物理化学期末考试03章 热力学第二定律
物理化学03章_热力学第二定律
为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。
物理化学-课后答案-热力学第二定律
物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
物理化学03热力学第二定律
Q1 Q2 0 T1 T2
对无限小的循环, 有
不可逆 可逆
dQ1 dQ2 0 不可逆 可逆 T1 T2
小结: 对在两恒温热源间工作的热机 • 其热机效率小于(T1-T2)/T1是可能的, 大于则不可能, 等于时相 当于热机实际处在平衡状态; • 其热温商小于零是可能的, 大于则不可能, 等于时平衡. 上两式适合于任何物质,发生任何变化的循环过程。
•要解决过程的方向性的问题,必须依赖于热力 学第二定律。
99-11-24
3
§3-1 热力学第二定律
1. 自发过程与非自发过程
• 在一定的条件下,不需要消耗环境的作用就能 自动进行的过程,称为自发过程。 • 如水往低处流,冰熔化,墨水在清水中扩散, 常温下能自动进行的化学反应等等。 • 自发过程的逆过程是不能自动进行的,称为非 自发过程。 • 自发过程的共同特征是不可逆的。 [课堂讨论]:以气体真空膨胀为例,说明自发过 程是不可逆过程。
• 例:木炭在氧气中燃烧,热力学能转变为热,生成CO2, 其逆过程是CO2吸收相同的热量,转变为C和O2,是不违 反热力学第一定律的,但能否自动的进行呢?
99-11-24 2
同在能量守恒的前提下, 热的自发传递是单方向的; 功可全部转化为热, 而热转化为功却是有限制的.
• 热 从 高 温 传 向 低 温 • 功 转 化 为 热
1
任意不可逆过程的热温商之和一定小于其熵变.
dQ S T
>任意不可逆过程 =任意可逆过程
这就是克劳修斯不等式 , 不可逆时式中T仅为环境的温度. 当系统从始态1分别经可逆和不可逆途径到达末态2时, 系统状态函数熵的变化量是一样的, 不同的是热温商. 只有可 逆途径的热温商之和才与熵变量相等.
江苏师范大学《物理化学》作业指导第3章 热力学第二定律
作业指导:第三章 热力学第二定律P. 2002.有5mol He(g),可看作理想气体,已知其C v,m =1.5R ,从始态273K ,100kpa ,变到终态298K,1000kpa ,计算该过程的熵变。
解:该过程为理想气体pVT 同时变化过程,直接套用熵变计算公式:,对于单原子理想气体,已知C v,m =1.5R ,则C p,m =2.5R.代数计算得:5.有一绝热箱子,中间用绝热隔板把箱子的容积一分为二,一边放1mol 300K ,100kPa 的单原子理想气体Ar(g),另一边放2mol 400K,200kpa 的双原子理想气体N 2(g)。
若把绝热隔板抽去,让两种气体混合达平衡,求混合过程的熵变。
解:该题目为理想气体传热混合过程求熵变的问题。
将隔板抽去,系统达平衡后,Ar 和 N 2的温度和体积都发生变化。
先求平衡后的温度T 3.将整个箱子中的气体看作研究系统,因绝热,恒容,故,即 由上式解出末态温度T 3=376.9K 。
再求体积变化。
21,m 12d ln()D =+òT p T nC T p S nR p T 21,m 112,m 22111d ln()ln()ln100298(58.314ln 5 2.58.314ln )1000273 86.61--D =+=+=´´+´´×=-×òT p p T nC T p p T S nR nR nC p T p T J K J K0=D =Q U ()()21,312,223()()()(()0V m V m U U Ar U N n C Ar T T n C N T T D =D +D =-+-=1mol Ar(g) T 1=300K 100kpa2mol N 2(g) T 2=400K 200kpa1mol Ar(g) 2mol N 2(g) T 3抽去隔板混合前Ar 的体积混合前N 2的体积混合后总体积 混合过程Ar 的熵变 混合过程N 2的熵变 混合过程总熵变6.有2mol 理想气体,从始态300K ,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的Q ,W ,,和。
物理化学 第三章 热力学第二定律
1.卡诺循环 问题的提出: 热力学第二定律指出了热不能无条件地全部变成 功,那么,它的最高限度是多大?与什么因素有 关?
