宁夏银川一中2014届高三第六次月考数学(文科)试卷
2014年宁夏银川一中高考数学一模试卷(文科)
2014年宁夏银川一中高考数学一模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|≤2x≤4},N={x|x-k>0},若M∩N=∅,则k的取值范围是()A.(2,+∞)B.[2,+∞)C.(-∞,-1)D.(-∞,-1]2.复数等于()A.1-iB.1+iC.-1+iD.-1-i3.设a∈R,则“<1”是“a>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设△ABC的三个内角A,B,C,向量,,,,若=1+cos(A+B),则C=()A. B. C. D.5.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以S n表示{a n}的前n项和,则使得S n达到最大值的n是()A.21B.20C.19D.186.在△ABC中,三边a,b,c所对的角分别为A,B,C,若a2-b2=bc,sin C=2sin B,则角A=()A.30°B.45°C.150°D.135°7.执行程序框图,如果输入的t∈[-1,3],则输出的s属于()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]8.已知A={(x,y)丨-1≤x≤1,0≤y≤2},B{(x,y)丨≤y}.若在区域A中随机的扔一颗豆子,求该豆子落在区域B中的概率为()A.1-B.C.D.9.一个空间几何体的三视图及其相关数据如图所示,则这个空间几何体的表面积是()A. B.+6 C.11π D.+310.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于()A.11或18B.11C.18D.17或1811.已知M是y=x2上一点,F为抛物线焦点,A在C:(x-1)2+(y-4)2=1上,则|MA|+|MF|的最小值()A.2B.4C.8D.1012.已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[e,2e]上是减函数.令a=,b=,c=,则()A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(c)<f(a)<f(b)D.f(c)<f(b)<f(a)二、填空题(本大题共4小题,共20.0分)13.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为______ .14.已知关于x,y的二元一次不等式组,则x+2y+2的最小值为______ .15.设双曲线的-个焦点为F;虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为______ .16.函数f(x)=A sin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)= ______ .三、解答题(本大题共6小题,共70.0分)17.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.18.如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一动点.(1)求证:BD⊥FG;(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由.(3)如果PA=AB=2,求三棱锥B-CDF的体积.19.从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x-y|≤5},事件F={|x-y|>15},求P(E∪F).20.已知椭圆C:>>的离心率为,定点M(2,0),椭圆短轴的端点是B1,B2,且MB1⊥MB2.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由.21.已知函数f(x)=(2x2-4ax)lnx+x2(a>0).(1)求函数f(x)的单调区间;(2)对∀x∈[1,+∞),不等式(2x-4a)lnx>-x恒成立,求a的取值范围.22.如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)BE•DE+AC•CE=CE2;(2)∠EDF=∠CDB;(3)E,F,C,B四点共圆.四、填空题(本大题共2小题,共10.0分)23.极坐标系中,已知圆心C(3,),半径r=1.(1)求圆的直角坐标方程;(2)若直线(t为参数),与圆交于A,B两点,求弦AB的长.24.已知函数f(x)=|x-3|+|x-2|+k.(1)若f(x)≥3恒成立,求k的取值范围;(2)当k=1时,解不等式:f(x)<3x.。
宁夏银川一中2014届高三上学期第1次月考数学(文)试题
银川一中2014届高三年级第一次月考数学试卷(文)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设},0)2(|{},1|{,<-=>==x x x Q x x P R U ,则=⋃)(Q P C UA .1|{≤x x 或}2≥xB .}1|{≤x xC .}2|{≥x xD .}0|{≤x x 2.函数)2sin(sin )(π+=x x x f 的最小正周期为A .4πB .2πC .πD .2π 3.函数)(x f y =的图象如图所示,则导函数)('x f y =的A B C D 4. 已知复数,321iiz -+=i 是虚数单位,则复数的虚部是 A .i 101 B .101 C .107D .i 1075. 下列大小关系正确的是 A. 3log 34.044.03<< B. 4.03434.03log <<C. 4.04333log 4.0<< D. 34.044.033log <<6. 下列说法正确的是 A. “1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件B. 命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” C. “1-=x ”是“0322=++x x ”的必要不充分条件D. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题7. 函数)2||,0)(sin()(πϕωϕω<>+=x x f所示,如果)3,6(,21ππ-∈x x ,且)()(21x f x f =, 则=+)(21x x f A .21 B .22 C .23 D .1 8. 已知),0(πα∈,且,21cos sin =+αα则α2cos 的值为A .47±B .47C .47- D .43-9. 函数ax x x f +=ln )(存在与直线02=-y x 平行的切线,则实数a 的取值范围是A. ]2,(-∞B. )2,(-∞C. ),2(+∞D. ),0(+∞ 10. 已知函数)2cos()(ϕ+=x x f 满足)1()(f x f ≤对R x ∈恒成立,则A. 函数)1(+x f 一定是偶函数B.函数)1(-x f 一定是偶函数C. 函数)1(+x f 一定是奇函数D.函数)1(-x f 一定是奇函数11. 已知函数),1,0(,,ln )(21ex x x x f ∈=且21x x <则下列结论正确的是 A .0)]()()[(2121<--x f x f x x B .2)()()2(2121x f x f x x f +<+C .)()(1221x f x x f x >D .)()(1122x f x x f x >12. 已知函数)(x f 满足)()1(x f x f -=+,且)(x f 是偶函数,当]1,0[∈x 时, 2)(x x f =,若在区间[-1,3]内,函数k kx x f x g --=)()(有4个零点,则实数的取值范围是 A .)31,41[B .)21,0(C .]41,0(D .)21,31(第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13. 已知函数x a x f 2log )(-=的图象经过点A (1,1),则不等式1)(>x f 的解集为______. 14. 已知α为钝角,且53)2cos(-=+απ,则 。
【数学】宁夏银川市第一中学2014届高三模拟考试 (文)
2014年普通高等学校招生全国统一考试文 科 数 学(银川一中第三次模拟考试)参考公式:S 圆台侧面积=L R r )(+π第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R ,集合A={x |2x>1},B={x |-4<x <1},则A∩B 等于( ) A.(0,1) B.(1,+∞) C.(一4,1) D.(一∞,一4) 2.已知i 为虚数单位,复数z =i (2一i )的模|z |=( )A. 1B.C D.33.进入互联网时代,经常发送电子邮件,一般而言,发送电子邮件要分成以下几个步骤:A .打开电子邮件;(b)输入发送地址;(c)输入主题;(d)输入信件内容;(e)点击“写邮件”;(f )点击“发送邮件”;正确的步骤是( )A. a b c d e f →→→→→B. a c d f e b →→→→→C. a e b c d f →→→→→D. b a c d f e →→→→→4.已知m 是两个正数2,8的等比中项,则圆锥曲线x 2+2y m=1的离心率为( )A .2或2B .2C D .25.设z=2x+5y ,其中实数x ,y 满足6≤x+y≤8且-2≤x -y≤0,则z 的最大值是( )A .2 1B .24C .28D .3 16.如图所示是用模拟方法估计圆周率π值的程序框图,P 表示估计的结果,则图中空白框内应填入( )A.1000M B.1000M C.41000M D.10004M7.一个几何体的三视图如图所示,则该几何体的表面积是( )A .4+2 6B .4+ 6C .4+2 2D .4+ 28.一平面截一球得到直径为的圆面,球心到这个平面的距离是2 cm ,则该球的体积是( )A .12 cm 3B. 36cm 3C .cm 3D .108πcm 39.如图,已知A ,B 两点分别在河的两岸,某测量者在点A 所在的河岸边另选定一点C ,测得50AC =m ,45ACB ∠=,105CAB ∠=,则A 、B 两点的距离为( )A .B .C .D .10.设P 是双曲线2214y x -=上除顶点外的任意一点,1F 、2F 分别是双曲线的左、右焦点,△12PF F 的内切圆与边12F F 相切于点M ,则12F M MF ⋅=( ) A .5B .4C .2D .111.已知偶函数)(x f y =满足条件f(x+1)=f(x-1),且当]0,1[-∈x 时,f(x)=,943+x则=)5(log 31f ( )A 1.- B.5029 C.45101 D. 112.已知数列{}n a 满足:1a m =(m 为正整数),16(1231nn n n n a a a a a a +⎧⎪==⎨⎪+⎩当为偶数时)若(当为奇数时) 则m 的所有可能值为( )A. 2或4或8B. 4或5或8C. 4或5或32D. 4或5或16第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若曲线3y x ax =+在原点处的切线方程是20x y -=,则实数a = . 14.在Rt △ABC 中,2C π=,6B π=,1CA =,则|2|AC AB -=________.15. 设n S 为等差数列}{n a 的前n 项和,2,4738-==a a S ,则=9a ______.16. 已知|log |)(2x x f =,正实数n m ,满足n m <,且)()(n f m f =,若)(x f 在区间[]nm ,2上的最大值为2,则n m +=_______。
