Phenolic profiles and antioxidant and anticarcinogenic activities of prevention
果蔬抗氧化作用机理及评价方法研究进展
第24卷第2期浙江林业科技Vol. 24 No.2 2 0 0 4年3 月 JOUR. OF ZHEJIANG FOR. SCI. & TECH. Mar., 2 0 0 4 文章编号:1001-3776(2004)03-00059-05果蔬抗氧化作用机理及评价方法研究进展郑炜(杭州商学院食品、生物与环境工程学院,浙江杭州 310035)摘要:综述了果蔬抗氧化作用的可能机理和果蔬抗氧化作用的评价方法;重点介绍了Rancimat法、β-胡萝卜-亚油酸乳化液氧化法、DPPH・法、硫代巴比妥酸反应物(TBAS)法和FRAP法5种目前常用的果蔬抗氧化作用评价方法及其采用这些方法所取得的研究结果。
指出有必要加强在同一条件下用不同的测定方法对同一来源的果蔬进行抗氧化活性比较的研究,这对于选择抗氧化活性测定的方法具有指导意义。
关键词:水果;蔬菜;抗氧化作用;机理;评价方法中图分类号:Q946 文献标识码:A水果和蔬菜在人们膳食中的重要性受到越来越多的关注。
大量流行病学研究表明富含果蔬的膳食能降低人体心血管系统疾病和患某些肿瘤的危险性。
人们普遍认为产生这些健康效应的成分是膳食中的抗氧化营养素,如维生素E、维生素C、β-胡萝卜素和硒等。
然而,近年来的研究发现,某些植物中存在的多酚类非营养性成分也可能作为抗氧化剂或以其他方式参与其抗肿瘤作用或心血管保护作用[1]。
另一方面,对食品的质量而言,脂类的氧化是直接造成食品品质下降的化学因素之一,尤其是富含不饱和脂肪酸的食品,很容易氧化生成过氧化脂类,再经过氧化分解和聚合等反应,产生腐败臭,直至出现毒性。
因此,具有抗氧化活性的物质,无论是对食品品质,还是对人体的健康,都具有重大的作用。
本文主要论述了果蔬抗氧化作用的机理,并介绍了几种果蔬抗氧化活性的评价方法。
1 果蔬抗氧化作用的可能机理研究表明,由活性氧引发的自由基会使人体内的脂质与蛋白质发生链式氧化反应。
这些自由基寻找生物分子的不饱和位点进行进攻,对有机分子产生一些不应有的修饰和损伤,这些大分子有蛋白质、碳水化合物、脂类物质和核酸。
橡胶树种子油治血脂的原理
橡胶树种子油治血脂的原理English:The oil extracted from the seeds of the rubber tree, also known as Hevea brasiliensis, has been found to have potential effects on blood lipid levels. The mechanism behind its lipid-lowering effects involves various bioactive compounds present in the oil. One important component is the phytosterols, which are plant-derived sterols that have structural similarities to cholesterol. Phytosterols can compete with cholesterol for absorption in the intestines, thus reducing cholesterol absorption and causing a decrease in blood cholesterol levels. Another mechanism involves the fatty acid profile of the oil. Rubber seed oil is rich in unsaturated fatty acids, particularly polyunsaturated fatty acids like linoleic acid and oleic acid. These fatty acids have been shown to have a positive effect on blood lipid levels by decreasing low-density lipoprotein (LDL) cholesterol levels and increasing high-density lipoprotein (HDL) cholesterol levels. Additionally, the oil contains other bioactive compounds such as tocopherols, phenolic compounds, and saponins, which have antioxidant and anti-inflammatory properties and may contribute to the lipid-lowering effects. Overall, the combination of phytosterols,unsaturated fatty acids, and other bioactive compounds in rubber seed oil work together to improve blood lipid profiles and promote cardiovascular health.Translated content: 从橡胶树种子中提取的油,也被称为帝国橡胶树种子油,已经被发现具有潜在的调节血脂水平的效果。
外文翻译(翻译版)
储存温度和包装条件黑大豆和曲的总酚含量和抗氧化活性的影响黄如岳,王延菊,李仁欣,周成春台湾台北大学食品科学与技术研究所摘要:总结在这项研究中,将蒸黑大豆和泡盛曲霉发酵黑豆(曲)的粉末在4℃和25℃下储存,有或没有脱氧剂和干燥剂120天。
发现总酚含量和抗氧化活性(包括DPPH自由基清除效果,Fe2+- 螯合能力以及来自黑大豆和曲的甲醇提取物的减少活性随贮存期的延长而降低。
此外,贮藏温度和包装条件也影响黑大豆和曲霉的甲醇提取物的抗氧化活性。
贮藏120d后,脱脂剂和干燥剂保持在4℃的黑大豆提取物中DPPH自由基清除效果最高,Fe2+ - 螯合能力和还原活性分别为71.78%,72.66%和70.04%。
同时,在25℃下用脱氧剂和干燥剂保存的曲的提取物中分别得到77.78%,81.71%和85.05%的最高残留量。
关键词:抗氧化活性,黑大豆,脱氧剂,干燥剂,曲,贮藏,总酚。
Storage temperature and packaging condition affect the total phenolic content and antioxidant activity of black soybeans and koji Ru-Yue Huang, Yen-Ju Wang, Lee-Yan Sheen & Cheng-Chun Chou* Graduate Institute of Food Science and Technology, National Taiwan University, Taipei,TaiwanAbstract:In this study, powders of steamed black soybeans and the Aspergillus awamori-fermented black soybeans (koji) were subjected to storage at 4 °C and 25 °C with or without deoxidant and desiccant for 120 days. It was found that total phenolic content and the antioxidant activity including the DPPH radicals scavenging effect, Fe2+-chelating ability and reducing activity of the methanol extracts from black soybeans and koji decreased as the storage period was extended. Furthermore, storage temperature and packaging condition affected the antioxidant activity of the methanol extracts of black soybeans and koji. After 120-day storage, extract from black soybeans holding at 4 °C with deoxidant and desiccant exhibited the highest residual of DPPH radicals scavenging effect, Fe2+-chelating ability and reducing activity of 71.78%, 72.66% and 70.04%, respectively. Meanwhile, the highest residual of 77.78%, 81.71% and 85.05% respectively, was noted with extract from koji held at 25 °C with deoxidant and desiccant.Key words: Antioxidant activity, black soybeans, deoxidant, desiccant, koji, storage, total phenolic.1. 绪论据报道,氧自由基和其他活性氧可能导致食物变质以及生物分子如膜蛋白,酶,脂质和核酸的退化(Halliwell等,1995)。
‘绿宝石’梨果实发育期酚类物质的动态变化及其抗氧化活性
第33卷第2期2021年6月塔里木大学学报Journal of Tarim UniversityVol.33No.2Jun.2021文章编号:1009-0568(2021)02-0025-07‘绿宝石’梨果实发育期酚类物质的动态变化及其抗氧化活性王鑫1,姜喜1,于军1,2,蒲云峰3,林彩霞4,吴翠云1,2* (1塔里木大学植物科学学院/南疆特色果树高效优质栽培与深加工技术国家地方联合工程实验室,新疆阿拉尔843300) (2塔里木盆地生物资源保护利用兵团重点实验室,新疆阿拉尔843300)(3塔里木大学生命科学学院,新疆阿拉尔843300)(4新疆生产建设兵团第二师农业科学研究所,新疆铁门关841005)摘要为揭示‘绿宝石’梨果实发育过程中酚类物质含量及其抗氧化活性的动态变化规律,采用超声波辅助甲醇提取法及DPPH、ABTS自由基清除法对果实生长过程中酚类物质及抗氧化活性进行测定。
结果表明‘绿宝石’梨果实在发育过程中,总酚、总黄酮含量呈现下降的趋势,以花后50d的含量最高,分别达18.95mg GAE/g DW、34.48mg RE/g DW,在成熟的过程中前期下降迅速,后期下降缓慢。
在‘绿宝石’梨中初步检测出14种酚类物质,熊果苷、绿原酸是‘绿宝石’梨果实中主要的酚类物质。
对于DPPH、ABTS自由基的清除能力也随着果实的成熟而降低。
‘绿宝石’梨中总黄酮、总酚的含量与各个抗氧化指标间存在极显著正相关(P<0.01),其中绿原酸、表儿茶素、槲皮葡萄糖苷是抗氧化过程中主要的酚类组分,‘绿宝石’梨具有很好的抗氧化能力。
关键词‘绿宝石’梨;果实发育期;抗氧化活性;酚类组分中图分类号:S661.9文献标识码:A DOI:10.3969/j.issn.1009-0568.2021.02.004Dynamics of phenolic substances and their antioxidant activityduring fruit development of‘Lyubaoshi’pearsWANG Xin1,JIANG Xi1,YU Jun1,2,PU Yunfeng3,LIN Caixia4,WU Cuiyun1,2* (1College of Plant Science,Tarim University/The National-local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees,Alar,Xinjiang843300) (2Xinjiang Production&Construction Corps Key Laboratory of Protection and Utilization of BiologicalResources in Tarim Basin.Alar,Xinjiang843300)(3College of Life Sicences,Tarim University,Alar,Xinjiang843300)(4Agricultural Scientific Institute of2nd Division of XinJiang Production and Construction Crops,Tiemenguan,Xinjiang841005)Abstract In order to reveal the dynamic changes of the content of phenolic substances and antioxidant activity during the develop⁃ment of‘Lyubaoshi’pear fruit,the phenolic content and antioxidant activity were measured by ultrasonic-assisted methanol extraction and DPPH and ABTS radical scavenging methods during fruit growth.The results showed that during the development of‘Lyubaoshi’收稿日期:2020-11-24基金项目:新疆南疆重点产业创新发展支撑计划项目“新疆梨、核桃、枣主要性状遗传资源评价(估)和功能基因挖掘”(2017DB006)作者简介:王鑫(1994-),男,2019级在读硕士研究生,研究方向为果树种质资源与遗传育种。
油橄榄叶提取物专利技术在化妆品中的应用进展
油橄榄叶提取物专利技术在化妆品中的应用进展文| 耿立冬 刘南岑(并列第一作者) 马业萍 杨 倩油橄榄叶是油橄榄加工过程中的副产物,其提取物中富含多酚类物质,包括低分子量单宁、黄酮类和环烯醚萜类等。
油橄榄叶提取物具有抗氧化、抗炎、抑菌、美白等多种功效。
被广泛应用于各类型化妆品中。
本文对油橄榄叶提取物的提取和纯化方法以及在化妆品中复配应用的专利技术进行了阐述,以期为油橄榄叶提取物在化妆品领域的进一步开发提供参考。
Olea europaea leaf extract application橄榄(Olea europaea L.)为木本油料兼果用植物,可以生长几百年。
最早起源于公元前5000年前的小亚细亚,而后传播至希腊以及地中海沿岸国家。
目前主要生长在南北纬23.5°~40°的亚热带范围内。
世界上现有2000多个油橄榄品种,主要栽培品种有320种左右[1]。
油橄榄加工后得到的橄榄油富含多种营养成分,是广受赞誉的健康油脂。
油橄榄叶通常被认为是油橄榄加工过程中的废弃物,早期,油橄榄叶被地中海地区居民用作治疗疟疾、发热等疾病的药物[2]。
近年来的研究表明,油橄榄叶中含有丰富的多酚类物质,包括低分子量单宁、黄酮类和环烯醚萜类等,在医药、化妆品领域具有良好的应用价值。
Part 1油橄榄叶提取物相关专利概况本文以“油橄榄叶”为关键词,结合相关分类号,对油橄榄叶在化妆品领域的中外文专利进行了检索,经初步浏览筛选,确定用于数据分析的涉及油橄榄叶提取物在化妆品中应用技术的专利文件(数据截止到2022年12月31日)。
以这些专利文献作为研究基础,采用incoPat 专利检索分析平台进行了数据标引与分析。
1.油橄榄叶提取物在化妆品领域的专利申请趋势最早将油橄榄叶提取物用于化妆品中的专利申请人为日本MARUZEN PHARMA 公司,该成分可用于改善皮肤变黑和老化。
