线段垂直平分线的性质及判定定理课件
合集下载
《线段垂直平分线》课件
例题解析
通过解析一些例题,我们可以更好地理解线段垂直平分线的应用方法和解题 思路。
总结
通过本课件的学习,我们深入了解了线段垂直平分线的定义、性质、构造方法以及在几何问题中的重要应用。 掌握这些知识,我们可以更好地解决几何问题,并且提升我们的几何思维能力。
展示课件
谢谢大家的聆听!请在这个展示中享受线段垂直平分线的魅力,并通过实际 演示来加深对这一概念的理解。
《线段垂直平分线》PPT 课件
欢迎来到《线段垂直平分线》的PPT课件。在这个课件中,我们将探讨线段垂 直平分线的定义、性质、构造方法以及在几何问题中的应用。让我们一起开 始这个精彩而有趣的探索吧!
题目解析
在这一部分中,我们将深入探讨线段垂直平分线的题目解析,了解如何应对 不同类型的问题,找到解决方案。
线段垂直平分线的定义
线段垂直平分线是指竖直切割一条线段,将其分成两个相等的部分的直线。
线段垂直平分线的性质
线段垂直平分线具有以下性质:
1 相等长度
线段垂直平分线将线段分成两个相等长度的部分。
2 垂直关系
线段垂直平分线与线段之间呈垂直关系。
3 对称性
线段垂直平分线能够使得两个部分严格对称。
线段垂直平分线的构造方法
线段垂直平分线在几何问题中的应用
线段垂直平分线在几何问题中有许多重要的应用,包括:
画图求解
通过线段垂直平分线可以确定图形的对称性,进而更容易解决涉及图形的问题。
定位点和线段
线段垂直平分线可以帮助我们更准确地定位点和线段的位置。
构造正方形
线段垂直平分线可以用于构造正方形,进而解决与正方形相关的问题。
我们可以使用以下方法构造线段的垂直平分线:
1
线段垂直平分线的性质及判定定理ppt课件
今天学习了线段的中垂线的性质、 及逆定理,你能由此联想到前面学过的 什么知识与此类似吗?
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
角的平分线
A
D
C
P
线段的垂直平分线
M P
O
E
B
定理1 在角的平分线上的点到这个 角的两边的距离相等。
它是真命题吗?
P
′ 如果是.请你证明它.
已知:如图,PA=PB.
求证:点P在AB的垂直平分线上. A
B
分析:要证明点P在线段AB的垂直平分线
上,可以先作出过点P的AB的垂线(或AB
的中点,),然后证明另一个结论正确.
想一想:若作出∠P的角平分线,结论是 否也可以得证?
驶向胜利 的彼岸
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
3、如图,AD⊥BC,BD=DC,点C在AE的垂直 平分线上,AB、AC 、CE 的长度有什么关系? AB+BD 与DE有什么关系?
A
AB=AC=CE
AB+BD=DE B D C
E
4 、已知:如图,AB=AC=8cm ,DE是AB边的中垂线 认识到了贫困户贫困的根本原因,才能开始对症下药,然后药到病除。近年来国家对扶贫工作高度重视,已经展开了“精准扶贫”项目 交AC于点E,BC=6cm,求△BEC的周长A
l
量一量:PA、PB的长,你能发现什么?
PA=PB
P1A=P1B
……
P
由此你能得到什么规律?
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
角的平分线
A
D
C
P
线段的垂直平分线
M P
O
E
B
定理1 在角的平分线上的点到这个 角的两边的距离相等。
它是真命题吗?
P
′ 如果是.请你证明它.
已知:如图,PA=PB.
求证:点P在AB的垂直平分线上. A
B
分析:要证明点P在线段AB的垂直平分线
上,可以先作出过点P的AB的垂线(或AB
的中点,),然后证明另一个结论正确.
想一想:若作出∠P的角平分线,结论是 否也可以得证?
驶向胜利 的彼岸
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
3、如图,AD⊥BC,BD=DC,点C在AE的垂直 平分线上,AB、AC 、CE 的长度有什么关系? AB+BD 与DE有什么关系?
A
AB=AC=CE
AB+BD=DE B D C
E
4 、已知:如图,AB=AC=8cm ,DE是AB边的中垂线 认识到了贫困户贫困的根本原因,才能开始对症下药,然后药到病除。近年来国家对扶贫工作高度重视,已经展开了“精准扶贫”项目 交AC于点E,BC=6cm,求△BEC的周长A
l
量一量:PA、PB的长,你能发现什么?
PA=PB
P1A=P1B
……
P
由此你能得到什么规律?
线段的垂直平分线ppt课件
C 3. 如图,D是线段AC,AB的垂直平分线上,且∠ACD=30°, ∠BAD=50°,则∠BCD=
D
A
B
变式 如图,在△ABC中,点D是△ABC三边的垂直平分线 的交点,若∠C=60°,则∠D=
C
D
A
B
能力提升
1. 如图,D是线段AC,AB的垂直平分线的交点,若∠ACD=30°, ∠BAD=50°,则∠BCD=
尺子作图 不精准
尺规作图
探究一:三角形三边的垂直平分线的性质
画出以下三角形三条边的垂直平分线,完成之后你发现了什么?