宁夏银川一中2014届高三4月模拟考试数学(文)试题 扫描版含答案
数学(文科)答案一、选择题:A 卷答案:1-5 CBBAC 6-10 CCBDB 11-12AD B 卷答案:1-5 DBBAD 6-10 DDBCB 11-12AC 二、填空题:13.1(0,)16-14. 015.14π16. 三、解答题:(解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分)17解:(Ⅰ)设等比数列{}n a 的公比为q ,由已知得21251232a q a q ìï=ïíï=ïî,,……………2分又∵10a >,0q >,解得112a q ì=ïïíï=ïî,,………………3分∴12n n a -=;…………………5分(Ⅱ)由2n S n =得,()211n S n -=-,∴当2n …时,121n n n b S S n -=-=-,………………7分当1n =时,11b =符合上式,∴21n b n =-,(n Î*N )……………8分,∴()1212n n na b n -?- ,()12113252212n n T n -=+??+- L ,()()2312123252232212n nn T n n -=???+-?- L ,………………10分两式相减得 ()()()21122222122323n nnn T n n --=++++--?--?L ,∴()2323n n T n =-+.……………………12分18.证明:(Ⅰ)由题意得:1A B ⊥面ABC ,∴1A B AC ⊥, ------2分又AB AC ⊥,1AB A B B = ∴AC ⊥面1AB B , ------3分∵AC ⊂面1A AC , ∴平面1A AC ⊥平面1AB B ; ------5分(Ⅱ)在三棱锥ABC P -中,因为AB AC ⊥, 所以底面ABC 是等腰直角三角形,又因为点P 到底面的距离B A h 1==2,所以34213131=⋅⋅⋅=⋅=∆-h AB AC h S V ABC ABC P . ------6分由(Ⅰ)可知AC ⊥面1AB B ,因为点P 在11B C 的中点,所以点P 到平面B B AA11距离2h 等于点1C 到平面B B AA 11的距离的一半,即12=h .------8分341223131312121111=⋅⋅⋅=⋅⋅=⋅=-h B A AB h S V B B AA B B AA P 四边形, ------10分所以三棱锥ABC P - 与四棱锥111A B AAP -的体积之比为1:1. ------12分 19. 解:(Ⅰ)东城区的平均分较高. (结论正确即给分)……………………5分 (Ⅱ)从两个区域各选一个优秀厂家,则所有的基本事件共15种,………………7分满足得分差距不超过5的事件(88,85)(88,85)(89,85)(89,94)(89,94)(93,94)(93,94)(94,,94)(94,,94)共9种.……………10分 所以满足条件的概率为35.………………12分 20.解: (Ⅰ)依题意23==a c e , 过焦点F与长轴垂直的直线x=c与椭圆12222=+by a x联立解答弦长为a b 22=1,……………2分所以椭圆的方程1422=+y x .………………4分(Ⅱ)设P(1,t)3210t t k PA =+-=,直线)2(3:+=x t y l PA ,联立得:22(2),3 1.4t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩即()0361616942222=-+++t x t x t,可知2216362,49M t x t --=+所以2218849M t x t -=+,则222188,4912.49M M t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩……………………6分同理得到22282,414.41N N t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩………………8分由椭圆的对称性可知这样的定点在x 轴, 不妨设这个定点为Q()0,m ,………………10-分又mt t t t k MQ-+-+=948189412222 , m t t t t k NQ-+-+=1428144222, NQMQ k k =,()28326240m t m --+=,4m =.……………12分21.解:(Ⅰ)若0a =,()ln 1f x x x x =-+,'()ln f x x ='(0,1),()0,()x f x f x ∈<为减函数,'(1,),()0,()x f x f x ∈+∞>为增函数 (4)分(Ⅱ)ln (1)(1)0,x x x ax a ---+<在()1,+∞恒成立.01若0a =, ()ln 1f x x x x =-+,'()ln f x x =,'(1,),()0,()x f x f x ∈+∞>∴为增函数.()(1)0f x f ∴>=,即()0f x <不成立;0a ∴=不成立.……………………6分021x > ,(1)(1)ln 0,x ax a x x --+-<在()1,+∞恒成立, 不妨设(1)(1)()ln ,x ax a h x x x --+=-,()1,x ∈+∞()2'221(1)1()x ax a ax x a h x x x -+---+=-=-,()1,x ∈+∞………………8分'121()0,1,ah x x x a -===,若0a <,则211ax a -=<,1x >,'()0h x >,()h x 为增函数,()h x >(1)0h =(不合题意);若102a <<,1(1,)ax a -∈,'()0h x >,()h x 为增函数,()h x >(1)0h =(不合题意);若12a ≥,(1,)x ∈+∞,'()0h x <,()h x 为减函数,()h x <(1)0h =(符合题意).……………11分综上所述若1x >时,()0f x <恒成立,则12a ≥.………………12分22.解:(Ⅰ)连接AB ,在EA 的延长线上取点F ,如图①所示. ∵AE 是⊙O 1的切线,切点为A , ∴∠F AC =∠ABC,.……………1分 ∵∠F AC =∠DAE ,∴∠ABC =∠DAE ,∵∠ABC 是⊙O 2内接四边形ABED 的外角, ∴∠ABC =∠A DE ,……………2分 ∴∠DAE =∠A DE .………………3分 ∴EA =ED ,∵EC EB EA ∙=2, ∴EC EB ED∙=2.………………5分(Ⅱ)当点D 与点A 重合时,直线CA 与⊙O 2只有一个公共点, 所以直线CA 与⊙O 2相切.……………6分 如图②所示,由弦切角定理知:︒⨯=∠=∠∠=∠∠=∠∠=∠18021ABE ABC MAE PAC ABE MAE ABC PAC 因又∴AC 与AE 分别为⊙O 1和⊙O 2的直径.…………8分 ∴由切割线定理知:EA 2=BE ·CE ,而CB =2,BE =6,CE=8 ∴EA 2=6×8=48,AE =34.故⊙O 2的直径为34.………………10分 23.解: (Ⅰ)θρcos = ,…………………2分.…………………4分(Ⅱ)设P (ααsin 2,cos 2),)0,21(2C2PC ===…………………6分1cos ,2α∴=,2min2PC =,…………………8分min PQ =……………………10分 24.解:(Ⅰ)当a=1时,()21f x x x x=-+-≥图(2)Eϑρρcos 2=41212222=+⎪⎭⎫ ⎝⎛-=+y x x y x2x ≥当时,解得3x ≥;当21<<x 时,解得1≤x ,∴无解1x ≤当时,解得1x ≤;……………………………3分综上可得到解集}31{≥≤x x x 或.……………………5分(Ⅱ)依题意, ,()3x f x ∀∈≥R 对都有,则()()3222)(≥-=---≥-+-=a a ax ax a ax ax x f ,……………8分232351(a a a a -≥-≤-∴≥≤-或或舍)5a ∴≥…………………10分。
宁夏银川一中2014届高三上学期第六次月考文综试题
银川一中2014届高三年级第六次月考文科综合试卷第Ⅰ卷(选择题,140分)本卷共35个小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
原料、燃料和产品的运输费用是生产成本中的重要组成部分。
图1表示在M、N两地间建设的某类工厂的运费变化图,据此回答1~2题。
1. 根据图示信息,下列说法不正确的是图1A.M地是该类工厂的原料地 B.N地是该类工厂的产品市场C.N地是该类工厂的燃料地 D.F地是该类工厂的最佳厂址区位2.该类工厂最可能是A.瓶装饮料厂 B.制糖厂 C.电视机装配厂 D.炼铝厂图2是我国中部某省三次产业就业比重变化图。
读图回答3~4题。
图23.下列有关该省经济发展的叙述,正确的是A.由于农民工向沿海地区流动,第一产业就业比重迅速减小B.随着东部地区产业转移,该省第二产业就业人口迅猛增加年降水量(mm) 1000 23°26′N90°E图例水平衡(mm)400图3C.随着城镇化速度加快,第三产业就业比重增幅较大D.随着区域产业结构调整,三次产业就业比重均明显增大4.为推动该省经济发展,提高就业水平,下列叙述正确的是A.积极发展劳动密集型产业B.积极发展技术密集型产业C.大力引进国外化工、机械项目D.大力发展现代服务业水平衡(年降水量减去年蒸发量)反映某地区水分的盈亏。
图3为世界某区域地图。
读图,完成第5~6题。
5最可能出现热带森林的是A.①②B.③④C.①④ D.②③6.为发展种植业,以下四个地点采取的措施,合理的是A. ①—推广滴灌技术B. ②一跨流域调水C. ③—海水淡化D. ④—修建大型水库暗筒式日照仪主要通过感光纸的感光历时记录日照时数。
读“某高原日照变化趋势和分布”图[单位:%〃(10a)-1,图4中空心表示增加或未变,实心表示减少],回答7~8题。
7. 对图中日照变化区域差异,最恰当的描述是A.平均海拔最高的东部地区变化最大B.人口密度最大的区域变化最大C.相对高度差异显著的地区日照变化最大图4D.水力资源最丰富的地区变化最大8. 近45年来,该地区无论是总云量,还是中低空水汽条件的变化都很小,则导致其日照显著变化的主要原因可能是A.全年受准静止锋冷气团控制,云量较高,日照显著减少B.全年受准静止锋暖气团爬升影响,降水增多,日照显著减少C.全球变暖,热带北移,该地太阳辐射强度减弱D.自上世纪80年代以来该地工业化进程较快,大量气溶胶和污染物排放减弱了到达地面的太阳辐射强度图5中甲图为南美洲局部地区图,乙图为甲图中E地区的地形图。
2014年高考(文科)数学(宁夏卷)试卷及答案解析(word可编辑)