如图1所示,2012年之前,关于油橄榄叶的化妆品68ChinaCosmetics Review专利申请数量一直较为平稳,维持在较低的数量水平,申请人主要以日、欧企业为主。
福林-酚比色法测定桑椹中总多酚
福林-酚比色法测定桑椹中总多酚李巨秀,王柏玉【摘要】摘要:以桑椹为原料,没食子酸为标准物质研究了用福林-酚比色法测定桑椹提取液中多酚类物质含量的最适反应条件。
结果表明,当福林-酚试剂与质量分数为12%的Na2CO3溶液体积比为1:2、反应温度20℃、反应时间2h时,总多酚的含量与吸光度呈良好的线性关系,测定方法的平均回收率为97.63%,相对标准偏差(RSD)为4.5%。
该方法具有所用试剂量少、操作方便、灵敏度高、精密度高、稳定性高等优点,适宜桑椹样品总多酚含量的测定。
【期刊名称】食品科学【年(卷),期】2009(030)018【总页数】4【关键词】桑椹;Folin-Ciocaileu;比色;总多酚含量桑椹(Fructus mori L.)为桑科植物桑的果实,富含多酚类化合物,是桑椹中一类重要的生物活性物质,其主要成分是花色苷[1-2]。
据大量研究报道,多酚化合物具有清除自由基、抗动脉硬化、降血脂、防止衰老和肿瘤等功能[3-6],已经成为当前功能性食品研究的热点。
近年来对于苹果、葡萄、茶叶等的多酚物质的研究较多和深入[7-9],而对桑椹多酚研究的报道较少。
陕西有大面积的桑椹种植区,研究桑椹中的多酚化合物,对提高桑椹经济价值,增加桑蚕业的附加值具有一定的推动作用。
多酚含量的测定方法有高锰酸钾法、酒石酸分光光度法、原子吸收法、紫外分光光度法等。
各种方法都有局限性,有的操作繁杂、费时,有的测定结果的重复性差,有的测定的误差大、灵敏度差,只能在很小的范围内加以采用[10-12]。
本工作通过乙醇提取桑椹果实中的多酚化合物,以没食子酸为标准物采用福林-酚法测定桑椹中多酚类物质的含量,分别研究最佳吸收波长、显色剂、显色时间和温度,并对分析方法的精密度实验、稳定性实验和加标回收率等进行评价,以期寻找操作简单、分析准确度高、速度快的桑椹多酚的分析方法,为桑椹果的开发利用提供得科学依据。
1 材料与方法1.1 材料与试剂桑椹于2008年采摘于西北农林科技大学桑蚕研究所,分装于保鲜袋中,放置于-30℃冰箱中保藏。
丹皮酚对氧化应激和炎症信号通路的调控机制
丹皮酚对氧化应激和炎症信号通路的调控机制张鹏*,尹星,刘璐,廖冰(沈阳工学院生命工程学院,辽宁抚顺 113122)摘 要:丹皮酚是牡丹根皮中主要活性成分,在东方传统医学中已经被广泛应用。
丹皮酚因具有抗炎、抗氧化、提高免疫力等药理作用,作为饲料添加剂具有潜在的研发前景和应用价值,但丹皮酚在动物体内的代谢及相关生物学调控机制鲜有报道,极大地阻碍了其合理有效的利用。
本文主要阐述了丹皮酚对机体的保护作用以及在NF-κB、MAPK、Nrf2信号通路中的调控机制,以期为丹皮酚在畜牧生产中的应用和研发提供理论依据。
关键词:丹皮酚;免疫;氧化;抗炎;应用价值中图分类号:S816 文献标识码:A DOI编号:10.19556/j.0258-7033.20200318-02丹皮酚(Paeonol),化学名称为2-羟基-4-甲氧基苯乙酮,其化学分子式为C9H10O3,易溶于有机溶剂,稍溶于水,可随水蒸气挥发,其相对分子质量为166.18[1]。
丹皮酚具有多种药理活性,如抗炎、神经保护、抗肿瘤、抗心血管疾病等[2-5],近年来在医学研究、生物医药等领域中备受关注。
2020年我国禁止使用促生长类抗生素作为饲料添加剂,迫切需要绿色、无公害且具有抗生素效果的替代品。
丹皮酚已在人医临床应用50多年,临床应用资料丰富,并且随着人工合成技术的日渐成熟[6],丹皮酚有望作为新时代重要的饲料添加剂之一。
本文综述了丹皮酚的临床药理作用及其作用机制,以期为丹皮酚在畜牧生产中应用推广提供有价值的建议。
1 丹皮酚对机体的保护作用1.1 丹皮酚的抗炎作用丹皮酚作为多酚类化合物之一,在20世纪50年代,就以丹皮酚磺酸钠注射液针剂用来治疗腹痛、风湿痛、神经痛等炎性相关疾病[7]。
有研究表明丹皮酚对肾脏、肝脏、肺脏等主要脏器炎性疾病具有良好的预防和治疗作用[8-10],尤其在胃肠炎疾病上发挥的治疗效果更加显著,金修哲[11]研究发现100 μmol/L 丹皮酚可有效缓解猪传染性胃肠炎炎症反应,且丹皮酚对防治小鼠结肠炎[12]、胰腺炎[13]也有明显效果。
食品生物技术团队-海南大学
一、团队名称食品生物技术团队二、团队简介本团队现有成员6人,其中教授4人,讲师2人,具有博士学位的6人,博士生导师2人,硕士导师3人,海南省“515人才”工程第一层次1人。
现有在读博士后1人,在读博士研究生2人,硕士研究生20多人。
团队主要围绕现代生物技术在特色资源开发中的应用开展研究,在热带农产品发酵与高值化利用、椰纤果发酵生产的关键技术及产业化应用、热带特色微生物资源开发利用方面形成了稳定的研究方向。
近五年来,团队承担国家及省部级科研课题10余项,其中,国家科技支撑计划项目1项,国家自然科学基金项目3项;发表论文60多篇,其中SCI/EI收录17篇;出版专著3部;授权专利27项;获得省部级奖励2项。
三、主要研究方向1、热带农产品发酵与高值化利用2、椰纤果发酵生产的关键技术及产业化应用3、热带特色微生物资源开发利用四、团队负责人及成员(含照片)李从发博士、教授、博士生导师,团队负责人。
研究方向:热带农产品发酵关键技术;热带特色微生物资源开发利用;椰纤果发酵技术的产业化应用。
刘四新博士、教授、博士生导师,团队负责人。
研究方向:椰纤果发酵生产关键技术研究;热带特色微生物资源基础研究;热带农产品高值化利用。
杨劲松博士、教授、硕士生导师。
研究方向:益生菌、食品发酵与酿造、农产品副产物的饲料化研究。
李武博士、讲师、硕士生导师。
研究方向:热带特色资源应用、生物活性成分作用研究。
胡晓苹博士、讲师。
研究方向:热带特色资源应用、农产品无损检测技术、肉类及水产品的研究与开发。
张家超博士、校聘教授。
研究方向:微生物多样性及功能基因组学、乳酸菌资源开发利用、益生菌与肠道菌群互作研究。
五、主要项目四、获奖/鉴定成果五、代表性论文六、授权专利七、其他1、主编专著《细菌纤维素》,中国农业大学出版社,2007.062、主编专著《热带农产品加工学》,海南出版社,2007.063、主编教材《酿酒工艺学》,海南出版社,2011.01。
不同酿酒高粱酚类物质含量测定及抗氧化活性比较
不同酿酒高粱酚类物质含量测定及抗氧化活性比较田新惠;唐玉明;任道群;姚万春;刘茂柯;张星宇【摘要】The varieties and contents of free state and combined state total phenol, total flavonoids and phenolic acids in six different liquor-making sorghum grain were compared, and their antioxidant activities were analyzed. The results showed that the contents of free state total phenol and total flavonoids in the grain were 135.47-274.38 mgGAE/100 g and 94.60-148.31 mg/100 g, respectively. The contents of combined state total phenol and total flavonoids in the grain were 618.27-1 383.17 mgGAE/100 g and 123.06-434.84 mg/100 g, respectively. The free state phenolic acids in the grain were mainly ferulic acid, clove acid and gallic acid, and the average contents were 611.19 μg/g, 380.66 μg/g and 359.34 μg/g, respectively. The combined state phenolic acids in the grain were mainly ferulic acid and clove acid, and the average contents were 1 608.33 μg/g and 376.78 μg/g, respectively. The ABTS antioxidant ability of free state and combined state total phenol were 14.6% and 85.4%, respectively. The FRAP antioxidant ability of free state and combined state total phenol were 14.3% and 85.7%, respectively. The grain had rich phenolic substances, good antioxidant activity and there were significant differences among varieties (P<0.05).%以6种酿酒高粱籽粒为研究对象,分别比较其游离态与结合态总酚、总黄酮、酚酸物质种类及含量,并对其抗氧化活性进行分析.结果表明,不同酿酒高粱品种游离态总酚、总黄酮;结合态总酚、总黄酮含量分别在135.47~274.38 mgGAE/100 g、94.60~148.31 mg/100 g;618.27~1 383.17mgGAE/100 g、123.06~434.84 mg/100 g.酿酒高粱籽粒中游离态酚酸以阿魏酸、丁香酸与没食子酸为主,平均含量分别为611.19 μg/g、380.66 μg/g、359.34 μg/g;结合态酚酸以阿魏酸、丁香酸为主,平均含量为1 608.33 μg/g、376.78 μg/g.酿酒高粱籽粒中游离态与结合态总酚ABTS抗氧化能力值分别占总ABTS能力值14.6%与85.4%;酿酒高粱籽粒中游离态与结合态总酚FRAP抗氧化能力值占总FRAP能力值14.3%与85.7%.酿酒高粱籽粒具有丰富的酚类物质,良好的抗氧化活性,且品种间有显著性的差异(P<0.05).【期刊名称】《中国酿造》【年(卷),期】2018(037)004【总页数】5页(P174-178)【关键词】酿酒高粱;总酚;总黄酮;酚酸;游离态;结合态;抗氧化活性【作者】田新惠;唐玉明;任道群;姚万春;刘茂柯;张星宇【作者单位】四川省农业科学院水稻高粱研究所生物中心,四川德阳 618000;泸州市酿酒科学研究所,四川泸州 646100;四川省农业科学院水稻高粱研究所生物中心,四川德阳 618000;泸州市酿酒科学研究所,四川泸州 646100;四川省农业科学院水稻高粱研究所生物中心,四川德阳 618000;泸州市酿酒科学研究所,四川泸州646100;四川省农业科学院水稻高粱研究所生物中心,四川德阳 618000;泸州市酿酒科学研究所,四川泸州 646100;四川省农业科学院水稻高粱研究所生物中心,四川德阳 618000;泸州市酿酒科学研究所,四川泸州 646100;四川省农业科学院水稻高粱研究所生物中心,四川德阳 618000;泸州市酿酒科学研究所,四川泸州 646100【正文语种】中文【中图分类】Q815高粱是世界五大作物之一[1],在我国种植面积广泛,主要用于酿酒、酿醋以及工业原料等[2]。
不同苹果果实发育过程中酚类物质含量及抗氧化能力变化研究
ShandongAgriculturalSciences
不同苹果果实发育过程中酚类物质含量
及抗氧化能力变化研究
郭子微1,侯文赫1,付鸿博2,张建英1,王鹏飞1,穆霄鹏1,张建成1
关键词:苹果;果实发育;酚类物质;抗氧化能力 中图分类号:S661.101 文献标识号:A 文章编号:1001-4942(2021)11-0035-10
ChangesofPhenolicSubstancesandAntioxidantCapacityduring FruitDevelopmentofDifferentAppleVarieties
水果和蔬 菜 的 天 然 抗 氧 化 作 用 与 三 大 类 物 质———维 生 素、类 胡 萝 卜 素 以 及 酚 类 物 质 有 关[7],其中,起主要作用的是酚类物质,维生素 C 和类胡萝卜素在抗氧化过程中起的作用远不如酚 类化合物[8]。如在苹果中,多酚等物质被证明是 抗氧 化 的 主 要 来 源,而 维 生 素 C仅 贡 献 不 到 0.4%[9,10]。酚类化 合 物 具 有 极 强 的 抗 氧 化 活 性, 有助于改善植物的颜色、风味并保护其免受一定 程度的生物胁迫和非生物胁迫;对癌症和心脑血 管疾病等具有治疗作用[11],可通过各种机制影响 与癌症相关的基本细胞的功能,可能通过诱导细 胞周期停滞和凋亡来抑制肿瘤的形成和生长[12]。 苹果是人类摄取酚类化合物的重要来源之一,王 思新等[13]对我国 9个常见苹 果 栽 培 种 秦 冠、嘎 拉、富士、华帅等的多酚物质含量及其在发育过程 中的变化动态进行了研究;另外,研究人员也已对
精油档案馆|大马士革玫瑰:不老的神话
精油档案馆|大马士革玫瑰:不老的神话大马士革玫瑰RoseRosa damascena重要产地|保加利亚、摩洛哥、土耳其植物科别|蔷薇科萃取部位|花朵萃取方式|蒸馏/溶剂气味感受|玫瑰香气化学成分|单萜醇|· 主要成分香茅醇、牻牛儿醇、橙花醇、苯乙醇、丁香酚等。
· 玫瑰精油是复杂的精油之一,内含超过400种尚未确定的化学成分,对生理、心灵具有稳定的疗效。
生理功效/药学属性舒缓忧郁、补强神经系统、镇定情绪、激励免疫、帮助循环、护肤、抗发炎、调整生理。
心理功效带来温柔情绪,感到悲观或心灰意冷时,使人心情平稳。
对应脉轮· 心轮,主爱、疗愈、平衡,具爱、平静、性、美的魔法力量。
· 水元素,对应金星。
· 可以对应心肺功能、心因性不适等生理状态。
使用建议· 针对皮肤发炎可搭配德国洋甘菊、永久花、真正薰衣草、天竺葵等精油调理。
· 想达放松、舒缓焦虑、舒眠,可以搭配甜橙、罗马洋甘菊、岩玫瑰、依兰、广藿香。
注意事项·怀孕期间应避免使用。
·遇低温,精油可能凝结为固体状,属正常现象。
经典配方·适用症状:经常出国出差,时差引起睡眠品质差,脑内无法安静,精神紧张问题。
·症状处理:降低因工作压力及时差引起的睡眠障碍,帮助入眠及提升睡眠品质。
·使用方法:调和按摩油,全身按摩。
3%浓度配方甜橙5滴、大马士革玫瑰2滴、印度檀香2滴、苦橙叶2滴、佛手柑5滴、香蜂草1滴、沙棘油1滴、芝麻油30ml成分介绍·甜橙(Citrus sinensis)舒缓紧张、舒缓压力、转换正面思考、放松心情·大马士革玫瑰(Rosa damascena)放松神经紧张和压力、平衡调节生理、舒缓经前症候群、循环问题、抗忧郁、稳定情绪·印度檀香(Santalum album)促进循环、身心放松、镇定神经系统、抗压、稳定情绪起伏、帮助睡眠障碍·苦橙叶(Citrus aurantium)安抚神经系统、平衡舒缓焦虑、降低恐惧、舒眠、帮助血液循环·佛手柑(Citrus bergamia)远离病菌、安抚神经系统、激励免疫、帮助血液循环·香蜂草(Melissa officinalis)帮助血液循环、调节血压、舒缓心悸、舒眠、稳定情绪·沙棘油 (Hippophae rhamnoides)皮肤修护、黏膜伤口修护·有机芝麻油(Sesamum indicum)适合各种肌肤、皮肤吸收迅速大马士革玫瑰小记事大马士革玫瑰(Rosa damascene)被喻为信仰、纯洁、爱与美丽的代表,伊朗人也将玫瑰称为「先知之花」。
荞麦研究进展综述
荞麦研究进展综述摘要综述国内外近年来对荞麦的研究进展,主要集中在荞麦的化学成分和蛋白质提取物的生物活性方面,以为荞麦的研究和开发提供参考。
