(优选)简谐振动旋转矢量法

合集下载

简谐运动的旋转矢量描述法

简谐运动的旋转矢量描述法

π
4
A g a'*
h' * g'* *
t f O b*' T T f'* 3T T 5T
e
c' 4* 2*e' 4
4
-A
d*'
T 2 (旋转矢量旋转一周所需的时间)
用旋转矢量图画简谐运动的 x t 图
T 2π (旋转矢量旋转一周所需的时间)
二、旋转矢量法对相位的表示
若某时刻t,测得质点的位移为x =A/2,向OX轴负方
简谐运动的旋转 矢量表示法
一、简谐运动的旋转矢量表示法
P
t=t
t+
o
A t=0
A

x
x Aco(s t )
x Aco(s t )
旋 转 矢量 A的
x 端点在
轴上的投
影点的运
动为简谐
运动.
x Acos(t )
用旋转矢量图画简谐运动的 x t 图
x
Ah
a
bO
c -Ad
x
x Acos(t )
向运动
M
A
O 3P
X
M
三、旋转矢量法对相位差的表示
A2
A1
O
相位差 2 1 2kπ
x
(k 0,1, 2,)
两个振动同相,步调相同
A1
O
A2
相位差 2 1 (2k 1)π
x
(k 0,1,)
两个振动反相,步调相反
例题 两个同方向、同频率的谐振动,频率为2s-1,
当第一个振子从平衡位置向正向运振动的相位差。
解:
2 1
A 2
t
o

旋转矢量法简谐运动的动力学能量实例

旋转矢量法简谐运动的动力学能量实例
旋转矢量的长度表示振动的振幅,矢 量的角度表示相位,通过旋转矢量的 旋转速度和方向可以描述简谐运动的 特性。
旋转矢量与简谐运动的关联
旋转矢量与简谐运动的振动方向和速度相关联,通过旋转矢量的几何特性可以推 导出简谐运动的振动方程和能量表达式。
旋转矢量法可以直观地表示简谐运动的振动形式,帮助理解振动的合成与分解, 以及振动在不同方向上的表现。
对未来研究的展望
随着科学技术的不断发展,旋转矢量法在简谐运动研究中 的应用将更加广泛和深入。未来可以进Байду номын сангаас步探索旋转矢量 法在其他领域的应用,如量子力学、光学等。
未来研究可以进一步优化旋转矢量法的计算方法和可视化 效果,提高其精度和直观性,以更好地服务于科学研究和 技术创新。
THANKS
感谢观看
旋转矢量法简介
01
旋转矢量法是一种描述简谐运动 的直观方法,通过引入一个旋转 矢量来表示振动的状态。
02
旋转矢量具有长度和方向,分别 对应振动的振幅和相位,矢量的 旋转速度则与角频率有关。
02
旋转矢量法在简谐运动中的应用
旋转矢量表示
旋转矢量表示是一种用于描述简谐运 动的几何方法,通过引入一个旋转矢 量来表示简谐运动的相位和振幅。
简谐运动的定义
简谐运动
物体在一定力的作用下,以一定的初速度做周期 性往复运动。
描述参数
振幅、角频率、初相角、周期等。
实例
单摆、弹簧振子等。
简谐运动的数学模型
微分方程
$mfrac{d^2x}{dt^2}
+
cfrac{dx}{dt} + kx = F$
旋转矢量法
通过旋转矢量表示简谐运动的相 位和振幅,简化分析过程。

旋转矢量法(干货分享)

旋转矢量法(干货分享)