绝密★启用前2014年普通高等学校招生全国统一考试(新课标II 适用省:贵州 甘肃 青海 西藏 黑龙江 吉林 宁夏 内蒙古 新疆 云南 海南语数外 辽宁综合)文科数学一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合2{2,0,2},{|20}A B x x x =-=--=,则A B = ( ) A. ∅ B. {}2 C. {0} D. {2}- (2)131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --(3)函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件(4)设向量b a ,满足10||=+b a ,6||=-b a,则=⋅b a ( )A. 1B. 2C. 3D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,学科 网高为6cm 的圆柱体毛坯切削得到,学科网则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31(7)正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥11A B DC -的体积为( )(A )3 (B )32(C )1 (D(8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A)3(B )6 (C )12 (D)(11)若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ (12)设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取 值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D)⎡⎢⎣⎦二、填空题:本大题共4小题,每小题5分.(13)甲,乙两名运动员各自等可能地从红、学科 网白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.(14) 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.(15) 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. (16) 数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点. (1)证明:PB //平面AEC ; (2)设1,AP AD ==,三棱锥P ABD -学科网的体积4V =,求A 到平面PBC 的距离.PA B CDE(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机学科网访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙学科网两部门的评优.(20)(本小题满分12分)设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .(21)(本小题满分12分) 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(1)求a ; (2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。
宁夏银川一中2014届高三上学期第六次月考理综试题
宁夏银川一中2014届高三上学期第六次月考理综试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
其中第Ⅱ卷第33~40题为选考题,其它题为必考题。
考生作答时,将答案写在答题卡上,在本试卷上答题无效。
第Ⅰ卷(共126分)可能用到的相对原子质量(原子量):O-16 Fe-56 Au-197 Cu-64一、选择题:本题包括13小题。
每小题6分,共78分,每小题只有一个选项符合题意。
1.下列能说明某细胞已经发生分化的是A.进行ATP的合成B.进行mRNA的合成C.细胞中存在血红蛋白基因D.细胞中存在血红蛋白2.下列有关实验试剂或实验方法的叙述中正确的是A.植物的生长素和人的胰岛素均能与双缩脲试剂发生作用,产生紫色反应B.制作生态瓶时,应定时向瓶内通气,保证生物的有氧呼吸C.使用适宜浓度的硝酸钾溶液观察到洋葱表皮细胞的质壁分离现象后,不滴加清水也能观察到质壁分离复原现象D.鉴定可溶性还原糖时,先加入斐林试剂甲液摇匀后,再加乙液,然后水浴加热3.近期气温骤降,感冒频发。
某同学感冒发热至39°C,并伴有轻度腹泻,与病前相比,此时该同学的生理状况是A.呼吸、心跳加快,心肌细胞中ATP大量积累B.甲状腺激素分泌增多,代谢增强,产热量增加C.汗液分泌增多,尿量减少,血浆Na+浓度降低D.糖原合成增强,脂肪分解加快,尿素合成增多4.如图中X代表某一生物概念,其内容包括①②③④四部分,下列与此概念图相关的描述错误的是A.若X为生态系统的能量流动,则①~④表示能量的输入、传递、转化、散失B.若X是活细胞中含量最多的4种元素,则①~④可代表O、C、H、NC.若X为种群的种群密度,则①~④是出生率和死亡率、迁入率和迁出率、年龄组成、性别比例D.若X是与人体内环境稳态有关的四大系统,则①~④代表呼吸、消化、循环、内分泌5.如右图P1、P2为半透膜制成的结构,且在如图的小室内可自由滑动。
A室内蔗糖溶液浓度为2mol/L,B室内蔗糖溶液浓度为1.5mol/L,C室内蔗糖溶液浓度为1.5mol/L,实验开始后,P1、P2分别如何移动A.P1向右、P2向右B.P1向右、P2不动C.P1向左、P2不动D.P1向左、P2向左6.研究发现,砷(As)可以富集在植物体内,转化为毒性很强的金属有机物,影响水稻的株高、根长和干重。
宁夏银川一中高三数学第六次月考试题 文【会员独享】
宁夏银川一中2012届高三第六次月考数学(文)试题2012.2本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:样本数据n x x x ,,21的标准差 锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 24S R π= 343V R π=其中S 为底面面积,h 为高 其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 为虚数单位,复数121iz i +=-,则复数z 的虚部是A .i 23B .23C .i 21-D .21-2.已知全集U R =,集合{1,2,3,4,5}A =,[2,)B =+∞,则图中阴影部分所表示的集合 A .{1} B .{0,1}C .{1,2}D .{0,1,2}3.下列命题中正确的是A .若命题p 为真命题,命题q 为假命题,则命题“p q ∧”为真命题B .命题“若0xy =,则0x =”的否命题为:“若0xy =,则0x ≠”C .“21sin =α”是“6πα=”的充分不必要条件D .命题“,20x x R ∀∈>”的否定是“00,20x x R ∃∈≤”4.已知向量(1,1),(2,),a b x ==若a b +与a b -平行,则实数x 的值是A .-2B .0C .1D .25.关于直线l ,m 及平面α,β,下列命题中正确的是A .若//l α,m αβ=,则//l m ;B .若//l α,//m α,则//l m ;C .若l α⊥,//l β,则αβ⊥;D .若//l α,l m ⊥,则m α⊥.6.曲线31y ax bx =+-在点(1,(1))f 处的切线方程为,y x b a =-则=A .3-B .2C .3D .47.已知抛物线2(0)x ay a =>的焦点恰好为双曲线228y x -=的焦点,则a=A .1B .4C .8D .168.设函数3x y =与2)21(-=x y 的图像的交点为),(00y x ,则0x 所在的区间是A .)1,0(B .)2,1(C .)3,2(D .)4,3(9.已知正项组成的等差数列{}n a 的前20项的和100,那么615a a ⋅最大值是 A .25B .50C .100D .不存在10.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积...为 A .π12 B .π34C .π3D .π31211.给出下列四个命题: ①)42sin()(π-=x x f 的对称轴为;,832Z k k x ∈+=ππ②函数x x x f cos 3sin )(+=的最大值为2;侧视图俯视图束③函数()sin cos 1f x x x =⋅-的周期为;2π④函数()sin(2)[0,42f x x ππ=+在上的值域为22[. 其中正确命题的个数是A .1个B .2个C .3个D .4个12.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()x f x a g x =⋅(0,a >1)a ≠且;②()0g x ≠;③()()()()f x g x f x g x ''⋅>⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则a 等于A .21B .2C .45D .2或21 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.实数,x y 满足不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,那么目标函数2z x y =+的最小值是__________. 14.已知函数2,3()1,3xx f x x x ⎧≤=⎨->⎩,则((2))f f = .15.某程序的框图如图所示,执行该程序,若输入10,则输出的S 为 .16. 过双曲线22221(0,0)x y a b a b-=>>的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P. 若M 为线段FP 的中点,则双曲线的离心率是_______________. 三、解答题:解答须写出文字说明,证明过程和演算步骤. 17.(本小题满分12分)已知函数2()22cos 1.f x x x =++ (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)设ABC ∆的内角,,A B C 对边分别为,,a b c ,且c =()3f C =,若2sin sin A B =,求,a b 的值.18.(本小题满分12分)已知递增的等比数列{}n a 满足234328,2a a a a ++=+且是24,a a 的等差中项。
宁夏银川一中届高三数学上学期第六次月考试卷文(含解析)【含答案】
宁夏银川一中2015届高三上学期第六次月考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集U=I,M={x|y=ln(1﹣x)},N={x|2x(x﹣2)<1},则右图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2} C.{x|0<x≤1}D.{x|x≤1}2.(5分)若复数=1+4i,则=()A.9+i B.9﹣i C.2+i D.2﹣i3.(5分)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.50404.(5分)某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4 2 3 5销售额y(万元)49 263954根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元5.(5分)若=2,则tan2α=()A.﹣B.C.﹣D.6.(5分)某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为()A.B.3πC.D.π7.(5分)已知数列{a n}满足log3a n+1=log3a n+1(n∈N*),且a2+a4+a6=9,则(a5+a7+a9)的值是()A.﹣5 B.C.5 D.8.(5分)函数f(x)=x2﹣elnx的零点个数为()A.0 B.1 C.2 D.39.(5分)已知抛物线y2=4x的准线过双曲线的左顶点,且此双曲线的一条渐近线为y=2x,则双曲线的焦距等于()A.B.C.D.10.(5分)在三角形ABC中,B=60°,AC=,则AB+2BC的最大值为()A.3 B.C.D.211.(5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增12.