ADຫໍສະໝຸດ MBCE
N
O
F
猜想:三角形三条边的垂直平分线相交于一点,并且这一点 到三个顶点的距离相等.
证明:三角形三条边的垂直平分线相交于一点,且这一点到三个顶点 距离相等。
已知:如图,在△ABC中,边AB的垂直平分线与边BC的 垂直平分线交于P点.
求证:边AC的垂直平分线经过点P,且PA=PB=PC
归纳小结
三角形三边的垂直平分线的性质定理: 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点
的距离相等.
A
几何语言: ∵ 点P 为△ABC 三边垂直平分线的交点 B ∴ PA =PB=PC.
P C
探究二:尺规作图
议一议:(1)已知三角形的一条边及这条边上的高,你能作 出三角形吗?如果能,能作几个?所作出的三角形都全等吗?
的距离相等.
2. 尺规作图
2. 如图,在△ABC中,AB=BC,BD平分∠ABC,AB的垂直 平分线EF分别交AB,BD,BC于点E,G,F,连接AG,CG.
(1)求证:BG=CG.
(2)若∠ABC=42°,求∠CGF的大 小.
16.2 线段的垂直平分线(课件)冀教版数学八年级上册
解
读 点 P 在
径画弧,交 l 于 A,B 两点;
直线 l
②作线段 AB 的垂直平分线 CD,
上
CD 即为直线 l 的垂线
图示
返回目录
第二课时 线段垂直平分线的判定和画法
考
点
清
单
解
读
返回目录
续表
①以点 P 为圆心,适当长为半径
点 P
画弧,交 l 于 A,B 两点;②分
在直
别以点 A,B 为圆心,适当长为
16.2 线段的垂直平分线
第一课时 线段垂直平分线的性质
● 考点清单解读
● 重难题型突破
● 易错易混分析
第一课时 线段垂直平分线的性质
■考点
返回目录
线段垂直平分线的性质定理
考
点
内容
清
单
线段垂直平分线上的点到线段两端的距
解
读 性质
离相等条件:点在线段的垂直平分线上
定理
结论:这个点到线段两端的距离相等
考
点
清
单
解
读
[解题思路]
[答案]9
返回目录
第一课时 线段垂直平分线的性质
返回目录
重 ■题型 线段垂直平分线的性质定理的应用
难
例
如图,在△ABC 中,∠A=60°,∠B=45°.若边
题
型 AC 的垂直平分线 DE 交边 AB 于点 D,交边 AC 于点 E,
突
破 连接 CD,则∠DCB 的度数为 (
返回目录
解题通法
涉及尺规作图的题目,首先要根据作图方
重
难
题 法或作图痕迹判断出所作图形,再结合题目所给条件解决
型 问题.
读 点 P 在
径画弧,交 l 于 A,B 两点;
直线 l
②作线段 AB 的垂直平分线 CD,
上
CD 即为直线 l 的垂线
图示
返回目录
第二课时 线段垂直平分线的判定和画法
考
点
清
单
解
读
返回目录
续表
①以点 P 为圆心,适当长为半径
点 P
画弧,交 l 于 A,B 两点;②分
在直
别以点 A,B 为圆心,适当长为
16.2 线段的垂直平分线
第一课时 线段垂直平分线的性质
● 考点清单解读
● 重难题型突破
● 易错易混分析
第一课时 线段垂直平分线的性质
■考点
返回目录
线段垂直平分线的性质定理
考
点
内容
清
单
线段垂直平分线上的点到线段两端的距
解
读 性质
离相等条件:点在线段的垂直平分线上
定理
结论:这个点到线段两端的距离相等
考
点
清
单
解
读
[解题思路]
[答案]9
返回目录
第一课时 线段垂直平分线的性质
返回目录
重 ■题型 线段垂直平分线的性质定理的应用
难
例
如图,在△ABC 中,∠A=60°,∠B=45°.若边
题
型 AC 的垂直平分线 DE 交边 AB 于点 D,交边 AC 于点 E,
突
破 连接 CD,则∠DCB 的度数为 (
返回目录
解题通法
涉及尺规作图的题目,首先要根据作图方
重
难
题 法或作图痕迹判断出所作图形,再结合题目所给条件解决
型 问题.
13.1.2.1 线段的垂直平分线的性质 课件(共22张PPT)人教版数学八年级上册
例5:如图,在Rt△ABC中,∠ACB=90°,D是AB上一点, BD=BC,过点D作AB的垂线交AC于点E,连接BE.求证: BE垂直平分CD.
证明:∵∠ACB=90°,DE⊥AB, ∴∠EDB=∠ACB=90°.∵BD=BC,BE=BE, ∴Rt△BED≌Rt△BEC,点B在CD的垂直平分线上, ∴DE=CE,∴点E在CD的垂直平分线上, ∴BE垂直平分CD.