卡诺热机: 以理想气体为工作媒介,经历恒温可逆膨胀、绝 热可逆膨胀、恒温可逆压缩、绝热可逆压缩四个 可逆步骤组成的可逆循环过程(卡诺循环),从高 温热源吸收热量并将其中部分热量转化为功,同 时将其余的热排入低温热源中。按此卡诺循环工 作的热机称为卡诺热机。 即使是以理想化的卡诺热机也不可能将从高温热 源所吸收的热量全部转化为功。
注意: (1)开尔文表述不能错误地理解为“功可以完全 变成热,而热不能完全变成功”,实际上,只有 在不引起其它变化的条件下,热才不能完全变 成功; (2)热力学第二定律是真实反映客观规律的实践 经验总结,不能违背。 例如: 想从单一热源取出热并使之转变成功的第二类永 动机是永远不可能的。
3.2
卡诺热机与卡诺循环
热机效率: 热机效率是指热机对外作的功与从高温热源吸收 的能量之比,用η 表示: η =-W/Q1 热机效率的有限性: 若热机不向低温热源散热,Q2=0,吸收的热全部 用来作功,此时热机效率可达到100%。实践证 明,这样的热机是不可能实现的,即热机的效率 总是小于100%。
第二类永动机: 这种能够从单一热源吸热并全部用来对外作功的 机器,或者说热机效率达到100%的机器,称为第 二类永动机。 第二类永动机的诱惑: 如果能够制得第二类永动机,就可以从大气、大 地、海洋这类巨大的热源吸热而对外作功,根本 解决能源问题。 遗憾: 第二类永动机是不可能实现的。
自发过程的特征: 1)自发过程总是单方向趋于平衡。如热自动从高 温物体传至低温物体,方向:从高温物体向低温 物体传热;限度:自动传热至两物体温度相等 (平衡)。 2)自发过程均具有不可逆性。(1)系统经自发过 程达到平衡后,如无环境的作用(不消耗功),系 统不可能自动反方向进行并回到原来状态;(2) 自发过程都是热力学的不可逆过程。例如:理想 气体恒温自由膨胀过程是一个自发过程。
物理化学答案 第三章 热力学第二定律
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.5 高温热源温度,低温热源。
今有120 kJ的热直接从高温热源传给低温热源,龟此过程的。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10 °C的水经下列三种不同过程加热成100 °C的水,求过程的。
(1)系统与100 °C的热源接触。
(2)系统先与55 °C的热源接触至热平衡,再与100 °C的热源接触。
(3)系统先与40 °C,70 °C的热源接触至热平衡,再与100 °C的热源接触。
解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8 已知氮(N2, g)的摩尔定压热容与温度的函数关系为将始态为300 K,100 kPa下1 mol的N2(g)置于1000 K的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。
解:在恒压的情况下在恒容情况下,将氮(N2, g)看作理想气体将代替上面各式中的,即可求得所需各量3.9 始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀,D U = 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下2.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的。
衡水学院-《物理化学》第三章-热力学第二定律-作业及答案
衡水学院-《物理化学》第三章-热力学第二定律-作业及答案Q ir,2 = - 893.5 (J)[143-3] 卡诺热机在T 1 = 900 K 的高温热源和T 2 = 300 K 的低温热源间工作。
求:⑴热机效率η;⑵当向低温热源放热 - Q 2 = 100 kJ 时,系统从高温热源吸热Q 1及对环境所作的功– W 。
解:6667.0900300900121=-=-=T T T r η⑴)(解得:即⑵kJ 3001001.6667011112=-+=+=Q Q Q Q ηQ 2 + Q 1 = - W -100 + 300 = - W - W = 200 (kJ)[143-4] 冬季利用热泵从室外0℃的环境吸热,向室内18℃的房间供热。
若每分钟用100 kJ的功开动热泵,试估算热泵每分钟最多能向室内供热多少?解:从室外吸热Q 1,向室内供热Q 2,室外温度定为T 1,室内温度定为T 2。
