八年级数学上册1.3勾股定理的应用同步练习3(含解析)(新版)北师大版

合集下载

北师大版八年级(上)数学《勾股定理的应用》课堂练习(含答案)

北师大版八年级(上)数学《勾股定理的应用》课堂练习(含答案)

1.3 勾股定理的应用1.若正整数a,b,c是一组勾股数,则下列各组数一定仍然是勾股数的是()A.a+1,b+1,c+1 B.a2,b2,c2C.2a,2b,2c D.a-1,b-1,c-1你能否再多写几组勾股数,从这些勾股数中,你能发现什么规律?2.如图1,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A 有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3)3.有一个长宽高分别为2cm,1cm,3cm的长方体,如图2,有一只小蚂蚁想从点A爬到点C1处,请你帮它设计爬行的最短路线,并说明理由.4.在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?参考答案1.C若a,b,c为一组勾股数,那么ka,kb,kc(k≠0,k为常数)也是勾股数.2.解:如下图:将圆柱沿着过A点的高AC剪开,并将侧面展开.1·2πr=π·r≈18(cm)则AC=24cm,BC=2∴在Rt△ABC中,AB2=AC2+BC2=242+182,∴AB=30(cm)∴它最短的爬行路程约为30×2=60(厘米)3.(1)当蚂蚁在侧面A1ABB1和侧面B1BCC1上爬行时,爬行的最短路线的长设为d1,则d12=(2+1)2+32=18(2)当蚂蚁在侧面A1ABB1和上底面A1B1C1D1上爬行时,由A到C1的最短路线的长设为d2,则d22=22+(3+1)2=20(3)同理可求得蚂蚁在侧面A1ADD1和D1DCC1上爬行时,d32=32+(1+2)2=18,蚂蚁在底面ABCD,侧面D1DCC1上爬行时,d32=22+(1+3)2=20所以,蚂蚁可沿A—M—C1爬行,如下图:或蚂蚁沿A—N—C1爬行,如下图:4.解:设水深为x尺如图,Rt△ABC中,AB=h,AC=h+3,BC=6由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62∴h2+6h+9=h2+36,解得:h=4.5答:水深4.5尺.。

八年级数学上册1.3勾股定理的应用同步练习3(含解析)北师大版

八年级数学上册1.3勾股定理的应用同步练习3(含解析)北师大版

勾股定理的应用一、选择题1.已知直角三角形的周长为62 ,斜边为2,则该三角形的面积是( ).A 。

41B.43 C 。

21D.12.若等腰三角形两边长分别为4和6,则底边上的高等于( ). A.7 B 。

7或41C 。

24D.24或7二、填空题3.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.4.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.5.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.6.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.7.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______.三、解答题8.如图,在Rt△ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10及13的点.10.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.11.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.12.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE ⊥DF.求证:AE2+BF2=EF2.14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?115。

