塞来昔布对胃癌细胞SGC-7901凋亡的影响及其作用机制

合集下载

塞来昔布通过调节细胞凋亡和自噬PI3KAkt信号通路在胃癌细胞SGC-7901

塞来昔布通过调节细胞凋亡和自噬PI3KAkt信号通路在胃癌细胞SGC-7901

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 33: 1451-1458, 2014Abstract. Gastric cancer, one of the most common malig-nancies worldwide, typically has a poor prognosis and poor survival rate. Previous studies have investigated the chemopreventive effect of celecoxib. In the present study, the SGC-7901 human gastric cancer cell line was utilized to examine the chemopreventive mechanisms of celecoxib. The inhibition of cell proliferation was determined using MTT assay, cell apoptosis was monitored by terminal deoxynucleo-tidyl transferase-mediated dUTP nick end-labeling (TUNEL) and flow cytometry, and cell ultrastructural changes were assessed via transmission electron microscopy. The mRNA expression of Akt, caspase-8 and -9 was examined using quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) and p-Akt, procaspase-8 and -9 were analyzed via western blotting. The results showed that celecoxib inhibited the proliferation of SGC-7901 cells in a time- and dose-dependent manner. Additionally, celecoxib induced apoptosis as substantiated by typical apoptotic bodies, autophagosomes and an increased apoptotic rate. It was found that following celecoxib treatment, Akt mRNA expression was not signifi-cantly altered, and that p-Akt protein levels decreased in a time- and dose-dependent manner. Additionally, caspase-8 and -9 mRNA expression was significantly increased, while procaspase-8 and -9 protein expression decreased relative to the time- and dose-dependent effects. These results demon-strated that celecoxib induced apoptosis and autophagy of gastric cancer cells in vitro through the PI3K/Akt signaling pathway. Moreover, our findings suggested that celecoxib induces apoptosis in gastric cancer cells through the mito-chondrial and death receptor pathways, providing additional understanding regarding the chemopreventive behaviors of celecoxib and its uses in cancer therapy. IntroductionGastric cancer is among the most common malignancies worldwide, with a 5-year survival rate of only 20% (1). Due to the fact that this type of cancer has a poor prognosis, attention has been drawn to the chemopreventive effect of celecoxib, a cyclooxygenase-2 (COX-2) inhibitor. COX, also known as prostaglandin synthase peroxidase, is the rate-limiting enzyme catalyzing arachidonic acid into prostaglandins, with COX-2 being involved in inflammatory diseases and certain types of tumor (2,3). In vitro and in vivo studies have shown that the long-term and widespread use of non-steroidal anti-inflamma-tory drugs (NSAIDs) may contribute to the maintenance of gastric health, with epidemiological studies showing possible risk reduction (4,5).Apoptosis, programmed cell death (PCD), occurs in multi-cellular organisms, with autophagy also triggering PCD through different apoptotic mechanisms (6,7). Celecoxib and related compounds have been shown to induce cell cycle arrest, inhibit tumor growth and suppress tumor angiogenesis, with celecoxib potently inducing apoptosis in tumor cells (8-11). An increased expression of COX-2 and Akt in gastric carcinomas relative to normal gastric mucosa, with celecoxib treatment inducing tumor apoptosis has also been shown (12). Further experimen-tation showed that COX-2 inhibitors may induce apoptosis by affecting Akt phosphorylation, thus activating the Akt signaling pathway (13). In this study, we used the selective COX-2 inhibitor celecoxib to treat the SGC-7901 gastric cancer cells and to induce cell apoptosis in vitro. The effects of celecoxib on apoptotic and autophagic cell death through the monitoring of mRNA and protein levels of Akt, caspase-8 and -9 were also examined. This approach aids in further characterization of the apoptotic effect of celecoxib via the PI3K/Akt signaling pathway in order to gain a better understanding of its antitumor effects. Materials and methodsCell culture. SGC-7901 human gastric cancer cells (Type Culture Collection Committee, Chinese Academy of Sciences, Shanghai, China) were cultured in RPMI-1640 medium (Gibco,Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cellsMIN LIU1*, CHUN-MEI LI2*, ZHAO-FENG CHEN1, RI JI1, QING-HONG GUO1,QIANG LI1, HONG-LING ZHANG1 and YONG-NING ZHOU1Divisions of 1Gastroenterology and Hepatology, 2Oncology,The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. ChinaReceived November 30, 2013; Accepted March 20, 2014DOI: 10.3892/ijmm.2014.1713Correspondence to: Dr Yong-Ning Zhou, Division of Gastroen-terology and Hepatology, The First Hospital of Lanzhou University,Lanzhou, Gansu 730000, P.R. ChinaE-mail: yongningzhou@*Contributed equallyKey words: apoptosis, autophagy, celecoxib, cyclooxygenase 2,Akt, caspase-8, caspase-9, gastric carcinomaLIU et al: CELECOXIB INDUCES APOPTOSIS AND AUTOPHAGY VIA PI3K/Akt PATHWAY IN SGC-7901 CELLS 1452Long Island, NY, USA) with 2 mmol/l glutamine, supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA), 50 U/ml penicillin, and 50 mg/ml streptomycin. The cells were plated at a density of 1x105 cells/ml in 6-well tissue culture plates and grown to confluency at 37˚C with 5% CO2. When 50% confluency was reached, serum-supplemented medium was replaced with the recommended serum-free RPMI-1640 medium for overnight culturing before celecoxib intervention. Celecoxib, provided by the Faculty of Medicine, the Chinese University of Hong Kong, stock solution was added to the serum-supplemented medium at different concentrations and cultured until the detection time.MTT assay. The inhibition of cell proliferation in SGC-7901 cells following celecoxib treatment was evaluated using an MTT assay (Sigma-Aldrich, Shanghai, China) as per the manufacturer's instructions. Briefly, 5x103 cells/well were seeded in 96-well plates, incubated in culture medium for 24 h, and treated with varying concentrations of celecoxib (0, 50, 75, 100 and 125 µmol/l) for 24, 48 and 72 h, with parallel samples treated with DMSO only serving as controls. Following treat-ment, the formation of formazan crystals was measured after 4 h of MTT incubation (10% v/v) at an optical density (OD) of 490 nm, with each experiment repeated in triplicate. The relative cell proliferation inhibition rate was calculated as: (1-OD490Test/OD490Control) x100% to show a percentage value.TUNEL assay. DNA breaks occur late in the apoptotic pathway and can be determined and analyzed by performing the TUNEL assay (Roche, Basel, Switzerland). Firstly, cells were seeded on coverslips and treated with 100 µmol/l cele-coxib for 72 h. Following treatment, the cells were washed, fixed and stained as per the manufacturer's instructions and apoptotic numbers evaluated using a confocal laser scanning microscope (Leica, Wetzlar, Germany) at 515-565 nm.Flow cytometric (FCM) analysis of apoptosis. Apoptosis was assessed by flow cytometric analysis using the Annexin V-FITC/PI apoptosis detection kit (Invitrogen, Life Technologies Ltd., Carlsbad, CA, USA). SGC-7901 cells were seeded in 6-well plates at ~5x104 cells/well. Following treat-ment with celecoxib, the cells were trypsinized, centrifuged to remove the supernatant, washed with phosphate-buffered saline (PBS), suspended in 100 µl of 1X binding buffer (10 mM HEPES, 140 mM NaCl, and 2.5 mM CaCl2), and stained with Annexin V and PI as per the manufacturer's instructions. FITC-positive and PI-negative cells were considered apoptotic cells, PI-positive cells were considered necrotic, and unstained cells were considered normal viable cells. The apoptotic rates of the various cell groups were calculated and comparisons of apoptotic rates were conducted among the various groups.Transmission electron microscope (TEM) analysis of cell ultrastructure. Cells were seeded on coverslips, treated with 125 µmol/l celecoxib for 72 h (with a parallel untreated control), cultured in RPMI-1640 for 72 h, collected and fixed with 3% glutaraldehyde. The cells were washed with PBS, fixed in 1% osmium tetroxide, dehydrated by graded ethanol and acetone, and routinely embedded and polymerized. The slices were contrasted with an aqueous solution of uranyl acetate and lead citrate and examined by JEM-1230 transmis-sion electron microscope (Jeol Ltd., Tokyo, Japan).Quantitative reverse-transcription-polymerase chain reac-tion (qRT-PCR) analysis. SGC-7901 cells were cultured at a density of 1x105 cells/ml in 6-well tissue culture plates. One group was treated with various concentrations of celecoxib (0, 75, 100 and 125 µmol/l) and cultured for 72 h, while an additional test group was treated with 125 µmol/l celecoxib for 0, 24, 48 and 72 h. Total RNA was extracted by a column RNA extraction kit (Sangon, Shanghai, China) and reverse-transcribed into cDNA at 37˚C for 15 min, and 85˚C for 5 sec. Diluted cDNA was subjected to qRT-PCR using a SYBR®Premix Ex Taq™ II kit (Takara Bio, Inc., Shiga, Japan) in 25 µl of reaction solution containing 2 µl of cDNA template, 1 µM of each primer, 10 µl of 2X SYBR-Green master mix, and brought to the final volume with RNase-free water. Reactions were performed in triplicate via a PCR thermal cycler (Roter-Gene 3000; Corbett, Sydney, Australia) under the following conditions: pre-denaturation at 95˚C for 30 sec, 40 cycles of denaturation at 95˚C for 5 sec, and annealing at 62˚C for 30 sec. The relative expression was calculated by the 2-ΔΔCT formula. The primer pairs for qRT-PCR are listed in Table I.Western blot analysis. Total protein was extracted and protein concentrations established via bicinchoninic acid (BCA) assay. Protein (25 µg) was denatured, separated by SDS-PAGE electrophoresis and transferred to a PVDF membrane. AfterTable I. Primer pairs for qRT-PCR.Gene name Accession Sequence (5'-3') Product size (bp) Caspase-9 NM_001229 F: CCCATATGATCGAGGACATCCA 186R: ACAACTTTGCTGCTTGCCTGTTAGCaspase-8 NM_001228 F: GGTACATCCAGTCACTTTGCCAGA 83R: GTTCACTTCAGTCAGGATGGTGAGAAkt NM_005163 F: GTGGCAGCACGTGTACGAGAA 108R: GTGATCATCTGGGCCGTGAAβ-actin NM_001101 F: TGGCACCCAGCACAATGAA 126R: CTAAGTCATAGTCCGCCTAGAAGCAINTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 33: 1451-1458, 20141453blocking overnight at 4˚C using 5% BSA, the membranes were incubated with primary antibodies (anti-procaspase-8 1:2,500 and procaspase-9 1:2,000; both from Abcam, Cambridge, MA, USA), p-Akt 1:800 (Bioworld, St. Louis Park, MN, USA) for 2 h at room temperature, washed by TBST and incubated with the corresponding horseradish peroxidase (HRP)-conjugated secondary antibody at 1:2,000 dilution for 2 h. Bands were visu-alized using enhanced chemiluminescence (ECL; Applygen, Beijing, China) detection reagents and scanned images were quantified using ImageJ software. Experiments were performed in triplicate with β-actin used as a housekeeping control for normalization. The ratio of target gene to β-actin was used for semi-quantification and comparison between different groups.Statistical analysis. Triplicate data are presented as mean values and shown as the means ± standard deviation (SD). Samples were analyzed by one-way ANOVA, with P<0.05 considered to indicate statistical significance.ResultsCelecoxib inhibits proliferation of SGC-7901 cells. Following in vitro treatment with celecoxib, the SGC-7901 gastric cancer cell line showed a significant inhibition of cell proliferation in a time- and dose-dependent manner, with the most pronounced effect evident at a concentration of 125 µmol/l for 72 h as iden-tified by a proliferation inhibition rate of 85.6±4.51% (Fig. 1).Celecoxib induces apoptosis of SGC-7901 cells. Fluorescein- labeled dUTP was connected to DNA 3'-OH ends of apoptotic cells by the deoxynucleotidyl transferase enzyme. Apoptotic cells with green fluorescence were detected by laser scanning confocal microscopy at an excitation of 515-565 nm, while all cells were exhibited as red under bright field microscopy. The two images were superimposed to show the specificity of apoptotic cells (yellow) and their position. Celecoxib-treated cells (Fig. 2B) showed significant levels of apoptosis relative to the control (Fig. 2A), with a statistical significance of P<0.05.Treatment with 0, 75, 100 and 125 µmol/l of celecoxib for 72 h yielded apoptotic rates of 4.0±0.91, 12.9±1.32, 24.6±3.63and 35.7±2.73%, respectively, with a statistical significance of P<0.05 when compared to the control group. Treatment with 125 µmol/l of celecoxib for 0, 24, 48 and 72 h, yielded apoptotic rates of 2.2±0.32, 8.5±1.57, 20.3±2.84 and 35.7±2.73%, respec-tively. Both study sets demonstrated a gradual increase in apoptotic rates in a time-and dose-dependent manner (Fig. 3).Celecoxib alters the ultrastructure of SGC-7901 cells. Following treatment with 125 µmol/l celecoxib for 72 h, typical early apoptotic changes were found to include nuclear membrane shrinkage and retraction (Fig. 4A), nuclear chro-matin condensation, marginalization and crescents, with late apoptotic changes observed by nuclei cleavage into frag-ments and apoptotic body production (Fig. 4B). Additionally, typical autophagic structures were found to include several cytoplasmic autophagic vacuoles and autophagosomes, which swallowed organelles (Fig. 4C and D).Effect of celecoxib on Akt, caspase-8 and -9 expression. No significant change in the mRNA levels of Akt was observed subsequent to treatment with celecoxib; however, the presence of p-Akt decreased in a time- and dose-dependent manner. Caspase-8 mRNA expression increased in a dose-dependent manner at concentrations of 75, 100 and 125 µmol/l of celecoxib. Caspase-9 mRNA expression levels increased significantly at a concentration of 100 and 125 µmol/l of celecoxib (Fig. 5A). Following treatment with 125 µmol/l of celecoxib for 24, 48 and 72 h, caspase-8 and -9 mRNA expression increased significantly (Fig. 5B). By contrast,procaspase-8 and -9 protein expression was significantlyFigure 1. Inhibitory effects of celecoxib on cell proliferation of the SGC-7901 gastric cancer cell line detected by MTT analysis. Following treatment with celecoxib at the indicated concentrations and time-points, SGC-7901 cells showed a significant inhibition of cell proliferation in a time- anddose-dependent manner.Figure 2. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) analysis for SGC-7901 human gastric cancer cells. (A) Control group; (B) group treated with 100 µmol/l cele-coxib for 72 h. The apoptotic cell number of the group treated with 100 µmol/l celecoxib for 72 h increased significantly relative to the control. Apoptotic cells with green fluorescence were detected by laser scanning confocal microscopy at an excitation of 515-565 nm, while all the cells exhibit a red image under bright field microscopy. The two images were superimposed to show the speci -ficity of apoptotic cells (yellow) and their position..LIU et al: CELECOXIB INDUCES APOPTOSIS AND AUTOPHAGY VIA PI3K/Akt PATHWAY IN SGC-7901 CELLS 1454lower than the control group in a time- and dose-dependent manner (Fig. 6). These results showed that celecoxib may inhibit Akt phosphorylation and promote caspase-8, -9 tran-scription and procaspase-8, -9 protein activation. DiscussionGastric carcinoma is among the most common malignancies worldwide, with an elevated 5-year postoperative mortality rate (14) thus creating a need for an alternative treatment method. Currently, the role of celecoxib, a non-cytotoxic COX-2 inhibitor, in cancer therapy has been under scru-tiny (14). COX, also known as prostaglandin synthetase, has three known isoenzymes in mammals, COX-1, COX-2 and COX-3 (15). COX-2 is present at low levels of expression in most normal tissues, but tumor factors, inflammatory cytokines and growth factors could promote its expression (16). COX-2is related to the development of tumors by promoting tumor Figure 3. Apoptotic rates of human gastric cancer cell SGC-7901 after treatment with celecoxib at different doses and time-points as detected by flow cytom-etry. The apoptotic rates of SGC-7901 cells markedly increased in a time- and dose-dependent manner following treatment with 0, 75, 100 and 125 µmol/l of celecoxib for 72 h (A and B) *P<0.05 or #P<0.01 when compared with the control group..INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 33: 1451-1458, 20141455cell proliferation, enabling tumor evasion of the host immune surveillance and promoting tumor invasion/metastasis (5,17). Multicellular organisms maintain their homeostasis through cell proliferation and PCD, with an imbalance possibly leading to the development of cancer. In this experiment, we found that the selective COX-2 inhibitor celecoxib induced apoptosis of SGC-7901 cells via reduced expression levels of COX-2, as obsreved by inhibited cell proliferation using MTT analysis and an increased number of apoptotic cells as detected by TUNEL and flow cytometry. Moreover, typical apoptotic changes were shown to include nuclear membrane shrinkage, nuclear chromatin condensation and apoptotic bodies using TEM to support the apoptotic effects of celecoxib. Caspases are a type of protease associated with apop-tosis and cytokine maturation, and are divided into initiator caspases, effector caspases and inflammatory mediators. Caspases are synthesized as relatively inactive zymogens and must undergo a process of activation during apoptosis. Caspase-8 is the initiator of the Fas-Fas ligand (FasL) pathway,and usually exists in the form of procaspase-8. When FasL Figure 3. Continued. The apoptotic rates of SGC-7901 cells markedly increased in a time- and dose-dependent manner following treatment with 125 µmol/l of celecoxib for 0, 24, 48 and 72 h (C and D). *P<0.05 or #P<0.01 when compared with the control group.LIU et al : CELECOXIB INDUCES APOPTOSIS AND AUTOPHAGY VIA PI3K/Akt PATHWAY IN SGC-7901 CELLS1456Figure 4. Ultrastructure changes of SGC-7901 cells following treatment with 125 µmol/l celecoxib for 72 h. We observed nuclear membrane shrinkage and retraction in early apoptosis (x5,000) (A), apoptotic body in late apoptosis (x3,000) (B), and changes in autophagy: autophagic vacuolar and autophagosomes (x40,000 or x30,000) (C and D) by TEM.Figure 6. p-Akt, procaspase-8 and -9 protein expression in SGC-7901 human gastric cancer cells following treatment with celecoxib at different doses and time-points. SGC-7901 cells were treated with 0, 75, 100 and 125 µmol/l celecoxib for 72 h (lanes 1-4) and treated with 125 µmol/l celecoxib for 0, 24, 48 and 72 h (lanes 5-8). Procaspase-8, -9 and p-Akt protein expression were significantly lower than the control group in a time- and dose-dependent manner. Aliquotsof protein extracts (40 µg) were immunoblotted with the indicated antibodies.Figure 5. Akt, caspase-8 and -9 mRNA expression of SGC-7901 human gastric cancer cells following treatment with celecoxib at different doses and time-points with the first group including: the control, 75, 100 and 125 µmol/l celecoxib for 72 h (A) and group two including: the control, 125 µmol/l celecoxib for 24, 48 and 72 h (B). *P<0.05 or #P<0.01 relative to the control group from three independent experiments.INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 33: 1451-1458, 20141457binds to the corresponding Fas receptor, the intracellular death effector domain (DED) of the Fas receptor attracts Fas associated with death domain protein (FADD) and recruits procaspase-8 to form a death-inducing signaling complex (DISC). Procaspase-8 is then hydrolyzed to generate activated caspase-8, followed by the activation of procaspase-3 and other effector caspases that eventually induce apoptosis (18). Caspase-9 is the initiator of the mitochondrial pathway, also known as procaspase-9, an inactive zymogen. The initiator caspase-9 is activated by the assembly of a multimeric complex (dubbed apoptosome) involving Apaf-1 and cytochrome c. Cleaved caspase-9 and -3 are activated and these effector caspases degrade a large number of cell proteins, ultimately inducing cell apoptosis (19,20). In this study, we found that celecoxib significantly increased caspase-8 and -9 mRNA expression in a time- and dose-dependent manner in SGC-7901 cells, suggesting that celecoxib may activate caspase-8 and -9 to initiated apoptosis through the death receptor and mito-chondrial pathways, respectively.Autophagy is a crucial component of the cellular stress adaptation response that maintains mammalian homeo-stasis (21). There are three different forms of autophagy that are commonly described: macroautophagy, microautophagy and chaperone-mediated autophagy. Macroautophagy is the predominant pathway occurring mainly to eradicate damaged organelles or unused proteins. Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses long-lived proteins and portions of organelles for delivery to the lysosome (22,23). Autophagy may play different roles in cancer occurrence and progression, while also potentially promoting or inhibiting cell proliferation at different stages of tumor growth (24). For example, autophagy plays a protective role in tumor cells via degradation of organelles under nutri-tional deficiency. Conversely, autophagy can also inhibit tumor growth via beclin 1, UVRAG, Bif and Atg. Findings of a recent study showed that berberine extracts promoted autophagy by activating beclin 1 expression and activated caspase-9 to induce apoptosis in hepatoma cells (25). Plant lectin from Polygonatum cyrtonema induced apoptosis and autophagy by inhibiting the Ras/Raf and PI3K/Akt signaling pathways in murine fibrosarcoma cells (26). In this study, the selective COX-2 inhibitor celecoxib, not only generated morphological changes indicative of apoptosis, but also typical changes of autophagy to include cytoplasmic autophagic vacuoles and autophagosomes.The molecular mechanism by which celecoxib induces apoptosis is not yet fully understood. The PI3K/Akt pathway widely presents in normal cells, but is abnormally activated in many malignant tumors (27-29). Akt, also known as protein kinase B (PKB), is a central component of the PI3K/Akt pathway, with Akt phosphoregulation impacting a variety of biological activities. In healthy and tumorigenic cells, Akt can be activated in an intracellular manner by hormones, growth factors, and extracellular matrix components (30). Akt regu-lates cell growth, survival and apoptosis through substrate phosphorylation, with Akt phosphoregulation observed at the Thr308 and Ser473 site, which are both required for activa-tion. Akt is activated as follows: the activated PI3K produces a secondary messenger PIP3 at the plasma membrane, PIP3 then binds an inactive Akt inducing its shift from the cytoplasm to the plasma membrane where Ser124 and Thr450 are phosphor-ylated, making Akt undergo a conformational change exposing its Thr308 and Ser473 sites. Immediately, phosphoinositide-dependent kinase 1 (PDK1) and phosphoinositide-dependent kinase 2 (PDK2), which are in close proximity to Akt, respec-tively catalyze the phosphorylation of the exposed Thr308 and Ser473 sites, resulting in the complete activation of Akt. This may trigger a phosphorylation cascade of downstream targets, ultimately impacting the regulation of cell growth and survival, proliferation and apoptosis, angiogenesis, cell migra-tion and numerous biological processes (30-33).In the present study, following celecoxib treatment in SGC-7901 cells, p-Akt, or activated Akt, was distinctly downregulated, leading to the upregulation of caspase-8 and -9 mRNA expression and increased procaspase-8 and -9 activation. Thus, we hypothesized that celecoxib inhibited the PI3K/Akt pathway by reducing the level of phosphorylation of Akt, which in turn activated the expression and activa-tion of caspase-8 and -9, resulting in apoptosis through the death receptor and mitochondrial pathways in SGC-7901 cells. Notably, we found changes in the cell ultrastructure to include apoptosis and autophagy, suggesting that celecoxib simultaneously induced apoptosis and autophagy, which is consistent with results of previous studies (5,13)). Autophagy is an evolutionarily conserved process that occurs during the growth and development process in many animals, but its specific mechanism of PCD is unclear. Autophagy and apoptosis could coadjust through p53 (35), PI3K/Akt (36) and Bcl-2-beclin 1 (37). Thus, celecoxib may impact both apop-tosis and autophagy via the PI3K/Akt signaling pathway in the SGC-7901 gastric cancer cells. The results of this study provide a new theoretical foundation for the antitumor mechanisms of celecoxib and offers new targets for cancer therapy, although these findings should be verified in future investigations. AcknowledgementsThis study was supported by a grant from the National Science Foundation of China (no. 81172366). We would like to thank LetPub for its linguistic assistance during the preparation of this manuscript.References1. Saukkonen K, Rintahaka J, Sivula A, et al: Cyclooxygenase-2 and gastric carcinogenesis. APMIS 111: 915-925, 2003.2. Jones DA, Carlton DP, McIntyre TM, Zimmerman GA and Prescott SM: Molecular cloning of human prostaglandin endo-peroxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem 268: 9049-9054, 1993.3. Sarkar FH, Adsule S, Li Y and Padhye S: Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 7: 599-608, 2007.4. Duan L, Wu AH, Sullivan-Halley J and Bernstein L: Nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric adenocarcinomas in Los Angeles County. Cancer Epidemiol Biomarkers Prev 17: 126-134, 2008.5. Fu SL, Wu YL, Zhang YP, Qiao MM and Chen Y: Anti-cancer effects of COX-2 inhibitors and their correlation with angiogen-esis and invasion in gastric cancer. World J Gastroenterol 10: 1971-1974, 2004.6. Lo AC, Woo TT, Wong RL and Wong D: Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue. Ophthalmologica 226 (Suppl 1): 10-17, 2011.LIU et al: CELECOXIB INDUCES APOPTOSIS AND AUTOPHAGY VIA PI3K/Akt PATHWAY IN SGC-7901 CELLS 14587. Su M, Mei Y and Sinha S: Role of the crosstalk between autophagy and apoptosis in cancer. J Oncol 2013: 102735, 2013.8. Qadri SS, Wang JH, Coffey JC, et al: Surgically induced acceler-ated local and distant tumor growth is significantly attenuated by selective COX-2 inhibition. Ann Thorac Surg 79: 990-995, 2005.9. Grösch S, Maier TJ, Schiffmann S and Geisslinger G: Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98: 736-747, 2006.10. Baek JY, Hur W, Wang JS, Bae SH and Yoon SK: Selective COX-2 inhibitor, NS-398, suppresses cellular proliferation in human hepatocellular carcinoma cell lines via cell cycle arrest. World J Gastroenterol 13: 1175-1181, 2007.11. Jendrossek V: Targeting apoptosis pathways by celecoxib in cancer. Cancer Lett 332: 313-324, 2013.12. Fan XM, Jiang XH, Gu Q, et al: Inhibition of Akt/PKB by a COX-2 inhibitor induces apoptosis in gastric cancer cells. Digestion 73: 75-83, 2006.13. Kim N, Kim CH, Ahn DW, et al: Anti-gastric cancer effects of Celecoxib, a selective COX-2 inhibitor, through inhibition of Akt signaling. J Gastroenterol Hepatol 24: 480-487, 2009.14. Patru CL, Surlin V, Georgescu I and Patru E: Current issues in gastric cancer epidemiology. Rev Med Chir Soc Med Nat Iasi 117: 199-204, 2013.15. Futagami S, Suzuki K, Hiratsuka T, et al: Chemopreventive effect of Celecoxib in gastric cancer. Inflammopharmacology 15: 1-4, 2007.16. Willoughby DA, Moore AR and Colville-Nash PR: COX-1, COX-2, and COX-3 and the future treatment of chronic inflam-matory disease. Lancet 355: 646-648, 2000.17. Greenhough A, Smartt HJ, Moore AE, et al: The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30: 377-386, 2009.18. Liu Y and Liu BA: Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin. World J Gastroenterol 17: 2674-2680, 2011.19. Fulda S: Caspase-8 in cancer biology and therapy. Cancer Lett 281: 128-133, 2009.20. Würstle ML, Laussmann MA and Rehm M: The central role of initiator caspase-9 in apoptosis signal transduction and the regu-lation of its activation and activity on the apoptosome. Exp Cell Res 318: 1213-1220, 2012.21. Allan LA and Clarke PR: Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. FEBS J 276: 6063-6073, 2009.22. White E, Karp C, Strohecker AM, Guo Y and Mathew R: Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol 22: 212-217, 2010.23. Lorin S, Hamaï A, Mehrpour M and Codogno P: Autophagy regu-lation and its role in cancer. Semin Cancer Biol 23: 361-379, 2013.24. White E: Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12: 401-410, 2012.25. Helgason GV, Holyoake TL and Ryan KM: Role of autophagy in cancer prevention, development and therapy. Essays Biochem 55: 133-151, 2013.26. Xie BS, Zhao HC, Yao SK, et al: Autophagy inhibition enhances etoposide-induced cell death in human hepatoma G2 cells. Int J Mol Med 27: 599-606, 2011.27. Liu B, Wu JM, Li J, et al: Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K-Akt signaling pathways. Biochimie 92: 1934-1938, 2010.28. Ye B, Jiang LL, Xu HT, Zhou DW and Li ZS: Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis. Int J Immunopathol Pharmacol 25: 627-636, 2012.29. Lin X, Zhang X, Wang Q, et al: Perifosine downregulates MDR1 gene expression and reverses multidrug-resistant phenotype by inhibiting PI3K/Akt/NF-kappaB signaling pathway in a human breast cancer cell line. Neoplasma 59: 248-256, 2012.30. Kang XH, Xu ZY, Gong YB, et al: Bufalin reverses HGF-induced resistance to EGFR-TKIs in EGFR mutant lung cancer cells via blockage of Met/PI3k/Akt pathway and induction of apoptosis. Evid Based Complement Alternat Med 2013: 243859, 2013. 31. Chang F, Lee JT, Navolanic PM, et al: Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17: 590-603, 2003.32. Song G, Ouyang G and Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9: 59-71, 2005.33. Falasca M: PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des 16: 1410-1416, 2010.34. Garcia-Echeverria C and Sellers WR: Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27: 5511-5526, 2008.35. Liu J, Lin Y, Yang H, Deng Q, Chen and He J: The expression of p33(ING1), p53, and autophagy-related gene Beclin1 in patients with non-small cell lung cancer. Tumor Biol 32: 1113-1121, 2011.36. Cheng Y, Ren X, Zhang Y, et al: eEF-2 kinase dictates cross-talk between autophagy and apoptosis induced by Akt inhibition, thereby modulating cytotoxicity of novel Akt inhibitor MK-2206. Cancer Res 71: 2654-2663, 2011.37. Djavaheri-Mergny M, Maiuri MC and Kroemer G: Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29: 1717-1719, 2010.。