1121Q W T T T r-=-=η⑴ )(解得:即J 5.15171005.127391.152-73.15211=-=Q QQ 2 + Q 1 = - W Q 2 + 1517.5 = -100 Q 2 = - 1617.5 (J)[143-5] 高温热源温度T 1 = 600 K ,低温热源温度T 2 = 300 K 。
今有120 kJ 的热直接从高温热源传给低温热源,求此过程两热源的总熵变ΔS 。
解:120 kJ 的热直接从高温热源传给低温热源,-Q 1 = Q 2 = 120 kJ)()(21T S T S S ∆+∆=∆2211T Q T Q +=300120000600120000+-=)K J (2001-⋅=[144-7] 已知水的比定压热容c p = 4.184 J·g -1·K -1。
今有1kg ,10℃的水经下列三种不同过程加热成100℃的水求各过程的ΔS sys 、ΔS amb 、ΔS iso 。
物理化学第三章 热力学第二定律(定稿)
Qc ' Tc W Th Tc
式中W表示环境对体系所作的功。
23
从Carnot循环得出的结论虽然是由理想气体
为工质的Carnot热机所得到的,但可以证明: (1) 在高低温两个热源间工作的所有热机中, 可逆热机的效率最大。 ——卡诺定理 (2) 在高低温两个热源间工作的所有可逆热机 效率相等,与工质及其变化的类型无关; ——卡诺定理 的推论
12
历史上人们曾经幻想制造出一种热机,它
能够通过循环操作,不断从单一热源吸热,并
完全转化为功。换句话说,它能单纯使物体冷
却而把热转变为功。由于海洋、大气、地面等 所储藏的能量差不多可看成是无限的,此种机 器如能制成,就是一种永动机,即所谓“第二 类永动机” ,但所有这些尝试都失败了。
13
所以人们总结出下列结论:
16
另外还可以证明自然界中各种自发过程都
是相互关联的,从一种过程的不可能性可以推
出另一种过程的不可能性。因此可用各种复杂
曲折的办法把自然界中各种自发过程与热传导 过程联系起来,从热传导之不可逆性,论证其 它自发过程之不可逆性,这就是热力学第二定 律的另一种说法: 自然界中一切自发过程都是不可逆的。
T2 > 0 K , 0 < <1 , Q不能全部变为W
T 大, 大; T 小, 小; T = 0,只有一个热源, = 0 卡诺循环是可逆过程构成的,所以卡诺热 机可以逆转:
外界做功 从低温热源 T2 吸热 Q2
向高温热源 T1 放热 Q1
——制冷机
22
冷冻系数
如果将卡诺机倒开,就变成了致冷机.这时环境 对体系做功W,体系从低温 (Tc ) 热源吸热 Qc' ,而放 给高温 (Th ) 热源 Qh' 的热量,将所吸的热与所作的 功之比值称为冷冻系数,用 表示。
物理化学第3章热力学第二定律
第三章热力学第二定律热力学第二定律的提出背景热力学第一定律以能量守恒定律为根据,引入U、H两个热力学函数,经W、Q、ΔU 及ΔH的计算,解决变化中的能量转换。
除此而外,另一被无机、有机、化学工程等领域共同关心的问题:几种放在一起的物质间是否可能发生化学反应?●若可能,变化的方向为何,在哪里停下来?●方向问题:C(石墨) →C(金刚石)的变化极具价值,但历史上的无数次试验均告失败。
应用热二律计算表明,常温实现这一转化所需压力为大于1500MPa(~15000atm)。
即常温常压下该变化正向是非自发的。
反向?事实表明:一定条件下,并非任何变化都能朝着人们预期的方向进行。
提出的问题:确定条件下的方向为何?预期方向的实现需要何种条件?●限度问题:在高炉炼铁Fe3O4+4CO →3Fe+4CO2事实表明:一定条件下,变化是有限度的。
提出的问题:确定条件下某变化的限度如何?平衡位置在哪?影响平衡位置的因素有哪些,怎样影响?如何控制条件来控制平衡位置及转化率?▪方向和限度两个问题是热一律所不能解决的。
▪热力学第二定律将引入新的热力学函数S、G、A,解决这两个问题。
学习要求及重点:深入理解熵、赫姆霍兹函数、吉布斯函数等概念;了解热力学能和熵的本质;掌握封闭系统PVT变化、相变化及化学变化三类过程ΔS、ΔA、ΔG的计算;理解热力学重要关系式及其应用。
3.1 热力学第二定律1.自发过程的特征(1)明显的自发变化:中和反应、置换反应如:铁在潮湿空气中自动生锈(2)经引发明显自发:2H2(g) +O2(g) →H2O(g)H2(g) +Cl2(g) →2HCl(g)(3)难以觉察的自发:C(金刚石) →C(石墨)(4)非自发:C(石墨) →C(金刚石)N2+O2→2NO6CO2+6H2O →C6H12O6+6O2C+H2→汽油自发过程的共同特征:⑴都具明显的单向自发倾向,逆过程需借助外力做功,且系统和环境不可同时复原;⑵都具一推动力,推动力消失为限度——平衡态;⑶加以控制和利用时,可获得功;⑷都向着孤立体系中能量发散的方向自发进行。