(5分)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是()A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为的学生.14.(5分)若向量=(﹣1,k),=(3,1),且+与垂直,则实数k的值为.15.(5分)已知m∈[1,6],n∈[1,6],则函数y=mx3﹣nx+1在[1,+∞)上为增函数的概率是.16.(5分)椭圆+=1上有动点P,E(3,0),则|PE|的最小值为.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤. 17.(12分)设S n为数列{a n}的前n项和,已知a1≠0,2a n﹣a1=S1•S n,n∈N*(Ⅰ)求a1,a2,并求数列{a n}的通项公式;(Ⅱ)求数列{na n}的前n项和.18.(12分)2014年山东省第二十三届运动会将在济宁召开,为调查我市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:K是否愿意提供志愿者服务性别愿意不愿意男生20 5女生10 15(Ⅰ)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?(Ⅱ)在(Ⅰ)中抽取的6人中任选2人,求恰有一名女生的概率;(Ⅲ)你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关?下面的临界值表供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828独立性检验统计量,其中n=a+b+c+d.19.(12分)如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.(Ⅰ)求证:EG∥平面ABF;(Ⅱ)求三棱锥B﹣AEG的体积;(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.20.(12分)设椭圆的左右焦点分别为F1、F2,A是椭圆C上的一点,且,坐标原点O到直线AF1的距离为.(1)求椭圆C的方程;(2)设Q是椭圆C上的一点,过点Q的直线l交x轴于点F(﹣1,0),交y轴于点M,若|MQ|=2|QF|,求直线l的斜率.21.(12分)已知函数f(x)=2ax﹣﹣(2+a)lnx(a≥0).(1)当a=0时,求f(x)的极值;(2)当a>0时,讨论f(x)的单调性;(3)若对任意的a∈(2,3),x1,x2∈[1,3],恒有(m﹣ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【选修4-5:不等式选讲】(共1小题,满分0分)24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.宁夏银川一中2015届高三上学期第六次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集U=I,M={x|y=ln(1﹣x)},N={x|2x(x﹣2)<1},则右图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2} C.{x|0<x≤1}D.{x|x≤1}考点:Venn图表达集合的关系及运算;指数函数单调性的应用;对数函数的定义域.分析:阴影部分用集合表示为N∩C R M,只要求出M、N进行集合的运算即可.解答:解:M={x|y=ln(1﹣x)}={x|x<1},C R M={x|x≥1},N={x|2x(x﹣2)<1}={x|2x(x﹣2)<20}={x|x(x﹣2)<0}={x|0<x<2},N∩C R M={x|1≤x<2},故选B.点评:正确理解集合M、N所表达的含义,以及真确理解韦恩图所表达的集合是解决本题的关键.2.(5分)若复数=1+4i,则=()A.9+i B.9﹣i C.2+i D.2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把已知的等式变形,然后利用复数代数形式的乘法运算化简,移项后得答案.解答:解:由=1+4i,得z+3i=(1+4i)(1﹣2i)=9+2i,∴z=9﹣i,则.故选:A.点评:本题考查了复数代数形式的乘除运算,是基础题.3.(5分)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040考点:程序框图.专题:图表型.分析:通过程序框图,按照框图中的要求将几次的循环结果写出,得到输出的结果.解答:解:经过第一次循环得到经过第二次循环得到经过第三次循环得到;经过第四次循环得经过第五次循环得;输出结果此时执行输出720,故选B点评:本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.4.(5分)某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4 2 3 5销售额y(万元)49 263954根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元考点:线性回归方程.专题:概率与统计.分析:首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为6代入,预报出结果.解答:解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故选:B.点评:本题考查线性回归方程.考查预报变量的值,考查样本中心点的应用,本题是一个基础题,这个原题在2011年山东卷第八题出现.5.(5分)若=2,则tan2α=()A.﹣B.C.﹣D.考点:二倍角的正切;同角三角函数间的基本关系.专题:三角函数的求值.分析:由题意和商的关系化简所给的式子,求出tanα的值,利用倍角的正切公式求出tan2α的值.解答:解:由题意得,,即,解得tanα=3,∴tan2α==,故选:A.点评:本题考查了利用商的关系化简齐次式,以及倍角的正切公式的应用.6.(5分)某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为()A.B.3πC.D.π考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的体积.解答:解:由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在正方体中,所以我们可以在正方体中寻找此四面体.如图所示,四面体ABCD满足题意,所以此四面体的外接球即为此正方体的外接球,由题意可知,正方体的棱长为1,所以外接球的半径为R=,所以此四面体的外接球的体积V==.故选C.点评:本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力.7.(5分)已知数列{a n}满足log3a n+1=log3a n+1(n∈N*),且a2+a4+a6=9,则(a5+a7+a9)的值是()A.﹣5 B.C.5 D.考点:等比数列的性质.专题:计算题;压轴题;方程思想.分析:先由“log3a n+1=log3a n+1”探讨数列,得到数列是以3为公比的等比数列,再由a2+a4+a6=a2(1+q2+q4),a5+a7+a9=a5(1+q2+q4)得到a5+a7+a9=q3(a2+a4+a6)求解.解答:解:∵log3a n+1=log3a n+1∴a n+1=3a n∴数列{a n}是以3为公比的等比数列,∴a2+a4+a6=a2(1+q2+q4)=9∴a5+a7+a9=a5(1+q2+q4)=a2q3(1+q2+q4)=9×33=35故选A点评:本题主要考查等比数列的定义,通项及其性质,在等比数列中用“首项与公比”法是常用方法,往往考查到方程思想.8.(5分)函数f(x)=x2﹣elnx的零点个数为()A.0 B.1 C.2 D.3考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:求出函数的导数,根据导数求的函数的极小值为f()>0,可得函数无零点.解答:解:∵函数f(x)=x2﹣elnx,∴f′(x)=2x﹣=.令f′(x)=0,解得 x=.由于f′(x)在(0,)上小于零,在(,+∞)上大于零,故x=时,函数f(x)取得极小值.由于f()=﹣eln=﹣ln=(1﹣ln)>0,所以函数无零点.故选A.点评:本题考查函数的零点以及导数的应用,函数的零点问题一直是考试的重点内容之一,与函数的图象与性质紧密结合,导数是解决此类问题的有效方法,2015届高考必定有所体现.9.(5分)已知抛物线y2=4x的准线过双曲线的左顶点,且此双曲线的一条渐近线为y=2x,则双曲线的焦距等于()A.B.C.D.考点:双曲线的简单性质.专题:计算题.分析:先求出抛物线y2=4x的准线方程,确定 a 值,在根据渐近线方程确定b的值,从而确定c的值,焦距为2c.解答:解:由抛物线y2=4x知,p=2,准线方程为:x=﹣1,∴a=1,∵双曲线的一条渐近线为y=2x,∴=2,∴b=2∴c2=a2+b2=5,∴焦距2c=2故答案选 B点评:本题考查抛物线与双曲线的简单性质.10.(5分)在三角形ABC中,B=60°,AC=,则AB+2BC的最大值为()A.3 B.C.D.2考点:基本不等式在最值问题中的应用;余弦定理的应用.专题:计算题;不等式的解法及应用.分析:设三角形的三边分别为a,b,c,利用余弦定理和已知条件求得a和c的关系,设c+2a=m代入,利用判别大于等于0求得m的范围,则m的最大值可得.解答:解:由题意,设三角形的三边分别为a,b,c,则3=a2+c2﹣2accos60°∴a2+c2﹣ac=3设c+2a=m(m>0),代入上式得7a2﹣5am+m2﹣3=0∴△=84﹣3m2≥0,∴0<m≤2m=2时,a=,c=符合题意∴m的最大值是2故选D.点评:本题考查余弦定理的运用,考查最值,考查学生的计算能力,属于基础题.11.(5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增考点:由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的单调性.专题:三角函数的图像与性质.分析:利用辅助角公式将函数表达式进行化简,根据周期与ω的关系确定出ω的值,根据函数的偶函数性质确定出φ的值,再对各个选项进行考查筛选.解答:解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)=,由于该函数的最小正周期为π=,得出ω=2,又根据f(﹣x)=f(x),得φ+=+kπ(k∈Z),以及|φ|<,得出φ=.因此,f(x)=cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选A.点评:本题考查三角函数解析式的确定问题,考查辅助角公式的运用,考查三角恒等变换公式的逆用等问题,考查学生分析问题解决问题的能力和意识,考查学生的整体思想和余弦曲线的认识和把握.属于三角中的基本题型.12.(5分)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是()A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x考点:导数的运算.专题:导数的概念及应用.分析:对于这类参数取值问题,针对这些没有固定套路解决的选择题,最好的办法就是排除法.解答:解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果 f(x)=x2+0.1,时已知条件 2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选 A故选A.点评:本题考查了运用导数来解决函数单调性的问题.通过分析解析式的特点,考查了分析问题和解决问题的能力.