2019学年八年级数学上册第一章勾股定理1.3勾股定理的应用同步练习新版北师大版word版本

2019学年八年级数学上册第一章勾股定理1.3勾股定理的应用同步练习新版北师大版word版本

3 勾股定理的应用知能演练提升ZHINENG YANLIAN TISHENG能力提升1.(2017浙江绍兴中考)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7 m,顶端距离地面2.4 m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2 m,则小巷的宽度为()A.0.7 mB.1.5 mC.2.2 mD.2.4 m2.如图是一个棱长为3 cm的正方体,它的6个表面都分别被分成了3×3个小正方形,其边长为1 cm.现在有一只爬行速度为2 cm/s的蚂蚁,从下底面的点A沿着正方体的表面爬行到右侧表面上的点B,则蚂蚁爬行的最短时间是()A.2 sB.2.5 sC.3 sD.6 s3.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺(3尺=1米),则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是()A.15尺B.20尺C.25尺D.30尺4.如图,一个透明的圆柱状的玻璃杯,由内部测得其底部半径为3 cm,高为8 cm,今有一支长12 cm的吸管任意斜放于杯中.若不考虑吸管的粗细,则吸管露出杯口外的长度至少为.(第4题图)(第5题图)5.如图,一长方体的长为3 cm,宽为1 cm,高为6 cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要.6.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m.则旗杆的高度(滑轮上方的部分忽略不计)为.7.如图,某学校(点A)与公路(直线l)间的距离为300 m,又与公路边车站(点D)的距离为500 m,现要在公路边建一个商店(点C),使之与该校A及车站D的距离相等,求商店与车站之间的距离.8.如图,∠AOB=90°,OA=45 m,OB=15 m,一个机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?创新应用9.如图是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的A处,它想吃到盒内表面对侧中点B处的食物.已知盒高10 cm,底面圆周长为32 cm,A距下底面3 cm,试求出蚂蚁爬行的最短路程.答案:能力提升1.C在Rt△ACB中,∵∠ACB=90°,BC=0.7 m,AC=2.4 m,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2 m,BD2+A'D2=A'B2,∴BD2+22=6.25.∴BD2=2.25.∵BD>0,∴BD=1.5 m.∴CD=BC+BD=0.7+1.5=2.2(m).故选C.2.B如图,将点A,点B所在的两个面展开.在Rt△ABD中,AD=4 cm,BD=3 cm.由勾股定理,得AB2=BD2+AD2=32+42=25,AB=5 cm.结合题图知蚂蚁爬行的最短距离为5 cm.又知道蚂蚁的爬行速度为2 cm/s,所以它从点A沿着正方体的表面爬行到点B处,需要的最短时间为5÷2=2.5(s).3.C4.2 cm杯子的底面直径为6 cm.设吸管在杯子内的最大长度是x cm,则由勾股定理,得x2=62+82=102,∴x=10.∴吸管露出杯口外的长度至少为12-10=2(cm).5.10 cm把该长方体的四个侧面展开,连接AB,即为所用最短细线.由勾股定理,得AB2=(1+1+3+3)2+62=100,∴AB=10 cm.6.17 m如图所示,作BC⊥AE于点C,则BC=DE=8 m,设AE=x m,则AB=x m,AC=(x-2)m,在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.所以旗杆的高度为17 m.7.解如图,过点A作AB⊥CD于点B,则AB=300 m.在Rt△ABD中,BD2=AD2-AB2=5002-3002=4002,∴BD=400 m.设AC=CD=x m,则BC=(400-x) m.在Rt△ABC中,AB2+BC2=AC2,即3002+(400-x)2=x2,解得x=312.5.∴商店与车站之间的距离是312.5 m.8.解由题意知AC=BC,在Rt△BOC中,OC=OA-AC,根据勾股定理,得OC2+OB2=BC2,即(OA-AC)2+OB2=AC2,结合已知解得AC=25 m,∴BC=25 m.创新应用9.解如图,作出点A关于CD的对称点A',连接A'B,则A'B的长度等于蚂蚁爬行的最短路程.根据题意求出BF=CD=×32=16(cm),A'F=A'C+CF=10-3+=12(cm).在Rt△A'FB中,A'B2=A'F2+FB2=122+162=202,故A'B=20 cm,即蚂蚁爬行的最短路程为20 cm.。

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)勾股定理是数学中一个重要的定理,它的应用范围广泛。

在北师大版八年级上的教材中,我们学习了如何运用勾股定理解决实际问题。

本文将结合教材中的同步练习题,以及给出答案解析,来展示勾股定理的实际应用。

1. 问题一在一个直角三角形中,已知一条直角边长度为4cm,另外一条直角边长度为3cm。

求斜边的长度。

解析:根据勾股定理可得:斜边的平方等于直角边的平方和。

则斜边的长度可以通过计算√(3²+4²)来得出。

通过计算可知,斜边的长度为√(9+16)=√25=5cm。

所以,斜边的长度为5cm。

2. 问题二一辆汽车以40km/h的速度行驶8小时后停下来。

求汽车行驶的路程。

解析:已知速度和时间,我们可以利用勾股定理来计算汽车行驶的路程。

根据勾股定理,行驶的路程等于速度乘以时间。

所以,汽车行驶的路程为40km/h × 8h = 320km。

因此,汽车行驶的路程为320km。

3. 问题三一个直角三角形的斜边长度是5cm,一直角边和斜边之间的角度是30°。

求另外一个直角边的长度。

解析:已知斜边的长度和角度,我们可以利用勾股定理来计算另外一个直角边的长度。

根据勾股定理,另外一个直角边的长度等于斜边的长度乘以sin(30°)。

sin(30°) = 1/2,所以另外一个直角边的长度为5cm × 1/2 = 2.5cm。

因此,另外一个直角边的长度为2.5cm。

4. 问题四一块长方形农田的对角线长度为13m,较短的直角边的长度为5m。

求较长的直角边的长度。

解析:已知对角线的长度和一个直角边的长度,我们可以利用勾股定理来计算另外一个直角边的长度。

根据勾股定理,较长的直角边的长度等于√(对角线的长度的平方减去已知直角边的平方)。

则较长的直角边的长度可计算为√(13²-5²)。

2019-2020年八年级数学上册1.3勾股定理的应用练习题新版北师大版(最新整理)