第二章-热力学第二定律
第三章 热力学第二定律一、选择题1. 系统经历一个不可逆循环后:A. 系统的熵增加B. 环境热力学能减少C. 环境的熵一定增加D. 系统吸热大于对外做功2. 理想气体与温度为T 的大热源接触作等温膨胀吸热Q ,所作的功是变到相同终态的最大功的25%,则系统的熵变为:A. 0B. Q /TC. - Q /TD. 4Q /T3. 下列四个关系式中,不是麦克斯韦关系式的是:A. (∂S /∂p )T =- (∂V /∂T )pB. (∂T /∂p )s = (∂V /∂S )pC. (∂S /∂V )T =(∂p /∂T )VD. (∂T /∂V )s = (∂V /∂S )p4. 封闭系统中,若某过程的ΔA = 0,最可能的情况是:A. 绝热可逆,且 W f = 0B. 等容等压可逆,且W f = 0C. 等温等容,且 W f = 0的可逆过程D. 等温等压,且W f = 0的可逆过程5. 从热力学基本关系式可导出 (∂U /∂S )V 等于:A. (∂A /∂V )TB. (∂H /∂S )pC. (∂U /∂V )SD. (∂G /∂T )p6. 可逆机的效率最高,在其它条件相同的情况下,假设火车由可逆机牵引,其速度将: A. 最慢 B. 中等 C. 最快 D. 不能确定7. 在 100℃ 和 25℃ 之间工作的热机,其最大效率为:A. 100 %B. 75 %C. 25 %D. 20 %8. 对1mol 理想气体,温度由T 1变到T 2,等压可逆过程系统熵变为❒S p ,等容可逆过程系统熵变为❒S V ,则❒S p :❒S V 为:A. 1:1B. 2:1C. 3:5D. 5:39. 某气体状态方程为p = f (V )·T ,则恒温下该气体的熵是随体积的增加而: A. 增加 B. 不变 C. 减小 D. 不能确定10. 求任一不可逆绝热过程的熵变ΔS 时,可以通过 途径求得:A. 始终态相同的可逆绝热过程B. 始终态相同的可逆非绝热过程C. 始终态相同的可逆恒温过程D. B 和C 均可11. 一定量的理想气体向真空绝热膨胀,体积由V 1变到V 2,则熵变求算公式为: A. ΔS =0 B. 21lnV S nR V ∆= C. 21ln pS nR p ∆= D. 无法求算 12. 298K 时,1 mol 理想气体等温可逆膨胀,压力从1000kPa 变到100kPa ,系统的吉布斯自由能变化值为:A. 0.04kJB. -12.4kJC. 5.7kJD. -5.7kJ13. 热力学第三定律也可表示为:A. 在0K 时,任何晶体的熵等于零B. 在0℃时,任何晶体的熵等于零C. 在0K 时,任何完整晶体的熵等于零D. 在0℃时,任何完整晶体的熵等于零14. 在273.15K 、101325Pa 的条件下,水凝结成冰,系统的热力学量变化一定为;零的是: A. ❒H B. ❒U C. ❒S D. ❒G15. 在-10℃、101325Pa 下,1mol 水凝结为冰的过程中,下列公式扔适用的是:A. ❒U =T ❒SB. H GS T∆-∆∆=C. ❒H =T ❒S + V ❒pD. ❒G T ,p =0二、填空题1. 对于孤立系统,∆S = 0表示 过程;∆S < 0 表示________过程;∆S >0表示__________过程。
03章_热力学第二定律
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6
§3.7
§3.8 §3.9
自发变化的共同特征 热力学第二定律 Carnot定理 熵的概念 Clausius不等式与熵增加原理 热力学基本方程与T-S图
熵变的计算
熵和能量退降 热力学第二定律的本质和熵的统计意义
§3.10 Helmholtz和Gibbs自由能
▲ kelvin 说法:不可能从单一热源取出热使之全 部转化为功,而不留下其它变化。
“It is impossible to devise an engine which,working in a cycle, shall produce no effect other than the extraction of heat from a reservoir and the performance of an equal amount of work”。
在极限情况下,上式可写成
(Q
T
)
R
0
即任意可逆循环可逆热温商沿封闭曲线的环积 分为零。