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为37的学生.考点:系统抽样方法.专题:计算题;概率与统计.分析:由题设知第八组的号码数比第三组的号码数大(8﹣3)×5,由此能求出结果.解答:解:这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,在第三组中抽得号码为12的学生,则在第八组中抽得号码为12+(8﹣3)×5=37.故答案为:37.点评:抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.14.(5分)若向量=(﹣1,k),=(3,1),且+与垂直,则实数k的值为﹣2或1.考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由向量垂直,数量积为0得出k的值.解答:解:∵向量=(﹣1,k),=(3,1),且+与垂直,∴(+)•=0,即(﹣1+3,k+1)•(﹣1,k)=﹣2+k(k+1)=k2+k﹣2=0;解得k=﹣2,或k=1,∴实数k的值为﹣2或1;故答案为:﹣2或1.点评:本题考查了平面向量的垂直应用问题,是基础题.15.(5分)已知m∈[1,6],n∈[1,6],则函数y=mx3﹣nx+1在[1,+∞)上为增函数的概率是.考点:几何概型;利用导数研究函数的单调性.专题:数形结合.分析:本题考查的知识点是几何概型的意义,关键是要找出函数y=mx3﹣nx+1在[1,+∞)上为增函数时,点(m,n)对应的平面区域面积的大小,及m∈[1,6],n∈[1,6]时,点(m,n)对应的平面区域面积的大小,并将它们代入几何概型计算公式进行解答.解答:解:∵函数y=mx3﹣nx+1∴y'=2mx2﹣n,若函数y=mx3﹣nx+1在[1,+∞)上为增函数则y'=2mx2﹣n≥0在[1,+∞)上恒成立,即2m﹣n≥0,其对应的平面区域如下图中阴影所示:则函数y=mx3﹣nx+1在[1,+∞)上为增函数的概率P==故答案为:点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.16.(5分)椭圆+=1上有动点P,E(3,0),则|PE|的最小值为.考点:椭圆的参数方程.专题:计算题;圆锥曲线中的最值与范围问题;坐标系和参数方程.分析:求出椭圆的参数方程,运用两点间的距离公式,结合同角的平方关系化简和配方,再由余弦函数的值域,以及二次函数的值域求法,即可得到最小值.解答:解:椭圆+=1的参数方程为(0≤α<2π),则|PE|====,由于﹣1≤cosα≤1,当cosα=∈[﹣1,1]时,|PE|取得最小值,且为.故答案为:.点评:本题考查椭圆的参数方程的运用,考查余弦函数的值域,运用配方法是解题的关键.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤. 17.(12分)设S n为数列{a n}的前n项和,已知a1≠0,2a n﹣a1=S1•S n,n∈N*(Ⅰ)求a1,a2,并求数列{a n}的通项公式;(Ⅱ)求数列{na n}的前n项和.考点:等差数列与等比数列的综合;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)令n=1和2,代入所给的式子求得a1和a2,当n≥2时再令n=n﹣1得到2a n﹣1﹣1=S n﹣1,两个式子相减得a n=2a n﹣1,判断出此数列为等比数列,进而求出通项公式;(Ⅱ)由(Ⅰ)求出na n=n•2n﹣1,再由错位相减法求出此数列的前n项和.解答:解:(Ⅰ)令n=1,得2a1﹣a1=,即,∵a1≠0,∴a1=1,令n=2,得2a2﹣1=1•(1+a2),解得a2=2,当n≥2时,由2a n﹣1=S n得,2a n﹣1﹣1=S n﹣1,两式相减得2a n﹣2a n﹣1=a n,即a n=2a n﹣1,∴数列{a n}是首项为1,公比为2的等比数列,∴a n=2n﹣1,即数列{a n}的通项公式a n=2n﹣1;(Ⅱ)由(Ⅰ)知,na n=n•2n﹣1,设数列{na n}的前n项和为T n,则T n=1+2×2+3×22+…+n×2n﹣1,①2T n=1×2+2×22+3×23+…+n×2n,②①﹣②得,﹣T n=1+2+22+…+2n﹣1﹣n•2n=2n﹣1﹣n•2n,∴T n=1+(n﹣1)2n.点评:本题考查了数列a n与S n之间的转化,以及由错位相减法求出数列的前n项和的应用.18.(12分)2014年山东省第二十三届运动会将在济宁召开,为调查我市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:K是否愿意提供志愿者服务性别愿意不愿意男生20 5女生10 15(Ⅰ)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?(Ⅱ)在(Ⅰ)中抽取的6人中任选2人,求恰有一名女生的概率;(Ⅲ)你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关?下面的临界值表供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828独立性检验统计量,其中n=a+b+c+d.考点:独立性检验的应用.专题:概率与统计.分析:(I)根据分层抽样的定义,写出比例式,得到男生抽取人数即可.(II)由题意知本题是一个等可能事件的概率,本题解题的关键是利用排列组合写出所有事件的事件数,及满足条件的事件数,得到概率.(III)计算K2,同临界值表进行比较,得到有多大把握认为该校高中生是否愿意提供志愿者服务与性别有关.解答:解:(I)由题意,男生抽取6×=4人,女生抽取6×=2人;(II)在(I)中抽取的6人中任选2人,恰有一名女生的概率P==;(III)K2==8.333,由于8.333>6.635,所以有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关.点评:本题考查分层抽样方法和等可能事件的概率,独立性检验的应用,属于中档题.19.(12分)如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.(Ⅰ)求证:EG∥平面ABF;(Ⅱ)求三棱锥B﹣AEG的体积;(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.考点:平面与平面垂直的性质;棱柱、棱锥、棱台的体积;直线与平面平行的判定.分析:(Ⅰ)取AB中点M,连接MG,则EF∥MG,①即得证.(Ⅱ)转换三棱锥B﹣AEG为E﹣ABG即可求得体积.(Ⅲ)只要证明AE⊥CDE即可.解答:(I)证明:取AB中点M,连FM,GM.∵G为对角线AC的中点,∴GM∥AD,且GM=AD,又∵FE∥AD,∴GM∥FE且GM=FE.∴四边形GMFE为平行四边形,即EG∥FM.又∵EG⊄平面ABF,FM⊂平面ABF,∴EG∥平面ABF.…(4分)(Ⅱ)解:作EN⊥AD,垂足为N,由平面ABCD⊥平面AFED,面ABCD∩面AFED=AD,得EN⊥平面ABCD,即EN为三棱锥E﹣ABG的高.∵在△AEF中,AF=FE,∠AFE=60°,∴△AEF是正三角形.∴∠AEF=60°,由EF∥AD知∠EAD=60°,∴EN=AE∙sin60°=.∴三棱锥B﹣AEG的体积为.…(8分)(Ⅲ)解:平面BAE⊥平面DCE.证明如下:∵四边形ABCD为矩形,且平面ABCD⊥平面AFED,∴CD⊥平面AFED,∴CD⊥AE.∵四边形AFED为梯形,FE∥AD,且∠AFE=60°,∴∠FAD=120°.又在△AED中,EA=2,AD=4,∠EAD=60°,由余弦定理,得ED=.∴EA2+ED2=AD2,∴ED⊥AE.又∵ED∩CD=D,∴AE⊥平面DCE,又AE⊂面BAE,∴平面BAE⊥平面DCE.…(12分)点评:本题考查了线面平行的判定,借助体积的计算考查了线面垂直以及面面垂直的判定和性质.20.(12分)设椭圆的左右焦点分别为F1、F2,A是椭圆C上的一点,且,坐标原点O到直线AF1的距离为.(1)求椭圆C的方程;(2)设Q是椭圆C上的一点,过点Q的直线l交x轴于点F(﹣1,0),交y轴于点M,若|MQ|=2|QF|,求直线l的斜率.考点:椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.专题:计算题.分析:(1)题设知F1和F2的坐标,根据,推断有,设点A的坐标为根据原点O到直线AF1的距离求得a,进而求得b.答案可得.(2)设直线斜率为k,则直线l的方程为y=k(x+1),设Q(x1,y1),由于Q,F,三点共线,且|MQ|=|2QF|.进而可得(x1,y1﹣k)=±2(x1+1,y),求得x1和y1,代入椭圆方程即可求得k,进而得到直线斜率.解答:解:(1)由题设知F1(﹣,0),F2(,0),其中a>由于,则有,所以点A的坐标为(,±)故AF1所在直线方程为y=±(+),所以坐标原点O到直线AF1的距离为,又|OF1|=,所以=|=,解得:a=2.∴所求椭圆的方程为.(2)由题意可知直线l的斜率存在,设直线斜率为k,则直线l的方程为y=k(x+1),故M (0,k).设Q(x1,y1),由于Q,F,三点共线,且|MQ|=|2QF|.根据题意得(x1,y1﹣k)=±2(x1+1,y1),解得或又Q在椭圆C上,故或,解得k=0,k=±4,综上,直线的斜率为0或±4点评:本题主要考查了椭圆的标准方程和直线与椭圆的关系.常需要直线方程和椭圆方程联立,根据韦达定理求得问题.21.(12分)已知函数f(x)=2ax﹣﹣(2+a)lnx(a≥0).(1)当a=0时,求f(x)的极值;(2)当a>0时,讨论f(x)的单调性;(3)若对任意的a∈(2,3),x1,x2∈[1,3],恒有(m﹣ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;函数在某点取得极值的条件.专题:导数的综合应用.分析:(1)利用导数判断函数的单调性求得极值即可;(2)分类讨论利用导数法判断函数的单调性;(3)由(m﹣ln3)a﹣2ln3>|f(x1)﹣f(x2)|恒成立,等价于(m﹣ln3)a﹣2ln3>|f(x1)﹣f(x2)|max,利用导数求得其最大值,解不等式求得m的取值范围.解答:解:(1)当a=0时,…(2分)由,解得,可知f(x)在(0,)上是增函数,在(,+∞)上是减函数.…(4分)∴f(x)的极大值为,无极小值.…(5分).①当0<a<2时,f(x)在(0,)和上是增函数,在上是减函数;…(7分)②当a=2时,f(x)在(0,+∞)上是增函数;…(8分)③当a>2时,f(x)在和上是增函数,在上是减函数(9分)(3)当2<a<3时,由(2)可知f(x)在[1,3]上是增函数,∴.…(10分)由(m﹣ln3)a﹣2ln3>|f(x1)﹣f(x2)|对任意的a∈(2,3),x1,x2∈[1,3]恒成立,∴(m﹣ln3)a﹣2ln3>|f(x1)﹣f(x2)|max…(11分)即对任意2<a<3恒成立,即对任意2<a<3恒成立,…(12分)由于当2<a<3时,,∴.…(14分)点评:本题主要考查学生运用导数研究函数的单调性、极值、最值等知识,考查分类讨论思想、恒成立问题的等价转化思想的运用能力,属难题.【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)由已知条件推导出△PAB∽△PCA,由此能够证明AB•PC=PA•AC.(2)由切割线定理求出PC=40,BC=30,由已知条件条件推导出△ACE∽△ADB,由此能求出AD•AE 的值.解答:(1)证明:∵PA为圆O的切线,∴∠PAB=∠ACP,又∠P为公共角,∴△PAB∽△PCA,∴,∴AB•PC=PA•AC.…(4分)(2)解:∵PA为圆O的切线,BC是过点O的割线,∴PA2=PB•PC,∴PC=40,BC=30,又∵∠CAB=90°,∴AC2+AB2=BC2=900,又由(1)知,∴AC=12,AB=6,连接EC,则∠CAE=∠EAB,∴△ACE∽△ADB,∴,∴.(10分)点评:本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.考点:简单曲线的极坐标方程;点的极坐标和直角坐标的互化.专题:坐标系和参数方程.分析:解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.解答:解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.点评:本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】(共1小题,满分0分)24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.考点:不等式的证明;带绝对值的函数.专题:综合题;压轴题.分析:(Ⅰ)将函数写成分段函数,再利用f(x)<4,即可求得M;(Ⅱ)利用作差法,证明4(a+b)2﹣(4+ab)2<0,即可得到结论.解答:(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(5分)(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…(10分)点评:本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.。