13.1 轴对称
13.1.2线段的垂直平分线的性质
13.1.2.1 线段的垂直平分线的性质
学习目标
1.通过学生自主探究,理解并掌握线段垂直平分线的性质和判定,会用 线段的垂直平分线的性质和判定解决简单的数学问题,培养学生解决问 题的能力.
2.学生经历动手实践、合作交流、演绎推理的过程,培养学生的动手操 作能力和逻辑推理能力.
4.如果将已知、求证换一下位置,还能成立吗?试着探究一下.
如图,已知 PA=PB,
求证:点 P 在 AB 的垂直平分线上.
证明:如图,过点 P 作 AB 的垂线 l 交 AB 于点 C,
在
R
t△PAC
和
Rt△PB
C
中,
PA=PB, CP=CP,
∴R t △PAC≌R t △PB C(H L ).
∴AC=BC.∴直线 l 垂直平分 AB,
∴点 P 在 AB 的垂直平分线上.
小组讨论
1.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平 分线ON交于点O,分别交BC于点D,E,△ADE的周长为5 cm. (1)求BC的长;(2)求证:点O在线段BC的垂直平分线上.
(1)解:∵OM,ON分别是线段AB,AC的垂直平分线, ∴AD=BD,AE=CE.∵△ADE的周长=AD+AE+DE=5 cm, ∴BC=BD+DE+EC=5 cm.
13.1.2线段垂直平分线性质课件(共34张PPT)
B的距离.你有什么发现?再取几个点试试.你能说明理由吗?
发现: P到A的距离与P到B的距离相等.
P
已知:如图.AC=BC. PC⊥AB,P是MN上任意一点.
求证:PA=PB.
证明:∵MN⊥AB, ∴ ∠PCA=∠PCB=90° 在△APC与△BPC中:
PC=PC(公共边) ∠PCA=∠PCB(已证) AC=BC(已知) ∴△PCA≌△PCB(SAS) ∴PA=PB(全等三角形的对应边相等)
五角星的对称轴有什么特点? 相交于一点.
练习
1.作出下列图形的一条对称轴.和同学比较一下.你们 作出的对称轴一样吗?
练习
2.如图,角是轴对称图形吗?如果是,它的对称轴是什 么?
练习
3.如图,与图形A 成轴对称的是哪个图形?画出它的 对称轴.
A
B
C
D
做一做
1.正方形ABCD边长为a,点E,F分别是对角线BD上的两点, 过点E,F分别作AD,AB的平行线,如图所示,则图中阴影 部分的面积之和等于 1 a 2 .
B A
5.求作一点P,使它和已△ABC的三个顶点 距离相等.
A
·P
B
C
试一试
N
已 知 : P为 M ON内 一 点 。 P与 A关 于 ON对 称 , A
P与 B关 于 OM 对 称 。 若 AB长 为 15cm
求 : PCD的 周 长 .
D P
解: P与A关于ON对称
ON为PA的中垂线(
? …)
F
∴PA=PB 同理:PB=PC
P E
∴PA=PB=PC
A
N
B
结论:三角形三边的垂直平分线交于一 点,并且这点到三个顶点的距离相等.
1312线段的垂直平分线的性质课件
添加 标题
边的垂直平分线性质:垂直平分线上的点 到线段两端点的距离相等,利用这一性质 可以证明等腰三角形的性质。
添加 标题
垂直平分线的性质在三角形中的应用:利用垂直 平分线的性质,可以证明三角形中的中垂线定理, 即三角形中垂线上的点到三角形三个顶点的距离 相等。
添加 标题
垂直平分线的性质在四边形中的应用:利用垂直 平分线的性质,可以证明四边形中的对角线性质, 即四边形中对角线被垂直平分线所截得的线段相 等。
通过线段中点作垂直平分线
连接线段两端点 分别以线段两端点为圆心,以线段长度为半径画圆 画出两个圆的交点 连接交点和线段中点
利用直角三角形的性质作垂直平分线
准备一张直角三角形纸片,并标记直角顶点为A,斜边中点为B。 将纸片沿中线对折,使斜边重合,得到一条折痕。 将纸片展开,再次沿中线对折,使斜边重合,得到另一条折痕。 连接两条折痕的交点,即为垂直平分线的中点。
分别过线段两端作中垂线的垂线
连接垂足,得到垂直平分线
汇报人:
应用:垂直平分线在几何学中有着广泛的应用,例如在三角形、四边形等几何图形中。
垂直平分线的性质
定义:垂直平分线是一条线,它经过某一点并与该点相对的线段垂直。 性质:垂直平分线上的任意一点到线段两端点的距离相等。 定理:垂直平分线上的任意一点到线段两端点的距离是垂直平分线最短的。
应用:在几何学中,垂直平分线是重要的概念,它在解决几何问题时有着广泛的应用。
判定定理的应用
三角形中的垂直平分线:判定三角形中的垂直平分线,并确定垂直平分线上的点到三角形顶 点的距离相等。
圆的垂直平分线:判定圆中的垂直平分线,并确定垂直平分线上的点到圆心的距离相等。
角的平分线:判定角的平分线,并确定角平分线上的点到角的两边距离相等。
线段垂直平分线的性质定理及逆定理课件
基础习题2
已知线段AB的垂直平分线为OM,点 C在直线OM上,AC=5cm, BC=3cm,则AB=多少cm。
进阶习题
进阶习题1