塞来昔布术前干预对人胃癌组织E 钙粘蛋白表达的影响

塞来昔布术前干预对人胃癌组织E 钙粘蛋白表达的影响
]=),J*% ^*) !Z!- _%)’,‘0)’ a1%= !Z ?1()’,b(0 J*)’ !E c%)’,c=* P0 !- /0)’,b() P0- *)> c%)’ P=Z
% !"#$%&’$ &
(&’)*%+,-. &-. /"01’$231 "
!"#$%%&"’()*+(,-
# !./,- ’
’4%=9+ %# EWS-WVFSF- ’ )’ Y 8P *)> #-WS-WV[S-[ ’)’ Y 8P & 6(4( +0’)0:07*)3$" $%6(4 31*) 31%+( 2(:%4( +=4’(4" %) 31( +0&31 >*" J1( +%$=2$( A , 7*>1(40) $(5($
!
!"!
资料与方法
临床资料
@EEF 年 H 月 至 @EEI 年 F 月 兰 州 大 学 第 一 医
院收治的 % 经组织学检查确诊的 BN 例胃癌患者纳 入本研究 $ 所有患者肝 % 肾功能均正常 # 术前未接受 过放化疗 # 近 I 个月无非甾体类药物服用史 $ BN 例 患者随机分为用药组 HC 例 # 年龄 F@OIA 岁 # 中位年 龄 BF 岁 # 术前每天口服 @ 次塞来昔布 ! 辉瑞制药有 限 公 司 "# 每 次 @EE -4 # 共 I 天 # 然 后 行 手 术 治 疗 & 手术组 @@ 例 # 年龄 HIOID 岁 # 中位年龄 BE 岁 # 单纯 手术治疗 $ 以 @E 名健康人为正常对照 $ 各组治疗前 均 行 肝 %肾 功 能 检 查 无 异 常 #余 临 床 资 料 差 异 无 统 计学意义 # 见表 A $ 研究经兰州大学第一医院伦理 委员会同意进行 # 所有患者均签署知情同意书 $

阿霉素对人胃癌细胞SGC-7901增殖和凋亡的影响

阿霉素对人胃癌细胞SGC-7901增殖和凋亡的影响

阿霉素对人胃癌细胞SGC-7901增殖和凋亡的影响张蕾;邵淑丽;李凤英;张伟伟【摘要】观察阿霉素对SGC-7901细胞的凋亡诱导作用.采用台盼蓝拒染法测定细胞生长抑制率,计算半数抑制质量浓度值;采用DNA琼脂糖凝胶电泳技术检测细胞凋亡,倒置显微镜观察细胞形态结构的变化;采用流式细胞仪检测阿霉素对细胞周期的影响,探讨阿霉素对SGC-7901细胞增殖和凋亡的影响.结果表明,阿霉素对SGC-7901细胞具有抑制作用,IC50为5.7 μg·mL-1;DNA琼脂糖凝胶电泳有典型的梯形条带,倒置显微镜观察显示,阿霉素能抑制细胞增殖,可致细胞形态学改变,出现明显的凋亡形态学特征,流式细胞仪检测出现凋亡峰.说明阿霉素能明显抑制人胃癌细胞株SGC-7901细胞增殖,并能诱导其凋亡.【期刊名称】《高师理科学刊》【年(卷),期】2012(032)003【总页数】3页(P59-61)【关键词】胃癌;阿霉素;细胞凋亡【作者】张蕾;邵淑丽;李凤英;张伟伟【作者单位】齐齐哈尔大学生命科学与农林学院,黑龙江齐齐哈尔161006;齐齐哈尔大学生命科学与农林学院,黑龙江齐齐哈尔161006;齐齐哈尔大学生命科学与农林学院,黑龙江齐齐哈尔161006;齐齐哈尔大学生命科学与农林学院,黑龙江齐齐哈尔161006【正文语种】中文【中图分类】R735.2阿霉素(AMD)是一种经典抗生素类广谱抗肿瘤药物,具有明显的心肌毒性和神经毒性.可抑制RNA和DNA的合成,对RNA的抑制作用最强,抗瘤谱较广,对多种肿瘤均有作用[1].阿霉素进入肿瘤细胞后,一方面作用于细胞核,使处于分裂期的核破裂,染色体崩解;另一方面,使代谢功能活跃的肿瘤细胞的核染色质凝缩,乃至核膜破裂,核质溢出,抑制胞浆中细胞器的功能,并与之结合产生毒性抑制或破坏作用,使肿瘤细胞增殖发生障碍,发生退行性改变,最终导致肿瘤细胞的死亡[2].本实验以体外培养的人胃癌SGC-7901细胞株为研究对象,用阿霉素进行诱导,探讨阿霉素对SGC-7901细胞增殖和凋亡的影响.人胃癌细胞株SGC-7901(中国科学院上海细胞生物研究所),Tris饱和酚(北京鼎国昌盛生物技术有限责任公司),优级胎牛血清(上海生工生物工程技术服务有限公司).1.2.1 细胞培养、传代将SGC-7901细胞培养在含10%胎牛血清RPMI-1640的培养液中(含16.67×10-7 mol·s-1·mL-1青霉素,16.67×10-7 mol·s-1·mL-1链霉素),置于37℃,5.0% CO2培养箱内培养.1.2.2 细胞生长曲线的测定接种21瓶细胞,每瓶5 mL,细胞密度为5×104个/mL.采用台盼蓝计数法,分7 d测细胞数,每天测3瓶,取均值.得到7个数据,用Excel作图,确定对数生长期.1.2.3 台盼蓝拒染法测定细胞生长抑制率取对数生长期的细胞,分成对照组和实验组,每瓶密度为5×104 个/mL,分别加入0,1,2,3,4, 5,6,7,8μg·mL-1的阿霉素.培养48 h后,用台盼蓝拒染法计数,计算公式:细胞存活率=用药组活细胞数/对照组细胞数×100%,采用Excel做出细胞生长抑制曲线,并确定IC50(半数抑制质量浓度).1.2.4 倒置显微镜观察细胞形态取对数生长期的人胃癌 SGC-7901细胞,经 0,6μg·mL-1阿霉素作用48 h,光学显微镜下观察并照相.1.2.5 DNA琼脂糖凝胶电泳检测细胞凋亡分别收集经0,4.5,5,5.5,6,6.5,7,7.5 μg·mL-1阿霉素作用48 h的SGC-7901细胞,酚氯仿法提DNA,1%的琼脂糖凝胶电泳,拍照,记录结果.1.2.6 流式细胞仪检测SGC-7901的细胞周期分别收集经0,6 μg·mL-1阿霉素作用48 h的SGC-7901细胞,加入-20℃预冷的70%的乙醇,4℃固定至少18 h.调整细胞密度为106 个/mL,取1 mL细胞悬液,用PBS洗3次,细胞重悬于1 mL PI染液中,37℃孵育30 min,即可进行流式分析.体外培养的人胃癌细胞株SGC-7901生长曲线见图1.由图1可见,人胃癌细胞株SGC-7901的对数生长期在2~5 d.依据细胞生长情况,选择这段时间的胃癌细胞株SGC-7901加药为宜.SGC-7901细胞生长抑制曲线见图2.由图2可见,阿霉素作用SGC-7901细胞48 h,IC50为5.7 μg·mL-1.以药的质量浓度与抑制效果作量效关系曲线,进行曲线拟合.回归方程为回归曲线见图3.阿霉素对 SGC-7901细胞形态的影响见图4.由图4可见,未经药物处理的SGC-7901细胞大小均一,细胞核均匀.阿霉素质量浓度为6 μg·mL-1时,大部分细胞出现凋亡,胞浆浓缩,胞膜起泡、出芽,细胞体积逐渐变小,出现凋亡小体.不同质量浓度的阿霉素作用SGC-7901细胞,使其DNA断裂成180~200 bp的整数倍,所以,在电泳图中DNA条带呈梯状(见图5).阿霉素对SGC-7901细胞周期的影响见图6.由图6可见,阿霉素可抑制人胃癌SGC-7901细胞的生长周期.其阻滞胃癌SGC-7901细胞于G0/G1期.多年以来关于恶性肿瘤的研究范畴仅局限于研究细胞的分裂、增殖、分化及其调控,临床对恶性肿瘤的治疗也主要围绕这一认识展开[3-4].近年来,随着对细胞凋亡研究的深人,人们逐渐发现它与肿瘤的关系非常密切,从而使对细胞凋亡的研究成为肿瘤研究领域中一个非常重要的课题[5-6].本实验采用阿霉素抑制SGC-7901细胞增殖并诱导其凋亡,实验结果表明,一定质量浓度的阿霉素对体外培养的人胃癌SGC-7901细胞有显著的生长抑制作用,抑制率呈现时间依赖性.倒置显微镜观察证实,阿霉素处理的 SGC-7901细胞有明显的凋亡特征.细胞生化特征检测结果表明,阿霉素诱导的人胃癌SGC-7901细胞DNA片段呈间隔为180~200 bp整数倍的梯状电泳条带,正常细胞不降解,坏死细胞的DNA虽然存在降解,但由于存在各种长度的 DNA片段,表现为连续分布的弥散条带.流式细胞仪检测结果显示,细胞在药物作用下,出现特征性的亚2倍峰(凋亡峰).阿霉素可以阻滞胃癌细胞SGC-7901于G0/G1期,使细胞不能进入下一周期,进而诱导细胞凋亡.其作用机制有待进一步研究.【相关文献】[1] 梁祁枫,蒋振营,刘纪恩,等.阿霉素与顺铂联合重组人血管内皮抑素对骨肉瘤患者血清血管内皮生长因子和基质金属蛋白酶9水平的影响[J].中医中药,2011,12(6):1538-1539[2] 赵泉,周绪红,王蕾,等.尼美舒利与阿霉素联合应用对骨肉瘤MG-63细胞增殖、凋亡及衰老的影响[J].武汉大学学报,2011,32(6):733-738[3] Prasad S,Kalra N,Srivastava S,et al.Regulation of oxidative stress-mediated apoptosis by diallyl sulfide in DMBA-exposed Swiss mice[J].Hum Exp Toxicol,2008,27(1):55-63[4] Viste A.Predicted morbidity and mortality in major gastroenterological surgery [J].Gastric Cancer,2012,15(1):1-2[5] 解美娜,李锋杰.无花果枝提取物体外诱导胃癌BGC2823细胞凋亡的研究[J].天然产物研究与开发,2010(12):219-222[6] 聂园园,仇小强.心肌细胞凋亡与心血管疾病关系的研究进展[J].实用医学杂志,2012,28(2):324。

选择性COX-2抑制剂西乐葆在抗肿瘤方面应用探讨

选择性COX-2抑制剂西乐葆在抗肿瘤方面应用探讨

选择性COX-2抑制剂西乐葆在抗肿瘤方面应用探讨摘要】环氧化酶参与了恶性肿瘤发生、发展、侵袭、转移全过程,目前研究发现COX有3种类型:COX-1、COX-2、COX-3,其中COX-2是诱导酶,在大多数恶性肿瘤中均有表达。

西乐葆作为新型选择性COX-2抑制剂,具有抑制肿瘤细胞增殖并诱导其凋亡的作用,但具体机制尚不明确。

本文就近期关于西乐葆选择性COX-2抑制剂在抗肿瘤的机制做一探讨综述[1]。

【关键词】环氧化酶 COX-2 肿瘤【中图分类号】R73-3 【文献标识码】A 【文章编号】2095-1752(2012)24-0007-02随着医学信息的进步和发展,今年来,国内外大量的研究发现,环氧化酶-2(COX-2)在抗肿瘤中有重要作用,它与肿瘤的发生,发展和转移有密切的联系,西乐葆是高选择COX-2抑制剂,已经在多种肿瘤的预防和治疗中发挥重要作用。