数学文卷·2014届宁夏银川一中高三下学期第三次模拟考试(2014.05)
绝密★启用前宁夏银川一中2014届高三第三次模拟考试数学文试题(银川一中第三次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:S 圆台侧面积=L R r )(+π【试卷综析】本试卷是高三考前模拟文史类数学试卷,采取了与高考真题一致的命题模式,紧扣考纲,考查了高考考纲上的诸多热点问题,突出考查考纲要求的基本能力,重视学生基本数学素养的考查。
知识考查注重基础、注重常规,也有综合性较强的问题。
试题重点考查:函数、三角函数、数列、立体几何、统计与概率、解析几何、不等式、向量、极坐标与参数方程、推理与证明等,涉及到的基本数学思想有函数与方程、转化与化归、分类讨论等,试题题目新颖,导向性强,非常适合备战高考的高三学生使用。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R ,集合A={x |2x>1},B={x |-4<x <1},则A∩B 等于 A.(0,1) B.(1,+∞) C.(一4,1) D.(一∞,一4) 【知识点】集合的运算【答案解析】A 解析:A={x |2x>1}{}0x x =>,所以A∩B {}01x x =<<,故选:A【思路点拨】求出集合A ,利用数轴求A∩B 即可。
宁夏银川市第一中学2014届高三上学期第三次月考数学试卷(文)
宁夏银川市第一中学2014届高三上学期第三次月考数 学 试 卷(文)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数(2)12i i i+-等于A .iB .i -C .1D .—12.设全集U =R ,集合A ={x |12x x +-0≥},B ={x |1<2x<8},则(C U A )∩B 等于A .[-1,3)B .(0,2]C .(1,2]D .(2,3)3.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ⌝∨⌝ B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨4.设{n a }是公比为正数的等比数列,若a 3=4,a 5=16,则数列{n a }的前5项和为A .41B .15C .32D .315.已知向量()()1,1,2,2m n λλ=+=+,若()()m n m n +⊥- ,则=λA .4-B .3-C .2-D .-16.函数321()2f x x x =-+的图象大致是7.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则8967a a a a ++等于( )A.21+B.21-C.223+D.223-xyOA. BCD xyOxyO xyO 18.曲线ln y x x =在点),(e e 处的切线与直线1x ay +=垂直,则实数a 的值为A .2B.-2C.12D.12-9.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为 A .2sin 2cos 2αα-+B .sin 3αα+C .3sin 1αα+D .2sin cos 1αα-+10. 函数()412x xf x +=的图象( ) A. 关于原点对称 B. 关于直线y =x 对称 C. 关于x 轴对称 D. 关于y 轴对称11. ABC ∆的外接圆的圆心为O ,半径为2,=++且||||=,则向量在CB 方向上的投影为A.3B. 3C. 3-D. 3-12.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在..零点的是 A .[]4,2-- B .[]2,0- C .[]0,2 D .[]2,4第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知数列{a n }满足a 1=33, a n+1-a n =2n ,则a n = .14.在ABC ∆中,BC =52,AC =2,ABC ∆的面积为4,则AB 的长为 。
宁夏银川市银川一中2014届高三上学期第五次月考数学(文)试题Word版含解析
2014届高三年级第五次月考数 学 试 卷(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={0,1},B ={-1,0,a +3},且A ⊆B ,则a =( )A .1B .0C .-2D .-32.设复数Z 满足i Z i 2)3(=⋅-,则|Z |=( )A B C .1 D .23.设,αβ为两个不同平面,m 、 n 为两条不同的直线,且,,βα⊂⊂n m 有两个命题:P :若m ∥n ,则α∥β;q :若m ⊥β, 则α⊥β. 那么( )A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ”是假命题D .“非p 且q ”是真命题 【答案】D【解析】试题分析:若//m n ,则面,αβ也可能相交,故命题p 是假命题,因为,m m βα⊥⊂,故αβ⊥,则命题q 是真命题,所以“非p 且q ”是真命题.考点:1、面面平行的判定;2、面面垂直的判定;3、复合命题的真假.4.在平面直角坐标系中,已知向量),3,(),1,3(21),2,1(x ==-=若//)2(+,则x=( )A .-2B .-4C .-3D .-15.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =( ) A .24 B .48C .66D .1326.在⊿ABC 中,三边,,a b c 所对的角分别为A ,B ,C ,若222a b c +=+,则角C 为( ) A .30° B .45° C .150° D .135°7.若将函数y=tan 4x πω⎛⎫+ ⎪⎝⎭ (ω>0)的图象向右平移π6个单位长度后,与函数y=tan(x+)6πω的图象重合,则ω的最小值为( )A .16B .14C .13D .128.设偶函数()f x 满足()()240f x x x =->,则不等式()20f x ->的解集为( )A .{|2x x <-或4}x >B .{|0x x <或4}x >C .{|0x x <或6}?x >D .{|2x x <-或2}x >9.如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+342π+B .2+242π+C .8+53π+D .6+33π+【答案】A【解析】试题分析:由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积121422(1)2S ππ=⨯⨯++3422π=+. 考点:1、三视图;2、几何体的全面积.10.若关于直线,m n 与平面,αβ,有下列四个命题:①若//m α, //n β,且//αβ,则//m n ;②若m α⊥, n β⊥,且αβ⊥,则m n ⊥;③若m α⊥,//n β,且//αβ,则m n ⊥;④若//m α,n β⊥,且αβ⊥,则//m n ;其中真命题的序号( )A .①②B .③④C .②③D .①④11.三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA ,则该三棱锥外接球的表面积为( )A .5πB C .20π D .4π【答案】A【解析】试题分析:求几何体外接球半径时,往往会用到补体的办法,将所求几何体置于一个规则的几何体中,便于求其外接球半径,如图所示,三棱锥外接球相当于长方体的外接球,其半径为R =,故表面积为5π. 考点:1、三棱锥的外接球;2、球的表面积.12. 设方程ln x x =-与方程x e x =- (其中e 是自然对数的底数)的所有根之和为m ,则( )A .0m < B. 0m = C. 01m << D. 1m >考点:1、指数函数和对数函数的图象和性质;2、反函数.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.与直线xy -1=0垂直的直线的倾斜角为________. 【答案】3π 【解析】试题分析:所求直线的斜率tan k α==3πα=.考点:1、平面内两条直线的位置关系;2、斜率的定义.14. 已知关于x, y 的二元一次不等式组24120x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则3x-y 的最大值为__________【答案】5【解析】15.如图,在三角形ABC 中,AD ⊥AB ,3,||1,BC BD AD AC AD ==∙=则 ________.【解析】试题分析:()AC AD AB BC AD ⋅=+⋅,且=0AB AD ⋅,则AC AD BC AD ⋅=⋅,设,BD k =,则BC =,∴AC AD ⋅11k=⨯⨯= 考点:1、向量共性定理;2、向量运算. 16. 数列{}n a 的通项为(1)sin 12nn n a n π=-⋅⋅+ 前n 项和为n S , 则100S =_________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设31323log log log n n b a a a ⋯=+++,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.考点:1、等比数列的通项公式;2、等比数列的性质;3、数列求和.18.已知函数()2(2)3f x cos x sin x π=++. (1)求函数()f x 的单调递减区间及最小正周期;(2)设锐角△ABC 的三内角A ,B ,C 的对边分别是a b c ,,,若1cosB=3,1f()=24C ,求.b19.已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)求证:平面CA1D⊥平面AA1B1B;(3)若底面ABC为边长为2的正三角形,BB1,求三棱锥B1-A1DC的体积.