已知线段AB的垂直平分线为OM,点C在 直线OM上,AC=3cm,BC=5cm,求 AB的长度。
VS
进阶习题2
已知线段AB的垂直平分线为OM,点C在 直线OM上,AC=6cm,BC=4cm,求 AB的长度。
理,△AMP≌△MBN,所以PM=PN。
证明逆定理2
假设线段AB上有两点C、D到直线l的距离相等,即CL=DL,取AB的中点M,连接MC 、MD、MN,由于∠CML=∠DML=90°,ML=ML,CL=DL,根据三角形的全等定理
,△CML≌△DML,所以CM=DM,根据中点的性质,CM+MA=DM+MB,所以 AC=BD,即线段AB被直线l垂直平分。
定理证明的注意事项
注意证明的逻辑严推理都是正确的,避免出现 逻辑漏洞。
注意使用正确的几何语言
在书写证明过程时,要使用规范的几何语言,确保表达的准确性和 严谨性。
注意检查结论是否符合题意
在得出结论后,要再次核对结论是否符合题目的要求,确保结论正 确无误。
04 定理的应用
定理在数学竞赛中的解题策略中的应用
在数学竞赛中,利用线段垂直平分线性质定理可以设计出一些巧妙的解题策略, 如利用对称性质简化问题、利用中点性质构造辅助线等。
05 习题与解答
基础习题
基础习题1
已知线段AB的垂直平分线与AB交于 点O,点C在直线OM上,CA=CB, 若AB=6cm,则AC=多少cm。
定理在几何图形中的应用
定理在三角形中的应用
线段垂直平分线性质定理可以用于证明三角形中的一些重要 性质,如等腰三角形的三线合一、直角三角形斜边上的中线 性质等。
已知线段AB的垂直平分线为OM,点 C在直线OM上,AC=5cm, BC=3cm,则AB=多少cm。
进阶习题
进阶习题1
已知线段AB的垂直平分线为OM,点C在 直线OM上,AC=3cm,BC=5cm,求 AB的长度。
VS
进阶习题2
已知线段AB的垂直平分线为OM,点C在 直线OM上,AC=6cm,BC=4cm,求 AB的长度。
理,△AMP≌△MBN,所以PM=PN。
证明逆定理2
假设线段AB上有两点C、D到直线l的距离相等,即CL=DL,取AB的中点M,连接MC 、MD、MN,由于∠CML=∠DML=90°,ML=ML,CL=DL,根据三角形的全等定理
,△CML≌△DML,所以CM=DM,根据中点的性质,CM+MA=DM+MB,所以 AC=BD,即线段AB被直线l垂直平分。
定理证明的注意事项
注意证明的逻辑严推理都是正确的,避免出现 逻辑漏洞。
注意使用正确的几何语言
在书写证明过程时,要使用规范的几何语言,确保表达的准确性和 严谨性。
注意检查结论是否符合题意
在得出结论后,要再次核对结论是否符合题目的要求,确保结论正 确无误。
04 定理的应用
定理在数学竞赛中的解题策略中的应用
在数学竞赛中,利用线段垂直平分线性质定理可以设计出一些巧妙的解题策略, 如利用对称性质简化问题、利用中点性质构造辅助线等。
05 习题与解答
基础习题
基础习题1
已知线段AB的垂直平分线与AB交于 点O,点C在直线OM上,CA=CB, 若AB=6cm,则AC=多少cm。
定理在几何图形中的应用
定理在三角形中的应用
线段垂直平分线性质定理可以用于证明三角形中的一些重要 性质,如等腰三角形的三线合一、直角三角形斜边上的中线 性质等。
垂直平分线课件
详细描述
首先,将圆规的两脚分开,分别置于 已知线段的两个端点上。然后,将圆 规的笔头置于线段的中点,旋转圆规 即可得到垂直平分线。
利用尺规作图作垂直平分线
总结词
尺规作图是一种更为精确的作图方法 ,通过尺规作图可以作出更为精确的 垂直平分线。
详细描述
首先,用直尺画出已知线段。然后, 用圆规以线段的中点为圆心,分别在 已知线段的两侧画弧。接着,用直尺 连接两个交点,即可得到垂直平分线 。
02
垂直平分线也是一条直线,它经 过线段的中点,并且与线段垂直 。
垂直平分线的图形定义
在几何图形中,垂直平分线通常用一 条通过线段中点并与线段垂直的虚线 表示。
这条虚线将线段分为两个相等的部分 ,并且与线段垂直。
垂直平分线的性质
垂直平分线上的任意一点到线段两端的距离相等。 经过线段中点的直线是该线段的垂直平分线。
利用垂直平分线性质解决实际问题
要点一
总结词
要点二
详细描述
垂直平分线的性质在实际问题中有着广泛的应用,如解决 几何作图问题、确定物体的位置等。
在几何作图问题中,利用垂直平分线的性质可以确定对称 点的位置。在解决实际问题时,如建筑、机械设计等领域 ,垂直平分线的性质可以帮助确定物体的位置和方向,简 化问题的解决过程。
垂直平分线的逆定理
总结词
垂直平分线的逆定理是,如果一条直线是某点的垂直平分线,则这条直线上有两点到该点的距离相等。
详细描述
垂直平分线的逆定理是一个与判定定理相反的结论。如果一条直线是某点的垂直平分线,那么在这条直线上存在 两个点,它们到该点的距离是相等的。这个逆定理常常用于证明两条线段相等,或者确定一个点是否在某条直线 上。
质等来进行判定。
首先,将圆规的两脚分开,分别置于 已知线段的两个端点上。然后,将圆 规的笔头置于线段的中点,旋转圆规 即可得到垂直平分线。