2A x
a
o
2
A
v
3
4 t
例:一质点沿 x 轴作简谐振动,振幅 A = 0.12m,周期 T = 2s,当 t = 0 时, x0 = 0.06m,此时质点向 x 轴正向运动。求: (1)此简谐振动的表达式; (2)从初始时刻开始第一次通过平衡位置所需时间。 (3)t=T/4时质点的 位置、速度和加速度; (4)从 x = - 0.06m 向 x 轴负向运动,第一次回到平衡位置所需的时间(思 考?)。
解:
2
1
23 6
质点 2 的振动超前质点 1的振动613xO
A
2
2
比较一下简谐运动的位移、速度、加速度的相位关系。
xA cots()
A si n t ()Acost(π)
aA 2cost()A 2cots( 2π)
速度的相位比位移的相位超前π/2 ,加速度的相位比位
x,v,a 移的相位超前π/2 。
5t
32 6
t
0.83(s)
y
x
o A3
求:(3)t= T/4 时刻质点的位置、速度和加速度;
解: 由 振 动x表 0.1达 c2o式 st(): m ()
可 得 A : si n t ( )
3
0.12sin(t-)(m/s)
3
aA 2cost()
0.062cots()(m /s2)
x0Acos
A 在 轴上的
x x 投影点的运 动为简谐运
动。
t t 时
A
t
o 以 为
原点旋转矢
量 的端点 A 在 轴上的
o
x x 投影点的运 动为简谐运
动。
xAcots()

简谐振动-旋转矢量法

简谐振动-旋转矢量法

sin2 (2 1)
y
2) 2 1 π
y A2 x A1
3)2 1 π 2
x A2
o A1
x2 A12
பைடு நூலகம்
y2 A22
1
x A1 cost
y
A2
cos(t
π) 2
A2 y
o A1 x
用 旋 转 矢 量 描 绘 振 动 合 成 图


互 垂 直 同 频 率 不 同 相
简 谐 运 动 的 合 成 图
x
x
A1 o
o
A
A2
A A1 A2
Tt
结论
A A12 A22 2A1 A2 cos(2 1 )
若两分振动同相位:
2 1 2k k 0,1, 2,
A A1 A2
若两分振动反相位:
两分振动相互加强
2 1 (2k 1) k 0,1, 2,
A A1 A2
两分振动相互减弱
再若 A1= A2 , 则 A= 0
M
A
P
x
注意:旋转矢量在第 2 象限
速度v <0
M
PA
x
注意:旋转矢量在第 2 象限
速度v <0
M
PA
x
<
注意:旋转矢量在第 3 象限
速度v 0
P x
MA
<
注意:旋转矢量在第 3 象限
速度v 0
P x
A
M
<
注意:旋转矢量在第 3 象限
速度v 0
P x
A
M
<
注意:旋转矢量在第 3 象限
速度v 0
找到谐振动的特征量,问题就解决了。

15 简谐振动 旋转矢量法

15 简谐振动 旋转矢量法

振动频率
ν 1 2 2π
k1k2
k1 k2m
P.20/35
作业
习题集:121、6、8、9、16
第5章 机械振动
P.21/35
P.3/35
§5.1 简谐运动
第5章 机械振动
5.1.1 简谐运动的特征及其运 动方程
弹簧振子——理想模型
简谐运动的受力
f kx
始终指向平衡位置(有心力)

简谐运动的动力学方程


m d2x k x
dt 2
P.4/35
简谐运动动力学方程
m d2x k x 令 dt 2
2 k m
d2x dt2
arctavn0 0
x0
1
1
2
3
2 2
依题意, v<0
v 0.24 3 0 .20 m s 8 1
(为什么 不取π ?)
2
P.9/35
§5.2 简谐运动的旋转矢量 表示法
5.2.1 旋转矢量表示法
t
x
P
• 旋转矢量A的模即为简谐运 动的振幅.
第5章 机械振动
• 旋转矢量A与x轴的夹角(t+)
篇机械振动&机械波
第五章 机械振动
第5章 机械振动
为何讨论的重点是简谐运动 复杂振动可分解为若干简谐运动
振动的运动学规律
简谐振动的动力学特征
振动能量的周期性特征
P.2/35
振动和波动的关系: 波动——振动的传播 振动——波动的源头
机械振动, 电磁振荡 机械波, 电磁波 德布罗意波——几率波
振动学是波动学的基础
即为简谐运动的相位.
• 旋转矢量 A 的角速度 即

