n值。

当a1<0,d>0,解不等式组:可得Sn达到最小值时的n值。

(6)项数为偶数2n的等差数列{an},有(7)项数为偶数2n-1的等差数列{an},有等比数列定义与性质性质:{an}是等比数列(1) 若m+n=p+q,则am•an=ap•aq(2) Sn , S2n-Sn , S3n-S2n , 等仍为等比数列,公比为qn注意:由Sn求an时应注意什么?n=1时,a1=S1 ;n≥2时,an=S1-Sn-1求数列通项公式的常用方法求差(商)法叠乘法等差型递推公式答案:等比型递推公式倒数法▍▍ ▍▍。

等差数列知识点总结

等差数列知识点总结

等差数列知识点总结一、等差数列的定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

这个常数叫做等差数列的公差,通常用字母 d 表示。

例如:数列 2,4,6,8,10就是一个公差为 2 的等差数列。

二、等差数列的通项公式等差数列的通项公式为:an = a1 +(n 1)d ,其中 an 表示第 n 项的值,a1 表示首项,n 表示项数,d 表示公差。

通项公式的推导:第 2 项:a2 = a1 + d第 3 项:a3 = a2 + d =(a1 + d) + d = a1 + 2d第 4 项:a4 = a3 + d =(a1 + 2d) + d = a1 + 3d第 n 项:an = a1 +(n 1)d通过通项公式,我们可以根据首项、公差和项数求出任意一项的值。

三、等差数列的性质1、若 m,n,p,q ∈ N+ ,且 m + n = p + q ,则 am + an = ap + aq 。

例如:在等差数列中,若 a3 + a8 = 10 ,a5 + a6 也等于 10 。

2、若数列{an}是等差数列,公差为 d ,则 ak,ak + m,ak + 2m,(k,m ∈ N+ )仍为等差数列,且公差为 md 。

3、若数列{an}是等差数列,Sn 表示前 n 项和,则 Sk,S2k Sk,S3k S2k ,仍为等差数列。

4、若数列{an},{bn}均为等差数列,公差分别为 d1 ,d2 ,则数列{pan + qbn}(p,q 为常数)仍为等差数列,且公差为 pd1 + qd2 。

四、等差数列的前 n 项和公式等差数列的前 n 项和公式为:Sn = n(a1 + an) / 2 或 Sn = na1 +n(n 1)d / 2 。

前 n 项和公式的推导:Sn = a1 + a2 + a3 ++ an将通项公式 an = a1 +(n 1)d 代入上式:Sn = a1 +(a1 + d) +(a1 + 2d) ++ a1 +(n 1)d将上式倒序相加:Sn = a1 +(n 1)d + a1 +(n 2)d ++(a1 + d) + a12Sn = 2a1 +(n 1)d + 2a1 +(n 1)d ++ 2a1 +(n 1)d(共 n 个)2Sn = n2a1 +(n 1)dSn = n(a1 + an) / 2又因为 an = a1 +(n 1)d ,所以 Sn = na1 + n(n 1)d / 2 。

数列高考知识点大全

数列高考知识点大全

数列高考知识点大全数列是高中数学中的一个重要内容,也是高考中经常出现的考点之一。

掌握好数列的相关知识点,对于解题和提高数学分数都十分关键。

本文将对数列在高考中的各个知识点进行全面总结和归纳,以帮助考生快速复习和掌握相关内容。

一、等差数列等差数列是指数列中相邻两项之差都相等的数列。

在高考中,涉及到等差数列的考点有:1. 等差数列的通项公式及性质;2. 等差数列的前n项和公式及性质;3. 等差数列的性质和应用,如等差数列的中项、公差等。

二、等比数列等比数列是指数列中相邻两项之比都相等的数列。

在高考中,涉及到等比数列的考点有:1. 等比数列的通项公式及性质;2. 等比数列的前n项和公式及性质;3. 等比数列的性质和应用,如等比数列的求和、常用等比数列问题的解题方法等。

三、斐波那契数列斐波那契数列是指数列中从第三项开始,每一项都是前两项之和的数列。

在高考中,涉及到斐波那契数列的考点有:1. 斐波那契数列的定义和性质;2. 斐波那契数列的求解和应用,如斐波那契数列的递推公式、斐波那契数列与黄金分割、应用题等。