2019-2020年八年级数学上册1.3勾股定理的应用练习题新版北师大版(最新整理)

所以△BCD 的周长为 m+2.
A
E
B
2、解:展开图如图所示,AB= 52 + 122= 13cm
3、解:根据圆锥的主视图是等边三角形可知,展开图是半径是 4 的半圆.点 B 是半圆的 一个端点,而点 P 是平分半圆的半径的中点,根据勾股定理就可求出两点 B 和 P 在展开图中 的距离,就是这只蚂蚁爬行的最短距离.
2019-2020 年八年级数学上册 1.3 勾股定理的应用练习题新版北师大

一. 选择题(每小题 6 分,30 分)
1、两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖 8cm,另一只朝左挖,每分钟挖 6cm,10
分钟后,两只小鼹鼠相距( )
A、50cm
B、100cm
C、140cm
D、80cm
2、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如图)拉到岸边, 花柄正好与水面成 60°夹角,测得 AB 长 60cm,则荷花处水深 OA 为( )
交 BC 于点 F,若 AB=9,BF=7,求 DE 长.
A
D
E
B
FC
参考答案 一. 选择题 1. B
【解析】首先根据题意知:它们挖的方向构成了直角.再根据路程=速度×时间,根据 勾股定理即可求解. 由图可知,AC=8×10=80cm,BC=6×10=60cm,由勾股定理得, AB===100cm. 故选 B.
(1)要使 D 恰为 AB 的中点,还应添加一个什么条件?(请写出一个你认为正确的添加条件) (2)将(1)中的添加条件作为题目的补充条件,试说明其能使 D 为 AB 中点的理由. 解:(1)添加条件:______;
本题也可以利用勾股定理解答:连接 AF,设 DE=x,则 EC=9-x 在 Rt⊿ADE 中,; 在 Rt⊿ECF 中,; 在 Rt⊿AEF 中,; ∴=+ 又∵在 Rt⊿ABF 中,;∴+

1 3勾股定理的应用 同步练习 北师大版八年级上册数学

1 3勾股定理的应用 同步练习 北师大版八年级上册数学

1.3勾股定理的应用一、选择题1.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为ℎ,则ℎ的取值范围是( )A.12cm≤ℎ≤19cm B.12cm≤ℎ≤13cmC.11cm≤ℎ≤12cm D.5cm≤ℎ≤12cm2.一架5m长的梯子斜靠在一竖直的墙上,这时梯足距墙脚3m,若梯子的顶端下滑1m,则梯足将滑动( )A.0m B.1m C.2m D.3m3.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远.求折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为( )A.x2−3=(10−x)2B.x2−32=(10−x)2C.x2+3=(10−x)2D.x2+32=(10−x)24.如图,在我海军某次海上编队演习中,两艘航母护卫舰从同一港口O同时出发,1号舰沿南偏东30∘方向以12节(1节=1海里/小时)的速度航行,2号舰以16节的速度航行,离开港口1.5小时后它们分别到达A,B两点且相距30海里,则2号舰的航行方向是( )A.北偏西30∘B.南偏西30∘C.南偏东60∘D.南偏西60∘5.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是( )A.8m B.10m C.16m D.18m6.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米7.如图,有两棵树分别用线段AB和CD表示,树高AB=15米,CD=7米,两树间的距离BD=6米,一只鸟从棵树的树梢(点A)飞到另一棵树的树梢(点C),则这只鸟飞行的最短距离AC=( )A.6米B.8米C.10米D.12米8.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为如图,有一架秋千,当它静止时,踏板离地的距离AB为1尺.将它往前水平推送10尺时(即AʹC=10尺),秋千的踏板就和身高5尺的人一样高,即AʹD=5尺.若运动过程中秋千的绳索始终拉得很直,则绳索OA长为( )A.13.5尺B.14尺C.14.5尺D.15尺二、填空题9.放学以后,欧阳轶和陈欣从学校分手,分别沿东南方向和西南方向回家,若欧阳轶和陈欣行走的速度都是40m/min,欧阳轶15min到家,陈欣20min到家,欧阳轶家和陈欣家的直线距离为m.10.如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,此时绳子末端距离地面2m,则绳子的长度为m.11.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,则船向岸边移动了米.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.13.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是.14.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是.三、解答题15.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90∘,AC+AB=10,BC=3,求AC的长.16.为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A60m的C处,过了4s后,小汽车到达离车速检测仪A100m的B处,已知该段城市街道的限速为60km/h,请问这辆小汽车是否超速.17.由于大风,山坡上的一棵树甲被从点A处拦腰折断,如图所示,其树恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的株距(两棵树的水平距离)为12米,请你运用所学的知识求这棵树原来的高度.18.如图,笔直的公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产产品收购站E,使得C,D两村到收购站E的距离相等,则收购站E应建在离A点多远处?。