【答案】(1)详见解析;(2)详见解析;(3)1.20. “地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似的表示为:3221x 80x 5 040x,x 120,144)3y ,1x 200x 80 000,x 144,500)2⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩[[且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【答案】(1)不能获利,政府每月至少补贴5 000元;2、每月处理量为400吨时,平均成本最低.【解析】试题分析:(1)该项目利润S 等于能利用的生物柴油价值与月处理成本的差,当[]x 200,300∈时,21.已知函数()ax f x a x =++21,()ln g x a x x =-(0a ≠).(1)求函数()f x 的单调区间;(2)求证:当0a >时,对于任意(]12,0,e x x ∈,总有12()()g x f x <成立.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.如图,直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB ,⊙O 交直线OB 于E 、D ,连结EC 、CD. (Ⅰ)求证:直线AB 是⊙O 的切线;(Ⅱ)若tan ∠CED=21,⊙O 的半径为3,求OA 的长.23.已知直线l的参数方程为1212x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩(θ为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)3π,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求点Q 到直线l 的距离的最小值与最大值.24.(1)解关于x 的不等式31≤-+x x ;(2)若关于x 的不等式a x x ≤-+1有解,求实数a 的取值范围.。
宁夏银川一中2014届高三上学期第六次月考数学(文)试题(附答案)
正视图 侧视图 俯视图银川一中2014届高三年级第六次月考数 学 试 卷(文)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2lg(2),2,0,xA x y x xB y y x==-==R是实数集,则()R C B A ⋂=( )A .[]0,1B .](0,1C .](,0-∞ D .以上都不对2.若复数2(,1m im R i i+∈+为虚数单位)为纯虚数,则实数m 的值为( ) A .2B .-1C .1D .-23. 曲线C :y = x 2 + x 在 x = 1 处的切线与直线ax -y+1= 0互相垂直,则实数a 的值为( )A .3B .-3C .31D.-31 4.ABC ∆中,“A B >”是“cos cos A B <”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12BC .1 D6.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .331cmB .332cmC .334cmD .338cm7.已知1||||==b a,b a 与夹角是90°,b a k d b a c 4,32-=+=,d c 与垂直,则k 的值为( )A .-6 B.-3 C.6 D.38.凸多边形各内角依次成等差数列,其中最小角为120°,公差为5,则边数n 等于( ) A .16B .9C .16或9D .129.已知点P (x ,y )在不等式组20,10,220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域上运动,则x-y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]10.函数l o g (3)1(0,a y x a a =+->≠且的图象恒过定点A ,若点A 在直线10mx ny ++= 上,其中m ,n 均大于0,则12m n+的最小值为( )A .2B .4C .8D .1611.若函数2()(,,,)df x a b c d R ax bx c=∈++的图象如图所示,则:::a b c d =( ) A .1:6:5: (-8) B .1: 6: 5: 8 C .1:(-6):5: 8 D .1:(-6):5: (-8)12.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''>,且()()x f x a g x =(0a >,且1)a ≠,(1)(1)5(1)(1)2f fg g -+=-.若数列(){}()f n g n 的前n 项和大于62,则n 的最小值为( )A .6B .7C .8D .9第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是________________.15.从正方体的八个顶点中任意选择4个顶点,它们可能是如下几种几何体(或平面图形)的4个顶点,这些几何体(或平面图形)是(写出所有正确的结论的编号)________. ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.16.已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为____________.三、解答题:本大题共5小题,共计70分。
宁夏银川一中2014届高三上学期第六次月考语文试题
宁夏银川一中2014届高三上学期第六次月考语文试题本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,其中第Ⅰ卷第三、四题为选考题,其它题为必考题。
考生作答时,将答案写在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
【注意事项】1.答题前务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.答题时使用0.5毫米黑色签字笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠、不破损。
5.做选考题时,考生要按照题目要求作答,并用2B铅笔在答题卡上把与所选题目对应的题号涂黑。
第Ⅰ卷阅读题甲必考题一.现代文阅读(9分,每小题3分)阅读下面的文字,完成1-3题。
道教不仅是江南山水之美的发现者,而且是江南山水之美的培育者,或者说,江南山水能够在六朝时成为一个千古不朽的审美形象,道教在其中发挥的塑造与培育作用是不能低估的。
六朝时佛、道勃兴,道教在他们审定的那些洞天福地旁边修建了具有较高美学品质和神圣气质的道观,在这些道观的衬托下,朴野的江南山水开始弥漫出强烈的人文气息,获得了高贵、卓越和更加完善的形貌特征。
如元嘉末陆修静在庐山构筑精庐,居处修道,号太虚观。
由于陆修静崇高的威望,太虚观的建设受到了当时达官贵人和皇家的大力支持,以至于到了北宋时,太虚观仍然是南方道教规模最大、最重要的宫观。
太虚观屋宇宏丽,倚崖濒泉,观后有苍翠古樟和陆修静手植的古松,这些都为提升庐山的审美品质、丰富其审美意蕴起到了十分重要的作用。
不仅庐山如此,整个江南山水都因六朝时为它布上的浓郁的道教色彩而让人们产生更多美的想象和回味。
六朝时期,道教领袖们将觉醒的自我意识、道家的自由精神与正在崛起的山水审美相结合,通过吟诗作赋、弹琴绘画,将自己对生活、对自然,以及对人与山水环境关系的思考与体悟生动地表达出来。
宁夏银川市高三数学第六次月考试题 文 新人教A版
银川一中2013届高三年级第六次月考数学试卷(文)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 等差数列{}n a 及等比数列{}n b 中,,0,02211>=>=b a b a 则当3≥n 时有( ) A .n n b a >B . n n b a =C . n n b a ≥D . nn b a ≤2. 设点(2,3)A -,(3,2)B --,直线l 过点(1,1)P 且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .34k ≥或4k ≤- B .344k -≤≤ C .344k -≤≤ D .4k ≥或34k ≤- 3. 已知()()3,2,1,0a b =-=-r r,向量a b λ+r r 与2a b -r r 垂直,则实数λ的值为( )A .17-B .17C .16-D .164.若直线x k y l )1(2:1-=-和直线2l 关于直线1+=x y 对称,那么直线2l 恒过定点( ) A .(2,0)B .(1,1)C .(1,-1)D .(-2,0)5. 将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )6. 设a ,b 为两条直线,α,β为两个平面,则下列结论成立的是( )A .若a ⊂α,b ⊂β,且a ∥b ,则α∥βB .若a ⊂α,b ⊂β,且a ⊥b ,则α⊥βC .若a ∥α,b ⊂α,则a ∥bD .若a ⊥α,b ⊥α,则a ∥b 7. 设,cos sin )cos (sin a a a a f =+若21)(=t f ,则t 的值为( ) A .2 B. 2± C.22D.22±8.函数21()x f x e-=的部分图象大致是( )9. 已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点M 到y 轴的距离为( ) A . 54B .1C .34D .7410. 过直线x y =上的一点P 作圆2)1()5(22=-+-y x 的两条切线B A l l ,,,21为切点,当直线21,l l 关于直线x y =对称时,则=∠APB ( )A .30°B .45°C .60°D .90°11.把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为 ( )A. 30° B .45° C . 90° D .60° 12. 设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=12log (1-x ),则函数f (x )在(1,2)上( )A .是增函数且f (x )<0B .是增函数且f (x )>0C .是减函数且f (x )<0D .是减函数且f (x )>0 第II 卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正视图 侧视图 俯视图银川一中2014届高三年级第六次月考数 学 试 卷(文)命题人:曹建军、西林涛第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2lg(2),2,0,xA x y x xB y y x ==-== R是实数集,则()RC B A ⋂=( )A .[]0,1B .](0,1C .](,0-∞ D .以上都不对2.若复数2(,1m im R i i+∈+为虚数单位)为纯虚数,则实数m 的值为( ) A .2B .-1C .1D .-23. 曲线C :y = x 2 + x 在 x = 1 处的切线与直线ax -y+1= 0互相垂直,则实数a 的值为( ) A .3B .-3C .31D.-31 4.ABC ∆中,“A B >”是“cos cos A B <”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12BC .1 D6.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .331cm B .332cm C .334cm D .338cm7.已知1||||==b a ,b a 与夹角是90°,b a k d b a c4,32-=+=,d c 与垂直,则k 的值为( )A .