四、等差数列与等比数列的联立等差数列与等比数列的联立是指在题目中同时涉及到等差数列和等比数列的解题方法。

在高考中,涉及到等差数列与等比数列的联立的考点有:1. 根据已知条件建立等差数列或等比数列的方程;2. 利用等差数列和等比数列的性质求解方程组;3. 应用等差数列与等比数列的性质解答应用题。

五、数列的极限数列的极限是指随着项数趋于无穷大,数列的值趋于稳定的一个值。

在高考中,涉及到数列的极限的考点有:1. 数列极限的定义和性质;2. 数列极限的判敛方法,如夹逼定理、单调有界原理等;3. 应用数列极限解答极限计算题。

六、数列的应用数列的应用是指将数列的相关知识点应用于实际问题中。

在高考中,涉及到数列的应用的考点有:1. 利用数列解决经典问题,如数列求和问题、数列递推问题等;2. 利用数列建立模型,解决实际问题;3. 数列应用题的解题思路和方法。

等差数列知识点归纳总结

等差数列知识点归纳总结

等差数列知识点归纳总结
等差数列是一种非常重要的数学概念,它广泛应用于几乎所有数学分支,包括代数、统计、优化等。

本文将介绍等差数列的基本概念、定义、性质及应用,以此对此知识点进行归纳总结。

一、等差数列的定义
等差数列是一种特殊的的数列,它的元素保持一定的差值相等,例如: 1,4,7,10...,元素之间的差值都为3.
二、等差数列的性质
(1)等差数列的前n项和
若等差数列的前n项和为Sn,公差为d,则Sn = n(a1 + an) / 2 = n(a1 + a1 + (n 1)d) / 2 = n(2a1 + (n 1)d) / 2
(2)等差数列的等比数列
如果一个数列所有元素都是正数,且满足等比数列的性质,则称这个数列为等比数列。

例如:2 ,4 ,8, 16...,元素之间的比值都为
2.
三、等差数列的应用
(1)数学问题
等差数列在解决数学问题时很有用,可以用来计算总和、平均数和对数等。

(2)统计分析
等差数列也可以用于统计分析,可以用来判断数据的变化趋势,并进行回归分析。

(3)其他
等差数列也可以在其它领域有用。

例如,它可以用来帮助用户在购物时进行折扣,并可以帮助用户在预测股票价格变化时做出正确的决策。

综上所述,等差数列是一种非常重要的数学概念,它广泛应用在几乎所有数学分支,具有明显的规律性,可以被用来解决各种数学问题,并可以用于统计分析和其他应用。

因此,掌握等差数列的相关知识是数学学习中必不可少的一部分。

等差数列的性质总结

等差数列的性质总结

等差数列的性质总结等差数列是数学中常见的一种数列,其中的每个数与前一个数的差都相等,该差值被称为公差。

等差数列具有一些特性和性质,本文将对这些性质进行总结。

1. 等差数列的定义等差数列是指数列中每个数与前一个数之差都相等的数列。

假设数列的首项为a1,公差为d,则第n个数项可以表示为an = a1 + (n-1)d。

2. 等差数列的通项公式对于等差数列而言,我们可以通过首项和公差来计算任意项。

等差数列的通项公式可以表示为an = a1 + (n-1)d。

3. 等差数列的前n项和等差数列的前n项和可以通过以下公式来计算:Sn = (n/2)(a1 + an)。

4. 等差数列前n项和的推导过程我们可以通过推导来得到等差数列前n项和的公式。

假设等差数列的首项为a1,公差为d,前n项和为Sn。

首先,我们可以将等差数列按照从首项到第n项的顺序排列如下:a1, a1+d, a1+2d, …, a1+(n-1)d接下来,我们将这些项与相应的首项a1相加,得到:a1+a1+d+a1+2d+…+a1+(n-1)d根据加法的结合律,可以将上式简化为:n a1 + (1+2+…+(n-1))d我们知道1+2+…+(n-1)是等差数列的前n-1项和,可以使用前n-1项和公式来表示。