AbstractResearch progress of Fagopyrum esculentum Moench in recent years of the world was summerized.That was concentratedmainly on chemical composition and protein activity. It could provide references for the research and utilization of Fagopyrum esculentum Moench.Key wordsFagopyrum esculentum Moench;research progress荞麦起源于中国,在世界各地广为栽培利用。
荞麦为蓼科荞麦属一年生草本植物,生育期短,一般60~80 d就能成熟,包括甜荞麦和苦荞麦。
甜荞(Fagopyrum esculentum Moench)又名普通荞麦。
苦荞(Fagopyrum tataricum(L.)Gaertn.)又名鞑靼荞麦(F.tataricum),是双子叶植物。
苦荞麦喜凉爽,耐瘠薄,多生长在高寒山区,籽粒供食用,香味淡、略有苦味;在世界上主要分布在我国西南和华北等地山区,产地主要为四川、云南、贵州和山西等省份。
荞麦具有很高的营养价值和药用价值,历来作为药食兼用的作物进行种植。
历年来对荞麦的研究一直很多,现以近年来国内外对其的研究进展作综述,以为荞麦的研究和应用提供参考。
1化学成分1.1醛和酮Jane?觢等[1]用石油醚、戊烷或甲醇3种溶剂提取苦荞,用GC-MS分析其香气成分,表明苦荞中发香的物质主要是2,5-二甲基-4-羟基-3(2H)呋喃酮(2,5-dimethyl-4-hydroxy-3(2H)-furanone)、(E,E)-2,4-癸二烯醛[(E,E)-2,4-decadienal]、苯乙醛(phenylacetaldehyde)、2-甲氧基-4-乙烯苯酚(2-methoxy-4-vinylphenol)、反式-2-壬醛[(E)-2-nonenal] 、癸醛(decanal)、己醛(hexanal)、4-(二乙氨基)水杨醛(salicylaldehyde)和2-羟基-4-二乙氨基苯甲醛(2-hydroxybenzaldehyde)。
酚类抗氧化剂及其代谢产物对鱼类的毒性研究进展
Vol. 12 ,No.5Sept 2020第12卷第5期2020年9月环境监控与预警Environmental Monitoring and Forewarning DOI : 10. 3969/j. issn.1674—6732. 2020. 05. 006酚类抗氧化剂及其代谢产物对鱼类的毒性研究进展石子悦,刘旺,黄莹,刘阳,梁雪芳!(内蒙古大学生态与环境学院,内蒙古自治区环境污染控制与废物资源化重点实验室,内蒙古 呼和浩特010021)摘 要:简述了水环境中合成酚类抗氧化剂#SPAs )及其代谢产物,SPAs 对鱼类的急性毒性效应、发育毒性效应及机制、内分 泌干扰毒性效应和机制,以及代谢过程和产物毒性预测0指出,为准确实现对SPAs 及其代谢物的化学品管理及生态风险评估,未来研究应聚焦于对合成酚类抗氧化剂及其代谢物在水生生物体内的分布及浓度检测,为该类化合物的生物富集和生物转化研究提供更多的背景资料;开展对SPA-替在毒性分子机制的研究,并建立起分子水平上的毒理学效应与个体乃至种群 水平上的不良后果之间的联系;探究并完善SPAs 的代谢机制,并对现已明确的代谢产物(如BHT-Q )开展毒性效应评价'关键词:合成酚类抗氧化剂;代谢产物;发育毒性;内分泌干扰效应;鱼类中图分类号:X503.225 :TQ314文献标志码:A文章编号:1674 -6732 ( 2020) 05 -0049 -09Research Progress on the Toxicity of Synthetic Phenolic Antioxidants and Their Metabolitesto FishSHI Zi-yue , LIU Wang , HUANG Ying , LIU Yang , LIANG Xue-fang !(Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse , School of Ecologyand Environment , Innec Mongolia Unwersito , Hohhot , Inner Mongolio 010021 , China )Abstraci : The acuta toxic effects, devvlopmental and e ndocrine disrupting toxic effects and mechanisms of synthetic phenolicantioxidanto (SPAs ) and theio metabolites in aquatic environment on fish, as weli as metabolic proces s and produrt toxicityprediction were briefy described. It pointed out that we should focus on the detection and the distribution of crncrntration ofsynthetir phenolic antioxidants and their metabolites in aquatic organisms in the future in order to accurately reelize the chemicalmanagement and ecoloxicai risk assessment of SPAs and theie metabolites & so as to provide more background information foe thestudy of bioeneichment and biotransformation of these ccmpounds. Besides & it is neccssary to eesearch the molecular mechanisms ofthe potentiai toxicity of SPAs and to establish the relationship between the toxicologicai effects at the molecular I cvv I and the advvrse ccnsequenccs at the individual oe evvn population level, also, it is necessare to explore and improvv the metaboXc mechanism ofSPAs and to evvluate the toxic effects of established metabolites ( such as BHT-Q ).Key words : SPAs ; Metabolites ; Devvlopment toxicita ; Eendocrinc disrupting effects ; Fisho 前言抗氧化剂的品种经由简单到复杂、低效到高效 的发展,目前市场上的合成类抗氧化剂以受阻酚类和芳胺类最为常见[1],其中受阻酚类因具有良好 的抗氧化效果以及较高的热稳定性被广泛使 用[2]。
桑叶蛋白的提取及应用分析
第52卷第12期 辽 宁 化 工 Vol.52,No.12 2023年12月 Liaoning Chemical Industry December,2023基金项目:陕西省教育厅青年创新团队建设科研计划项目(项目编号:21JP002);安康学院青年基金(自然)项目(项目编号:2020AYQN07)。
收稿日期: 2022-11-24桑叶蛋白的提取及应用分析张芯1,2,3,王傲1(1. 安康学院 化学化工学院,陕西 安康 725000;2. 安康学院 陕西省富硒食品质量监督检验中心,陕西 安康 725000;3. 安康市纳米新材料工程技术研究中心, 陕西 安康 725000)摘 要:桑叶中蛋白质含量较高,氨基酸种类丰富,桑叶蛋白酶促水解产物具有抗氧化等功效。
桑叶蛋白应用前景广阔,可应用于食品、保健品、医药等领域。
介绍了桑叶蛋白的提取工艺,并对应用现状进行分析,为桑叶蛋白的进一步开发和利用提供参考。
关 键 词:桑叶蛋白;提取;应用中图分类号:TQ936 文献标识码: A 文章编号: 1004-0935(2023)12-1818-04随着生活水平的不断提高,人们对蛋白质的需求也在不断增加,寻找新的蛋白质来源也引起了越来越多研究者的兴趣[1]。
叶蛋白,一种可溶性蛋白的凝集物,是将植物茎叶经过压榨、蛋白质分离等操作而得到的蛋白质浓缩物,其可以替代较为昂贵的谷物和动物蛋白质[2]。
此外,叶蛋白已经成为许多发展中国家的主要食物蛋白质来源。
迄今为止,自然界中许多植物的叶子已经成为叶蛋白的提取 对象[3-4]。
桑叶,桑树的树叶,是家蚕的食物,因其具有疏散风热、清肝明目的功效,被国家卫生部列为药食两用植物。
此外,桑叶因其高营养价值而被作为功能性食品食用,如桑叶饮料、桑叶茶、桑叶面条等多种产品[5-9]。
研究表明,桑叶富含多糖、生物碱等生物活性物质[10-12],除此之外,桑叶中还含有丰富的蛋白质,其蛋白质质量分数可占干基重的15%以上[13],氨基酸种类齐全,因此桑叶蛋白可作为一种待开发的天然保健产品。
植物油的不同组分DPPH自由基清除能力及其与微量有益成分含量的相关性
植物油的不同组分DPPH自由基清除能力及其与微量有益成分含量的相关性黄健花;宋志华;刘慧敏;金青哲;王兴国;徐岩;荣臻【摘要】研究评估13种常见植物油的极性组分、非极性组分和全油样品的DPPH 自由基清除能力,并将DPPH自由基清除能力与生育酚、多酚、植物甾醇等微量有益成分含量进行相关性分析.结果表明:橄榄油、芝麻油、小麦胚芽油和米糠油极性组分的DPPH自由基清除能力高于其他植物油,均大于200 μmol TE/100 g;植物油非极性组分的DPPH自由基清除能力在10.53~553.20 μmol TE/100 g之间,小麦胚芽油和米糠油的清除能力较高;植物油全油的DPPH自由基清除效果比非极性组分的略高;植物油非极性组分、植物油全油的DPPH自由基清除能力与生育酚含量、β-谷甾醇含量、菜油甾醇含量呈显著相关(P<0.01);植物油极性组分的DPPH自由基清除能力则与多酚含量呈显著相关(P<0.05).%The DPPH free radical scavenging activities of polar fraction,non-polar fraction and full oil sample of 13 different common vegetable oils were studied and evaluated,and the correlations between DPPH free radical scavenging activity and different minor components includingtocopherol,polyphenol,phytosterol etc.were analyzed.The results showed that the polar fractions of olive oil,sesame oil,wheat germ oil and rice bran oil had higher DPPH free radical scavenging activities compared with other oils,all above 200 μmol TE/100 g;the DPPH free radical scavenging activities of non-polar fraction in vegetable oi ls ranged from 10.53 μmol TE/100 g to 553.20 μmol TE/100 g,in which the DPPH free radical scavenging activities of wheat germ oil and rice bran oil were thehighest;the DPPH free radical scavenging activity of full oil was slightly higher than that of non-polar fraction.The correlations of contents of tocopherol,β-sitosterol and campesterol with DPPH free radical scavenging activities of non-polar fraction and full oil were statistically significant (P <0.01),while the correlation between polyphenol content and DPPH free radical scavenging activity of polar fraction was statistically significant (P <0.05).【期刊名称】《中国油脂》【年(卷),期】2017(042)002【总页数】5页(P67-70,92)【关键词】植物油;DPPH自由基清除能力;微量有益成分;相关性【作者】黄健花;宋志华;刘慧敏;金青哲;王兴国;徐岩;荣臻【作者单位】江南大学食品学院,食品安全与营养协同创新中心,江苏省食品安全与质量控制协同创新中心,江苏无锡214122;江南大学生物工程学院,江苏无锡214122;迈安德集团有限公司,江苏扬州225000;江南大学食品学院,食品安全与营养协同创新中心,江苏省食品安全与质量控制协同创新中心,江苏无锡214122;江南大学食品学院,食品安全与营养协同创新中心,江苏省食品安全与质量控制协同创新中心,江苏无锡214122;江南大学食品学院,食品安全与营养协同创新中心,江苏省食品安全与质量控制协同创新中心,江苏无锡214122;江南大学食品学院,食品安全与营养协同创新中心,江苏省食品安全与质量控制协同创新中心,江苏无锡214122;江南大学生物工程学院,江苏无锡214122;迈安德集团有限公司,江苏扬州225000【正文语种】中文【中图分类】TS225.1;Q591.5自由基引发的氧化是食用油氧化的主要原因之一,DPPH自由基法是常用的自由基清除能力评价手段。
血尿酸联合N-末端钠尿肽前体对老年急性心力衰竭患者近期不良预后的预测价值
血尿酸联合N-末端钠尿肽前体对老年急性心力衰竭患者近期不良预后的预测价值陈俊;胡文彬;谢辉【摘要】目的:探讨血尿酸联合N-末端钠尿肽前体(NT-proBNP)对老年急性心力衰竭患者近期不良预后的预测价值.方法:前瞻性的收集2015年5月至2017年5月期间,就诊我院的154例老年急性心力衰竭患者为研究对象,按90d内是否出现心力衰竭,再次入院或死亡分为两组(预后不良组和预后良好组).测定所有研究对象的血尿酸和NT-proBNP水平,同时采用受试者工作曲线(ROC)评价血清尿酸、NT-proBNP以及联合检测对近期预后的评估价值.结果:90d内出现心力衰竭再次入院或死亡的患者共38例,预后不良组和预后良好组患者在年龄、NYHA心功能分级、HGB、尿酸、NT-proBNP等方面,差异有统计学意义(P<0.05);多因素Logistic回归分析结果表明,NYHA心功能分级(OR=1.09,95%CI=1.05 ~ 1.13)、尿酸(OR=1.11,95%CI=1.08 ~1.32)、NT-proBNP(OR=1.22,95% CI=1.13~1.45)是急性心力衰竭患者近期不良预后的预测因素.通过ROC曲线判断血尿酸和NT-proBNP水平对老年急性心力衰竭不良预后诊断的曲线下的面积分别为0.613和0.684,联合检测的曲线下面积为0.757,准确性高于单独检测.结论:血清尿酸联合NT-proBNP对老年急性心力衰竭近期不良预后的预测效能比单一标志物更高.【期刊名称】《心肺血管病杂志》【年(卷),期】2018(037)004【总页数】4页(P316-319)【关键词】尿酸;N-末端钠尿肽前体;心力衰竭;预后【作者】陈俊;胡文彬;谢辉【作者单位】442000 十堰市人民医院白浪分院心血管内科;442000 十堰市人民医院白浪分院心血管内科;十堰市人民医院心内科【正文语种】中文【中图分类】R54急性心力衰竭是心内科临床最为常见的急危重症之一。