10-1 简谐振动的矢量图示法

10-1 简谐振动的矢量图示法
速度v <0
M
PA
x
注意:旋转矢量在第 2 象限
速度v <0
M
PA
x
<
注意:旋转矢量在第 3 象限
速度v 0
P x
MA
<
注意:旋转矢量在第 3 象限
速度v 0
P x
A
M
<
注意:旋转矢量在第 3 象限
速度v 0
P x
A
M
<
注意:旋转矢量在第 3 象限
速度v 0
P x
A
M
<
注意:旋转矢量在第 3 象限
C
x = 0.12 cos (πt-π/3 ) (m)
如不用参考圆只用数学式解题:

x = A cos (ωt+ φ)
已知 A= 0.12m , T= 2s → ω= π
则 x = 0.12 cos (πt+ φ) φ= ?
t = 0 时 x=0.06m: 0.06 = 0.12cosφ →
cosφ = 0.5 → φ= ±π/3
简谐振动的矢量图示法
简谐振动的矢量图示法
A 的长度
振幅A
A旋转的角速度
振动圆频率 O
ω
M
A
t 0
P
X
x
A 旋转的方向
逆时针方向
A 与参考方向x 的夹角 振动相位
M 点在 x 轴上投影(P点)的运动规律:
x Acos(t 0 )
矢量OM 的端点 M 所画的圆叫参考圆。 矢量 OM 0 是 t = 0 时刻的位置,它与 x 轴的夹角φ叫初相位。 简谐振动的参考圆和矢量表示方法十分形
x

简谐振动旋转矢量法讲课文档

简谐振动旋转矢量法讲课文档
机械振动, 电磁振荡 机械波, 电磁波 德布罗意波——几率波
振动学是波动学的基础
第5章 机械振动
振动: 任何一个物理量(物体的位置, 电 流强度, 电场强度, 磁场强度等)在某一 固定值附近作往复变化. 机械振动: 物体在固定位置(平衡位置) 附近作来回往复的运动. 简谐运动: 是最基本, 最简单的振动.
ω 6π 6
第18页,共20页。
§ 5.3 单摆
O
l T
mg
小球受力矩:
Mmg siln
根据转动定律
M J
mgslinm2ldd2t2
化简得:
d2
dt2
gsin
l
0
当θ 很小时, sin
d2
dt2
g l
0
结论: 单摆振动是简谐运动
0 cos t
g
l
T 2π l g
θ为振动角位移,θ0叫做角振幅
第19页,共20页。
例3: 一简谐振动曲线如图所示, 则振动周期
x(m 4) 2
1
t(s)
2 4 cos
0 4cos
3
32
5
6
T 2 12 5
(A)2.62 s (B)2.40 s (C)0.42 s (D)0.382 s
答案: B
第20页,共20页。
v d x 0.24sin 6.0t dt
sin 6.0t 1 cos2 6.0t
1
1
2
3
2 2
依题意, v<0
v 0.24 3 0.208 m s1 2
第11页,共20页。
§5.2 简谐运动的旋转矢量 表示法
5.2.1 旋转矢量表示法

§3.2 简谐振动的旋转矢量图示【VIP专享】

§3.2   简谐振动的旋转矢量图示【VIP专享】
F kx m 2x
(0.01kg)(π s1)2 (0.069m) 1.70103 N
2
(2)由起始位置运动到 x 0.04m 处所需要
的最短时间.
v
x/m
0.08 0.04 o 0.04 0.08
解法一 设由起始位置运动到 x 0.04m 处所
需要的最短时间为 t
0.04m (0.08m) cos[(π s1)t π ]
sin0 0
0
3
简谐振动表达式 x 0.12cos( t ) m
3
因为
(2)由简谐振动的运动方程 x 0.12cos( t ) m
3
可得
v dx 0.12 sin( t ) m/s
dt
3
a dv 0.12 2 cos( t ) m/s2
dt
3
在t =T/4=0.5s时,可得
x (0.08m) cos[(π s1)t π ] 3
2
3
v0 0
π
3
A
π3
x/m
0.08 0.04 o 0.04 0.08
x (0.08m) cos[(π s1)t π ]
2
3
m 0.01kg
v
x/m
0.08 0.04 o 0.04 0.08
t 1.0s 代入上式得 x 0.069m
2
3
v
x/m
0.08 0.04 o 0.04 0.08
cos( t ) 1
23 2
t 2 或 4
233 3
又因为第一次到达- 0.04m处时,v 0
即v A sin(t ) 0
23
所以t 2
23 3
t 2s 3