利用尺规作图作垂直平分线
总结词
尺规作图是一种更为精确的作图方法 ,通过尺规作图可以作出更为精确的 垂直平分线。
详细描述
首先,用直尺画出已知线段。然后, 用圆规以线段的中点为圆心,分别在 已知线段的两侧画弧。接着,用直尺 连接两个交点,即可得到垂直平分线 。
02
垂直平分线也是一条直线,它经 过线段的中点,并且与线段垂直 。
垂直平分线的图形定义
在几何图形中,垂直平分线通常用一 条通过线段中点并与线段垂直的虚线 表示。
这条虚线将线段分为两个相等的部分 ,并且与线段垂直。
垂直平分线的性质
垂直平分线上的任意一点到线段两端的距离相等。 经过线段中点的直线是该线段的垂直平分线。
利用垂直平分线性质解决实际问题
要点一
总结词
要点二
详细描述
垂直平分线的性质在实际问题中有着广泛的应用,如解决 几何作图问题、确定物体的位置等。
在几何作图问题中,利用垂直平分线的性质可以确定对称 点的位置。在解决实际问题时,如建筑、机械设计等领域 ,垂直平分线的性质可以帮助确定物体的位置和方向,简 化问题的解决过程。
垂直平分线的逆定理
总结词
垂直平分线的逆定理是,如果一条直线是某点的垂直平分线,则这条直线上有两点到该点的距离相等。
详细描述
垂直平分线的逆定理是一个与判定定理相反的结论。如果一条直线是某点的垂直平分线,那么在这条直线上存在 两个点,它们到该点的距离是相等的。这个逆定理常常用于证明两条线段相等,或者确定一个点是否在某条直线 上。
质等来进行判定。
线段的垂直平分线的性质课件ppt
平移等距性
在平移变换中,垂直平分线上的 点到线段两个端点的距离相等, 且等于平移的距离。
旋转变换中应用
旋转不变性
垂直平分线在旋转变换下保持不变, 即旋转后的图形仍然保持垂直平分线 的性质。
旋转等角性
以垂直平分线上一点为旋转中心,旋 转任意角度后,所得图形与原图形关 于该点对称。
对称变换中应用
对称中心
思路拓展与延伸
拓展1
探究线段垂直平分线与三角形的关系。例如,已知三角形ABC 中,D是AB的中点,DE垂直于AC于点E,求证:DE是AB的垂 直平分线。
拓展2
将线段垂直平分线的性质应用于实际问题中。例如,在建筑 设计或工程测量中,如何利用线段的垂直平分线性质来确定 某点的位置或某线段的长度。
易错点提示与防范策略
THANKS
感谢观看
线段的垂直平分线是对称中心,即关于垂直平分线的对称点连线的中点就是垂 直平分线与线段的交点。
对称轴
线段的垂直平分线也是对称轴,即关于垂直平分线对称的两个图形是全等的。
05
典型例题解析与思路拓展
典型例题解析
例题1
已知线段AB和点C,D分别是AB,BC的中点,求证:CD是AB的垂直平分线。
解析
根据中点的定义,可知AC=CB,BD=DA。因为CD是AB的中线,所以CD垂直于AB。 又因为AC=CB,所以角ACD=角BCD,从而角ADC=角BDC。根据角平分线的性质, 可知CD平分角ADB,所以CD是AB的垂直平分线。
性质1
垂直平分线上的任意一点 到线段两端的距离相等。
性质2
线段的垂直平分线是其对 称轴,即线段关于垂直平 分线对称。
判定方法
判定定理
一条直线是某线段的垂直 平分线当且仅当该直线过 线段的中点且与该线段垂 直。
在平移变换中,垂直平分线上的 点到线段两个端点的距离相等, 且等于平移的距离。
旋转变换中应用
旋转不变性
垂直平分线在旋转变换下保持不变, 即旋转后的图形仍然保持垂直平分线 的性质。
旋转等角性
以垂直平分线上一点为旋转中心,旋 转任意角度后,所得图形与原图形关 于该点对称。
对称变换中应用
对称中心
思路拓展与延伸
拓展1
探究线段垂直平分线与三角形的关系。例如,已知三角形ABC 中,D是AB的中点,DE垂直于AC于点E,求证:DE是AB的垂 直平分线。
拓展2
将线段垂直平分线的性质应用于实际问题中。例如,在建筑 设计或工程测量中,如何利用线段的垂直平分线性质来确定 某点的位置或某线段的长度。
易错点提示与防范策略
THANKS
感谢观看
线段的垂直平分线是对称中心,即关于垂直平分线的对称点连线的中点就是垂 直平分线与线段的交点。
对称轴
线段的垂直平分线也是对称轴,即关于垂直平分线对称的两个图形是全等的。
05
典型例题解析与思路拓展
典型例题解析
例题1
已知线段AB和点C,D分别是AB,BC的中点,求证:CD是AB的垂直平分线。
解析
根据中点的定义,可知AC=CB,BD=DA。因为CD是AB的中线,所以CD垂直于AB。 又因为AC=CB,所以角ACD=角BCD,从而角ADC=角BDC。根据角平分线的性质, 可知CD平分角ADB,所以CD是AB的垂直平分线。
性质1
垂直平分线上的任意一点 到线段两端的距离相等。
性质2
线段的垂直平分线是其对 称轴,即线段关于垂直平 分线对称。
判定方法
判定定理
一条直线是某线段的垂直 平分线当且仅当该直线过 线段的中点且与该线段垂 直。
《线段的垂直平分线的性质和判定》精品课件
长为21,则 AC =____9____.