葡萄酒酚类物质研究进展
葡萄酒酚类物质研究进展史明科;郭金英;任国艳;易军鹏;殷勇【摘要】Phenolic compounds, as the skeletal components in grape wine, play quite important roles. They not only could influence wine color, wine taste, and wine aroma but also have antioxidation functions. In this paper, the research progress in main phenolic compounds and their roles in grape wine was reviewed.%酚类物质作为葡萄酒的“骨架成分”,在葡萄酒中起着重要作用,不仅影响葡萄酒的颜色、滋味和口味等,还具有抗氧化作用。
概述了葡萄酒中主要的酚类物质及其作用研究进展。
【期刊名称】《酿酒科技》【年(卷),期】2012(000)004【总页数】4页(P17-20)【关键词】葡萄酒;酚类物质;抗氧化性【作者】史明科;郭金英;任国艳;易军鹏;殷勇【作者单位】河南科技大学食品与生物工程学院.河南洛阳471003;河南科技大学食品与生物工程学院.河南洛阳471003;河南科技大学食品与生物工程学院.河南洛阳471003;河南科技大学食品与生物工程学院.河南洛阳471003;河南科技大学食品与生物工程学院.河南洛阳471003【正文语种】中文【中图分类】TS262.6葡萄酒作为国际流行的酒种之一,其本身含有各种有机和无机物质,营养丰富,适量饮用可预防各种疾病,增强人体抵抗力,因此备受人们喜爱[1-7]。
而真正对葡萄酒保健功能的研究是始于1987年Richard提出的“法国悖论”,之后有很多学者对葡萄酒的成分进行了研究和分析,发现其中含有大量的酚类物质,进一步研究发现,这些酚类物质具有抗氧化、抗癌、预防心血管疾病等生物活性功能。
江西地方品种紫山药块根功能成分
江西地方品种紫山药块根功能成分陈晓蓉【摘要】从20份江西地方品种紫山药中,依据产量性状、抗病性、块根外观等筛选出较优质的地方栽培种8份,检测其块根中花青素、花色苷、总酚和锌元素含量,结果表明:花青素、花色苷、总酚含量的变异系数较大,紫山药的功能成分含量有着较大差异.应加强紫山药中功能成分的研究,为食品和加工原料时选择适宜品种提供参考.%Totally 8 local varieties were screened out from 20 Jiangxi local varieties of purple yam according to yield traits,disease resistance and tuber appearance,and detected anthocyanidin,anthocyanin,total phenol and Zinc in their tubers.The results showed that the variation coefficient of anthocyanidin,anthocyanin and total phenol was larger,there was great differences in the functional components of purple yam.To strengthen the research on function and nutritional components in purple yam as the raw material of food and food processing can provide reference for selecting suitable varieties to lay foundation for the better characteristics of vegetables to the market.【期刊名称】《中国食物与营养》【年(卷),期】2017(023)004【总页数】3页(P63-65)【关键词】紫山药块根;地方品种;功能成分;江西省【作者】陈晓蓉【作者单位】江西省宜春市农业科学研究所,江西宜春336000【正文语种】中文我国薯蓣属植物资源十分丰富,约有80种[1],其中紫山药是一种天然呈紫色的山药品种,根茎特别发达,块根含有比普通薯蓣更多的微量元素和维生素,并富含花青素、多酚等多种功能性成分[2-3]。
板栗种皮多酚的提取、纯化及其相关性质的研究的开题报告
板栗种皮多酚的提取、纯化及其相关性质的研究的开题报告一、研究背景及意义板栗是一种营养丰富、风味独特的坚果类食品,具有多种保健作用,如降低胆固醇、防止心血管疾病等。
板栗种皮中存在较高含量的多酚类化合物,具有很高的生理活性和抗氧化性能,因此被广泛应用于食品、化妆品、医药等领域。
本文将着重探究板栗种皮多酚提取、纯化及其相关性质的研究,旨在为板栗种皮的深度开发利用提供理论依据和应用价值。
二、研究内容和方法1.板栗种皮多酚的提取和纯化选取新鲜板栗种皮作为样品,根据工艺路线选取适宜的溶剂,如乙醇、水、醋酸等,进行板栗种皮多酚的提取和分离。
利用常见的色谱技术,如硅胶层析、Sephadex G10层析等,进行板栗种皮多酚的纯化。
2.多酚类化合物的结构和性质分析利用紫外-可见光谱、红外光谱、核磁共振等技术,对板栗种皮多酚的结构和性质进行分析和测试。
探究板栗种皮多酚的分子结构、化学性质、热稳定性等相关特性。
3.板栗种皮多酚在食品和医药领域的应用将板栗种皮多酚应用于食品和医药领域,如用作保健品、药物辅助剂等方面。
采用实验室测试和分析,研究板栗种皮多酚在食品中的抗氧化性能、防腐性能等相关性质,以及其在医药领域的药理作用和临床应用效果。
三、研究预期成果1. 综合理解板栗种皮多酚的提取、纯化和性质,得出板栗种皮多酚的化学结构和特性;2. 探究板栗种皮多酚的抗氧化性、防腐性、药理作用以及临床应用效果;3. 为板栗种皮多酚的深度开发利用提供理论依据和应用价值,推动板栗产业的可持续发展。
四、研究方案及时间安排1. 文献调研和样品的采集与处理(1个月);2. 板栗种皮多酚的提取和纯化(2个月);3. 多酚类化合物的结构和性质分析(2个月);4. 板栗种皮多酚在食品和医药领域的应用研究(3个月);5. 论文撰写和答辩准备(2个月)。
以上为研究方案及时间安排,总计预计需要7个月时间完成。
五、参考文献1.赵刚强, 王亚男, 翟楚扬, 等. 板栗种皮氨基酸、多酚含量测定及其抗氧化能力研究[J]. 食品科技, 2013(4):350-353.2.郑霞, 罗会平, 黄芳芳, 等. 板栗种皮多酚提取方法研究及其抗氧化性能分析[J]. 食品研究与开发, 2019(22):183-187.3.张刚毅, 高小丽, 董志强, 等. 板栗种皮多酚的提取及其体外抗氧化活性评价[J]. 食品研究与开发, 2018(3):93-96.4. Guo, J., Yang, B., Tu, Y., Asare, P. F., & Zeng, Y. (2016). Identification and quantification of phenolic compounds and their antioxidant properties in nuts and seeds. Industrial Crops and Products, 83, 98-105.5. Zhang, X., Wang, L., Dong, Y., Chen, T., Xiang, Y., & Ning, Z. (2017). Effects of polyphenolic compounds on ovarian cancer cells: Asystematic review of in vitro studies. International Journal of Biological Sciences, 13(7), 881-891.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Phenolic profiles and antioxidant and anticarcinogenic activities of Greek herbal infusions;balancing delight andchemoprevention?Andriana C.Kaliora a ,Dimitra A.A.Kogiannou a ,Panagiotis Kefalas b ,Issidora S.Papassideri c ,Nick Kalogeropoulos a ,⇑aDepartment of Science of Dietetics-Nutrition,Harokopio University,Athens,Greeceb Department of Food Quality and Chemistry of Natural Products,Mediterranean Agronomic Institute of Chania/Centre International de Hautes Etudes Agronomiques Méditerranéennes,Chania,Crete,Greece cDepartment of Cell Biology and Biophysics,Faculty of Biology,University of Athens,Athens,Greecea r t i c l e i n f o Article history:Received 22March 2013Received in revised form 21May 2013Accepted 11July 2013Available online 19July 2013Keywords:Herbal infusions LC-DAD-MS GC-MSPolyphenols Terpenic acids Colon cancer Prostate cancer Cell growth arrest Inflammation IL-8p65Subunita b s t r a c tTotal phenolic content,antioxidant activity and phenolic profiles of six herbal infusions –namely rose-mary,Cretan dittany,St.John’s Wort,sage,marjoram and thyme were assayed.Additionally,the infusion anticarcinogenic effect as to their ability to (a)scavenge free radicals,(b)inhibit cell growth,(c)decrease IL-8levels and (d)regulate p65subunit in epithelial colon cancer (HT29)and prostate (PC3)cancer cells was investigated.LC-DAD-MS and GC–MS analyses showed major qualitative and quantitative differ-ences in phenolic profiles of the infusions.All herbal infusions exhibited antiradical activity which corre-lated strongly with their total phenolic content.Infusions exhibited the potential to inhibit cell growth and to reduce IL-8levels in HT29colon and PC3prostate cancer cells.The regulation reported in p65sub-unit in HT29treated with St John’s Wort and in PC3treated with thyme might point to the NF-j B as the molecular target underlying the effect of these infusions.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionThe use of aromatic plants and herbs in medicines is since hu-mans inhabited earth.It was ‘‘since ever’’when humans were try-ing to find out which plants might be beneficial to human health,or even fight several pains and aches,or wounds.Herbs are the old-est drugs in the world.The NCI (National Cancer Institute)has examined more than 30,000plants with anticancer activity (Ipek et al.,2005).However,the use of plants as a means for treatment is still very limited.The main aromatic plants belong to the fami-lies Labiatae (or Lamiaceae ),Umbelliferae ,Lauracae ,Myrtacae and Compositae .The flora of Mediterranean countries presents highbiodiversity,being extremely rich in native aromatic plants,many of which are nowadays cultivated systematically.Carcinogenesis is generally recognised as a complex and multistep process in which inflammation plays a crucial role,and distinct molecular and cellu-lar alterations occur (Franco,Schoneveld,Georgakilas,&Panayiot-idis,2008;Kryston,Georgiev,Pissis,&Georgakilas,2011).The contribution of diet in all cancer-related death estimates is 30–35%in the environmental factors,being higher than tobacco,which is 25–30%.Colorectal cancer is strongly associated with diet,and is linked to 70%of cancer related-deaths,while prostate cancer has been associated with diet too (Georgakilas,2012).In the term of chemoprevention,many phenolic compounds,abundant in the Mediterranean diet,have been proven effective (Ramos,2008)act-ing on intracellular signaling network molecules involved (a)in the initiation,as ‘‘blocking agents’’,meaning they scavenge ROS or potentiate the antioxidant enzyme system or (b)in promotion and progression,as ‘‘suppressing agents’’,deregulating prolifera-tion,inducing cell-cycle arrest or apoptosis,as well as inhibiting inflammation,invasion or angiogenesis.Notably,phenolic com-pounds have been found to penetrate tissues such as prostate0308-8146/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.foodchem.2013.07.056Abbreviations:DPPH,2-diphenyl-1-picryhydrazyl;MTT,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;IL-8,interleukin-8;NF-j B,nuclear factor-kappa B;DMEM,Dulbecco’s modified Eagle’s medium.