北师大版初中数学八年级上册《1.3 勾股定理的应用》同步练习卷(含答案解析

北师大版初中数学八年级上册《1.3 勾股定理的应用》同步练习卷(含答案解析

北师大新版八年级上学期《1.3 勾股定理的应用》同步练习卷一.选择题(共35小题)1.如图,一个长方体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知AB=6,BC=5,CG=3,这只蚂蚁爬行的最短路程是()A.14B.10C.D.2.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm3.如图,圆柱形容器的底面周长是30cm,高为17cm,在外侧地面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口内侧距开口出3cm的点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()A.B.25cm C.D.30cm4.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()cm.A.25B.20C.24D.105.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A.13米B.12米C.5米D.米6.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13 m B.12 m C.4 m D.10 m7.如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=1.5米.竹竿高出水面的部分AD长0.5米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则水渠的深度BD为()米.A.2B.2.5C.2.25D.38.如图,一个长、宽、高分别为6、3、2的长方体,一只蚂蚁从下底面长边中点P处爬向顶点Q处,在所有爬行路线中,最短的一条长度是()A.B.3C.2D.9.一木杆在离地面5m处析断,木杆顶端落在木杆底端12m处,则木杆析断前高为()A.18m B.13m C.17m D.12m10.一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为hcm,则h的取值范围是()A.5cm<h≤6cm B.6cm<h≤7cm C.5cm≤h≤6cm D.5cm≤h<6cm 11.如图,一轮船以15海里/小时的速度从港口A出发向东北方向航行,另一轮船以8海里/小时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.32海里D.34海里12.一艘轮船以16海里/时速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口90分钟后相距()A.30海里B.40海里C.25海里D.45海里13.如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移了(参考数据取1.4,取1.7,取1.8)()A.0.8m B.1.5m C.0.9m D.0.4m14.小明想做一个直角三角形的木架,以下四组木棒中,哪一组的三条能够刚好做成()A.9厘米,12厘米,15厘米B.7厘米,12厘米,13厘米C.12 厘米,15厘米,17厘米D.3 厘米,4厘米,7厘米15.如图,长方形的高为2cm,底面长为3cm,宽为1cm,蚂蚁沿长方体表面,从点A1到C2(点A1、C2见图中黑圆点)的最短距离是()A.B.C.D.16.一架长25dm的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7dm,如果梯子的顶端沿墙下滑4dm,那么梯足将滑()A.9 dm B.15 dm C.5 dm D.8 dm17.如图,中俄“海上联合﹣2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是()A.南偏东30°B.北偏东30°C.南偏东60°D.南偏西60°18.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面.然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m.则旗杆高度为()(滑轮上方的部分忽略不计)A.12m B.13m C.16m D.17m19.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2C.3D.420.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米21.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的外壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A处的最短距离是()A.厘米B.10厘米C.8厘米D.8厘米22.如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A.3B.6C.D.623.如图,是一个三级台阶,它的每一级的长,宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物,请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是()A.12B.13C.14D.1524.如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()厘米.A.8B.10C.12D.1325.如图,有一个圆锥,高为8cm,直径为12cm.在圆锥的底边B点处有一只蚂蚁,它想吃掉圆锥顶部A处的食物,则它需要爬行的最短路程是()A.8 cm B.9 cm C.10 cm D.11 cm26.如图,一架梯子斜靠在墙上,设梯子AB的中点为O,AB=6米,BC=2米,若梯子B端沿地面向右滑行1米,则点O到点C的距离()A.减小1米B.