3.如图,在四边形ABCD中,AD∥BC,E 为 CD 的中点, 连接 AE,BE,BE⊥AE,延长 AE 交 BC 的延长线于 点 F. 求证:(1)AD=FC;
证明:∵AD∥BC, ∠ADE=∠FCE. ∵E是CD的中点,∴DE=CE. 在△ADE和△FCE 中, ∠ADE=∠FCE,
的垂直平分线上
平分线上
A
B
课堂小结
1 从课后习题中选取; 2 完成练习册本课时的习题。
DE=CE, ∠AED=∠FEC. ∴△ADE≌△FCE(ASA). ∴AD=FC
4.如图,在四边形ABCD中,AD∥BC,E为CD的中点, 连接AE,BE,BE⊥AE,延长AE 交 BC 的延长线于点 F.求证:(2)AB=BC+AD
证明:由(1)知△ADE≌ △FCE,
∴AD=FC,AE=FE.
D
和点
E
为圆心,大于
1
2 DE
的长为半径作弧,两弧相交于点 F .
F
(3)连接 CF.
直线 CF 就是所求作的垂线.
A D C EB
【点击打开视频】
课堂练习
1.如图,在△ABC中,DE 是 BC 的垂直平分线.若
AB = 5,AC = 8,则△ABD的周长是___1_3____.
课堂练习
2. 如图,DE 是△ABC的边 BC 的垂直平分线,分别 交边 AB, BC 于点 D、E.若 AB = 12,△ACD的周
B
的距离,你有什么发现?相等
l
【点击打开几何画板文件】
探究新知
线段垂直平分线上的点与这条线段两个端点的距离相等.
P3 P2
P1
3.如图,在四边形ABCD中,AD∥BC,E 为 CD 的中点, 连接 AE,BE,BE⊥AE,延长 AE 交 BC 的延长线于 点 F. 求证:(1)AD=FC;
证明:∵AD∥BC, ∠ADE=∠FCE. ∵E是CD的中点,∴DE=CE. 在△ADE和△FCE 中, ∠ADE=∠FCE,
的垂直平分线上
平分线上
A
B
课堂小结
1 从课后习题中选取; 2 完成练习册本课时的习题。
DE=CE, ∠AED=∠FEC. ∴△ADE≌△FCE(ASA). ∴AD=FC
4.如图,在四边形ABCD中,AD∥BC,E为CD的中点, 连接AE,BE,BE⊥AE,延长AE 交 BC 的延长线于点 F.求证:(2)AB=BC+AD
证明:由(1)知△ADE≌ △FCE,
∴AD=FC,AE=FE.
D
和点
E
为圆心,大于
1
2 DE
的长为半径作弧,两弧相交于点 F .
F
(3)连接 CF.
直线 CF 就是所求作的垂线.
A D C EB
【点击打开视频】
课堂练习
1.如图,在△ABC中,DE 是 BC 的垂直平分线.若
AB = 5,AC = 8,则△ABD的周长是___1_3____.
课堂练习
2. 如图,DE 是△ABC的边 BC 的垂直平分线,分别 交边 AB, BC 于点 D、E.若 AB = 12,△ACD的周
B
的距离,你有什么发现?相等
l
【点击打开几何画板文件】
探究新知
线段垂直平分线上的点与这条线段两个端点的距离相等.
P3 P2
P1
最新人教版八年级数学《线段的垂直平分线的性质及其判定》省公开课获奖课件说课比赛一等奖课件
• 线段垂直平分线旳性质是处理线段相等问题旳一种主要 措施;线段垂直平分线旳鉴定可用来证明两线旳位置关 系(垂直平分).
A
1、∵ AD为BC旳中垂,线
B
∴AB=AC( 线__段_垂__直__平_分__线__上_旳__点__与_这__条__线_段)
两个端点旳距离相等.