⇑Corresponding author.Tel.:+302109549251;fax:+302109577050.E-mail addresses:akaliora@hua.gr (A.C.Kaliora),dimkog@hua.gr (D.A.A.Kogiannou),panos@maich.gr (P.Kefalas),ipapasid@biol.uoa.gr (I.S.Papassideri),nickal@hua.gr (N.Kalogeropoulos).(Henning et al.,2006)or colorectal tissues(Garcea et al.,2005). Rosemary and thyme(Ngo,Williams,&Head,2011;Sasaki et al., 2005)as well as individual constituents such as thymol and carva-crol(Sasaki et al.,2005)or carnosol(Arunasree,2010)have been proven to inhibit carcinogenesis.Except for the bioavailability con-cern when conducting in vitro experiments,an obvious additional weakness of the current state of research is that most of it has been conducted using extracts obtained from the dried aerial parts of plants by solvent extraction.Hence,aiming to a more realistic ap-proach from the consumers’point of view,this survey was de-signed to determine composition in six Greek aqueous herbal infusions by LC-DAD-MS and GC–MS.Further,we examined the infusion bioactivity in cell growth and in inflammation of HT29 and PC3cancer cell lines.2.Materials and methods2.1.Plant materialsWe studied six species of Greek herbs;Rosemary(Rosmarinus officinalis,Lamiaceae),Cretan Dittany(Origanum dictamnus,Lami-aceae),Thyme(Thymus vulgaris,Lamiaceae),Marjoram(Origanum majorana,Lamiaceae),Sage(Salvia officinalis,Lamiaceae)and St John’s Wort(Hypericum perforatum,Clusiaceae).Dried herbs were kindly donated from a specialized store in Nyvritos,island of Crete, except St John’s Wort,which was purchased from the women’s cooperative of Ano Poroia,in Central Macedonia,Northern Greece. All samples were provided wrapped in paper-cellophan bags and were stored in a cool place in dark.Only the leaves andflowers of the herbs were used for the preparation of herbal infusions. 2.2.Chemicals,standards and cell linesFolin–Ciocalteu reagent,DPPH(2,2-diphenyl-1-picryhydrazyl) stable radical,Trolox(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid),phosphate buffer saline(PBS)tablets and3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) were obtained from Sigma–Aldrich;cinnamic acid,phloretic acid and oleanolic acid,were obtained from Aldrich;bis-(trimethyl-silyl)-trifluoroacetamide(BSTFA),p-(dimethylamino)-cinnamalde-hyde(DMACA),rutin,catechin,gallic acid,p-hydroxy-benzoic acid,p-hydroxy-phenylacetic acid,p-coumaric acid,o-coumaric acid,syringic acid,ferulic acid,chlorogenic acid,quercetin and ursolic acid were obtained from Sigma;protocatechuic acid,sina-pic acid,3,4-dihydroxyphenylacetic acid and caffeic acid were pur-chased from Fluka;vanillic acid from Serva;chrysin and genistein from Alfa-Aesar;epicatechin from Biochemika;rosmarinic acid, naringenin and kaempferol from Extrasynthése;thymol from Rie-del-de Haen.All the solvents used were of analytical grade and were obtained from Aldrich(Germany).Human HT29epithelial co-lon cancer and PC3prostate(hormone independent)cancer cell lines were obtained by American Tissue Culture Collection.Dul-becco’s Modified Eagle’s Medium(DMEM)was purchased from Biosera(UK).foetal bovine serum(FBS),penicillin/streptomycin and trypsin/EDTA were supplied by PAA Company(UK).Recombi-nant tumor necrosis factor-a(TNF-a)and quantikine sandwich ELISA kit for the measurement of interleukin-8(IL-8)levels were from R&D Systems(UK).PathScan sandwich ELISA kit for the measurement of p65particle was from Cell Signaling Systems (USA).2.3.Preparation of the herbal infusionsPreparation of herbal infusions and dehydration process were alike in all herbs.First,3g of individual herb were infused into 250ml of boiling water(equivalent to a teacup)on a preheated hot plate for a total of3min.Infusions were left to room temper-ature to cool for5min and werefiltered throughfilter paper.Next, infusions were dehydrated by lyophilization(Heto Lyolab3000, Heto-Holten,Allerod,Denmark)and the residues were weighed and stored atÀ40°C for further experiments.2.4.Phenolic profile determination by LC-DAD-MSChromatographic separation and identification of phenolic compounds in the extracts was performed on an LC-DAD-MS (ESI+)setup consisting of a Finnigan MAT Spectra System P4000 pump,coupled with a UV6000LP diode array detector and a Finn-igan AQA mass spectrometer.The separation was performed on a 125Â2mm,4l m,Superspher100–4(RP-18)column(Mache-rey–Nagel)kept at40°C,at aflow rate of0.30ml/min.For the gra-dient elution,the following program was used:(A)H2O(containing 2.5%AcOH);(B)MeOH;isocratic at100%A for2min,then0%A in 50min,followed by10min isocratic wash at0%A.The data were processed with the Xcalibur1.2software.The analysis was moni-tored at278and340nm and by ESI in the positive mode at a probe temperature of400°C,probe voltage of4.0kV and at20and70eV in the mass analyzer.For individual herbal infusions,three differ-ent preparations were run in duplicate.2.5.Simple polyphenol and terpenic acid extraction and determination by GC/MSSimple polyphenols and triterpenic acids were determined in freeze-dried infusions by GC–MS,after derivatization to trimethyl-silyl ethers with250l l BSTFA at70°C for20min(Soleas,Diaman-dis,Karumanchiri,&Goldberg,1997).A selective ion monitoring (SIM)GC/MS method was applied for the detection of27polyphe-nols,two terpenoid phenols and two terpenic acids,based on the ±0.05RT presence of target and qualifier ions of commercial stan-dards at the predetermined ratios(Kalogeropoulos,Konteles,Tro-ullidou,Mourtzinos,&Karathanos,2009).Quantification was carried out by employing3-(4-hydroxyphenyl)-1-propanol as internal standard and constructing reference curves for every pol-yphenol and terpenic acid by means of standard solutions.The tar-get and qualifier ions employed are given in Supplementary material A.For individual herbal infusions,3different preparations were run in duplicate.2.6.Determination of total polyphenols in herbal infusionsTotal polyphenol content was assayed in aqueous solutions of the freeze-dried infusions by the Folin–Ciocalteu reaction,using gallic acid as the reference standard.In brief,10l l of sample (4mg/ml for all samples,except for dittany of which working solu-tion was2mg/ml)was transferred into a1.5ml Eppendorf tube containing790l l deionized water and then50l l Folin–Ciocalteu reagent was added and mixed well.After one minute,150l l of sat-urated Na2CO3solution was added,mixed well and kept in dark for 120min,at room temperature.Finally,the absorption of the reac-tion product was measured at725nm using an Analytik Jena-SPE-CORD200spectrophotometer,and the results were expressed as mg GAE(gallic acid equivalents)per cup(Arnous,Makris,&Kef-alas,2002).Three individual preparations of each infusion were subjected to Folin–Ciocalteu reaction.2.7.Determination of totalflavanols in herbal infusionsTotalflavanols content was estimated by using the p-dimeth-ylaminocinnamaldehyde(DMACA)assay,as described by Arnous et al.