环氧化酶是NSAIDs的作用靶点,其中COX-2是一种诱导酶,当细胞受到包括炎性介质、细菌内毒素及各种致癌因素等刺激作用时其表达迅速上升[2]。

西乐葆作为一种新型非甾体类抗炎药,在对抗肿瘤的同时能克服传统非甾体类药物长期使用而导致的胃肠道出血,消化道溃疡等不良反应,因此逐步为广大医患所接受,下面就选择性COX-2抑制剂西乐葆在抗肿瘤方面的作用和机制做一探讨。

1 COX-2抑制剂药物简介COX-2抑制剂是一类新型非甾体类消炎药,可分为非选择性COX-2抑制剂、选择性COX-2抑制剂和高选择性COX -2抑制剂[3]。

其中各种高选择性COX-2抑制剂作用机制相似,但它们的化学结构、药动学及药代学不同。

非选择性COX抑制剂由于对COX一1的抑制作用可引起较重的胃肠道反应如肾损害、血小板功能障碍等不良反应,因此选择性COX-2抑制剂和高选择性COX-2抑制剂尤其是后者有更好的应用前景。

近年来研究者备为关注的塞来昔布就属于一种高选择性COX-2抑制剂。

其于1999年1月由 FDA批准用于治疗骨关节炎(CA)、类风湿关节炎 (RA)及硬化性脊椎炎,国内外大量文献都对其进行了报道。

酸性应激引起胃癌SGC7901细胞自噬增强

酸性应激引起胃癌SGC7901细胞自噬增强

酸性应激引起胃癌SGC7901细胞自噬增强
盛杰;郭婧;于国红;邱振康;刘宁;王莎莎;邱文生
【期刊名称】《临床合理用药杂志》
【年(卷),期】2017(10)11
【摘要】目的酸应激对胃癌SGC7901细胞自噬强度的影响。

方法选择人胃癌细胞系SGC7901作为研究细胞,用调节到pH 6.5或pH 7.4的完全培养基处理胃癌SGC7901细胞。

采用免疫荧光检测酸应激时胃癌细胞系SGC7901中自噬体的形成情况,采用Western-Blot检测自噬相关蛋白LC3-Ⅱ的表达情况。

结果激光共聚焦电镜下观察到酸应激处理的胃癌SGC7901细胞荧光呈颗粒状数较对照组细胞内荧光颗粒数显著增多。

酸性完全培养基处理的胃癌SGC7901细胞较对照组SGC7901细胞LC3-Ⅱ生成增多,p62表达减少。

结论酸应激可以引起胃癌
SGC7901细胞自噬增强。

【总页数】2页(P9-10)
【作者】盛杰;郭婧;于国红;邱振康;刘宁;王莎莎;邱文生
【作者单位】青岛大学;青岛大学附属医院肿瘤科
【正文语种】中文
【中图分类】R735.2
【相关文献】
1.TGF-β1通过诱导自噬促进胃癌SGC7901细胞侵袭
2.抑制内质网相关降解途径引起大鼠肝细胞内质网应激和自噬增强
3.白藜芦醇对胃癌 SGC7901细胞自噬的影
响及其机制探讨4.短葶山麦冬皂苷C诱导人胃癌细胞SGC7901自噬机制初探5.猫人参含药血清对胃癌细胞SGC7901增殖和自噬的影响
因版权原因,仅展示原文概要,查看原文内容请购买。

塞来昔布抗肿瘤效应及其作用机制的研究进展

塞来昔布抗肿瘤效应及其作用机制的研究进展

塞来昔布抗肿瘤效应及其作用机制的研究进展癌症已成为威胁全球人类健康的重大公共卫生问题,其发生率、死亡率呈不断上升的趋势,预计2040年全球将有2 840万例新发癌症患者,比2020年增长47%[1]。

在人口老龄化进程加快和生活方式转变的影响下,我国癌症的防治形势依然十分严峻,原有主要高发癌症尚未有明显下降趋势,西方国家高发的大肠癌、前列腺癌和女性乳腺癌的负担不断增加[2]。

目前,化疗仍是肿瘤临床治疗的主要手段,然而化疗易产生多药耐药性,对肿瘤组织缺乏靶向性,具有不可忽视的不良反应,极大地影响了患者的临床疗效。

研发高效低毒的新型抗肿瘤药物、提升患者的生存质量、降低肿瘤患者病死率已迫在眉睫。

环氧化酶-2(COX-2)是一种诱导型表达的蛋白酶,在正常组织中几乎不表达,但在许多肿瘤细胞中过度表达,如肺癌、乳腺癌、胃癌、胰腺癌、结直肠癌、前列腺癌和头颈部肿瘤等。

COX-2与肿瘤的发生、发展和侵袭转移密切相关,抑制肿瘤COX-2的表达可发挥良好的抗肿瘤效应[3]。

塞来昔布是一种特异性COX-2抑制剂,具有抗炎、镇痛和退热作用,迄今已有20多年的临床应用史。

近年来,塞来昔布的抗肿瘤作用日益受到广泛关注,已被广泛应用于消化道肿瘤、乳腺癌、肺癌、肝癌、前列腺癌等的化学辅助治疗和放射治疗增敏,其抗肿瘤活性成为近年研究的热点[4]。

本文综述了塞来昔布的抗肿瘤效应,并总结了其作用机制,如抑制肿瘤细胞增殖、抑制肿瘤细胞侵袭和转移、抑制肿瘤新生血管生成、诱导肿瘤细胞分化、诱导肿瘤细胞凋亡、调节肿瘤免疫、逆转肿瘤细胞的多药耐药性,以期为塞来昔布的深入研究和临床肿瘤防治提供用药参考。

1 抑制肿瘤细胞增殖恶性肿瘤的发生发展与肿瘤细胞增殖密切相关,抑制肿瘤细胞增殖是多数药物抗肿瘤的主要策略。

COX-2过表达可增加肿瘤细胞内前列腺素E2(PGE2)的合成,PGE2诱导细胞增殖并刺激Bcl-2蛋白表达,后者可抑制细胞凋亡,使肿瘤细胞的增殖与凋亡失衡,从而促进肿瘤的发生发展[5]。

AG490对胃癌细胞株SGC-7901细胞周期、凋亡和STAT3表达的影响

AG490对胃癌细胞株SGC-7901细胞周期、凋亡和STAT3表达的影响
t a e t i e e tc n e tain fAG 9 r e emi e y f w c t me r ,a d e p e s n o T T r td wi df r n o c n r t s o 4 0 we e d t r n d b o yo ty n x r s i fS A 3 mRNA w s e h f o l o a
0 0 3) 0 0 8
Ba k r u d: AG 9 ,a se i cihbtro AK2 trs e kn s,c n ihbtg sr a c rc l go h u h c go n 4 0 p cf n ii fJ i o yoi iae a n ii at c c n e el rwt,b tte n i

40 9
ChnJGa to neo, 01 ,Vo.6 No8 i sre trl 2 1 11 , .
AG4 0对 胃癌 细胞 株 SGC 7 0 9 . 9 1细胞 周 期 、 亡 和 S A 3表 达 的影 响 凋 T T
张 荣贵 李 蕾 徐 丽 张 全 英
北 京 市 羊 坊店 医 院 内科 ( 0 0 8 10 3 )
e p e s n o TA x rsi f o S T3 mRNA n g sr a c rc l l e S 一 9 1 M e h d : C l c c e a d a o t sso GC 7 0 el i a t c c n e el i GC 7 0 . i n to s el y l n p p o i fS 一 9 1 c l s
d t r i e y RT P R.Re u t: S 一 9 1 c l n S p a e a d G2 M h s n ra e i nf a t f rte td wi ee n d b — C m sl s GC 7 0 el i h s n / p a e ic e s d sg i c n l a e r ae t s i y t h

塞来昔布对人胃癌SGC-7901细胞迁移、MMP-9和VEGF表达的影响

塞来昔布对人胃癌SGC-7901细胞迁移、MMP-9和VEGF表达的影响
9 62
T i a n j i n Me d J , O c t 2 0 1 3 , V o t 4 1 N o l 0
d o i : 1 0 . 3 9 6 9  ̄ . i s s n . 0 2 5 3 — 9 8 9 6 . 2 0 1 3 . 1 0 . 0 0 5
w e r e d i v i d e d i n t o b l a n k c o n t r o l g r o u p a n d c e l e c o x i b t r e a t m e n t g r o u p( d i f f e r e n t c o n c e n t r a t i o n s o f c e l e c o x i b 2 5 , 5 0 a n d 1 0 0 p  ̄ m o l / L ) . S G C 一 7 9 0 1 c e l l s w e r e t r e a t e d w i t h c e l e c o x i b f o r 2 4 h . T h e e f f e c t o f c e l e c o x i b o n c e l l mi g r a t i o n o f S G C 一 7 9 0 1
塞来 昔布对人 胃癌 S G C 一 7 9 0 1 细胞 迁 移 、 M MP 一 9 和 V E G F 表 达 的 影 响
魏永新 张志 广 。 钟江 明 李
【 摘要】 目的
影响 。方法
பைடு நூலகம்

观察塞来昔 布对人 胃癌 S G C 一 7 9 0 1 细胞迁移 能力及其对 M M P 一 9 m R N A和V E G F m R N A 表达 的
【 关键词 】 胃肿瘤 ; 前列腺 素内过氧化物合酶类 ; 基质金 属蛋 白 酶9 ; 血管内皮生长 因子类 ; 塞来昔 布

抗炎药塞来昔布,具有癌症治疗前景!

抗炎药塞来昔布,具有癌症治疗前景!

抗炎药塞来昔布,具有癌症治疗前景!
来自斯克利普斯研究机构的科学家们发现,一种目前运用最为广泛的抗炎药物能够抑制动物模型中特定类型肿瘤的生长。

这项新的研究发表在《癌症研究》在线版上,专注于塞来昔布(西乐葆,辉瑞公司)对肿瘤的影响。

塞来昔布是常用的非甾体类抗炎药,作用靶点为环氧化酶-2(COX-2),COX-2是一种与体内炎症相关的酶类,此外,该酶在促进肿瘤的生长过程中也起着关键作用。

COX-2在正常组织中活性很低,但在多种类型肿瘤中却很高。

专家们感兴趣的是哪些特定信号转导通路确实对癌症进展产生了影响。

在研究过程中,他们发现,癌症中一些信号能够激活炎症相关的酶类,包括COX-2,然而像塞来昔布一类的抗炎药能够阻止这一过程。

接着,研究者继续进行动物实验以探索塞来昔布对II型多发性神经纤维瘤细胞(NF2)生长的抑制作用。

在人类当中,由于抗肿瘤基因的突变可引起NF2的出现,这将引起听觉神经出现良性肿瘤。

结果发现,每天接受塞来昔布处理的动物其肿瘤生长率显著低于模型组。

进一步研究发现,Hippo-YAP通路在此过程中起着重要作用,YAP是NF2细胞生长和分裂所必需的,并且与肿瘤形成有关。

研究者称本次的研究显示COX-2抑制剂对抑制肿瘤细胞生长有作用,他们相信,COX-2抑制剂对其他与炎症相关的癌症也有类似作用。

顺铂、5—氟尿嘧啶与塞来昔布联合应用对胃癌细胞株SGC—7901凋亡行为的影响

顺铂、5—氟尿嘧啶与塞来昔布联合应用对胃癌细胞株SGC—7901凋亡行为的影响

顺铂、5—氟尿嘧啶与塞来昔布联合应用对胃癌细胞株SGC—7901凋亡行为的影响目的研究临床常用化疗药物顺铂、5-氟尿嘧啶及塞来昔布联合应用模式对胃癌细胞株SGC-7901凋亡行为的影响,并分析上述药物治疗过程中可能涉及的分子机制。

方法采用AnnexinV-PE和7-AAD双染模式予以流式细胞技术评定顺铂组、5-氟尿嘧啶组、顺铂+塞来昔布组、5-氟尿嘧啶+塞来昔布组这些处理组胃癌细胞的凋亡行为情况。

结果流式细胞技术检测结果表明,在药物作用于胃癌细胞株SGC-79012天后,顺铂组、5-氟尿嘧啶组、顺铂+塞来昔布组、5-氟尿嘧啶+塞来昔布组的细胞凋亡率分别为(7.10±0.30)%、(46.53±1.50)%、(39.17±1.10)%、(66.93±0.70)%、(62.13±1.60)%,均明显高于参照组,数据存在差异有统计学意义(P<0.05);同时发现:联合5-氟尿嘧啶组、顺铂+塞来昔布组与顺铂组、5-氟尿嘧啶组相比,细胞凋亡率显著增加,组间差异性显著(P<0.05)。

结论与顺铂组、5-氟尿嘧啶组相比,顺铂+塞来昔布组、5-氟尿嘧啶+塞来昔布组治疗模式能够促进胃癌细胞凋亡,这一研究结果显示顺铂、5-氟尿嘧啶及塞来昔布联合应用模式具有协同抗胃癌的作用。

标签:胃癌;化疗药物;细胞凋亡;流式细胞技术Effect of cisplatin,5-fluorouracil combined with celecoxib on the apoptosis of gastric cancer cell line SGC-7901ZHAI Chong-yu,CHEN Jun-qiang*,WANG Zhen,LI Bo-pei,MAO Yuan-tian(The first affiliated hospital of guangxi medical university,Guangxi Nanning 530021,China)【Abstract】Objective To study the effect of chemotherapeutic drugs cisplatin,5-fluorouracil and celecoxib on the apoptotic behavior of gastric cancer cell line SGC-7901,and to analyze the possible molecular mechanisms involved in the above drug treatment.Methods The apoptotic behavior of cisplatin group,5- fluorouracil group,cisplatin + celecoxib group and 5- fluorouracil + celecoxib group were evaluated by flow cytometry with AnnexinV-PE and 7-AAD double staining mode. Results Flow cytometry results showed that after the drug was applied to the gastric cancer cell line SGC-79012,the cells of the cisplatin group,5-fluorouracil group,cisplatin+celecoxib group,and 5-fluorouracil+celecoxib group were observed. The apoptotic rates were(7.10±0.30)%,(46.53±1.50)%,(39.17±1.10)%,(66.93±0.70)%,and(62.13±1.60)%,respectively,which were significantly higher than the reference group.The data were statistically significant(P<0.05);found at the same time:combined 5-fluorouracil group,cisplatin +celecoxib group and cisplatin group,5-fluorouracil group,the rate of apoptosis significantly increased,the difference between the groups was significant(P<0.05).Conclusion Compared withthe cisplatin and 5-fluorouracil groups,the cisplatin+celecoxib group and the 5-fluorouracil+celecoxib group can promote gastric cancer cell apoptosis.This result showed that cisplatin,5- The combination of fluorouracil and celecoxib has a synergistic anti-gastric effect.【Key words】Gastric cancer;Chemotherapy;Apoptosis;Flow cytometry胃癌(gastric carcinoma)是我國常见的恶性肿瘤,多发于年龄50岁以上的男性。