现在再讨论可逆过程的热温熵。
在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。
根据任意可逆循环热温商的公式:
Q
( T )R 0
b
可分成两项的加和
A a
B
B Q
A Q
(
AT
)R1
( BT
) R2
不需要外功,就能自动进行的变化过程。
要使自发过程的逆过程能够进行,必须环境对系统作功。 ◆ 借助抽水机,使水从低处流向高处;
◆ 利用抽气机(压缩机),使气体从低压流向高压; ◆ 借助冷冻机,使热量从低温传向高温; ◆ 借助于电解,可以使水恢复为 H2 和 O2 。
物理化学热力学第二定律总结
热二定律总结一、热力学第二定律克劳修斯说法:热不能自动从低温物体传给高温物体而不产生其他变化开尔文说法:不可能从单一热源吸热使之全部对外做功而不产生其他变化典型例题:判断:1、某体系从单一热源吸收100 kJ热量,对外做功100 kJ,该过程不符合热力学第二定律。
(X)2、某循环过程,体系从环境吸收100 kJ热量,对外做功100 kJ,该过程不符合热力学第二定律。
(X)3、某过程体系从环境吸收100 kJ热量,对外做功100 kJ,同时,系统复原,该过程不符合热力学第二定律。
(X)二、热机和卡诺循环任意热机效率:η = -W/Q1 = (Q1+Q2)/Q1卡诺循环:1、等温可逆膨胀;2、绝热可逆膨胀(等熵膨胀);3、等温可逆压缩;4、绝热可逆压缩(等熵压缩)可逆热机(卡诺热机)效率:η = 1-T2/T1对可逆热机,有Q1/T1 + Q2/T2 = 0卡诺定理:在两个不同温度的热源之间工作的所有热机,以可逆热机效率最大。
推论:所有卡诺热机的效率都相等。
典型例题:1、理想气体卡诺循环的图为下列四种情况中的哪一种?2、 判断:真实气体做为热机工质,经卡诺循环后,其热机效率低于以理想气体做为工质的可逆热机的效率。
三、 熵与克劳修斯不等式熵的定义:注意:熵是可逆热温商的积分,熵和热没有直接关系!克劳修斯不等式:(>,不可逆,=,可逆)如果是绝热过程: ΔS ≥0 (>,不可逆,=,可逆)(熵增原理)如果把系统及其相连的环境看成一个整体,则:ΔS iso =ΔS sys +ΔS amb ≥ 0(>,不可逆,=,可逆)(熵判据:判断过程是否自发)注意此公式的应用条件:绝热系统,或把系统和与之相连环境看成一个大的孤立系统。
不可只计算环境熵变,并以此判断过程自发与否。
典型例题:1、 判断:冰在0℃,101.325 kPa 下转变为液态水,其熵变>0,所以该过程为自发过程。
2、 判断:相变过程的熵变可由 计算。
大学《物理化学》第二定律练习题
《物理化学》热力学第二定律练习题1.在两个不同温度的热源之间工作的热机以卡诺热机的效率最大。
判断正确和错误:________。
(√)2.卡诺热机的效率只与两个热源的温度有关而与工作物质无关。
判断正确和错误:________。
(√)3.卡诺热机在T 1=600K 的高温热源和T 2=300K 的低温热源间工作,其热机效率________。
(η=0.5)30011600L R H T T η=-=-卡诺定律:R ηη≤4.改正下列错误(1)在一可逆过程中熵值不变; (2)在一过程中熵变是QS Tδ∆=⎰;(3)亥姆赫兹函数是系统能做非体积功的能量; (4)吉布斯函数是系统能做非体积功的能量; (5)焓是系统以热的方式交换的能量。
答:(1)在绝热可逆过程中熵值不变。
(绝热可逆过程即为等熵过程)(2)在一过程中熵变是rQ S Tδ∆=⎰;(QS Tδ∆≥⎰)(3)在恒温恒容条件下,亥姆赫兹函数是系统能做非体积功的能量;,T V A W '∆≤(=:可逆;>:不可逆) ; ,T V A W '∆≥(=:可逆;>:不可逆)在恒温条件下,亥姆赫兹函数是系统能做功的能量T A W ∆≤(=:可逆;<:不可逆) ; T A W ∆≥(=:可逆;>:不可逆)(4)在恒温恒压条件下,吉布斯函数是系统能做非体积功的能量;,T p G W '∆≤(=:可逆;<:不可逆) ,T p G W '∆≥(=:可逆;>:不可逆)(5)焓没有明确的物理意义。
在封闭系统、恒压且不做非体积功的情况下,焓的增量等于恒压热,即∆H =Qp 。
5指出下列过程中△U ,△H , △S , △A , △G 何者为零。
⑴ 理想气体不可逆恒温压缩; ⑵ 理想气体节流膨胀;⑶ 实际流体节流膨胀; ⑷ 实际气体可逆绝热膨胀; ⑸ 实际气体不可逆循环过程; ⑹ 饱和液体变为饱和蒸气; ⑺ 绝热恒容没有非体积功时发生化学变化; ⑻ 绝热恒压没有非体积功时发生化学反应。