-6 B.-3 C.6 D.38.凸多边形各内角依次成等差数列,其中最小角为120°,公差为5,则边数n 等于( )A .16B .9C .16或9D .129.已知点P (x ,y )在不等式组20,10,220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域上运动,则x-y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]10.函数log (3)1(0,1)a y x a a =+->≠且的图象恒过定点A ,若点A 在直线10mx ny ++= 上,其中m ,n 均大于0,则12m n+的最小值为( )A .2B .4C .8D .1611.若函数2()(,,,)df x a b c d R ax bx c=∈++的图象如图所示,则:::a b c d =( ) A .1:6:5: (-8) B .1: 6: 5: 8 C .1:(-6):5: 8 D .1:(-6):5: (-8)12.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''>,且()()x f x a g x =(0a >,且1)a ≠,(1)(1)5(1)(1)2f f g g -+=-.若数列(){}()f ng n 的前n 项和大于62,则n 的最小值为( )A .6B .7C .8D .9第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是________________.14.已知椭圆221122111(0,0)x y a b a b +=>>的长轴长、短轴长、焦距长成等比数列,离心率为1e ;双曲线222222221(0,0)x y a b a b -=>>的实轴长、虚轴长、焦距长也成等比数列,离心率为2e .则12e e =___________.15.从正方体的八个顶点中任意选择4个顶点,它们可能是如下几种几何体(或平面图形)的4个顶点,这些几何体(或平面图形)是(写出所有正确的结论的编号)________. ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.16.已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为____________.三、解答题:本大题共5小题,共计70分。
解答应写出文字说明.证明过程或演算步骤 17.(本小题满分12分)已知数列{}n a 的首项123a =121n n n a a a +=+,1,2,3,n =…. (1)证明:数列1{1}na -是等比数列; (2)数列{}nna 的前n 项和n S . 18.(本小题满分12分)在c b a ABC ,,,中∆分别是角A 、B 、C 的对边,(,2),(cos ,cos ),m b a c n B C =-=且m ∥n(1)求角B 的大小; (2)设()cos()sin ,(0),2Bf x x x ωω=-+ 且()f x 的最小正周期为,π求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 19.(本题满分12分)如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠= ,4===CA BC PB ,E 为PC 的中点,M 为AB 的中点, 点F 在PA 上,且2AF FP =. (1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;(3)求三棱锥ABE F -的体积. 20.(本小题满分12分)已知函数2()ln f x x a x =+(1)当a =﹣2时,求函数f (x )的单调区间; (2)若g (x )= ()f x +2x在[1,+∞)上是单调函数,求实数a 的取值范围. 21.(本小题满分12分)已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左右焦点分别为1F 和2F ,且|1F 2F |=2, 点(1,23)在该椭圆上. (1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于A ,B 两点,若∆A 2F B 的面积为7212,求以2F 为圆心且与直线l 相切圆的方程.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,D 、E 分别为△ABC 边AB 、AC 的中点,直线DE 交 △ABC 的外接圆于F 、G 两点,若CF ∥AB .证明:(1)CD =BC ;(2)△BCD ∽△GDB.23.(本小题满分10分)选修4-4:极坐标系与参数方程曲线1C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),将曲线1C 上所有点的横坐标伸长为原来的2倍,得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线:(2sin )6l cos ρθθ-=.(1)求曲线2C 和直线l 的普通方程;(2)P 为曲线2C 上任意一点,求点P 到直线l 的距离的最值. 24.(本小题满分10分)选修4-5:不等式选讲已知a 和b 是任意非零实数.(1)求证|2||2|4;||a b a b a ++-≥(2)若不等式||||||(|2||2|)a b a b a x x ++-≥++-恒成立,求实数x 的取值范围.银川一中2014届高三年级第六次月考数学(文科)试卷参考答案一、选择题:13. 22(2)(1)1x y -+-= 14. 1 15.①③④⑤ 16.22b << 三、解答题:本大题共5小题,共计70分。
解答应写出文字说明.证明过程或演算步骤 17.解:(Ⅰ)∵121n n n a a a +=+,∴ 111111222n n n na a a a ++==+⋅, ∴11111(1)2n n a a +-=-,又123a =,∴11112a -=, ∴数列1{1}na -是以为12首项,12为公比的等比数列. (Ⅱ)由(Ⅰ)知1111111222n n n a -+-=⋅=,即1112n n a =+,∴2n n n nn a =+. 设23123222n T =+++...2n n +, ①则23112222n T =++ (1122)n n n n+-++,② 由①-②得 2111222n T =++ (111)11(1)1122112222212n n n n n n n n n +++-+-=-=---, ∴ 11222n n n n T -=--.又123+++ (1)2n n n ++=. ∴ 数列{}nna 的前n 项和 22(1)4222222n n n n n n n n n S +++++=-+== 18.解:(1)由n m //, 得,cos )2(cos B c a C b -= .cos 2cos cos B a B c C b =+∴正弦定得,得,cos sin 2cos sin cos sin B A B C C B =+.cos sin 2)sin(B A C B =+∴又B ,A C B -=+π.cos sin 2sin B A A =∴又.21cos ,0sin =∴≠B A 又.3),,0(ππ=∴∈B B 6分 (2))6sin(3sin 32cos 23sin )6cos()(πωωωωπω+=+=+-=x x x x x x f 由已知.2,2=∴=ωπωπ),62sin(3)(π+=x x f 9分当]1,21[)62sin(],67,6[62,]2,0[-∈+∈+∈πππππx x x 时因此,当6,262πππ==+x x 即时,;3)(取得最大值x f当时即2,6762πππ==+x x ,23)(-取得最小值x f 12分 19.解:(1)证明:∵⊥PB 底面ABC ,且⊂AC 底面ABC , ∴AC PB ⊥由90BCA ∠= ,可得CB AC ⊥又 PB CB B = ,∴AC ⊥平面PBC 注意到⊂BE 平面PBC , ∴AC BE ⊥BC PB = ,E 为PC 中点,∴BE PC ⊥ PC AC C = , ∴BE ⊥平面PAC (2)取AF 的中点G ,AB 的中点M ,连接,,CG CM GM , ∵E 为PC 中点,2FA FP =,∴//EF CG . ∵CG ⊄平面,BEF EF ⊂平面BEF ,∴//CG 平面BEF . 同理可证://GM 平面BEF .又CG GM G = , ∴平面//CMG 平面BEF . …………9分∵CD ⊂平面CDG ,∴//CD 平面BEF . …………10分(3)由(1)可知BE ⊥平面PAC 又由已知可得22=BE .238213131=⋅⨯==∆∆PC AC S S PAC AEF ∴93231=⋅==∆--BE S V V AEF AEF B ABE F所以三棱锥ABE F -的体积为932.20解:(1)()f x 的单调递增区间是(1,+∞),()f x 的单调递减区间是(0,1). ……(4分)(2)由题意得22()2a g x x x x'=+-,函数g (x )在[1,+∞)上是单调函数. …………(6分) ①若函数g (x )为[1,+∞)上的单调增函数,则()0g x '≥在[1,+∞)上恒成立, 即222a x x ≥-在[1,+∞)上恒成立,设22()2x x xϕ=-,∵()x ϕ在[1,+∞)上单调递减,∴max ()(1)0x ϕϕ==,∴a ≥0 …………(9分) ②函数g (x )为[1,+∞)上的单调减函数,则()0g x '≤在[1,+∞)上恒成立,不可能. …………11分)∴实数a 的取值范围[0,+∞) …………(12分)21.(1)椭圆C 的方程为13422=+y x ……………..(4分) (2)①当直线l ⊥x 轴时,可得A (-1,-23),B (-1,23),∆A 2F B 的面积为3,不符合题意. …………(6分)②当直线l 与x 轴不垂直时,设直线l 的方程为y=k (x+1).代入椭圆方程得:01248)43(2222=-+++k x k x k ,显然∆>0成立,设A ),(11y x ,B ),(22y x ,则 2221438k k x x +-=+,222143128k k x x +-=⋅,可得|AB|=2243)1(12kk ++ ……………..(9分) 又圆2F 的半径r=21||2kk +,∴∆A 2F B 的面积=21|AB| r=22431||12k k k ++=7212,化简得:174k +2k -18=0,得k=±1,∴r =2,圆的方程为2)1(22=+-y x ……………..(12分) 22.(1)//CF AB ,//////DF BC CF BD AD CD BF ⇒⇒= //CF AB AF BC BC CD ⇒=⇔= (2)//BC GF BG FC BD ⇒==//BC GF GDE BGD DBC BDC ⇒∠=∠=∠=∠⇒BCD GBD ∆∆23.(Ⅰ)C 2:2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),即C 2:22143x y +=,:260l x y --=(Ⅱ)(2cos )P θθ,由点到直线的距离公式得4sin()6ddπθ+-≤≤=24.证明:(1)|2||2|22||22(2)(2)4a b a b a b a ba a ab b b ba a a a++-+-=+=++-≥++-= (2)由|a+b|+|a-b|≥|a|f (x) 得)(||||||xfababa≥-++又因为2||||||||||=-++≥-++ababaababa则有2≥f(x)解不等式2≥|x-1|+|x-2|得2521≤≤x。