增大1米C.始终是2米D.始终是3米27.如图,某小区有一块直角三角形的绿地,量得两直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一直角边的直角三角形,则扩充方案共有()A.2种B.3种C.4种D.5种28.国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米29.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形30.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm31.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米32.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?()A.0.4B.0.6C.0.7D.0.833.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A.3.5B.4C.4.5D.534.某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为45°,下方是一个直径为70cm,高为100cm的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A.30cm B.35cm C.35cm D.65cm35.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为()A.90㎜B.100㎜C.120㎜D.150㎜二.填空题(共15小题)36.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为cm.37.如图,有一棱长为3dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为dm.38.边长分别为4cm,3cm两正方体如图放置,点P在E1F1上,且E1P=,一只蚂蚁如果要沿着长方体的表面从点A爬到点P,需要爬行的最短距离是cm.39.我国古代数学名著《数学九章》中有云:“今有木长二丈四尺,围之二尺,葛生其下缠木五周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为2尺,葛藤从圆木的底部开始向上生长,绕圆木五周,刚好顶部与圆木平齐,问葛藤最少长尺.”(注:1丈等于10尺)40.如图,圆柱形玻璃杯高为13cm,底面周长为40cm,在杯内壁离底1cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁到内壁B处的最短距离为.41.《九章算术》“勾股”章有一题:“今有户高多于广六尺,两隅相去适一丈,问户高、广各几何?”大意是说:已知矩形门的高比宽多6尺,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺),如果设门的宽为x尺,那么这个门的高为(x+6)尺,根据题意得方程:.42.如图,要在宽为10米的南浔樱花大道两边安装路灯,路灯的灯臂CD长米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的中轴线DO与灯臂CD 垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳.此时,路灯的灯柱BC高度应该设计为米.43.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为米.44.如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距海里.45.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根四尺,问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远.问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程.46.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其中央,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是.47.阅读下面材料:在数学课上,老师提出如下问题:如图,在一个圆锥形状的包装盒的底部A处有一只壁虎,在侧面B处有一只小昆虫,壁虎沿着什么路线爬行,才能以最短的路线接近小昆虫?请你设计一种最短的爬行路线.下面是班内三位同学提交的设计方案:根据以上信息,你认为同学的方案最正确,理由是.48.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.49.某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞米.50.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.北师大新版八年级上学期《1.3 勾股定理的应用》同步练习卷参考答案与试题解析一.选择题(共35小题)1.如图,一个长方体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知AB=6,BC=5,CG=3,这只蚂蚁爬行的最短路程是()A.14B.10C.D.【分析】将长方体盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【解答】解:如图(1),AG=;如图(2),AG=.故选:B.【点评】此题考查了平面展开﹣最短路径问题,解答时要进行分类讨论,利用勾股定理是解题的关键.2.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为8dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=82+[(2+3)×3]2=172,解得x=17.