衡水学院-《物理化学》第三章-热力学第二定律-作业及答案
⑴系统与100℃的热源接触;
⑵系统先与55℃的热源接触至热平衡,再与100℃的热源接触;
⑶系统依次与40℃,70℃的热源接触至热平衡,再与100℃的热源接触;
解:
[145-20]将温度均为300 K,压力均为100 kPa的100dm3的H2(g)与50dm3的CH4(g)恒温恒压下混合,求过程的ΔS。假定H2(g)和CH4(g)均可认为是理想气体。
解:
[146-25]常压下冰的熔点为273.15 K,比熔化焓Δfush=333.3J·g-1,水的比定压热容cp= 4.184 J·g-1·K-1。系统的始态为一绝热容器中1kg,353.15 K的水及0.5kg,273.15 K的冰。求系统达到平衡后,过程的ΔS。
解:
[148-37]已知在100 kPa下水的凝固点为0℃,在-5℃时,过冷水的比凝固焓 ,过冷水和冰的饱和蒸气压分别为 及 。今在100 kPa下,有-5℃1 kg的过冷水变为同样温度、压力下的冰,设计可逆途径,分别按可逆途径计算过程的ΔG及ΔS。
解:
[148-38]已知在-5℃,水和冰的密度分别为 和 。在-5℃,水和冰的相平衡压力为59.8MPa。今有-5℃的1 kg水在100 kPa下凝结成同样温度下的冰,求过程的ΔG。假设,水和冰的密度不随压力改变。
水 ①
氯仿 ②
①-②得:
解得: 即262.9℃
(1)p2=10MPa
⑵T2= 238.15K
解:(1)
解得:T2= 234.9K
⑵
解得:p2=61.5MPa
物理化学03章_热力学第二定律-1
V 任意可逆循环
证明如下:
p
(1)在任意可逆循环的曲
线上取很靠近的PQ过程
R
T
V
PO Q
W
(2)通过P,Q点分别作RS和
X N
TU两条可逆绝热膨胀线, (3)在P,Q之间通过O点作 等温可逆膨胀线VW
M O' Y
S
U
V
任意可逆循环
使两个三角形PVO和OWQ的面积相等,
这样使PQ过程与PVOWQ过程所作的功相同。
设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B A
(
Q T
)R
或
S
对微小变化
i
(
Qi Ti
)R
S
dS
Q ( T )R
i
(
Qi Ti
)R
0
这几个熵变的计算式习惯上称为熵的定义式,
即熵的变化值可用可逆过程的热温商值来衡量。
§3.4 熵的概念 Entropy
从Carnot循环得到的结论: 即Carnot循环中,热效应与温度商值的加和等于零。
Qc Qh 0 Tc Th
对于任意的可逆循环,都可以分解为若干个 小Carnot循环。
先以P,Q两点为例
任意可逆循环的热温商
p
R
T
V PO
PVO = OWQ
Q
W MXO’ = O’YN
X N
M O' Y
S
U
T1
T2
T3
T4
i
(
Qi
Ti
)R
0
δ Q
T
R
物理化学热力学第二定律例题
第三章 热力学第二定律引用参考资料(1) 天津大学物理化学习题解答(第五版);(2)江南大学课件附带习题中选择题和填空题部分;(3)2001-山东大学-物理化学中的术语概念及练习;一、 填空题1.某热机循环一周,从高温热源吸收200kJ ,向低温热源放热100kJ ,则=∆-)(pV W ( )-100kJ2.在高热源T 1和低温热源T 2之间的卡诺循环,其热温熵之和2211T Q T Q + =( )。
循环过程的热机效率η=( )。
0,121T T T - 3. 100℃、1大气压下的水,恒温恒压下蒸发成100℃、1大气压的水蒸气,则∆S ( )0,∆G ( )0。
∆S >0 、∆G = 04.一定量理想气体与300K 大热源接触做等温膨胀,吸热Q=600KJ ,对外所做功为可逆功的40%,则系统的熵变ΔS=( )。
1-K kJ 5⋅1-r r K kJ 5K3004.0kJ 600⋅=⨯=-==∆T W T Q S 5.1mol 单原子理想气体从p 1、V 1、T 1等容冷却到p 2、V 1、T 2,则该过程∆U ( )0,∆S ( )0,W ( )0(填> , < , =)。
∆U < 0,∆S < 0,W = 06.乙醇液体在常压、正常沸点温度下蒸发为乙醇蒸汽,过程的S H ∆∆与的关系是( );Q 与H ∆的关系是( ),计算H ∆所需要的热力学基础数据:( )或者( )和( )。
TH S ∆=∆;H Q ∆=;乙醇在正常沸点下的蒸发焓m vap H ∆;乙醇液体在正常沸点下的标准摩尔生成焓Θ∆m f H ;乙醇蒸气在正常沸点下的标准摩尔生成焓Θ∆m f H7.某一系统在与环境300K 大热源接触下经历一不可逆循环过程,系统从环境得到10KJ 的功,则系统与环境交换的热Q=( );ΔS sys =( );ΔS amb =( )。