塞来昔布对急性白血病原代细胞凋亡的影响

塞来昔布对急性白血病原代细胞凋亡的影响

塞来昔布对急性白血病原代细胞凋亡的影响目的:探讨塞来昔布对急性白血病原代细胞的增殖抑制与诱导凋亡的作用。

方法:采用MTT法检测塞来昔布对急性白血病原代细胞的增殖抑制作用,倒置显微镜观察细胞形态学改变,流式细胞仪检测细胞凋亡率。

结果:塞来昔布能显著抑制急性白血病原代细胞的增殖,且呈时间和剂量具有依赖性(P<0.05);流式细胞仪结果分析发现,实验组与对照组的凋亡率有显著差异,且实验组的凋亡率明显升高,呈剂量依赖性(P<0.01)。

结论:塞来昔布能有效抑制急性白血病原代细胞的增殖并诱导其凋亡,其机制有待进一步研究。

标签:塞来昔布;急性白血病原代细胞;细胞凋亡塞来昔布是一种选择性环氧合酶-2(COX-2)的抑制剂,是目前唯一被FDA批准治疗家族性腺瘤性息肉患者的辅助治疗的非甾体抗炎药,但塞来昔布的抗癌效果及分子机制尚不清楚。

有研究表明,非甾体抗炎药(NSAIDs)通过抑制环氧化酶(COX),而此酶是催化花生四烯酸向前列腺素转化的关键酶,且诱导型环氧合酶-2(COX-2)的过表达与前列腺素E的水平有关,从而抑制肿瘤细胞增殖、诱导细胞凋亡[1-2]。

已有研究证实,COX-2在结肠癌、乳腺癌、肺癌、前列腺癌、皮肤癌、宫颈癌、胰腺癌、卵巢癌、膀胱癌和头颈部恶性肿瘤中均呈高表达[3]。

这表明COX-2在肿瘤细胞中的过度表达与各种癌症的促进有关。

目前,塞来昔布对血液系统肿瘤的研究较少,国外有学者研究塞来昔布对人类慢性髓系白血病细胞株的影响,结果表明塞来昔布在体外能诱导人慢性髓性白血病细胞系K562细胞凋亡,这说明塞来昔布在开发用于治疗慢性粒细胞白血病抗癌药物方面具有广泛的前景[4]。

但这些研究对象仅限于细胞系,且塞来昔布对急性白血病原代细胞的影响在国内外报道较少,因此,本研究以塞来昔布作用于急性白血病原代细胞,观察其对白血病细胞增殖及凋亡的影响,以期更能反映其抗白血病的作用,为临床寻找白血病新的药物提供理论依据。

塞来昔布对氯化钴诱导的的胃癌SGC-7901细胞OCT-4表达的影响

塞来昔布对氯化钴诱导的的胃癌SGC-7901细胞OCT-4表达的影响

塞来昔布对氯化钴诱导的的胃癌SGC-7901细胞OCT-4表达的影响发表时间:2014-05-19T11:48:32.373Z 来源:《医药前沿》2014年第6期供稿作者:刘佳1 冯玉光2(通讯作者)张小茜2 仲华2[导读] 肿瘤低氧是许多实体肿瘤的典型特征,研究表明,低氧状态能促进肿瘤血管生成、抑制肿瘤细胞凋亡刘佳1 冯玉光2(通讯作者)张小茜2 仲华2(1潍坊医学院山东潍坊 261031)(2潍坊医学院附属医院消化内科山东潍坊 261031)【摘要】目的研究选择性COX-2抑制剂塞来昔布对低氧模拟剂氯化钴诱导的胃癌细胞株SGC-7901 OCT-4表达的影响。

方法以胎牛血清加RPMI 1640培养基培养细胞作正常对照,分别应用150μmol/L氯化钴联合0μmol/L、25μmol/L、75μmol/L的塞来昔布作用于SGC-7901细胞48h,应用RT-PCR技术检测细胞中OCT-4mRNA表达。

结果与正常对照组比较,150μmol/L氯化钴刺激48h, 可显著提高细胞OCT-4mRNA 的表达(P<0.05),塞来昔布和氯化钴联合作用48h, 细胞OCT-4 mRNA表达降低(P<0.05), 并呈剂量依赖性。

结论 COX-2抑制剂塞来昔布可抑制氯化钴诱导的OCT-4表达, 这可能是其抗肿瘤的机制之一。

【关键词】胃癌塞来昔布低氧 OCT-4【中图分类号】R730.2 【文献标识码】A 【文章编号】2095-1752(2014)06-0041-02Effect of Celecoxib on the expression of OCT-4 in human SGC-7901 cells induced by cobalt chloride【Abstract】 Ami : To study the effects of COX-2-selected inhibitor Celecoxib on the expression of OCT-4 in human gastric cancer cell line SGC-7901 cells induced by hypox iamimic cobalt chloride. Methods: SGC-7901 cells stimulated by cobalt chloride(150μmol/L) or combined with 0μmol/L,25μmol/L,and75μmol/L Celecoxib for 48h,were subjected to determine the expression of OCT-4 mRNA using RT-PCR. Results:Compared with the SGC-7901 cells without any induction, 150μmol/L cobalt chloride stimulated the expression of OCT-4mRNA and in SGC-7901 cells (P<0.05), and Celecoxib prevented the cobalt chloride-sim ulated up-regulation of OCT-4mRNA in a do se-dependent manner(P<0.05). Conclusion: Celecoxib could inhibit the high expression of OCT-4mRNA in SGC-7901 cells induced by hypoxia, which may be one of its antiangiogenesism echanisms.【Keywords】 Gastric cancer Celecoxib Hypoxia OCT-4肿瘤低氧是许多实体肿瘤的典型特征,研究表明,低氧状态能促进肿瘤血管生成、抑制肿瘤细胞凋亡、调控细胞周期及增殖、增加对放化疗及手术的抵抗性,并且促进肿瘤的侵袭和远处转移[1]。

阿霉素联合塞来昔布诱导胃癌细胞凋亡的作用研究

阿霉素联合塞来昔布诱导胃癌细胞凋亡的作用研究

阿霉素联合塞来昔布诱导胃癌细胞凋亡的作用研究吴伟江;宿宝贵;罗羽宏;邹伟波【期刊名称】《中国病理生理杂志》【年(卷),期】2007(023)003【摘要】目的:研究环氧化酶-2(COX-2)抑制剂塞来昔布联合阿霉素对胃癌MGC-803细胞株的凋亡诱导作用,并探讨其相互作用的可能的分子机制.方法:用MTT法检测MGC-803的增殖情况.用荧光显微镜、流式细胞术和DNA梯度电泳检测肿瘤细胞凋亡的情况.结果:随着阿霉素剂量的增加,MGC-803细胞的数量明显减少.细胞大部分静止于G0/G1期,S期细胞明显减少.阿霉素(5 mg/L)联合塞来昔布(25μmol/L)明显抑制MGC-803细胞的生长.肿瘤细胞经阿霉素或塞来昔布处理后荧光显微镜下可观察到典型的细胞凋亡形态变化.与两者单独用药相比,联合用药后的DNA梯度变化更为明显.联合用药48 h后MGC-803细胞堆积在G0/G1,而S期减少的细胞数量比两者分别用药时更为显著.结论:塞来昔布和阿霉素具有协调的诱导凋亡的作用,这对于将COX-2抑制剂用于肿瘤的临床辅助化疗具有重要意义.【总页数】5页(P469-473)【作者】吴伟江;宿宝贵;罗羽宏;邹伟波【作者单位】广东省龙川县人民医院普外科,广东,龙川,517300;暨南大学医学院人体解剖学教研室,广东,广州,510632;暨南大学华侨医院普外科,广东,广州,510632;Department of General Surgery, Longchuan Hospital, Longchuan 517300, China【正文语种】中文【中图分类】R363【相关文献】1.阿霉素诱导胃癌细胞凋亡中Notch1的作用及其临床意义 [J], 王政强;赵炳超;于红刚;于皆平2.异硫氰酸苯乙酯联合阿霉素诱导骨肉瘤细胞凋亡的作用研究 [J], 范锲;李文浩;丘德赞;黄孝英;李浩曦;何基琛3.塞来昔布联合阿霉素促胃癌细胞凋亡作用的探讨 [J], 吴伟江;宿宝贵4.阿霉素对MGc-803胃癌细胞凋亡的诱导作用 [J], 韩洪秀;朴龙;李日镛5.大蒜素联合阿霉素诱导胃癌SGC-7901细胞凋亡作用 [J], 张希锐;邵淑丽;李凤英;张伟伟因版权原因,仅展示原文概要,查看原文内容请购买。