即:n*a1 + ((n-1)/2)((n-1)d)将上式整理一下,得到:n a1 + (n-1)d/2这就是等差数列前n项和的公式。

5. 等差数列的性质5.1 通项公式的推导由于等差数列具有公差的性质,我们可以通过递推的方式得到通项公式。

假设等差数列的首项为a1,公差为d,要推导第n个数项an的公式。

首先,我们可以得到前两项的差值:a2 - a1 = d。

进一步,我们可以得到第三项与前两项的差值:a3 - a2 = d。

继续以此类推,我们可以得到第n个数项与前n-1个数项的差值:an - a(n-1) = d。

将上述等式整理一下,得到:an = a(n-1) + d由此可以看出,等差数列的通项公式可以通过递推得到,并且与公差d有关。

等差数列的性质总结

等差数列的性质总结

等差数列的性质总结在数学中,等差数列是指一个数列中的每个元素与其前一个元素的差值都是相等的。

等差数列的性质广泛应用于各个领域,而且在数学的学习和研究中也占有重要地位。

本文将对等差数列的一些性质进行总结和探讨,希望能够加深读者对等差数列的理解和掌握。

1. 等差数列的通项公式等差数列的通项公式是等差数列中最为基本和重要的性质之一。

通项公式的一般形式为:an = a1 + (n - 1)d,其中an表示数列中的第n个数,a1表示数列中的第一个数,d表示公差(即相邻两个数之间的差值)。

通项公式可以方便我们计算等差数列中任意一项的数值,从而更好地理解和分析等差数列的规律。

2. 等差数列的求和公式等差数列的求和公式也是等差数列的重要性质之一。

求和公式的一般形式为:Sn = (n/2)(a1 + an),其中Sn表示等差数列的前n项和。

求和公式的推导可以通过两种方法:一种是利用等差数列的首项和末项的平均值得出,另一种是通过等差数列的通项公式进行推导。

掌握了求和公式,我们可以迅速计算等差数列的前n项和,这在实际问题的求解中非常有用。

3. 等差数列的性质关于公差公差是等差数列中非常重要的概念,它决定了等差数列的增长规律。

首先,如果公差d大于零,则等差数列是递增的;如果公差d小于零,则等差数列是递减的;如果公差d等于零,则等差数列是恒等的(即所有的数值都相等)。

其次,公差d的绝对值越大,等差数列的增长速度越快;反之,绝对值越小,增长速度越慢。

在实际问题中,我们可以根据公差的正负和大小推断出等差数列的特性。

4. 等差中项数的奇偶性对于等差数列中的中项数,可以根据等差数列的项数进行分类。

当等差数列的项数n为奇数时,中项数为(n+1)/2;当项数n为偶数时,中项数是n/2和n/2+1两个数之间的平均值。

这一性质可以帮助我们快速确定等差数列中的中项数,从而更方便地处理特定问题。

综上所述,等差数列作为数学中基础且常见的概念之一,具有许多重要的性质。

(完整版)高中数学等差数列性质总结大全

(完整版)高中数学等差数列性质总结大全

等差数列的性质总结1. 等差数列的定 : a n a n 1 d ( d 常数)( n 2 );2.等差数列通 公式:a n a 1 (n 1)ddn a 1 d (n N * ) ,首 : a 1 ,公差 :d ,末 : a n实行:a na m( n m)d .从而 da nam ; n m3.等差中(1)若是 a , A , b 成等差数列,那么A 叫做 a 与 b 的等差中 .即: Aa b 或 2 A a b2(2)等差中 :数列 a n 是等差数列2a na n-1an1 (n2) 2a n 1a nan 24.等差数列的前n 和公式:S nn( a 1 a n ) na 1 n(n 1) dd n 2 (a 1 1 d)n An 2 Bn22 2 2(其中 A 、 B 是常数,所以当 d ≠ 0 , S n 是关于 n 的二次式且常数 0)特 地,当 数 奇数2n 1 , a n 1 是 数2n+1 的等差数列的中S2n2n 1a 1a2 n 12n 1 a n 1 ( 数 奇数的等差数列的各 和等于 数乘以中 )125.等差数列的判断方法 (1) 定 法:若 a n a n 1 d 或 a n 1 a nd ( 常数 n N )a n 是等差数列.(2) 等差中 :数列a n 是等差数列2a na n -1 a n 1 (n2)2a n1a na n 2 .⑶数列 a n 是等差数列 a nkn b (其中 k, b 是常数)。