D
C
2、∵ _______A_B__=__A_C__________ ,
小于1 AB旳长为半径作弧,两
2
弧相交于C、D两点;
A
B ⑵作直线CD .
CD即为所求旳直线.
D 结论:对于轴对称图形,只要找到任意一组相应点,作出相 应点所连线段旳垂直平分线,就得到此图形旳对称轴.
【跟踪训练】
1.下图中旳五角星有几条对称轴?作出
n
这些对称轴. A
B
作法:(1)找出五角星旳一对
相应点A和B,连接AB.
思索:生活中旳数学
A
某区政府为了以便居民旳生
活,计划在三个住宅小区A、B、
C之间修建一种购物中心,试问,
该购物中心应建于何处,才干
使得它到三个小区旳距离相等。
·
B
C
尺规作图
怎样用尺规作图旳措施经过直线外一点作已知直线 旳垂线?
已知:直线AB和AB上一点C(如图) 求作:AB旳垂线,使它经过点C
作法:(1)任意取一点K,使点K和点C在AB旳两旁。
随堂练习
1、如图,已知AB是线段CD旳垂直平 分线,E是AB上旳一点,假如EC=7cm, 那么ED= 7 cm;假如∠ECD=600,那 么∠EDC= 60 0.
C
AE
B D
2、如图所示,在 △ABC中, AB=AC=32, MN是AB旳垂直 平分线,且有 BC=21,
A
1、∵ AD为BC旳中垂,线
B
∴AB=AC( 线__段_垂__直__平_分__线__上_旳__点__与_这__条__线_段)
两个端点旳距离相等.
D
C
2、∵ _______A_B__=__A_C__________ ,
小于1 AB旳长为半径作弧,两
2
弧相交于C、D两点;
A
B ⑵作直线CD .
CD即为所求旳直线.
D 结论:对于轴对称图形,只要找到任意一组相应点,作出相 应点所连线段旳垂直平分线,就得到此图形旳对称轴.
【跟踪训练】
1.下图中旳五角星有几条对称轴?作出
n
这些对称轴. A
B
作法:(1)找出五角星旳一对
相应点A和B,连接AB.
思索:生活中旳数学
A
某区政府为了以便居民旳生
活,计划在三个住宅小区A、B、
C之间修建一种购物中心,试问,
该购物中心应建于何处,才干
使得它到三个小区旳距离相等。
·
B
C
尺规作图
怎样用尺规作图旳措施经过直线外一点作已知直线 旳垂线?
已知:直线AB和AB上一点C(如图) 求作:AB旳垂线,使它经过点C
作法:(1)任意取一点K,使点K和点C在AB旳两旁。
随堂练习
1、如图,已知AB是线段CD旳垂直平 分线,E是AB上旳一点,假如EC=7cm, 那么ED= 7 cm;假如∠ECD=600,那 么∠EDC= 60 0.
C
AE
B D
2、如图所示,在 △ABC中, AB=AC=32, MN是AB旳垂直 平分线,且有 BC=21,
【数学课件】线段的垂直平分线1:性质定理与判定定理
九年级数学(上册)第一章 证明(二)
3.线段的垂直平分线(1) 性质定理与判定定理
回顾 思考 线段的垂直平分线
我们曾经利用折纸的方法得到:
线段垂直平分线上的点到这条线段两个端点距离相等.
你能证明这一结论吗?
已知:如图,AC=BC,MN⊥AB,P是MN上任意一点.
求证:PA=PB.
M P
分析:(1)要证明PA=PB,
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身
上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱
3.线段的垂直平分线(1) 性质定理与判定定理
回顾 思考 线段的垂直平分线
我们曾经利用折纸的方法得到:
线段垂直平分线上的点到这条线段两个端点距离相等.
你能证明这一结论吗?
已知:如图,AC=BC,MN⊥AB,P是MN上任意一点.
求证:PA=PB.
M P
分析:(1)要证明PA=PB,
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身
上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上,可以先作出过点P的AB的垂线(或AB
的中点,),然后证明另一个结论正确.
想一想:若作出∠P的角平分线,结论是 驶向胜利
否也可以得证?
学习交流PPT
的彼岸
11
逆定理
逆定理 与一条线段两个端点距离相等的点,在 这条线段的垂直平分线上.
老师提示:这个结论是经常用来
证明点在直线上(或直线经过某一点) 的根据之一.
的点,在这个角的平分线上。
等的点,在这条线段的垂直平分线
上。
角的平分线是到角的两边距离 线段的垂直平分线可以看作是和线段
相等的所有点的集合
两个端点距离相等的所有点的集合
点的集合是一条射线
点的集合是一条直线
学习交流PPT
18
学习交流PPT
19
在 △PAC和△PBC中,
AC=BC(已知),
∠PCA= ∠PCB(已证),
PC=PC(公共边)
∴ △PAC ≌△ PBC(SAS).
AC B
∴PA=PB(全等三角形的对应边相等).