基础研究抑制剂塞来昔布预防胃癌前病变发生及其机制的…

基础研究抑制剂塞来昔布预防胃癌前病变发生及其机制的…

!癌症"!"#$%&%’()*$+,(-.+$/%*#0112#03$41%&501365017!基础研究!中山大学第一附属医院消化内科"广东广州351181!"#$%&’"(&)*+,-&%)"(&"%).)/0"12"34%-&5**4.4$&"67)-#4&,."89(:,&;-"(<(4="%-4&0">9,(/?2)9">9,(/6)(/"@ABBCB "DE FE G24(,通讯作者!唐保东.(**%&9($:%$/%;(#<=>?@+(AB($C DAE+#,#;F:4777";G42HI/(E 基金项目!广东省自然科学基金$>(J 51K5H %!"#$%#>+;)*+,L/#%$/%M()$:+;#($(-N)+$C:($C O*(P#$/%$>(J 5QK5H %收稿日期!0112A13A52修回日期!0112A1KA51选择性!"#$%抑制剂塞来昔布预防胃癌前病变发生及其机制的研究唐保东"曾志荣"胡品津&’()*+,-./0.1223./(2-43,3./053!"#$%67*080/(’!3,3.(908(7!-’.07(:37$07;<.3;=->/’0.&’3?-,0:7-7/@3>0(7>07A-/>!"#$%&’()’*+!,-./,01(2’*+!3451*(61*"BC4DAE!D #CE!F=A"GHI J "CK1!D6L1!7890’:+0;<0&=<>?<=1’:@8A@0’;<B 90&9&@<8<C91=<CAC8’’DA+<*&@<(E "FGH(E #1*01I19’?C<8<C’D1I >?<=<*9@+&@9?1C C&*C<?B<=<8’>J<*91*&?&9J’B<8’K +&@9?1C C&?C1*’+<*<@1@!90<?’8<’KC<8<C’D1I ’*+&@9?1C >?<J&81+*&*98<@1’*@?<J&1*@:*L*’;*M !01@@9:BA ;&@9’<D>8’?<;0<90<?C<8<C’D1I ;&@<KK<C91=<K’?90<>?<=<*91’*’K >?<J&81+*&*CA !&*B K:?90<?9’C8&?1KA 19@J<C0&*1@JM M1DN"I4!.1*<9A(K’:?J&8<N1@9&??&9@;<?<B1=1B<B 1*9’O +?’:>@M $?’:>7"*PQE $;&@K<B ;190;&9<?’*8A %+?’:>R &*PQS $;190B&18A QT J+U L+C<8<C’D1I %+?’:>V &*PEE $;190QTT !+U J8.(J<90A8(.W(*19?’(.(*19?’@’+:&*1B1*<&X../$%+?’:>)&*PEE $;190QTT !+U J8X../&*B B&18A QT J+U L+C<8<C’D1I %+?’:>-&*PEE $;190QTT !+U J8X../&*B B&18A Y J+U L+1*B’J<90&C1*M !0<?&9@1*+?’:>@%9’-;<?<+1=<*QTZ @’B1:J C08’?1B<1*90<1*191&8S ;<<L@!&*B 90<?&9@1*+?’:>@[9’\;<?<+1=<*QTT !+U J8X..$1*B?1*L1*+;&9<?9’1*B:C<>?<J&81+*&*98<@1’*@1*90<@9’J&C0M ]1D ?&9@1*+?’:>7!^1*+?’:>%!QT 1*+?’:>[!QT1*+?’:>_!&*B QT 1*+?’:>\;<?<L188<B &9;<<L QS !&*B ’90<?@;<?<L188<B&9;<<L E‘M !0<’CC:??<*C<?&9<@’K +&@9?1C >?<J&81+*&*98<@1’*@1*90<+?’:>@;<?<C’J>&?<BM !0<J2.7&*B >?’9<1*8<=<8@’K VGH(Q &*B VGH(E 1*+&@9?1CJ:C’@&;<?<B<9<?J1*<B IA ?<&8(91J<>’8AJ<?&@<C0&1*?<&C91’*&5V2$&*B 1JJ:*’01@9’C0<J1@9?A %>?’@9&+8&*B1*\E &5$\E $8<=<8;&@J<&@:?<B IA &*\ab]7(I&@<B &@@&AM A14G@D4!.1*<9A(90?<<?&9@;<?<@9:B1<BM b*;<<L QS &*B ;<<L E‘!90<’CC:??<*C<?&9<@’K +8&*B:8&?&9?’>0A 1*+?’:>@F !c !&*B\0&B *’@1+*1K1C&*9B1KK<?<*C<&!dTMTO $M b*;<<L QS !+&@9?1C J:C’@&8BA@>8&@1&;&@*’9B<9<C9<B 1*+?’:>@V !)!&*B \%&9;<<L E‘!90<’CC:??<*C<?&9<@’K BA@>8&@1&;<?<eOZ &f U QE $’*+?’:>V !EOZ &Y U QE $1*+?’:>c !&*B ‘SZ &O U QQ $1*+?’:>\M !0<’CC:??<*C<?&9<’K +&@9?1C J:C’@&8BA@>8&@1&;&@@1+*1K1C&*98A 8’;<?1*+?’:>c 90&*1*+?’:>V &EOZ =@M eOZ !!PTMTYf $%90<?<;&@*’@1+*1K1C&*9B1KK<?<*C<I<9;<<*+?’:>\&*B +?’:>V&‘SZ =@M eOZ !!PTMEQ‘$M 79;<<L QS &*B ;<<L E‘!90<?<;&@*’@1+*1K1C&*9B1KK<?<*C<1*VGH(Q <D>?<@@1’*I<9;<<*9?<&9J<*9+?’:>@&*B C’*9?’8+?’:>M !0<J2.7&*B >?’9<1*8<=<8@’K VGH(E 1*+?’:>V &YMEf gQMOT &*B YM‘Q g TMf‘$;<?<@1+*1K1C&*98A 01+0<?90&*90’@<1*’90<?+?’:>@&!hTMTTQ $M !0<?<;&@*’@1+*1K1C&*9B1KK<?<*C<1*5/-E 8<=<8I<9;<<*+?’:>@[!_!&*B -&!dTMTO $M !"H!@G46"H4![<8<C’D1I <KK<C91=<8A 1*01I19@90<B<=<8’>J<*9’K +&@9?1C J:C’@&8BA@>8&@1&1*?&9@1*B:C<B IA X../!I:90&@*’<KK<C9’*90<5/-E 8<=<81*90<+&@9?1C J:C’@&!1*B1C&91*+90&990<&*91(*<’>8&@91C &C91=191<@’K C<8<C’D1I J&A I<1*B<><*B<*9’K [GH(EM F1OP"AI4!/&@9?1C *<’>8&@J U >0&?J’C’8’+A %.(J<90A8(.W(*19?’(.(*19?’@’(+:&*1B1*<&X../$%N1@9&??&9%]<8<C91=<[GH(E 1*01I19’?%[<8<C’D1I$摘要%背景与目的!前期的动物实验表明!选择性环氧合酶&/R/,((SRC%$+&%A 0!.TUA0$抑制剂塞来昔布可显著降低化学致癌剂>A 甲基A>VA 硝基A 亚硝基胍&>A!"#$唐保东!等!选择性"#$%&抑制剂塞来昔布预防胃癌前病变发生及其机制的研究近年来!环氧合酶"’(’)**+(,-./0-%&!"#$%&#的表达异常升高作为胃肠道恶性肿瘤中的一个普遍分子事件!日益受到人们重视$"#$%&与肿瘤的关系已有许多报道%123&!已成为肿瘤化学预防的一个研究热点$我们前期的动物实验表明!选择性"#$%&抑制剂塞来昔布可显著降低化学致癌剂4%甲基%45%硝基%亚硝基胍’4%6-78()%45%.97:*%4%.97:*0*,;/.9<9.-!=44>(诱导的大鼠胃肿瘤发生率%&$然而其对胃癌发生的重要中间阶段)))胃癌前病变作用的研究甚少$本研究通过观察塞来昔布对=44>诱发大鼠胃癌前病变过程中的影响!探讨选择性"#$%&抑制剂塞来昔布对胃癌前病变的化学预防作用及其可能的机制$!材料与方法!"!实验材料雄性@907/:大鼠A?只!?周龄!体重3BCDB ,!中山大学实验动物中心提供"动物合格证号B&EFG ($=44>购自H);I/公司$每周&次取=44>J ,!加蒸馏水JGGG 6)!避光用磁力搅拌器搅拌约?8使之溶解$在?K 冰箱中避光冷藏!隔天配制成1BB !,L 6)稀释液置棕色瓶中"外包锡箔避光(!由大鼠自由饮用$氯化钠"4/")(购自M9,6/公司$!"#实验方法实验大鼠随机分为E *N *"*O *P 共Q 组$E 组"1&只(自由饮用蒸馏水不作特殊处理+N 组"1F 只(仅灌喂塞来昔布1B 6,L I,!每日1次+"组"&&只(饮用含=44>1BB !,L 6)的蒸馏水+O 组"&&只(和P 组"&&只(动物除饮用含=44>1BB !,L 6)的蒸馏水外!O 组灌喂塞来昔布1B 6,L I,每日1次!P 组灌喂消炎痛36,L I,!每日1次$实验前F 周!所有大鼠每周1次用1BR 饱和氯化钠溶液J 6)灌胃$JF 周时E *N *"*O *P 组分别处死大鼠F 只*S 只*JG 只*JG 只*JG 只!其余大鼠在实验终点&?周时处死$比较各组大鼠胃癌前病变的发生率$!"$标本采集乙醚麻醉处死动物$沿胃大弯切开胃!用生理盐水清洗干净后!肉眼或解剖显微镜下观察胃粘膜的糜烂*溃疡*肿块等变化!随后将全胃等分为Q 等份"沿长轴(!固定于JGR 中性甲醛或液氮中冻存!供病理及分子生物学检查$其中胃炎诊断参照新悉尼系统标准$!"%荧光定量&’(胃组织总T4E 提取采用U:9V*)试剂盒">9W’*公司(!按试剂盒标准步骤操作$取1!,总T4E 进行逆转录!取1!)逆转录产物进行X"T 扩增!实验使用XP 公司研制的ENYDBBB 型X"T 扩增仪$&Q !)荧光定量X"T 反应体系包括X"T &Z=/07-:69+"X-:I9.P)6-:!N:/.’8W;:,8!4[(J&!)!上*下游引物各G!Q !)!M;W-:,:--.G!J !)!蒸馏水JG!A !)!模板’O4E J !)$"#$%J 上游引物Q\%>>EEUU"E E""E""U"UEU"E"U>%3\!下游引物Q\%>E"E"">UE>U""E""E>"EUE%3\$"#$%&上游引物Q\%E"E >>E>E>EEE>EEEU>>"U>"E>E>U%3\!下游引物Q\%"E>UEUU>E>>E>EE"E>EU>>>EUU%3\$"%/’79.上游引物Q\%U"E"""E"E"U>U>"""EU"UE U>E%3\!下游引物Q\%>U"E">"E">EUUU"""U"U"E>"%3\$"%/’79.作为内参照$反应条件为,QB]&69.!AQ]JG 69.!再AF]?Q 0!FG]?Q 0!D&]J69.共?G 个循环$以上反应设定均在与X"T 仪相连的计算机上进行!每个循环电脑自动记录反应管6-78()%45%.97:*%4%.97:*0*,;/.9<9.-!=44>(诱导的大鼠胃肿瘤发生率!但其对胃癌发生的重要中间阶段)))胃癌前病变作用的研究甚少$本研究旨在探讨塞来昔布对胃癌前病变发生率的影响及其可能的机制$方法!A?只清洁级雄性@907/:大鼠随机分为E *N *"*O *P Q 组$E 组不作特殊处理+N 组仅灌喂塞来昔布JG 6,L I,!每日J 次+"组饮用含=44>JGG !,L 6)的蒸馏水+O 组和P 组除饮用含=44>JGG !,L 6)的蒸馏水外!O 组灌喂塞来昔布JG 6,L I,每日J 次!P 组灌喂消炎痛36,L I,!每日J 次$实验前F 周!每周一次用JGR 饱和氯化钠溶液J 6)灌胃$JF 周时E *N *"*O *P 组分别处死大鼠F 只*S 只*JG 只*JG 只*JG 只!其余大鼠在实验终点&?周时处死$比较各组大鼠胃癌前病变发生率的差异!荧光定量X"T 及免疫组化法检测胃粘膜"#$%J *"#$%&6T4E 及蛋白水平!P^YME 法测定胃粘膜X>P &水平$结果!A3只大鼠完成实验!JF 周和&?周时"*O *P 组萎缩性胃炎的发生率均无显著性差异-!_B‘GQ ($JF 周时各组均未见有异型增生改变+&?周时"*O *P 组异型增生发生率分别为DQR "A L J&(*&QR "3L J&(和?FR "Q L JJ ($与"组相比!O 组异型增生发生率明显下降"!aG‘G3A (!而P 组下降不显著"!aG‘&J?($JF 周*&?周时各组胃粘膜"#$%J 表达水平均无显著性差异!"组"#$%&表达水平"3‘&Ab1‘QB *3‘?1cG!A?(明显高于其他?组"!dG!GGJ (!而"组X>P &水平与O *P 组相比差异无显著性"!_G!GQ ($结论!塞来昔布能有效降低化学致癌剂=44>诱导的大鼠胃粘膜异型增生的发生率!而对胃粘膜组织X>P &表达水平无影响!提示这种效应可能通过非"#$%&依赖途径实现$关键词!胃肿瘤e 药理学+4%甲基%45%硝基%亚硝基胍+@907/:大鼠+"#$%&抑制剂+塞来昔布中图分类号!TD3Q!&文献标识码!E 文章编号!JGGG2?FD$"&GGF (JG2J&GQ2GQ!"#$中的荧光信号值!并描绘曲线"反应结束后!用!"值#标准样本循环阈值$进行定量!计算出反应体系中待测标本#$%&的拷贝数%!"#$%&’!和$%&’(的免疫组化染色抗!’()*&+’(),多克隆抗体购自-./".+012公司!&3+试剂盒和4&3底物试剂盒购自4.56公司"+’()*&+’(),一抗工作浓度为*7,88!生物素标记的二抗工作浓度为*7988"同时用磷酸缓冲液’:3-$代替一抗作为阴性对照!用已知的阳性反应组织作阳性对照"对每个标本中胞浆阳性的表面上皮和固有腺上皮进行计数"以阳性细胞率’;$!即阳性细胞数占总细胞数的比例进行比较!计数*8个高倍视野下细胞数!取平均值"!")*+,-.检测/0*(取冰冻胃粘膜组织约*8<=!移入匀浆器中(加8>,<?无水乙醇匀浆(加入约*<?冰水988!"离心*8<@/(用8>*<6?A B 的乙酸’按*8!?A *8<=组织计算加入量$调CD 至E>8F9>8!室温放置G <@/(,G880A <@/离心,<@/!将上清液抽吸至&<C0HC+*I J@/@K6?1</’$:L*M88!N-&$固相层析柱纯化(加同等体积的蒸馏水洗涤固相层析柱一次(加同等体积的己烷洗涤一次去杂质!使:OP ,纯化&干净(加8>QG <?乙酸乙酯洗脱,次!提取样品!蒸干后密封于RI8S 冰箱中保存(TOP ,测定用酶联免疫吸附试验’U/2V#U)WX/YUZ X<<1/6[60\U/"][[]V !PB^_&$检测试剂盒’&<U0[‘]<Ta]0<]b@]3@6"Uba !T@[b]"]c]V !%d $!根据试剂盒提供的标准步骤测定!