故选:B.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.3.如图,圆柱形容器的底面周长是30cm,高为17cm,在外侧地面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口内侧距开口出3cm的点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()A.B.25cm C.D.30cm【分析】把圆柱的侧面展开,根据勾股定理求出SF'的长即可.【解答】解:如图所示,SF'=(cm).故选:B.【点评】本题考查平面展开﹣最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.4.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()cm.A.25B.20C.24D.10【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB,如图1;把右侧面展开到正面上,连结AB,如图2;把向上的面展开到正面上,连结AB,如图3,然后利用勾股定理分别计算各情况下的AB,再进行大小比较.【解答】解:把左侧面展开到水平面上,连结AB,如图1,AB===5(cm)把右侧面展开到正面上,连结AB,如图2,AB==25(cm);把向上的面展开到正面上,连结AB,如图3,AB===5(cm).∵>>25所以一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离为25cm.故选:A.【点评】本题考查了平面展开﹣最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.5.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A.13米B.12米C.5米D.米【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E,∵AB=13,CD=8,又∵BE=CD,DE=BC,∴AE=AB﹣BE=AB﹣CD=13﹣8=5,∴在Rt△ADE中,DE=BC=12,∴AD2=AE2+DE2=122+52=144+25=169,∴AD=13(负值舍去),答:小鸟飞行的最短路程为13m.故选:A.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.6.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13 m B.12 m C.4 m D.10 m【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB的长,即旗杆的高.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m.在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12,∴AB=12.∴旗杆的高12m.故选:B.【点评】此题考查了学生利用勾股定理解决实际问题的能力,关键是利用勾股定理求得AB的长.7.如图,小明准备测量一段水渠的深度,他把一根竹竿AB竖直插到水底,此时竹竿AB离岸边点C处的距离CD=1.5米.竹竿高出水面的部分AD长0.5米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则水渠的深度BD为()米.A.2B.2.5C.2.25D.3【分析】设BD的长度为xm,则AB=BC=(x+0.5)m,根据勾股定理构建方程即可解决问题;【解答】解:设BD的长度为xm,则AB=BC=(x+0.5)m,在Rt△CDB中,1.52+x2=(x+0.5)2,解得x=2.故选:A.【点评】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.8.如图,一个长、宽、高分别为6、3、2的长方体,一只蚂蚁从下底面长边中点P处爬向顶点Q处,在所有爬行路线中,最短的一条长度是()A.B.3C.2D.【分析】画出长方体的侧面展开图,根据勾股定理求出AB的长即可.【解答】解:如图①,把我们所看到的前面和上面组成一个平面,则这个矩形的边长为6和5,∴PQ==,如图②,把我们所看到的前面和右面组成一个长方形,则这个矩形的边长为9和2,∴PQ==2,∵<2,∴在所有爬行路线中,最短的一条长度是,故选:A.【点评】本题考查的是平面展开﹣最短路径问题,根据题意画出长方体的侧面展开图,根据勾股定理求解是解答此题的关键.9.一木杆在离地面5m处析断,木杆顶端落在木杆底端12m处,则木杆析断前高为()A.18m B.13m C.17m D.12m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【解答】解:∵一木杆在离地面5米处折断,木杆顶端落在木杆底端12m处,∴折断的部分长为=13,∴折断前高度为5+13=18(米).故选:A.【点评】此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.10.一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为hcm,则h的取值范围是()A.5cm<h≤6cm B.6cm<h≤7cm C.5cm≤h≤6cm D.5cm≤h<6cm 【分析】根据杯子内牙刷的长度取值范围得出杯子外面长度的取值范围,即可得出答案.【解答】解:∵将一根长为18cm的牙刷,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中牙刷最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中牙刷最短是等于杯子的高时,x=12,最长时等于牙刷斜边长度是:x==13,∴h的取值范围是:(18﹣13)≤h≤(18﹣12),即5≤h≤6.故选:C.【点评】此题主要考查了勾股定理的应用,正确得出杯子内牙刷的取值范围是解决问题的关键.11.