-10kJ ;0;33.331-K J ⋅因为循环过程0=+=∆W Q U ;8.298K 气相反应CO (g )+ 1/2 O (g )= CO 2(g ),该反应的∆G ∆A∆U ∆H (填> , < , =)。
第3章热力学第二定律
P199复习题1、指出下列公式的适用范围:(1)∑-=∆BB B mix x n R S ln :理想气体或理想溶液的等温、等压混合过程。
(2)22,,121121ln ln T T p m V mT T nC nC p V S nR dT nR dT p T V T ⎛⎫⎛⎫∆=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰:理想气体的物质的量一定从T 1,p 1,V 1到T 2,p 2,V 2的过程。
(3)dU=TdS -pdV :单组分均相封闭系统只做体积功的过程。
(4)G Vdp ∆=⎰:单组分均相封闭系统只做体积功的等温过程。
(5)S ∆、A ∆、G ∆作为判据时必须满足的条件:熵判据:用于隔离系统或绝热系统:dS U ,V ,Wf =0≥0。
亥姆霍兹自由能判据:在等温容下不作其它功的条件下,过程总是沿着A 降低的方向进行,直到A 不再改变,即dA =0时便达到该条件下的平衡态。
吉布斯自由能判据:等温等压下不作其它功的条件下,过程总是沿着G 降低的方向进行,直到G 不再改变,即dG =0时便达到该条件下的平衡态。
2、判断下列说法是否正确,并说明原因:(1)不可逆过程一定是自发的,而自发过程一定是不可逆的。
答:前半句错。
自发过程一定是不可逆的,而并不是所有的不可逆过程都是自发的。
对有些不可逆过程通过对其做功,可使它自发进行。
(2)凡是熵增加的过程都是自发过程。
答:错。
熵判据用于隔离系统或绝热系统:dS U ,V ,Wf =0≥0。
(3)不可逆过程的熵永不减少。
答:错。
对于隔离系统或绝热系统中发生的不可逆过程的熵永不减少。
(4)系统达到平衡时,熵值最大,Gibbs 自由能最小。
答:错。
在隔离系统或绝热系统中,系统达到平衡时,熵值最大。
在等温等压下不作其它功的系统中,系统达到平衡时,Gibbs 自由能最小。
(5)当某系统的热力学能和体积恒定时,0S ∆<的过程不可能发生。
答:错。
对于隔离系统或绝热系统热力学能和体积恒定时,0S ∆<的过程不可能发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.10 §3.11 §3.12
Helmholtz和Gibbs自由能 变化的方向与平衡条件 G 的计算示例
§3.13 §3.14 *§3.15 *§3.16 *§3.17
几个热力学函数间的关系 热力学第三定律及规定熵 绝对零度不能到达的原理 不可逆过程热力学简介 信息熵浅释
§3.1 自发变化的共同特征——不可逆性
第二类永动机:从单一热源吸热使之完全变为功而不 留下任何影响。
§ 3.3 Carnot定理
Th 高温热源
Q1'
IW
Q1 RW
Q1'W Q1W
Tc 低温热源
W W
I
W Q1'
假设
I > R
R
W Q1
W>W Q1' Q1
(a)
Q1 > Q1'
§ 2.3 Carnot定理
Th 高温热源
Q1'
Q1
I WW R
设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B A
(
Q T
)
R
或
S
对微小变化
i
( Qi Ti
)R
dS (
Q
T
)R
S
i
( Qi Ti
)R
0
这几个熵变的计算式习惯上称为熵的定义式,
即熵的变化值可用可逆过程的热温商值来衡量。
§2.5 Clausius 不等式与熵增加原理
Clausius 不等式—— 热力学第二定律的数学表达式
自发变化 某种变化有自动发生的趋势,一旦发生就 无需借助外力,可自动进行,这种变化称为自发变化
自发变化的共同特征—不可逆性 任何自发变化的逆 过程是不能自动进行的。例如: (1) 焦耳热功当量中功自动转变成热; (2) 气体向真空膨胀; (3) 热量从高温物体传入低温物体; (4) 浓度不等的溶液混合均匀; (5) 锌片与硫酸铜的置换反应等,
0 < 0
I
Clausius 不等式
设有一个循环, A B 为不可逆过程,B A 为可逆过程,整个循环为不可逆循环。
则有
i
Q T
I,
AB
i