大学物理第三讲:8.1.3旋转矢量法

大学物理第三讲:8.1.3旋转矢量法

瞬时对应
1、旋转矢量A的长度为简谐振动的振幅 2、φ为t=0时的相位(初相位) 3、(ωt+φ)为t时刻的相位 4、旋转矢量A作逆时针匀速运动(ω角速度)
5、旋转矢量A的末端在参考坐标轴上的投影点的运动即代表质 点做简谐振动。
二、旋转矢量的长处
1、用旋转矢量A来表示简谐振动的位移
x Acost 当 0时 x t曲线
x/cm
t/s
o
9
三、应用举例
已知两个同方向,同频率的简谐振动如下:
x1 5cos10t / 2 x2 5cos10t
A 50cm
5 / 4或 3 / 4
用计算法求它们合振动的振幅和初相位。
已知:A1 A2 5cm;
x/cm
1 / 2;2
t/s
o 求:1合振动的振幅:A A12 A22 ;
16
谢谢大家! 欢迎大家多提宝贵意见!
2015.10.10
17
18
合振动的初相位:2 ?
8-18 已知两个同方向、同频率的简谐振动如下: x1 5102 cos(10t 3 / 5) SI x2 6102 cos(10t / 5) SI
(1)求它们合振动的振幅与初相位;
(2)另有一个同方向简谐振动 x3 7 102 cos(10t )SI
问值为何值时, x1 x2的振幅最大? 问值为何值时, x2 x3的振幅最小?
0.05sin 3 0.06sin
5
0.05cos 3
5
0.06 c os
arctan2.5 1.19rad 6813
5
5

12
(2)已知:
x1 5102 cos(10t 3 / 5) SI x2 6102 cos(10t / 5) SI

旋转矢量法

旋转矢量法

2)简谐运动的动力学描述 d2 x 2 x
dt 2
3)简谐运动的运动学描述 x Acos(t ) v A sin(t )
4)加速度与位移成正比而方向相反 a 2 x
弹簧振子 k m
单摆 g l
复摆
mgl J
小 结:
一.简谐振动的运动方程(平衡位置为坐标原点)
F kx
d2 x dt 2
A 在ox 上的投影 r A 端点速度在ox 上的投影 r A 端点加速度在ox 上的投影
简谐振动 符号或表达式
振幅 角频率 初相
A
ω
r
M
0O
A (ωt +0 )
x
振动周期 T=2/
相位
t+ 0
位移
x =Acos(t+ 0)
速度
v =- Asin(t+ 0)
加速度 a =- 2Acos(t+ 0)
直观地表达谐振动的各特征量 旋转矢量法优点: 便于解题, 特别是确定初相位
r便于振动合成 由 x、v 的符号确定 A所在的象限:
练习
教材P.410 13-6 / P.40 12-6
已知: A = 24cm, T = 3s, t = 0时 x0 12cm, v0 0,
求:质点运动到 x = -12 cm处所需最短时间。
四. 孤立谐振动系统的能量
不计振动传播带来的能量损失 —— 辐射阻尼
不计摩擦产生的热损耗 —— 摩擦阻尼
➢水平放置的弹簧振子
以平衡位置为坐标原点
{ x Acos(t 0)
Εp
1 2
k x2
1 2
k A2
cos2 (t
0 )
v A sin(t 0)

4.3 简谐振动的旋转矢量法

4.3 简谐振动的旋转矢量法

2
大学物理
第一版
4.3 简谐振动的旋转矢量法
t t
A
o

t
x
以o 为原点 旋转矢量 A 的 端点在 x轴上的 投影点的运动为 简谐运动.
x A cos(t )
3
大学物理
第一版
4.3 简谐振动的旋转矢量法
x A cos(t )
以o 为原点 的端 旋转矢量 A 点在 x 轴上的投 影点的运动为简 谐运动.
讨论

相位差:表示两个相位之差
(1)对同一简谐运动,相位差可以给出两运 动状态间变化所需的时间.
x1 Acos( )
t t 2 t1
x2 Acos( t2 )