(2002).Briefly,0.2ml of sample(4mg/ml for all samples,234 A.C.Kaliora et al./Food Chemistry142(2014)233–241except for dittany of which working solution was2mg/ml)was introduced in a 1.5ml Eppendorf tube,and added500l l HCl 0.24M and500l l DMACA solution0.2%w/v.The mixture was vor-texed and allowed to react for10min at room temperature.The absorbance at640nm was then read against a blank prepared sim-ilarly without DMACA.The concentration of totalflavanols was estimated from a calibration curve,constructed by rutin instead of catechin,and the results were expressed as mg rutin equivalents per cup.Three individual preparations of each infusion were sub-jected to DMACA assay.2.8.Antiradical activityThe antioxidant activity was evaluated in terms of radical scav-enging activity applying the DPPH free radical assay.Individual aqueous samples(2mg/ml,25l l)were mixed with975l l of 0.1mM DPPHÅin a1.5ml Eppendorf tube.Absorbance of the reac-tion mixture was measured in t=0and t=30min(kept in dark)at 515nm using an Analytik Jena-SPECORD200spectrophotometer.A calibration curve of Trolox(analogue of vitamin E)was prepared, and the results were expressed as mg Trolox equivalents/cup (Arnous et al.,2002).Three individual preparations of each infusion were subjected to DPPH radical scavenging assay.1.9.Estimation of reducing powerThe reducing power of dried infusions was determined by the ferric reducing antioxidant potential(FRAP)assay as described by Arnous et al.(2002).Briefly,50l l of each sample(2mg/ml aque-ous solutions of dry infusion diluted2–4times)was mixed with 50l l FeCl3solution(3mM in5mM HCl)in Eppendorf tubes,vor-texed,incubated at37°C for30min,and then900l l TPTZ solution (1mM in0.05M HCl)was added.The absorbance of the product of the reaction between Fe2+and TPTZ was measured at620nm against a blank for each sample,containing distilled water instead of FeCl3.Ascorbic acid was used as the calibration standard and the results were expressed as mg ascorbic acid equivalents(mg AAE)/ cup.Three individual preparations of each infusion were subjected to FRAP assay.2.10.HT29and PC3culture conditionsMonolayers of cells were grown in T75flasks and maintained in DMEM supplemented with10%(v/v)foetal bovine serum(FBS),1% antibiotic solution and incubated at37°C in a humidified atmosphere of5%CO2in air.The cells were dispersed with tryp-sin–EDTA(0.05%trypsin and0.02%EDTA)and plated in eitherflat bottom96-well plates for cell proliferation assay or inflat bottom 12-well plates for TNF-a stimulation.2.11.Cell growth arrestCells were counted in exponential growth phase applying the MTT assay.Briefly,in aflat bottom96well plate7Â103HT29 cells/well or5Â103PC3cells/well were placed to afinal volume of0.2ml and were incubated for24h until adherence.Next,the medium was changed and dried residues of individual lyophilized infusions were diluted in DMEM,filter sterilized and added in cul-ture in different concentrationsfinal in the well(1l g/l L,0.6l g/l L and0.2l g powder/l L of medium).Cells were measured using MTT after24,48and72h in culture.For this purpose,20l l MTT(5mg/ ml dissolved in PBS)was added to cell culture and subsequently cells were incubated for4h at37°C.At the end of incubation, MTT was discarded and replaced by DMSO.Optical density was measured on a PowerWave XS2,Microplate Spectrophotometer, BioTek,at550nm.As a background value,a well containing only culture medium plus MTT plus DMSO was used.Each experiment was carried out in triplicate.The blanks gave values close to0.1 (±0.02).The number of cells used in the assay was within the linear portion of the plot and yielded an absorbance of0.35–0.80Abs.The MTT assay for cell growth arrest was conducted in at leastfive indi-vidual cultures treated with each one of the infusions in the above mentioned concentrations.2.12.TNF-a stimulationCells were placed to polystyrene12-well plates(105HT29or PC3cells/well)with culture medium.Cells were incubated for 24h to allow adhering and subsequently,after medium refresh-ment,filter sterilized solutions of individual lyophilized infusions were added in culture in DMEM.Next,the proliferating cells were treated with individual herbal infusions(concentrationfinal in the well0.2l g powder/l L of medium)for12h.After treatment,super-natants were discarded and cultured cells were stimulated with TNF-a(50ng/ml).The supernatants were collected for measure-ment of IL-8and monolayers were collected for measurement of p65subunit.Cultures for TNF-a stimulation and inhibition by infu-sions were run in three replicates.2.13.Quantification of IL-8proteinLevels of IL-8protein were assessed in three independent cell cultures(see Section2.12)by quantitative,sandwich ELISA accord-ing to the manufacturer’s instructions.Sensitivity of IL-8ELISA was less than3.5pg/ml.2.14.Total NF-j B p65To measure p65subunit,we applied a sandwich ELISA Kit according to the manufacturer’s instructions in cell lysates in three independent cell cultures(see Section2.11).2.15.Statistical analysisAll statistical analyses were performed with SPSS Statistics19.0. For all measures,descriptive statistics were calculated.Data are ex-pressed as means±SD.One-way ANOVA using Tukey test was ap-plied after checking for normal distribution.Differences between the means were considered statistically significant at P<0.05.3.Results and discussionIn this study,an effort to determine the phenolic profile and the chemopreventive properties of herbal infusions in HT29and PC3 cell cultures was carried out.In an attempt to interpret results to real dietary habits in the Mediterranean,the infusion preparation method was done according to tradition in Greece(Liolios,Gortzi, Lalas,Tsaknis,&Chinou,2009).The quantities of dried residues yielded after lyophilisation of herbal infusions prepared with a standard method in all herbs are given in Table1.Rosemary yielded the lower quantity,followed by sage,while St John’s Wort yielded the highest quantity.The total phenolic content of the her-bal infusions presented herein showed quantitative variation(Ta-ble1).The phenol concentration was lower in infusions prepared from rosemary,followed by this prepared from sage,thyme,Cretan dittany and marjoram,while the highest was reported for St John’s Wort.Research on the phenolic content of medicinal plants is im-mense and most of it focused to plants of Lamiaceae family due to the large body of biological effects they demonstrate(Fecka&Tur-ek,2008).To compare our results with the total phenolic contents reported currently in literature is rather vain,as in most studiesA.C.Kaliora et al./Food