结果以Ce A <e 蛋白TOP ,表示%!"1统计学方法所有结果均予_T__**>8软件处理%计量资料以均数f 标准差表示!采用方差分析进行比较(癌前病变发生率采用",检验&g@[‘U0精确概率法%以#h 8>8G 为差异有显著性%(结果("!一般资料P 组*只大鼠不明原因死亡!余ME 只大鼠完成实验%各组大鼠起始体重差异无显著性’$i 8>8G $%与正常对照组’&组$相比!+&4&P 组大鼠*j 周和,9周时体重明显减轻!差异有显著性’$h 8>8G $’见表*!图*$%+&4&P 组每只大鼠平均摄入k%%O 量差异无显著性’$i8>8G $%("(塞来昔布对2330诱发大鼠胃癌前病变的作用实验过程中!&组有E 只大鼠胃粘膜仅见轻度炎症!&&3&+&4&P 组均未见胃粘膜肠上皮化生%各组实验大鼠胃病理组织学变化见表,%表!各组实验大鼠胃病理组织学变化"#$%&!’()*#+,-(.(/-0()#12*#02(%(3,1#%0&+#0,(.-$&04&&.5,//&+&.03+(6*-!1#-&-"7#$]$l8>*QM !\$l8>*8!b $l8>8EM !m $l8>,*9!n[>O061C +>O061C &3+4P %1<\H06o 0]"[j I *8*8*8^/o?]<<]"@6/*’*Q $,’,G $M ’M8$Q ’Q8$M ’M8$&"06C‘V 8I ’*88$Q ’Q8$E ’G8$]j ’j8$%1<\H06o 0]"[j I *,*,**^/o?]<<]"@6/,’EE $,’,G $*,’*88$M ’QG $*8’M*$&"06C‘V 88M ’QG $9’EE $\Q ’j9$4V[C?][@]88M ’QG $E ’,G $b G ’9j $Z pHH5*j pHH5,9("4$%&’!%$%&’(563.及蛋白表达水平,>E>*荧光定量T+q 结果*j 周及,9周时各组+rs)*<q%&表达差异均无显著性’图,$!+rs),<q%&在正常对照组和塞来昔布对照组表达极低!而在k%%O 组胃粘膜组织呈过表达%与k%%O 组相比!*j 周及,9周时塞来昔布和消炎痛处理组胃粘膜组织+rs),表达水平明显下调!见表,%,>E>,免疫组化结果显示+rs)*主要表达在胃唐保东!等>选择性+rs),抑制剂塞来昔布预防胃癌前病变发生及其机制的研究表8不同时间点各组大鼠体重的比较"#$%&8’()*#+,-(.(/$(594&,320$&04&&.5,//&+&.03+(6*-#05,//&+&.00,)&O061C &3+4P pHH5*’=$GE>,t M>8G,>Et*8>M GE>9t*8>Q GE>jt*8>9G*>ItI>Q pHH5*j ’=$GEG>Et,G>j G9*>jt,M>8EQE>8t9Q>G EI9>GtjQ>G EQI>8t99>,pHH5,9’=$GI*>EtEG>EGQ9>*tEQ>89QI>8tj*>Q 9IM>8tG8>99jQ>8tG9>jO061C &’%l*,$c][oHm c@"‘c]"H06/?V (O061C 3’%l*j $c@"‘m]@?V *8<=A 5=KH?HK6u@\(O061C +’%l,,$c@"‘*88!=A <?%)<H"‘V?)%v)/@"06)%)/@"06[6=1]/@m@/H ’k%%O $(O061C 4’%l,,$c@"‘*88!=A <?k%%O ]/m m]@?V *8<=A 5=bH?Hb6u@\(O061C P ’%l,,$c@"‘*88!=A <?k%%O ]/m m]@?V E <=A 5=@/m6<H"‘]b@/>!"#$图!"#周!$!周时各组大鼠胃粘膜组织的%&’(水平)*+,-.!%&’(/.0./1*2+314-*56,5713789*88.-.24+-7,:134;..<=#329;..<(!&-7,:>!!?=(";318.9;*4@;34.-72/A #&-7,:B !!?=#";*4@93*/A =C 6+D <+5./.57E*F #&-7,:G !!?((";*4@"CC !+D 6/HI6.4@A/IHJI2*4-7IHI2*4-717+,32*9*2.!KHH&"#&-7,:L !!?((";*4@"CC!+D 6/KHH&32993*/A "C 6+D <+5./.57E*F #&-7,:’!!?((";*4@"CC !+D 6/KHH&32993*/A M 6+D <+*2976.4@35*2N粘膜上皮细胞$腺上皮细胞%壁细胞%炎细胞$胞质显色$弥漫或颗粒状分布$见图(&GOPI(阳性物质呈棕黄色颗粒状$主要表达在血管平滑肌细胞%不典型增生胃癌前病变及正常组织上皮细胞基底层%超基底层&从正常粘膜%慢性胃炎%胃粘膜萎缩到不典型增生组织$GOPI(表达呈逐渐递增趋势$见图M &表!各组胃癌组织中"#$%&!"#$%’的表达()*+,!"#$%-)./"#$%’0123+,4,+56./677,8,.9:8;<=5&-7,:>B G L ’Q..<"#(N!(R=N=!MNC!R=N=!$N#!RCNST $NUCR=N=C $N$#R=NCC Q..<$!$NMMRCNVU "NS"RCNVU (N#(RCNTU (NVCR"N"C (N"!RCNU"Q..<"#CNT(RCN"(CNSMRCN!C MN(SR"NTC "NT"RCN#M (N"TR"NCV Q..<(!CNTURCN"TCNVMRCNT"MN!"RCNS!"N#TRCNT#"NV(RCN#TGOPI"GOPI(图"大鼠胃病理组织学变化图(GOPI"在正常胃粘膜"(>#和异型增生粘膜"(B #中的表达图M GOPI(在正常胃粘膜"M>#!胃炎及胃粘膜萎缩粘膜"MB #和异型增生粘膜"MG #中的表达)*+,-."W71178*24-*21*5+/3291$34-7:@A 78@A:.-4-7:@*5+/32913299A1:/31*3*2+314-*56,5713784@.-341!X’Y$CC ")*+,-.$’E:-.11*7278GOPI=*227-63/6,5713!$>$X’Y$CC "3299A1:/31*36,5713!$B $X’Y!CC "784@.147635@)*+,-.M ’E:-.11*7278GOPI$*227-63/6,5713!M>"$*28/366347-A 32934-7:@*56,5713!MB "3299A1:/31*36,5713!MG "784@.147635@!X’Y$CC "=$>$B M>MB MG!"#大鼠胃粘膜组织$%&!水平KHH&组=#周及$!周时%&’$水平分别为!=!=N#R$UNS ":+D 6+%!=T#NURVN$":+D 6+$塞来昔布干预组=#周及$!周时%&’$水平分别为!=MMN$R=#N!":+D 6+%!=T$N=R=TNT ":+D 6+$塞来昔布和消炎痛处理组均未明显抑制%&’$水平&见图!&唐保东!等N 选择性GOPI$抑制剂塞来昔布预防胃癌前病变发生及其机制的研究!"#$!讨论胃癌前期病变已成为胃癌研究领域的一个热点!对萎缩性胃炎"肠上皮化生和异型增生的阻抑治疗或逆转其病变将成为胃癌治疗的一个突破口#有学者认为根除幽门螺杆菌和补充抗氧化剂是降低胃癌发生的可能手段$!!"%!但到目前为止!尚未有报道证实大规模的干预措施会降低胃癌的发生率#近年来!另一类有希望的化学预防剂是非甾体类抗炎药物&#$%&’(’!塞来昔布作为第一个用于临床的)*+,-抑制剂!.///年被美国0’%批准用于治疗家族性腺瘤样息肉病$1%(研究表明)在一些癌前病变如2344566食管"胃发育不良"肠上皮化生"异型增生和消化道息肉中!)*+,-表达显著增强$7%*非甾体类抗炎药的摄入与胃癌发病率呈负相关$/!.8%(我们前期的动物实验表明!特异性)*+,-抑制剂塞来昔布可显著降低化学致癌剂9##:诱发的胃癌发生率$;%!进一步的研究发现!塞来昔布对已形成的肿瘤组织)*+,-的表达无抑制作用!但可显著抑制胃癌前病变组织)*+,-的表达!因此!我们推测)*+,-抑制剂的价值可能会主要表现在癌症的预防和胃癌前病变的早期治疗上(本研究重点探讨塞来昔布对胃癌发生的重要中间阶段胃癌前病变发生的影响(结果显示!特异性)*+,-抑制剂塞来昔布能降低大鼠胃粘膜异型增生的发生率&1!<=(>-!<!!?8>8@/’!表明塞来昔布对9##:诱导的胃癌前病变有预防作用!进一步印证了我们前期的动物实验研究!表明塞来昔布有可能通过抑制癌前病变的形成!从而达到预防胃癌的目的(这一结果是否适用于临床!将需要进一步的观察和研究(目前#$%&’(!特别是选择性)*+,-抑制剂抗癌作用机制仍不明确!大多数研究认为可能与#$%&’(抑制环氧合酶这一前列腺素类物质合成的关键酶!使前列腺素类物质生成减少有关$..%(然而!近年来研究表明!#$%&’(对肿瘤细胞的抑制作用并不完全依赖抑制)*+,-!还有另外独立的过程!在此过程中)*+,-催化合成A:B -途径是不重要的($3CDE5F,%GD3F34等$.-%用#$%&’作用于不表达)*+,.与)*+,-的非小细胞肺癌细胞!结果发现同样可以诱导细胞的凋亡*$EHII 等$.@%研究表明!苏林酸无抑制)*+活性的作用!但其在高浓度时却可诱导结肠癌细胞JK,-/的凋亡!用硫化苏林酸作用JK,-/细胞1-E 后!.!<L-"<的细胞发生凋亡!且与浓度呈正相关*)EHM 等$.;%研究显示舒林酸抑制/!<的小鼠肿瘤生长!但不影响这些动物肠粘膜的A:B -水平(本研究结果显示!与正常对照组相比!化学致癌剂9##:处理组胃粘膜组织)*+,-NO#%和蛋白表达上调!而)*+,.表达无变化!可见9##:可上调)*+,-的表达!应用选择性)*+,-抑制剂塞来昔布对癌前病变组织中)*+,-的表达亦有抑制作用!但对胃粘膜组织A:B -表达水平无影响!提示这种效应可能通过非)*+,-依赖途径实现!具体作用机制有待进一步研究(!参考文献"O36C3(HCPE5’!K3CP453Q %!OR6E 9Q !563G>BST45((HRC RIDUDGRRSUP5C3(5,-HC EMN3C 3V5CRD34DHCRN3(RI 6E5P3(64HDD34VH33CV DR4TM($Q %>*CDRG O5T !.///!"&!’)/"!W/"7>O36C3(HCPE5’!K3CP453Q !OR6E 9Q !563G>BST45((HRC RIDUDGRRSUP5C3(5,-HC EMN3C (XM3NRM(D5GG D34DHCRN3RI 6E55(RTE3PM(*3C HNNMCREH(6RDE5NHD3G (M4=5U $Q %>%C6HD3CD54O5(!.///!./&.%’).1.W.1;>武爱文!顾晋!李振甫!等>环加氧酶,-在人结直肠癌中的表达及其与肿瘤血管形成的关系$Q %>中华胃肠外科杂志!-88-!!&;’)-77>JM A Q !YM Q !Z5CP Z O !563G>)E5NRT45=5C6HRC RI P3(64HDD3CD54[U D5G5DRSH[HC 436($Q %>:M6!-88;!!@&-’)./!W-88>JR\R 9!9H]3J !*E^M(3K !563G>%G65436HRC RI EH(6RGRPHD3G P3(64H6H(3I654DM45RI "#$%&’()&*#+,-$’+%HCI5D6HRC $Q %>%GHN5C6AE34N3DRG KE54!-88-!."&..’)./-@W./@->)R4453A !0RC6E3N B K !243=R Q )!563G>)E5NRT45=5C6HRC RI P3(64HD VU(TG3(H3)43CVRNHF5V 64H3G RI 3C6HRSHV3C6(MTTG5N5C6(3CV 3C6H,"#$%&’()&*#+,-$’+%6E543TU $Q %>Q #36G )3CD54&C(6!-888!/-&-@’).77.W.777>赵丽琴>)5G5DRSH[用于治疗息肉在美国批准上市$Q %>国外医学药学分册!-888!-1&!’)@./W@-8>$MCP Q Q !_5MCP ‘a !:R 9Y !563G>)UDGRRSUP5C3(5,-5ST45((HRC HC "#$%&’()&*#+,-$’+%,3((RDH365V T45N3GHPC3C63CV N3GHPC3C6P3(64HD G5(HRC($Q %>%N Q A36ERG !-888!.!1&@’)1-/W1@!>Z34HVF5’!2R4H(R=3B !93SHNR=H6DE ’!563G>%(TH4HC T4R65D6(3P3HC(6P3(64HD D3CD54)45(MG6(RI 3D3(5,DRC64RG (6MVU I4RN9R(DR]!OM((H3$Q %>&C6Q )3CD54!.///!7-&;’);1@W;1">%^45a !B^(64RN %9!$HPCR45GGR _2!563G>%(TH4HC 3CV 4H(^IR4P3(64HD D3CD54)3TRTMG36HRC,[3(5V D3(5,DRC64RG (6MVU HC $]5V5C $Q %>24Q )3CD54!-88.!7;&1’)/"!W/"7>OH(6HN3^H %!JRC^3C5C #!Q3C^3G3J !563G>BST45((HRC RI DUDGRRSUP5C3(5,-HC EMN3C P3(64HD D34DHCRN3$Q %>)3CD54O5(!.//1!!1).-1"W.-78>$3CDE5F,%GD3F34Q %!243V[M4U ’%!A3CP _!563G>)UDGRRSUP5C3(5&)*+’HCEH[H6R4(HCVMD53TRT6R(H(HC CRC,(N3GGD5GG GMCP D3CD546E4RMPE DUDGRRSUP5C3(5HCV5T5CV5C6T36E]3U($Q %>_MCP )3CD54!-88@!;8&.’)@@W;;>$EHII $!bH3R _!K(3H __!563G>$MGHCV3D (MGIHV5!3C 3(TH4HC,GH^5DRNTRMCV !HCEH[H6(T4RGHI5436HRC !D3M(5(D5GG DUDG5XMH5(D5CD5!3CV HCVMD5(3TRT6R(H(HC JK,-/DRGRC 3V5CRD34DH,CRN3D5GG($Q %>Q )GHC &C=5(6HP !.//!!/");/.W!8@>)EHM )J !9DBC65590!‘E5G3C Q>$MGHCV3D D3M(5(43THV45P45((HRC RI T455SH(6HCP 6MNR4(HC 9HC c d NHD5HCV5T5CV5C6RI T4R(63PG3CVHC [HR(UC6E5(H($Q %>)3CD54O5(!.//1!!1&./’);-"1W;-1@>!编辑及校对#张菊"$.%$-%$@%$;%$!%$"%$1%$7%$/%$.8%$..%$.-%$.@%$.;%唐保东!等>选择性)*+,-抑制剂塞来昔布预防胃癌前病变发生及其机制的研究!"#$。