9
大学物理
第一版
4.3 简谐振动的旋转矢量法
vm A
A
x A cos(t )
v a

v A sin(t )
x a A 2 n
a A 2 cos( t )
7
大学物理
第一版
4.3 简谐振动的旋转矢量法
3
用旋转矢量图画简谐运动的
xt 图
8
大学物理
第一版
4.3 简谐振动的旋转矢量法
0.08
17
大学物理
第一版
4.3 简谐振动的旋转矢量法
法二
t
时刻

t
π3 π3
起始时刻
x/m
0.08
0.08 0.04
o
0.04
π π 2 1 rad s t 0.667 s t 3 2 3
18
大学物理

简谐振动旋转矢量表示法

简谐振动旋转矢量表示法
3
加速度为:
a 2 A cos(t ) 0.12 2 cos( t )
3
第十第一1章3页/振共1动7页
13
大学物 理学
11-1 简谐振动的旋转矢量表示法
将t=T/4=0.5s分别代入位移、速度、加 速度的公式,得:
x 0.104m v 0.188m / s
a 1.03m / s2
A
t 时刻
x/m
0.12 0.06 o π0.06 0.12
3
A
起始时刻
第十第一1章4页/振共1动7页
14
大学物 理学
11-1 简谐振动的旋转矢量表示法
(2)从初始时刻开始第一次通过平衡位 置的时刻.
通过平衡位置时,x=0,则由位移公式:
0 0.12 cos(t )
3
所以:t (2k 1) , k 1, 2,
x A cos(t )
v A sin(t )
相位 (位相) (t) t
初相位 t 0时,(t)
相位的意义: 表征任意时刻(t)物体振动状态
(相貌). 物体经一周期的振动,相位改变 2π .
第十一第章6页/共振17动页
6
大学物 理学
11-1 简谐振动的旋转矢量表示法
讨论 ➢ 相位差:表示两个相位之差
3
简谐运动表达式为:
x 0.12 cos( t )
3
0.12 0.06 o π0.06 0.12
v0
0,
3
3
A
x/m
第十第一1章2页/振共1动7页
12
大学物 理学
11-1 简谐振动的旋转矢量表示法
(2)t T / 4 时,质点的位置、速度、加速度

简谐振动的旋转矢量图示法

简谐振动的旋转矢量图示法

解:
点 2 在 x = - A / 2 处 向 右 运 动 , 试 用 旋
转 矢 量 法 求 两 质 点 的 相 位 差 。 1
3
x
2
4
3
2
A
2A
O
1
A 2
2143 3
例2、一物体沿x轴作简谐振动,振幅A=0.12m,周期 T=2s。当t=0时,物体的位移x=0.06m,且向x轴正向运
动。求: (1)简谐振动表达式;
向正方向运动,求运动方程。
解:(1) k 0.726.0s-1
m 0.02
由旋转矢量可知初相位 谐振动方程为
0 0
0.05
O
x
x0.05cos(6.0t) m
第一次经过A/2时,相位
(2) v dx 0.056.0sin(6.0t) dt
=0.3sin(6.0t) m/s
6.0t 3
OA
0, x=0.06m可
得0 3

3
简谐振动表达式
01
02
03
04
v0Asin00
由于t=0时质点 向x轴正向运动
0 3
因而
可知
x0.12cos(t) m
3
(2)由简谐振动的运动方程可得:
vdx0.12sin(t) m /s
dt
3
adv 0.12 2cos(t)m /s2
dt
3
在t =T/4=0.5s时,可得
A 的长度
振幅A
A 旋转的角速度
角频率ω
A 与参考方向x 的夹角
振动相位ωt+φ0
相位之差为
x1A1cos(t1)
x2A2cos(t2)

2-简谐振动的旋转矢量图

2-简谐振动的旋转矢量图

(2)掌握旋转矢量法。
作业:7-5
17
ω由振动系统本身的性质所决定, ω一定时 A, 由初始条件决定。 1. 解析法
x A cos( t )
v A sin( t )
t =0
2 A x0
x0 A cos
v0 A sin
2 v0
由此解出A,
2 v arctan( 0 ) x0
旋转矢量法: =- 或 3 2 2
x A cos( 2 t ) T 2
2
10
(3)解析法略 (过 x = A/2 处向x负方向运动) 旋转矢量法:

A
0

3
3
A 2
x
2 t ) x A cos( T 3
11
例2:画出质点处于①平衡位置且速度小于 零,②正最大位移,③(1/2)位移处且速度 为正值的旋转矢量,说明初相的大小并画出 振动曲线。
画出质点处于平衡位置且速度小于零正最大位移12位移处且速度为正值的旋转矢量说明初相的大小并画出振动曲线
第7章
机械振动
简谐振动的旋转矢量图
1
回顾: • 掌握简谐振动的判断方法。 • 掌握简谐振动的特征量。 • 掌握简谐振动的速度加速度。 x A cos( t )
2
7.1.3 A,ω, 的确定 x A cos( t )
解:所求振动方程为
x A cos( t ) A cos( 2 t ) T
8
解: x A cos( t ) A cos( 2 t ) T (1)解析法(x0=-A) 由x0 A cos A cos 1, = , 旋转矢量法: = 或- 2 t ) x A cos( T

16.3旋转矢量法

16.3旋转矢量法

x x1 x2 xn
x A cos(t )
o
1 A1
2
A2
3
x
多个同方向同频率简谐运动合成仍为简谐运动 多个分振动的合成在说明光的干涉和衍射规 律时有重要的应用。

两个相互垂直的同频率简谐运动的合成
x A1 cos(t 1 ) y A2 cos(t 2 )
三个同方向、同频率的谐振动为
x 1 = 0.1cos(10t+π/6)m x 2 = 0.1cos(10t+π/2)m x 3 = 0.1cos(10t+5π/6)m
试利用旋转矢量法求出合振动的表达式。
解: A 1 = A 2 = A 3 = 0.1 φ1 = π φ2 = π 6 2 A´ = A 1 + A 3 A = A1 + A2 + A3 = A 2 + A´ A = 2 A 1 = 0.2 φ =π 2 A3
李 萨 如 图
1 0
π π 3π π 2 0, , , , 8 4 8 2
x ny x达到最大的次数 y nx y达到最大的次数
测量振动频率 和相位的方法
利用李萨如图形在无线电技术中可以测量频
率:在示波器上,垂直方向与水平方向同时输入
两个振动,已知其中一个频率,则可根据所成图 形与已知标准的李萨如图形去比较,就可得知另 一个未知的频率。
A
P x
注意:旋转矢量在第 2 象限 M 速度v < 0
A
P x
注意:旋转矢量在第 2 象限 速度 v 0 < M
A
P x
注意:旋转矢量在第 2 象限 速度v < 0

15 简谐振动 旋转矢量法.

15 简谐振动 旋转矢量法.

作业
习题集:121、6、8、9、16
第5章 机械振动
P.21/35
(1) 振动表达式; (2) t = 0.5s时, 质点的位置, 速 度和加速度; (3) 如果在某时刻质点位于 x=-6cm, 且沿 x 轴负方向运 动, 求从该位置回到平衡位置 所需要的最短时间.

3

x
2
第5章 机械振动
解: v dx
t 0.5s
dt t 0.5s
0.12π sin(
联立解得
x2

k1 k1 k2
x
根据牛顿第二定律
第5章 机械振动
k1
k2

x
x
F

m
d2x dt 2
k2 x2


k1k2 k1 k2
x

m
d2 dt
x
2
d2 dt
x
2

k1
k1k2 k2
m
x

0
所以简谐振动
振动频率
ν 1 2 2π
k1k2
k1 k2 m
P.20/35
2
a
a A 2 cos(t ) A 2
o
A 2 cos(t π ) A 2
xt图
t
T
vt 图
Tt
a t图
Tt
P.6/35
简谐运动的运动方程
第5章 机械振动
x Acos( t ) Acos( t 2 )
x Acos(t )
第三篇 机械振动&机械波
第五章 机械振动
第5章 机械振动

旋转矢量法在简谐振动中的应用探讨

旋转矢量法在简谐振动中的应用探讨

旋转矢量法在简谐振动中的应用探讨摘要:结合旋转矢量法的理论依据探究旋转矢量法在简谐振动中的应用,探究结果发现:旋转矢量法的理论依据是两个振幅相等,频率相同的简谐振动,相位差等于π/2,沿垂直方向的合成就是圆周运动;而旋转矢量法可计算简谐振动的矢端速度与加速度、相位与初相位、运动时间间隔及合振动。