如图,一轮船以15海里/小时的速度从港口A出发向东北方向航行,另一轮船以8海里/小时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.32海里D.34海里【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了30,16.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了15×2=30海里,8×2=16海里,根据勾股定理得:(海里).故选:D.【点评】此题考查勾股定理的应用,熟练运用勾股定理进行计算是关键.12.一艘轮船以16海里/时速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口90分钟后相距()A.30海里B.40海里C.25海里D.45海里【分析】根据已知条件,构建直角三角形,利用勾股定理进行解答.【解答】解:如图,由已知得,OB=16×1.5=24海里,OA=12×1.5=18海里,在△OAB中∵∠AOB=90°,由勾股定理得OB2+OA2=AB2,即242+182=AB2,AB==30海里.故选:A.【点评】此题考查勾股定理的应用,解答此题要明确方位角东南,西南是指两坐标轴夹角的平分线.13.如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移了(参考数据取1.4,取1.7,取1.8)()A.0.8m B.1.5m C.0.9m D.0.4m【分析】先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD﹣OB即可得出结论.【解答】解:∵Rt△OAB中,AB=2.6m,AO=2.4m,∴OB===1m;同理,Rt△OCD中,∵CD=2.6m,OC=2.4﹣0.5=1.9m,∴OD===≈1.8m,∴BD=OD﹣OB=1.8﹣1=0.8(m).故选:A.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.14.小明想做一个直角三角形的木架,以下四组木棒中,哪一组的三条能够刚好做成()A.9厘米,12厘米,15厘米B.7厘米,12厘米,13厘米C.12 厘米,15厘米,17厘米D.3 厘米,4厘米,7厘米【分析】欲求证是否为直角三角形,根据给出三边的长,只要验证两小边的平方和是否等于最长边的平方即可,如果相等就是直角三角形,如果不等就不是直角三角形.【解答】解:A、92+122=152,能构成直角三角形,故此选项符合题意;B、72+122≠132,不能构成直角三角形,故此选项不符合题意;C、122+152≠172,不能构成直角三角形,故此选项不符合题意;D、32+42≠72,不能构成直角三角形,故此选项不符合题意.故选:A.【点评】本题主要考查勾股定理的逆定理的应用.关键是熟练掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15.如图,长方形的高为2cm,底面长为3cm,宽为1cm,蚂蚁沿长方体表面,从点A1到C2(点A1、C2见图中黑圆点)的最短距离是()A.B.C.D.【分析】根据两点之间线段最短,把立体图形展开为平面图形,利用勾股定理即可解决问题.【解答】解:∵长方体的高为2cm,底面长为3cm,宽为1cm,将长方体的两个侧面展开如图,连接A1、C2,根据两点之间线段最短,A1C2=cm.故选:D.【点评】此题主要考查了勾股定理的应用以及平面展开图最短路径问题,利用勾股定理得出A2C2的长是解题关键.16.一架长25dm的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7dm,如果梯子的顶端沿墙下滑4dm,那么梯足将滑()A.9 dm B.15 dm C.5 dm D.8 dm【分析】梯子和墙面、地面形成的直角三角形,如下图所示可将该直角三角形等价于△ABC和△EFC,前者为原来的形状,后者则是下滑后的形状.由题意可得出AB=CD=25分米,OB=7分米,AC=4分米,在Rt△AOB中,由勾股定理可得:AB2=AO2+BO2,将AB、OB的值代入该式求出AO的值,OC=AO﹣AC;在Rt△COD中,求出OD的值,BD=OD﹣OB=15﹣7=8分米,即求出了梯脚移动的距离.【解答】解:如下图所示:AB相当于梯子,△ABO是梯子和墙面、地面形成的直角三角形,△OCD是下滑后的形状,∠O=90°,即:AB=CD=25分米,OB=7分米,AC=4分米,BD是梯脚移动的距离.在Rt△AOB中,由勾股定理可得:AB2=AO2+BO2,AO==24分米.∴OC=AO﹣AC=24﹣4=20分米,在Rt△COD中,由勾股定理可得:CD2=OC2+OD2,OD=15分米,BD=OD﹣OB=15﹣7=8分米,故选:D.【点评】此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.17.如图,中俄“海上联合﹣2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是()A.南偏东30°B.北偏东30°C.南偏东60°D.南偏西60°【分析】直接利用已知得出AO,BO,AB的长,再利用勾股定理的逆定理得出∠BOA的度数,进而得出答案.【解答】解:由题意可得:BO=16×1.5=24(海里),AO=12×1.5=18(海里),AB=30海里,则此时:AO2+BO2=AB2,故△AOB是直角三角形,则∠BOA=90°,∵∠AOD=30°,∴∠DOB=60°,∴2号舰的航行方向是:南偏东60°.故选:C.【点评】此题主要考查了勾股定理的应用以及方向角,正确得出△AOB是直角三角形是解题关键.18.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面.然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m.则旗杆高度为()(滑轮上方的部分忽略不计)A.12m B.13m C.16m D.17m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.。