塞来昔布对人胃癌SGC-7901细胞系VEGF表达的影响

塞来昔布对人胃癌SGC-7901细胞系VEGF表达的影响

塞来昔布对人胃癌SGC-7901细胞系VEGF表达的影响高阳;庄竟
【期刊名称】《山东医药》
【年(卷),期】2009(49)24
【摘要】目的探讨选择性环氧合酶2(COX-2)抑制剂塞来昔布对人胃癌SGC-7901细胞系血管内皮生长因子(VEGF)表达的影响.方法设置时效组和量效组,利用RT-PCR以及Western blot技术检测塞来昔布对SGC-7901细胞系VEGF mRNA 和蛋白表达的影响.结果随着药物浓度的增加和时间的延长,VEGF mRNA和蛋白表达均呈现相应的下降趋势.结论塞来昔布可以在一定程度上有效地抑制人胃癌SGC-7901细胞系VEGF的表达.
【总页数】2页(P60-61)
【作者】高阳;庄竟
【作者单位】河南省肿瘤医院,郑州,450008;河南省肿瘤医院,郑州,450008
【正文语种】中文
【中图分类】R735.8
【相关文献】
1.塞来昔布联合顺铂对SGC-7901人胃癌细胞凋亡及Bcl-2表达的影响 [J], 崔京远;马红;李梅;杨洁;张峻;周东风
2.塞来昔布对人胃癌SGC-7901细胞迁移、MMP-9和VEGF表达的影响 [J], 魏永新;张志广;钟江明;李熳
3.塞来昔布联合5-Fu对SGC-7901人胃癌细胞凋亡及Bcl-2、Bax表达的影响
[J], 刘彦合;韩振国;杨高潮
4.重组人生长激素对荷人胃癌细胞SGC-7901裸鼠移植瘤生长及VEGF表达的影响 [J], 程璐;苏翔宇;林岩;李苏宜
5.5-氟尿嘧啶对人SGC-7901胃癌细胞系增殖及p53β,p53,Bax表达的影响 [J], 曹玉;贾飞飞;季万胜
因版权原因,仅展示原文概要,查看原文内容请购买。