Chemistry142(2014)233–241235organic solvents have been applied to extract polyphenols from dried parts of the plants(Yoo,Lee,Lee,Moon,&Lee,2008).In the study of Atoui,Mansouri,Boskou,and Kefalas(2005),the pro-tocol applied for preparation of herbal infusions was identical to ours;however the reported phenolic content for Cretan dittany infusion was slightly higher(109+3.2vs83.0±1.3mg GAE/cup), probably because Folin–Ciocalteu assay was applied in ethyl ace-tate extracts of the infusions(Atoui et al.2005)while in the pres-ent study no extraction of the freeze–dried infusion was undertaken.Regarding the antioxidant activity of the herbal infu-sions studied,St John’s Wort exhibited the highest antioxidant activity and again rosemary the lower while the activities exhib-ited by marjoram and Cretan dittany were alike(Table1).The cor-relation between the total phenolic content or total phenolic acids orflavonoids and the DPPHÅscavenging activity was found signif-icantly positive(p<0.01).Also,significantly positive correlations (p<0.01)were observed between antiradical activity and p-OH-benzoic acid,protocatechuic acid,gallic acid,chlorogenic acid,epi-Table1Dry matter yield by freeze–drying,total phenolics,totalflavanols,antiradical capacity and reducing power of the herbal infusions studied.Common name Dried infusion(mg/cup a)Total phenolics(mg GAE b/cup)Totalflavanols(mg rutin/cup)Radical scavenging(mg TE d/cup)Reducing power(mg AAE c/cup)Rosemary72.7±6.38.5±0.1 3.2±0.107.7±0.80.52±0.07 Cretan ditanny360.0±11.283.0±1.311.9±0.04141.7±5.617.8±0.72 Thyme441.9±20.458.7±2.418.6±0.1270.5±4.3 6.79±0.15 Marjoram496.2±18.598.4±0.435.5±0.24149.6±2.418.9±1.0 St.John’s Wort624.7±25.7152.8±1.763.2±0.45430.8±8.466.5±1.5 Sage182.7±16.334.5±0416.1±0.2252.8±0.6 4.72±0.41a1cup=200mL.b GAE stands for gallic acid equivalents.c TE stands for Trolox equivalents.d AAE stands for ascorbic acid equivalents.Table2Simple polyphenols and terpenic acids(l g/cup a)in the infusions of the aromatic plants studied.Compounds Rosemary Cretan dittany Thyme Marjoram St John’s Wort SageMean±SD Mean±SD Mean±SD Mean±SD Mean±SD Mean±SDPhenolic acidsi.Hydroxybenzoic acidsVannilic acid14.8 1.211.2 1.655.7 3.749.4 1.559.0 2.410.6 1.8 Protocatechuic acid 2.40.438.9 3.631.7 2.458.5 1.9274.016.522.0 2.9 Syringic acid 5.50.424.6 2.983.0 6.588.4 4.535.6 3.413.0 1.8 Gallic acid––15.0 2.5––25.1 2.8100.67.1––p-Hydroxy-phenylacetic acid––––––16.5 1.3––––3,4-Dihydroxy-phenylacetic acid––73.417.325.60.485.7 3.4––7.00.9ii.Hydroxycinnamic acidsCinnamic acid 2.00.2 5.80.58.9 1.410.5 2.611.80.6 3.00.3 Phloretic acid–––––––––– 2.70.4 o-Coumaric acid––10.10.833.9 3.933.8 2.8––10.2 1.9 p-Coumaric acid13.60.718.6 2.9––79.1 5.477.07.116.5 2.3 Ferulic acid9.6 1.1––37.2 3.780.3 2.547.8 3.617.1 1.7 Caffeic acid61.3 2.667.8 6.8310.412.5630.128.5183.921.1262.870.5 Sinapic acid 5.80.9––26.0 1.655.8 4.3––12.90.3 Chlorogenic acid––37.0 4.327.4 3.9––10.5 3.316.4 2.3 Rosmarinic acid669.278.57244322.57007.31039674.4253.8––8082.799.8FlavonoidsChrysin––28.90.8––68.6 2.263.18.513.0 1.9 Epicatechin 4.80.336.2 1.921.2 1.539.5 5.329275.41240.99.40.3 Naringenin––22.0 1.033.6 3.258.2 4.4––18.7 5.1 Catechin8.1 1.232.4 6.438.2 1.861.57.53448.2394.515.9 1.0 Genistein––31.4 1.829.8 1.6––––21.3 4.2 Kaempferol––––––44.7 6.0165.417.911.5 1.4 Quercetin––15.7 2.9––43.7 5.33134.4298.110.90.8Terpenoid phenolsThymol––––80655.63184.91011.674.1––1859.083.2 Carvacrol362.338.936416.92317.0182138.05651.72976.5125.62245.6202.73745.3290.4Terpenic acidsOleanolic acid17.7 1.3––––32.7 2.8––66.2 5.7 Ursolic acid12.20.7––––48.20.7––40.6 6.0SumsTotal simple polyphenols1159.4126.444129.92697.5270563.58987.715191.9545.739132.32227.714181.9475.2 Phenolic acids784.256.87546.4365.77647.1143.010887.6315.3800.265.18476.9186.9 Flavonoids12.9 1.5166.67.3122.8 5.7316.225.636086.51240.6100.712.5 Terpenoid phenols362.338.936416.92317.0262793.63997.93988.151.52245.6202.75604.3355.6 Terpenic acids29.9 1.5––––80.9 3.5––106.811.6a1cup=200mL.236 A.C.Kaliora et al./Food Chemistry142(2014)233–241Table3LC-DAD-MS characteristics of phenols identified in the herbal infusions studied.I:rosemary;II:Cretan dittany;III:thyme;IV:marjoram;V:St.John’s Wort;VI:sage.No.RT(min)k max(nm)Molecularion(M+H)+(m/z)Fragment ions(m/z)Proposed structure I II III IV V VI1 6.88244,320,290sh*–377(354+Na+),163Unknown derivative of chlorogenicacids s s s d s29.40310–361(M+Na+),147Quinate of p-coumaric acid s s s s d s 310.12264453Unknown s s s s s d 411.66246,320,328sh579317,163Teucrol succinoyl glucoside s s s s d s513.60240,278603373,291Unknown s s s s d s 616.76236,272,336595617(M+Na+),449,287Luteolin,4’-O-rutinoside s s s s s d 716.80272,338595617(M+Na+),337,325,295,273Nisenin-2(6,8-di-c-glucopyranoapigenin)1s d s s s s 816.91270,340595433,271Apigenin diglucoside s s s d s s 919.13250,286,320457457Unknown s s s d s s 1020.36240,292451473(M+Na+),305,1793-O-Rhamnoside of3,4,20,60tetrahydroxy,4-0methoxydihydrochalcones s s s d s1120.79240,348463287Luteolin30-O-glucuronide s s s s s d 1221.26256,354465487(M+Na+),303Coeluting compounds:quercetin3-O-galactoside(hyperoside),quercetin3-O-glucoside(isoquercitrin)s s s s d s1322.14–22.83240,244,288sh,328,330361383(M+Na+),743(MÂ2+Na+),163Rosmarinic acid d d d d s d1422.18248,288sh,330361743(MÂ2+Na+),383(M+Na+),163Isomer of rosmarinic acid s s s s s d1522.25266,328–307,409Unknown d s s s s s 1622.55254,354435457(M+Na+),303Pentoside of3or40-O-quercetin s s s s d s 1722.74–22.83242,290sh,330355163Chlorogenic acid s d d s s s 1823.76254,350449472(M+Na+),303Quercitrin s s s s d s 1924.02244,290sh,318539561(M+Na+),433,341,297Lithospermic acid2s d s s s s 2024.44254,270,334463485(M+Na+),301,286Homoplantagenin1s s s s s d 2124.45240,332–247,307Unknown d s s s s s 2224.59252,264,348609631(M+Na+),463,30130-O-Rutinoside of7-methylatedflavones s d s s s 2325.59268,34446330130-O-Glucoside of luteolin,7-O-methylatedd s s s s s2425.71246,290sh,334539561(M+Na+),433,341,297Isomer of lithospermic acid s d s s s s2526.76244,308,318539561(M+Na+),373,341Isomer of lithospermic acid s d s s s s 2628.29240,346577599(M+Na+),515,317,3016-Hydroxy,7-O-methyl,luteolin,30-O-glucosyl maleate1s s s s d s2728.41244,288,316539561(M+Na+),269(297-CO),181Isomer of lithospermic acid s d s s s s 2828.72268,334593615(M+Na+),491,28540-O-Rutinoside of7-O-methylatedapigenins s d s s s2929.07242,286,318–741(M+Na+),553,521Derivative of lithospermic acid and3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid,3s d s s s s 3030.17238,288303177Hesperetin s s s d s s3130.28240,340,322sh 715451,429,401,379C,O-diglucoside,tentatively:apigenin,6-C-glucosyl benzoate,40-O-glucoside4s s s s d s3230.67256,334–Unknown s d s s s s 3330.72240,340711427,399,185Luteolin6,8-di-C-glucoside succinate s s s s d s 3431.01268,334539467,327Unknown s s s s s d3532.58240,280,414345711(MÂ2+Na+),689(MÂ2+H+),399(M+CH3OH+Na+),377(M+CH3OH+H+),367(M+Na+),362(M+H2O)Pentahydroxy aurone,3-Omethylatedd s s s s s3632.73338315337(M+Na+),247Cirsimaritrin s s s s d