Q T R, BA
<
0
i
Q T
R, B A
SA
SB
SB
SA
i
Q T I,AB
或
SAB
B A
Q T
I
0
Clausius 不等式
第三章 热力学第二定律
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6
§3.7
§3.8 §3.9
自发变化的共同特征 热力学第二定律 Carnot定理 熵的概念 Clausius不等式与熵增加原理 热力学基本方程与T-S图 熵变的计算
熵和能量退降 热力学第二定律的本质和熵的统计意义
第三章 热力学第二定律
从低温热源吸热
(Q1 W ) (Q1' W ) (Q1 Q1' ) > 0
'Q1W
Q1W 高温热源得到热
Tc 低温热源
(Q1 Q1' )
这违反了Clausius说法,只有
(b)
I R
§ 2.3 Carnot定理
Carnot定理: 所有工作于同温热源和同温冷源之间的热机,其 效率都不能超过可逆机,即可逆机的效率最大。 Carnot定理推论: 所有工作于同温热源与同温冷源之间的可逆热机, 其热机效率都相等,即与热机的工作物质无关。 Carnot定理的意义:
T1
T2
T3
T4
i
( Qi
Ti
)R
0
δ Q T R
0
任意可逆循环
用一闭合曲线代表任意可逆循环。
在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。
根据任意可逆循环热温商的公式:
δ Q T R
0
将上式分成两项的加和
B A
(
Q T
)
R1
A B
(
Q T
)R
2
0
熵的引出
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R2
说明任意可逆过程的热 温商的值决定于始终状态, 而与可逆途径无关,这个热 温商具有状态函数的性质。
任意可逆过程
熵的定义
Clausius根据可逆过程的热温商值决定于始终态而 与可逆过程无关这一事实定义了“熵”(entropy) 这个函数,用符号“S”表示,单位J 为K:1
熵增加原理
Clausius 不等式
设温度相同的两个高、低温热源间有一个可逆
热机和一个不可逆热机。
则:
I
Qh Qc Qh
1 Qc Qh
R
Th Tc Th
1 Tc Th
根据Carnot定理: I R
则
Qc Qh 0
Tc Th
推广为与n个热源接触的任意不可逆过程,得:
n i
Qi Ti
(1)引入了一个不等号 I R ,原则上解决了
化学反应的方向问题;
(2)原则上解决了热机效率的极限值问题。
§3.4 熵的概念
从Carnot循环得到的结论:
即Carnot循环中,热效应与温度商值的加和等于零。
Qc Tc
Qh Th
0
对于任意的可逆循环,都可以分解为若干个 小Carnot循环。
先以P,Q两点为例
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
§3.2 热力学第二定律
Clausius 的说法: “不可能把热从低温物体传到高温物体,而不 引起其他变化” Kelvin 的说法: “不可能从单一热源取出热使之完全变为功, 而不发生其他的变化”
后来被Ostward表述为:“第二类永动机是不可 能造成的”。
任意可逆循环的热温商
p
R
T
V
P
O Q
PVO = OWQ
W MXO’ = O’YN
X N
Байду номын сангаас
M O' Y
S
U
V 任意可逆循环
证明如下:
p
(1)在任意可逆循环的曲 线上取很靠近的PQ过程
(2)通过P,Q点分别作RS和 TU两条可逆绝热膨胀线,
(3)在P,Q之间通过O点作 等温可逆膨胀线VW
R
T
V
P
O Q
从而使众多小Carnot循环的总效应与任意可逆 循环的封闭曲线相当
所以任意可逆循环的热温商的加和等于零,或 它的环程积分等于零。
任意可逆循环分为小Carnot循环
任意可逆循环分为小Carnot循环
Q2 Q1 0
T2
T1
Q4 Q3 0
T4
T3
Q6 Q5 0
T6
T5
Q1 Q2 Q3 Q4 0
W
X N
M O' Y
S
U
V
任意可逆循环
使两个三角形PVO和OWQ的面积相等,
这样使PQ过程与PVOWQ过程所作的功相同。
同理,对MN过程作相同处理,使MXO’YN折线所经 过程作功与MN过程相同。
VWYX就构成了一个Carnot循环。
用相同的方法把任意可逆循环分成许多首尾连 接的小卡诺循环
前一循环的等温可逆膨 胀线就是下一循环的绝热可 逆压缩线(如图所示的虚线 部分),这样两个绝热过程 的功恰好抵消。