1,25-二羟维生素D3联合塞莱昔布对胃癌细胞株SGC-7901凋亡的影响

1,25-二羟维生素D3联合塞莱昔布对胃癌细胞株SGC-7901凋亡的影响

1,25-二羟维生素D3联合塞莱昔布对胃癌细胞株SGC-7901凋亡的影响彭昌能;李国庆;谷苗【期刊名称】《医学研究杂志》【年(卷),期】2014(043)001【摘要】目的本研究探讨l,25-二羟维生素D3(1 alpha,25-dihydroxy vitamin D3,VitD3)联合塞莱昔布(CELE)对胃癌细胞株SGC-7901凋亡诱导作用及Bcl-2、Bax蛋白表达的影响,探讨其联合应用是否具有协同抗胃癌作用,并初步探讨ViD3与CELE联合应用抗胃癌的可能作用机制,为临床制定合理的联合化疗方案,寻求最佳治疗效果提供理论依据.方法体外培养胃癌细胞SGC-7901至指数生长期,加入一定浓度的CELE、VitD3及CELE和VitD3,作用48h后,采用吖啶橙染色观察细胞凋亡,Western blot法检测Bcl-2、Bax蛋白的表达变化,分析两种药物对胃癌细胞SGC-7901的增殖、凋亡及相关基因表达的影响.结果吖啶橙染色观察细胞凋亡从形态学上证实了VitD3和CELE对胃癌细胞的诱导凋亡作用,且两药联合增强诱导凋亡作用;VitD3、CELE及二者联合应用均显著抑制SGC-7901细胞Bcl-2蛋白的表达、促进Bax蛋白的表达(P<0.05),联合用药组与单一用药组相比差异有统计学意义(P<0.05).结论 VitD3和CELE可诱导胃癌SGC-7901细胞凋亡,其凋亡机制之一可能为通过抑制Bcl-2、并促进Bax的表达,从而改善Bcl-2/Bax的平衡实现的.两者联合应用对胃癌细胞SGC-7901诱导凋亡具有协同作用.【总页数】5页(P74-78)【作者】彭昌能;李国庆;谷苗【作者单位】423000 湖南省郴州市第一人民医院消化内科;;南华大学附属第二医院消化内科【正文语种】中文【中图分类】R735【相关文献】1.1,25二羟维生素D3和塞莱昔布增强阿霉素对乳腺癌细胞株MCF/ADR的作用与NF-κB的关系 [J], 曹永一;鲍扬漪2.1,25二羟维生素D3联合塞莱昔布对乳腺癌细胞株Hs578T的增殖抑制及凋亡诱导作用 [J], 汪勤;孟刚;鲍扬漪;孙昕;何雪琦3.1,25-二羟维生素D3联合塞莱昔布对乳腺癌细胞株HS578T增殖的影响 [J], 何雪琦;史志涛;鲍扬漪4.1,25-二羟维生素D3联合塞莱昔布对乳腺癌细胞株Hs578T生长及凋亡的影响[J], 何雪琦;鲍扬漪;孙昕;孟刚;汪勤5.Bcl-2shRNA转染联合塞莱昔布对胃癌细胞株SGC-7901的影响(英文) [J], Weiwei Liu Aiqin Wang Wenjing Xiao Fangzhen Shen Minggang Lin Ruyong Yao因版权原因,仅展示原文概要,查看原文内容请购买。

环氧合酶-2抑制剂塞来昔布对人肝癌细胞侵袭转移能力的影响

环氧合酶-2抑制剂塞来昔布对人肝癌细胞侵袭转移能力的影响

环氧合酶-2抑制剂塞来昔布对人肝癌细胞侵袭转移能力的影响唐保东;周奇;李媚;刘思纯【期刊名称】《南方医科大学学报》【年(卷),期】2007(27)9【摘要】目的探讨环氧合酶-2抑制剂塞来昔布对人肝癌SMMC-7721细胞侵袭转移能力的影响,为塞来昔布在临床上治疗肝肿瘤提供理论依据.方法应用体外细胞培养技术培养人肝癌细胞株SMMC-7721,并以重建基底膜的侵袭试验、趋化运动试验、对层粘连蛋白的粘附试验以及损伤刮擦实验观察不同浓度塞来昔布对人肝癌SMMC-7721细胞侵袭、转移能力的影响.结果塞来昔布作用于人肝癌SMMC-7721细胞后,其细胞黏附率明显下降,而运动抑制率及侵袭抑制率明显上升,与对照组相比差别均有统计学意义,且塞来昔布浓度与肿瘤细胞黏附率,运动抑制率及侵袭抑制率均有相关性.结论环氧合酶-2抑制剂塞来昔布能明显抑制人肝癌SMMC-7721细胞的黏附、运动及侵袭能力,故可阻抑肝癌细胞的转移,可能是预防肝癌复发的重要候选药物之一.【总页数】3页(P1400-1401,1413)【作者】唐保东;周奇;李媚;刘思纯【作者单位】中山大学第一附属医院黄埔院区消化科,广东,广州,510080;中山大学第一附属医院黄埔院区消化科,广东,广州,510080;中山大学第一附属医院黄埔院区消化科,广东,广州,510080;中山大学第一附属医院黄埔院区消化科,广东,广州,510080【正文语种】中文【中图分类】R735.7【相关文献】1.不同缺氧状态对人肝癌HepG2细胞侵袭和转移能力的影响 [J], 余桂芳;严跃红;王瑞鑫;曾文铤;朱科伦2.三氧化二砷与人参皂甙Rg3联合对人肝癌SMMC-7721细胞侵袭转移能力的影响 [J], 余桂芳;曾文铤;朱科伦;马佩球3.异丙酚对人肝癌细胞侵袭转移能力及上皮间质转化的影响 [J], 盘诗芮;黄焕森;卢国安;阮林;谭婉琳4.三氧化二砷对人肝癌SMMC-7721细胞侵袭转移能力的影响 [J], 余桂芳;陈益民;严跃红;曾文铤;朱科伦5.环氧合酶-2抑制剂塞来昔布对人肝癌HepG2裸小鼠移植瘤生长和肿瘤血管生成的抑制作用 [J], 左朝晖;黎祖荣;周晓;欧阳永忠;周征宇;曾亮因版权原因,仅展示原文概要,查看原文内容请购买。

塞来昔布对非小细胞肺癌细胞增殖的抑制作用

塞来昔布对非小细胞肺癌细胞增殖的抑制作用

塞来昔布对非小细胞肺癌细胞增殖的抑制作用段争;潘崚;曹书颖【期刊名称】《解放军医学杂志》【年(卷),期】2005(30)12【摘要】目的研究塞来昔布对非小细胞肺癌(NSCLC)的抑制作用及机制. 方法应用MTT法检测塞来昔布对NSCLC细胞株的体外抑制作用,应用流式细胞学、透射电镜研究塞来昔布对NSCLC细胞株的细胞周期阻滞和诱导凋亡的作用,应用RT-PCR 检测P27KIP1、XIAP的表达,以研究细胞周期阻滞和诱导凋亡的机制. 结果 MTT 比色试验表明,塞来昔布对NSCLC有明显的抑制作用,且表现为剂量依赖性和时间依赖性;而且,在相同条件下塞来昔布对NCI-H520的抑制率明显高于对A549的抑制率.流式细胞学试验证明,塞来昔布作用后G0/G1细胞比例上升,细胞阻滞于G0/G1期.流式细胞学、透射电镜证实了凋亡的存在,而且凋亡率随剂量的增加而增加.RT-PCR证实塞来昔布作用后P27KIP1 mRNA表达增加,XIAP mRNA表达减少.结论塞来昔布在体外对NSCLC有明显的抑制增殖作用,其机制涉及细胞周期阻滞、诱导细胞凋亡两个方面.【总页数】4页(P1082-1085)【作者】段争;潘崚;曹书颖【作者单位】050000,石家庄,河北医科大学第二医院呼吸内科;050000,石家庄,河北医科大学第二医院血液内科;050000,石家庄,河北医科大学第二医院呼吸内科【正文语种】中文【中图分类】R374.2【相关文献】1.塞来昔布对人肝癌细胞增殖的抑制作用 [J], 唐保东;周奇;林箐华;刘思纯2.塞来昔布对结肠癌细胞增殖、凋亡的影响及机制 [J], 石国一;秦占川;刘玉玲;王敏3.miR-140-5p对非小细胞肺癌细胞增殖及迁移的抑制作用 [J], 邱会;胡敏;钟敏钰4.塞来昔布对Lewis肺癌细胞增殖及移植瘤的抑制作用 [J], 张京伟;周云峰;胡名柏;谢伟5.塞来昔布对人鼻咽癌细胞增殖的抑制作用 [J], 窦艳玲;冯怀志;梁传余因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【 A b s t r a c t 】O b j e c t i v e T o o b s e r v e t h e e f e c t o f e e l e c o x i b o n a p o p t o s i s i n h u m a n g a s t r i c c a n c e r c e l l i n e S G C - 7 9 0 1 a n d i t s m e c h a n i s m .
D OI : 1 0 . 1 1 6 7 5 / j . i s s n . 0 2 5 3 — 4 3 0 4 . 2 0 1 5 . 0 8 . 0 6
Ef fe c t o f c e l e c o x i b o n a p o p t o s  ̄i n g a s t r i c c a n c e r c e l l l i n e S GC- 7 9 01 a n d i t s me c h a n i s m
Me t h o d s T h e h u m a n g st a r i c c a n c e r c e l l s( S G C - 7 9 0 1 c e l l s )w e r e d i v i d e d i n t o f o u r g r o u p s , i n c l u in d g l o w d o s e g r o u p ( 2 5 m) , m o d e r a t e d o s e g r o u p ( 0 岬 ) 5 , I l i g h d o s e g r o u p ( 1 0 0 I x m)a nd c o n t r o l g r o u p w i h t o u t c e l e e o x i b ( e q u a l d o s e o f n o r m a l s a l i n e ) . M ’ r r ss a a y w s a u s e d t o d e t e r m i n e
达、 抑制 B c l 一 2的表 达有 关 。
【 关键词 】 胃癌; 塞来昔布 ; 凋亡; B A X基 因; B c l - 2 基因 【 中图分类号】 R 7 3 5 . 2 【 文献标识码】 A 【 文章编号 】 0 2 5 3 - 4 3 0 4 ( 2 0 1 5 ) 0 8 — 1 0 6 9 — 0 3
照组 ( 等 量生 理盐 水 ) 。采 用四 甲基偶 氮唑 蓝法检 测 不 同浓度塞 来昔 布对 S G C - 7 9 0 1细胞增 殖 的影响 ; 用 Ho e c h s t 3 3 2 5 8检 测
细胞 凋亡情 况 ; 荧光定 量 P C R检 测 B A X及 B c 1 . 2基 因表达 水平 。结果 O 、 2 5 、 5 0 、 1 0 0 m 浓度的 塞来昔 布培 养基 S G C ・ 7 9 0 1 细胞 浓度分 别 为 0 . 9 8 、 0 . 7 6 、 0 . 6 1 、 0 . 4 7 m / L, 随 着塞来 昔布 浓度 升 高 , 细胞 浓 度 减 少 ( P<0 . 0 5 ) 。0 、 2 5 、 5 0 、 1 0 0 m 浓度 的 塞来 昔布 处理后 S G C - 7 9 0 1 细胞 有核 分裂现 象分 别 为 : ≤1 个/ 视野、 2 ~ 3个/ 视野、 5 ~ 6个/ 视野、 ≥1 0个/ 视 野 。 中剂量 组 、 高剂 量组 B A X m R N A表达 量 高于对 照组及 低 荆量组 ( P< 0 . 0 5 ) , 高剂量 组 B A X m R N A表 达量 高于 中剂量 组( P< 0 . 0 5 ) ; 中 剂量 组 、 高剂 量 组 B c l - 2 m R N A表 达 量低 于 对 照 组 及 低 剂 量 组 ( P< 0 . 0 5 ) , 高剂量组 B c l - 2 m R N A表 达 量 低 于 中剂 量 组 ( P< 0 . 0 5 ) 。结 论 塞来 昔 布对 胃癌 细胞 S G C - 7 9 0 1 有 明 显 的抑 制 增 殖作 用 , 其作 用机 制 可 能 与促 进 凋 亡基 因 B A X 的表
ZHONG L i , Z HANG Gu a n g — y u, DO NG C h e n — c h e n g, WA NG Zh e n — r a n
( D e p a r t m e n t o f G a s t r o i n t e s t i n a l S u r g e r y , A f i f l i a t e d Ho s p i t a l f o G u i l i n Me d i c a l U n i v e r s i t y , G u i l i n 5 4 1 0 0 1 , C h i n a )
广 西 医学 2 0 1 5年 8月胞 S G C - 7 9 0 1 凋 亡的影 响及其作用机制
钟 漓 张 广 钰 董 陈诚
王振 冉
( 桂林 医学 院附属 医 院 胃肠 外科 , 桂林 市 5 4 1 0 0 1 , E — ma i l : z h o n g l i 0 3 0 2 @1 6 3 . c o m)
【 摘要 】 目的 观察塞来昔布对人 胃癌细胞 S G C - 7 9 0 1 凋亡的影响并探讨其机制。方法 将人 胃癌细胞 S G C - 7 9 0 1细
胞 分 为 4组 , 分 别加入 不 同浓度 塞 来昔 布 , 低 剂 量组 ( 2 5 m ) 、 中剂量 组 ( 5 0 m) 和 高剂量 组 ( 1 0 0 I x m) 及 不合 塞 来昔布 的对
相关文档
最新文档