关键词:旋转矢量法;简谐振动;应用0.旋转矢量法旋转矢量法[1],也叫匀速圆周运动法,参考圆法,用其方法来解决简谐振动中的问题,相对来说比较简单。

如图1,做一个圆周,以O为原点,向右为正方向建立坐标轴,根据题目条件确定半径位置,要观察的是半径的端点在x轴上的投影的位置,如果速度为正,半径端点一定处于x轴下方,反之在x轴上方,比如,t=0时,质点正经过平衡位置向正方向运动,那么这个半径端点就是在原点正下方,即端点的投影刚好在原点[2]。

而以O为原点的旋转向量A的端点与在x 轴上的投影点的运动为简谐振动。

图1 旋转矢量图2 相位差为π/2互相垂直简谐振动的合成1.简谐振动矢量法的理论依据互相垂直相同频率简谐振动的合成[3],现将分振动的运动学方程表示为,,质点既沿Ox轴又沿Oy轴运动,实际上是在Oxy平面上运动。

从上面方程消去t,得合振动的轨迹方程:=。

当相位差为时,,表明合振动的轨迹为以x和y为轴的椭圆,如图2所示这里又可分为两种情况,时,x方向的振动比y方向的振动超前,即,当某一瞬时,则x=0,y=A2,即质点在图2(a)中的P点,经过很短时间后略大于零,y将略小于A2,为正,而略大于,x将为负,故质点运动到第二象限,即质点沿椭圆逆时针运动。

反之,时,y方向的振动比x方向的振动超前,质点沿椭圆顺时针方向运动,如图2(b)。

以上两分运动中,若=且相位差为,则其合运动轨迹方程褪化为圆。

两个振幅相等,频率相同的简谐振动,相位差等于沿互相垂直方向合成的为圆周运动;反推理可得,圆周运动亦能分解为两互相垂直的同振幅同频率的简谐振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初相位 : 也叫初位相或初相.
t=0时的相位, 描述初始时刻的 振动状态, 与初始条件有关.
相位差ΔΦ : 相位的差值.
单位: 弧度(rad)
4. 求解振幅和初相
设 t =0 时
x0 Acos , v0 Asin
x2 0
v2 0
2
A2 (sin 2 cos2 )
A2
振幅:
A
x0
2
v0
6cm x
解: A=12cm, T=2s, x0=6cm
(1)
2π π s1
x
x
o
to
o
t
t
相位差为 2 整数倍: 同步
相位差为 或 奇数倍: 反相
3. 用旋转矢量图画简谐运动的x t
例2: 一质点沿x轴作简谐运动 的振幅为12cm, 周期为2s. 当 t = 0 时, 位移为6cm, 且沿 x 轴 正方向运动. 求: (1) 振动表达式; (2) t = 0.5s时, 质点的位置, 速 度和加速度; (3) 如果在某时刻质点位于 x=-6cm, 且沿 x 轴负方向运 动, 求从该位置回到平衡位置 所需要的最短时间.
振子沿 x 轴负方向运动 2. 比较各振动之间的相位关系 不同振动同一时刻的相位差
x1 Acos( t ) x2 Acos(t )
x1 Acos( t1 ) x2 Acos( t2 ) Φ (t2 ) (t1 )
(t2 t1) ( ) t
Φ 2 1
Φ 0 同步
x
0 超前 Φ π反相 Φ 0 落后
v d x 0.24sin 6.0t dt
sin 6.0t 1 cos2 6.0t
1
1
2
3
2 2
依题意, v<0
v 0.24 3 0.208 m s1 2
§5.2 简谐运动的旋转矢量 表示法
5.2.1 旋转矢量表示法
t
x
P
• 旋转矢量A的模即为简谐运 动的振幅.
• 旋转矢量A与x轴的夹角(t+)
第5章 机械振动
(优选)简谐振动旋转矢量法
P.0/35
第五章 机械振动
为何讨论的重点是简谐运动 复杂振动可分解为若干简谐运动
振动的运动学规律
简谐振动的动力学特征
振动能量的周期性特征
振动和波动的关系: 波动——振动的传播 振动——波动的源头
机械振动, 电磁振荡 机械波, 电磁波 德布罗意波——几率波
2
初相: arctan( v0 )
x0
A 和 完全由初始条件决定. 的取值不唯一, 并与坐标正
方向的选取有关.
例1: 轻弹簧一端固定, 另一端连 接一个物块. 整个系统位于水平 面内, 系统的角频率为6.0s-1. 将 物体沿水平向右拉到 x0= 0.04 m 处再释放, 试求: (1)简谐运动表 达式; (2)物体从初始位置起第 一次经过A/2处时的速度.
§5.1 简谐运动
5.1.1 简谐运动的特征及其运 动方程
弹簧振子——理想模型
简谐运动的受力
f kx
始终指向平衡位置(有心力)
简谐运动的动力学方程单源自摆d2xm dt 2 k x
简谐运动动力学方程
m d2x k x 令 2 k
dt 2
m
d2 dt
x
2
2
x
0
微分方程的解(运动方程)
简谐运动的速度与加速度
解: (1)
x0 0.04m, v0 0, 6.0s1
振幅: A
x0 2
v02
02
x0 0.04m
arctan v0 0 x0
(为什么 不取π ?)
得: x 0.04cos 6.0t m (2) 由(1)中结果
0.02 0.04cos 6.0t cos 6.0t 1 2
x Acos(t )
5.1.2 简谐运动方程中的 三个基本物理量
A
cos (t
2
)
)
T 2
频率 : 单位时间内完成的振动次数.
1. 描述振动强弱的物理量
振幅 A : 离开平衡位置的 最远距离.
单位: m
2. 描述振动快慢的物理量
周期 T : 往复振动一次所 经历的时间.
单位: s
1 T
单位: 赫兹(Hz, 1/s)
T 2π 取 0
x xt图
A
o
T
A
v vt 图
t
v A sin(t ) A
o
Tt
A cos(t π ) A
2
a a t图
a A 2 cos(t ) A 2
o
Tt
A 2 cos(t π ) A 2
简谐运动的运动方程 x Acos( t ) Acos( t 2 )
即为简谐运动的相位.