(4)数列 a n 是等差数列S nAn 2 Bn , (其中 A 、 B 是常数)。

6.等差数列的 明方法定 法:若 a nan 1d 或 a n 1 a nd ( 常数 nN )a n 是等差数列.7. 提示:( 1)等差数列的通 公式及前n 和公式中,涉及到5 个元素: a1、 d 、 n 、 a n 及 S n,其中a、 d称作1基本元素。

只要已知5 个元素中的任意3 个,即可求出其余2 个,即知3 求 2。

高中数学等差数列知识点总结

高中数学等差数列知识点总结

高中数学等差数列知识点总结高中数学等差数列知识点总结等差数列知识点1.定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

同样为数列的等比数列的性质与等差数列也有相通之处。

2.数列为等差数列的充要条件是:数列的前n项和S 可以写成S=an+bn的形式(其中a、b为常数)。

3.性质1:公差为d的等差数列,各项同乘以常数k 所得数列仍是等差数列,其公差为kd。

4.性质2:公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。

5.性质3:当公差dgt;0时,等差数列中的数随项数的增大而增大;当dlt;0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。

同步练习题1.在等差数列{an}中,a1=21,a7=18,则公差d=( )A.12B.13C.-12D.-13解析:选C.∵a7=a1+(7-1)d=21+6d=18,∴d=-12.2.在等差数列{an}中,a2=5,a6=17,则a14=( )A.45B.41C.39D.37解析:选B.a6=a2+(6-2)d=5+4d=17,解得d=3.所以a14=a2+(14-2)d=5+12×3=41.3.已知数列{an}对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上,则{an}为( )A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列解析:选A.an=2n+1,∴an+1-an=2,应选A.4.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是( )A.2B.3C.6D.9解析:选B.由题意得m+2n=82m+n=10,∴m+n=6,∴m、n的等差中项为3.5.下面数列中,是等差数列的有( )①4,5,6,7,8,…②3,0,-3,0,-6,…③0,0,0,0,…④110,210,310,410,…A.1个B.2个C.3个D.4个解析:选C.利用等差数列的定义验证可知①、③、④是等差数列.知识点是同学们提高总体学习成绩的重要途径,等差数列知识点为大家巩固相关重点,让我们一起学习,一起进步吧!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列的性质总结
1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );
2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a
推广: d m n a a m n )(-+=. 从而m
n a a d m n --=

3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=
或b a A +=2 .
(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a
4.等差数列的前n 项和公式:
1()2n n n a a S +=1(1)2n n na d -=+211()22
d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)
特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项
()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法
(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. ` (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .
⑶数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法
定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.
7.提醒:
(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)设项技巧:

①一般可设通项1(1)n a a n d =+-
②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );
③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d )
8..等差数列的性质:
(1)当公差0d ≠时,
等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;
前n 和211(1)()222
n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.
(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。


(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.
注:12132n n n a a a a a a --+=+=+=⋅⋅⋅,
(4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列
(5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列
(6)数列{}n a 为等差数列,每隔k(k ∈*
N )项取出一项(23,,,,m m k m k m k a a a a +++⋅⋅⋅)仍为等差数列
(7)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 《
1.当项数为偶数n 2时, ()121135212
n n n n a a S a a a a na --+=+++⋅⋅⋅+=
=奇 ()22246212
n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11
n n n n S na a S na a ++==奇偶
2、当项数为奇数12+n 时,则
21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩
n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项).
、 (8){}n a 、{}n b 的前n 和分别为n A 、n B ,且
()n n A f n B =, 则
2121
(21)(21)(21)n n n n n n a n a A f n b n b B ---===--. (9)等差数列{}n a 的前n 项和m S n =,前m 项和n S m =,则前m+n 项和()m n S m n +=-+
(10)求n S 的最值
法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。

法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和
即当,,001<>d a 由⎩⎨⎧≤≥+001
n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。

( 即 当,,001><d a 由⎩⎨⎧≥≤+0
01n n a a 可得n S 达到最小值时的n 值.
或求{}n a 中正负分界项
法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。

若S p = S q 则其对称轴为2
p q n +=
注意:解决等差数列问题时,通常考虑两类方法:
①基本量法:即运用条件转化为关于1a 和d 的方程;
②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.。

相关文档
最新文档