学习交流PPT
4
定理:线段垂直平分线上的点与这条线段两个 端点的距离相等。
M
P
学习交流PPT
A
B
N 5
学会转 化
M P
上的点与这条线段两个端点 A
的距离相等。
●P1 C
学习交流PPT
B
3
学会验 猜这测条(线命段题两)个1端:点线证的段距垂离直相平等分。线上的点与
已知:如图,直线l⊥线段AB,垂足为C, 且AC=CB.
求证:PA=PB
l
证明:∵ l⊥AB 于点C (已知), ∴ ∠PCA= ∠PCB=90°(垂直的定义) P
今天学习了线段的中垂线的性质、 及逆定理,你能由此联想到前面学过的 什么知识与此类似吗?
学习交流PPT
17
角的平分线
A
D
C
P
线段的垂直平分线
M P
O
E
B
定理1 在角的平分线上的点到这个 角的两边的距离相等。
A
B
N
定 理 线段垂直平分线上的点和这 条线段两个端点的距离相等。
定理2 到一个角的两边的距离相等 逆定理 和一条线段两个端点距离相
2、如图,AB=AC,MB=MC,直线AM是
线段BC的垂直平分线吗?
A
M
B
C
学习交流PPT
15
如图,△ABC中,边AB、BC的垂直平
A
分线交于点P。
(21)点 求P证是:否P也A=在PB边=PACC。的垂直平分线
证上明呢:?由此你能得出什么结论?
P
解∵: 点P在AB的垂直平分线上
∴ ∵PPAA==PPCB(线段垂直平分线上的点与 B
学
会
运
学习交流PPT
用
10
进步的标志
思
你能写出定理 “线段垂直平分线上 的点与这条线段两个端点距离相等”
考 分 析
的逆命题吗?
逆命题 与一条线段两个端点距离相等的点,在这条
线段的垂直平分线上.
它是真命题吗?
P
′ 如果是.请你证明它.
已知:如图,PA=PB.
求证:点P在AB的垂直平分线上. A
B
分析:要证明点P在线段AB的垂直平分线
判断题
AE
B
N
学习交流PPT
8
课堂练习
3、如图,AD⊥BC,BD=DC,点C在AE的垂直 平分线上,AB、AC 、CE 的长度有什么关系? AB+BD 与DE有什么关系?
A
AB=AC=CE
AB+BD=DE B D C
E
学习交流PPT
9
4 、已知:如图,AB=AC=8cm ,DE是AB边的中垂线 交AC于点E,BC=6cm,求△BEC的周长A
13.1.2轴对称
13.1.2轴对称
线段垂直平分线的性质与判定定理
学习交流PPT
1
教学目 标1. 理解和掌握线段的垂直平分线的性质和判
定,并能利用它们来进行证明或计算。 2. 通过经历线段的垂直平分线的性质与判定
的证明过程,体验逻辑推理的数学方法。 3. 了解数学和生活的紧密联系,培养用数学
的能力。
学习交流PPT
驶向胜利 的彼岸
12
学会转 化
M
P
符号语言:
A
B
N
∵ PA=PB(已知)
∴点P在线段AB的垂直平分线上 (和一条线段两个端点 距离相等的点,在这条线段 的垂直平分线上)
学习交流PPT
13
课堂练习
1、如图PA=PB,则直线MN 是线段AB的垂直平分线。
M
Pபைடு நூலகம்
A
B
N
学习交流PPT
14
课堂练习
重点、难 1.掌点握线段垂直平分线的性质和判定。
2.运用线段的垂直平分线的性质和判定解题。
学习交流PPT
2
动起来!
已知直线l垂直平分线段AB,垂足为C;在l上 任取一点P,连结PA、PB;
l
量一量:PA、PB的长,你能发现什么?
PA=PB
P1A=P1B
……
P
由此你能得到什么规律?
命题:线段垂直平分线
解:∵ DE是AB边的中垂线 (已知),
∴AE=BE(线段垂直平分线上的点 D 和这条线段两个端点的距离相等).
∵AC=8cm(已知),
又∴∵AB(EC+等=E6式Ccm=性B(质E已+)E知C. )=8cm有线腰垂,三直就角平有形B 分等的
∴ C△BEC=BE+EC+BC
产生
=8+6=14cm
E
C
A
B
N
符号语言:
∵点P在线段AB的垂直平分线上(已知)
∴PA=PB (线段垂直平分线上的点和这条线段
两个端点的距离相等。 )
学习交流PPT
6
判断题
课堂练习
1、如图直线MN垂直平 分线段AB,则AE=AF
A
M E
B F N
学习交流PPT
7
课堂练习
2、如图线段MN被直线AB
√ 垂直平分,则ME=NE M
C
这 ∴条 点线P在段A的C的两垂个直端平点分的线距上离(相与等一)条线段
同 两理 个,端点距离相等的点,在这条线段的
∵ 垂点 直P平在分B线C的上垂)直平分线上
结∴论P:B=三PC角形三条边的垂直平分线相交于一点,这个点到三 角∴形P三A=个PB顶=P点C 的距离相等。
学习交流PPT
16
联想与归纳