旋转矢量
A
的角速度

为振动的角频率.

t
=0时,
A
与x轴的夹角即为
简谐振动的初相.

旋转矢量
A
旋转一周,
P点完
成一次全振动.
周期: T 2π
结论: 投影点的运动为简谐运动
x Acos( t )
y vm t π
t
0
an
a v
2 A
x
vm A an A 2
圆(角)频率 : 2 秒内振动的次数.
2 单位: 弧度/秒(rad/s)
周期, 频率与角频率关系: k
m
T 1 2π
只取决于系统本身.
简谐运动的运动方程
x Acos(t )
3. 初相位, 相位和相位差
相位ωt + : 也叫位相或周相.
一个周期当中, 相位与振子的 运动状态(包括位置, 速度, 加 速度)一一对应.
振动学是波动学的基础
第5章 机械振动
振动: 任何一个物理量(物体的位置, 电流强度, 电场强度, 磁场强度等)在 某一固定值附近作往复变化. 机械振动: 物体在固定位置(平衡位置) 附近作来回往复的运动. 简谐运动: 是最基本, 最简单的振动.
复杂振动 = ∑简谐振动
研究目的 —— 利用, 减弱 or 消除
v A cos(t π )
x Acos(t )
2
a A2 cos(t )
远离 x ,v 0 接近 x ,v 0
5.2.2 旋转矢量图的应用
1. 求初相位
振子沿 x 轴正方向运动
x x
Φ (t ) (t )
( )t ( )
若两个振动的频率相 同, 则相位差为
A
A
x
Φ
同一振动不同时刻的相位差
v dx Asin( t )
a
dt dv
vm
cos(
t
π 2
)
2 Acos( t )
v
dt am cos( t π ) a
x Acos(t )
简谐运动: 某个物理量随时 间的变化规律满足简谐运 动方程, 或遵从余(正)弦规 律, 一般来说, 这一物理量 就作简谐运动.
x Acos(t )
相关文档
最新文档