s3733.12242,274,332,375771(MÂ2+Na+),457(M+CH3COOH+Na+),429(M+Na++CH3OH)(M+H2O)Hexahydroxyflavonetetra-O-methylatedd s s s s s3834.27274-323(M+Na+),181Glucose p-hydroxy benzoate s d d s s s 3935.17240,280,336345711(MÂ2+Na+),367(M+Na+)Methylatedflavone at OH-405s d s s s s 4036.90266,344285269(radical positive;methyl loss)7-O-Methylated apigenin d s s s s s(continued on next page)A.C.Kaliora et al./Food Chemistry142(2014)233–241237catechin,catechin,kaempherol and quercetin individually.Antiox-idant power of phytochemicals is significant,as reactive oxygen species constitute a major source of DNA damage leading to muta-tion and cancer and consequently antioxidant phytochemicals might restrain the carcinogenic process(Surh,2003).The total phenolic content has been found to positively correlate with anti-oxidant activity of herbs(Djeridane et al.,2006;Katalinic,Milos, Kulisic,&Jukic,2006).Herein,the association suggests that the antioxidant activity of herbal infusions can be attributed largely to their total phenolic content.The phenolic profile of the infusions is presented in Tables2and 3.GS-MS analysis of the infusions showed differences in phenolic acid profile;in detail,six hydroxybenzoic acids,nine hydroxycin-namic acids,sevenflavonoids,two terpenoid phenols and two ter-penic acids were determined(Table2).All the hydroxybenzoic acids were present in marjoram,while all hydroxycinnamic acids were present in sage.Similarly,allflavonoids,terpenoid phenols and terpenic acids were present in sage.According to GC–MS data, the main components of all infusions were carvacrol and rosmari-nic acid,which predominated among simple phenolic species in all infusions except St John’s Wort that lacks rosmarinic acid while it contains primarilyflavonoids–epicatechin,catechin and quercetin (Table2).The combination of diode array detection(DAD)and po-sitive electrospray ionisation mass spectrometry(ESI+),coupled to the HPLC using reverse phase silica provided an accurate method for the structure elucidation of individual phenolics.Under the conditions used,all the compounds analysed had an intense signal corresponding to the pseudo-molecular ion[M+H]+.To a lesser extent,water adducts[M+18]+and sodium adducts[M+23]+ were also demonstrated(Kiehne&Engelhardt,1996).The MS and UV characteristics of the identified phenolics in each extract are given in Table3,while the tentative structures of phenolic spe-cies are shown in Supplementary material B.Infusions did not show identical phenolic profile.Overall,approximately44phenolic species were detected,phenolic acids and their derivatives being present in all herbal infusions.Whilst the presence offlavonoids varied in our samples,sage infusion clearly contained mostlyflav-ones.Identification of the individual phenolic compounds was achieved by comparison of the UV–vis absorption spectra and MS data with the literature(Fang,Yu,&Prior,2002;Sakakibara,Hon-da,Nakagawa,Ashida,&Kanazawa,2003).In the study of Atoui et al.(2005)rosmarinic acid was not found in sage,though ex-pected,something attributed by the authors to the fact that ethyl acetate,known as a medium polarity solvent,was used for the recovery of phenolics.This is indicative of the effect of solvent extraction in LC-DAD-MS analysis.Herein,rosmarinic acid was predominant in marjoram comprising approximately89%of sim-ple phenolics,followed by rosemary and sage comprising approx-imately57%of simple phenolics.Infusions of thyme and dittany were with lower concentrations of rosmarinic acid,whereas terpe-noid phenols comprised97%and85%of their simple phenols, respectively(Table2).The effect of the herbal infusions in HT29and in PC3cell growth is presented in Fig.1.Different concentrations and differ-ent time intervals(24,48and72h)were tested.In the case of HT29(Fig.1A)the suppression in growth was remarkable for Cre-tan dittany reaching approximately95%.Similarly,rosemary infu-sion exhibited a remarkable suppression mainly in24h.Thyme exhibited a dose suppressive activity in higher concentrations. Overall,marjoram,sage and St John’s Wort were less potent.In the case of thyme the effect of0.2l g/l L at24h inhibited growth approximately70%and approximately35%after48h with the same treatment,indicative of the fact that cell growth is revers-ible.The same applies to sage and St John’s Wort at48h and mar-joram at72h in the same cell line.When treating PC3prostate cancer cells with equal concentrations of herbal infusions and for identical time intervals(Fig.1B),the sequence in antiprolifer-ative activity was modified as:thyme<St John’s Wort<rose-mary<sage<marjoram<Cretan dittany.Notably,marjoram was found remarkably effective even as early as24h,but Cretan dit-tany most effectively suppressed growth approximately80%after 24h and90%after48h.As in the case of HT29,in PC3treatment with rosemary and thyme cell growth appears reversible.With a holistic approach,in both HT29and PC3cell lines the most bioac-tive in cell growth arrest was the infusion obtained from Cretan dittany.Marjoram was found very efficient against PC3growth, but not against HT29cell growth,while contrary thyme was more effective against HT29rather than against PC3growth.The high-est concentration of rosmarinic acid was found in marjoram, while concentrations in dittany and thyme were alike and slightly lower to this in marjoram.Carvacrol was very high in both thyme and dittany.Both carvacrol and rosmarinic acid have been found with antiproliferative activity against human prostate cancer cell lines(Patel,Shah,&Bavadekar,2012;Yesil-Celiktas,Sevimli, Bedir,&Vardar-Sukan,2010)and against colon cancer cell lines(Encalada et al.2011;Savini,Arnone,Catani,&Avigliano, 2009).Apart from cell growth,inflammation is another critical event that supports cancer progression and IL-8is a proinflammatory cytokine found elevated in many types of cancer,with a critical role in angiogenesis,tumor progression and neutrophil chemotaxis (Vandercappellen,Van Damme,&Struyf,2008).Cancer develop-ment is linked to chronic inflammation,for example in obese peo-ple(Khandekar,Cohen,&Spiegelman,2011).Levels of IL-8are elevated in both prostate(Begley et al.2008)and colon cancer (Seaton et al.2008).In the present survey,the effect of the lowest concentration of herbal infusions(0.2l g/l L)in IL-8of stimulated HT29and PC3cells are presented in Fig.2.Treatment of HT29withTable3(continued)No.RT(min)k max(nm)Molecularion(M+H)+(m/z)Fragment ions(m/z)Proposed structure I II III IV V VI4137.50240,274,350,414465487(M+Na+),433Monomethyl anthranol s s d s s s4237.93242,316–415(383+CH3OH),383(M-H2O+CH3OH+Na+),329Rosmanol s s s s d s4342.00278,334301M+CH3OH+H+6-Methoxy-apigenin s s s s d s 4446.50330,544505Hypericin s s s s s d d points the detection of the compound in infusion;s points the absence of the compound in infusion.*Sh=shoulder.1Comparison with in-house data.2,3,4Tentative structures provided in Supplementary material B.55,6-Dihydroxy,7,8,40-trimethoxyflavone or5,6-dihydroxy,7,30,40trimethoxyflavone.238 A.C.Kaliora et al./Food Chemistry142(2014)233–241。