1.3 勾股定理的应用 北师大版数学八年级上册课时同步练习(含解析)

1.3 勾股定理的应用 北师大版数学八年级上册课时同步练习(含解析)

1.3 勾股定理的应用课时同步练习北师大版八年级数学上册一、选择题1.近年来,作为规模较小的城市绿色敞开空间,口袋公园改善了城市生态环境,方便了市民健身休闲.如图,某口袋公园内有两条互相垂直的道路OA,OB,若OA长40m,OB长20m,当小明从A点沿公园内小路(图中箭头所示路线)走到B点时,小明所走的路程可能是( )A.35m B.42m C.44m D.52m2.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5 m的墙上,任何东西只要移至该灯5 m及5 m以内时,灯就会自动发光.请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4米B.3米C.5米D.7米3.用梯子登上20m高的建筑物,为了安全要使梯子的底面距离建筑物15m,至少需要( )m长的梯子.A.20B.25C.15D.54.在直角坐标系中,点P(﹣2,3)到原点的距离是( )A.5B.3C.2D.135.如图,为了求出湖两岸A、B两点之间的距离,观测者从测点A、B分别测得∠BAC=90°,又量得AC=9m,BC=15m,则A、B两点之间的距离为( )A.10m B.11m C.12m D.13m6.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的斜边长为5,较短直角边长为3,则图中小正方形(空白区域)的面积为( )A.1B.4C.6D.97.如图,校园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m.从A点到C点,同学们为了抄近路,常沿线段AC走.这样做会踩坏草坪,而实际上只少走了( )A.10m B.4m C.6m D.8m8.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是( )A.26尺B.24尺C.17尺D.15尺9.现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,如图(1)已知云梯最多只能伸长到15m,消防车高3m.救人时云梯伸长至最长,在完成从12m高处救人后,还要从15m高处救人,这时消防车要从原处再向着火的楼房靠近的距离AC为( )A.3米B.5米C.7米D.9米10.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距( )A.12海里B.13海里C.14海里D.15海里二、填空题11.一艘轮船以16km/ℎ的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/ℎ的速度向东南方向航行,它们离开港口1 小时后相距 .12.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是 .13.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为 .14.我国古代《九章算术》中的“折竹抵地问题”:一根竹子高一丈,折断后竹子顶端落在离竹子底端6尺处,折断处离地面的高度为 尺.(一丈=10尺)15.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距 海里.16.如图,在一只底面半径为3cm,高为8cm的圆柱体状水杯中放入一支13cm长的吸管,那么这支吸管露出杯口的长度是 .三、解答题17.八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面.你能将旗杆的高度求出来吗?18.如图,强大的台风使得一根旗杆BC在离地面3m的A点处折断倒下,旗杆顶部C点落在离旗杆底部B点4m处,旗杆BC折断之前有多高?19.如图,一根竹子AB原高1丈(1丈=10尺),在点C处折断,竹稍A触及地面D处时,点D离竹根B 有3尺,试问折断处离地面有多高?20.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?21.如图,一艘小船停留在点A处,在离水面高度为8米的台阶上有一根绳子连接小船,用绳子拉小船移动到点D处,已知开始时绳子的长AC=17米,停止后绳子的长CD=10米,求小船移动的距离AD的长.22.某中学初二年级游同学在学习了勾股定理后对《九章算术》勾股章产生了学习兴趣.今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何?”本题大意是:如图,木柱AB⊥BC,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度.23.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB是4米.求竹子折断处与根部的距离CB.24.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,若DA=10km,CB=15km,现要在AB上建一个周转站E,使得C,D两村到E站的距离相等,则周转站E 应建在距A点多远处?答案解析部分1.【答案】D【解析】【解答】解:∵两点之间线段最短,∴小明从A点沿公园内小路(图中箭头所示路线)走到B点时的最短距离即为AB的长,∵OA⊥OB,OA=40m,OB=20m,∴AB=OA2+OB2=205m,∵352<422<442<A B2=2500<522,∴小明所走的路程可能为52m,故答案为:D.【分析】根据勾股定理求出AB的长,再比较大小即可。

北师大版八年级数学上册--第一章1.3勾股定理的应用—同步练习(含答案)

北师大版八年级数学上册--第一章1.3勾股定理的应用—同步练习(含答案)
8、30 【思路分析】 设在杯中的吸管的长度为 xcm,由半径为 10cm 可知直径为 20cm.根据勾股定理得 x2=202+152=625=252,所以 x=25,即在杯内的吸管的长度为 25cm,故吸管的总长度为 30cm. 9、25 千米 【思路分析】 根据题意,画出图形如下, AC 即为所求 .由勾股定理得, AC2=AB2+BC2= 202+152=625=252,所以 AC= 25.
10、195 米 2 【思路分析】 设长方形的长为 xm,则根据勾股定理得 x2=362+152= 1521=392,所以 x=39. 所以这个鱼塘的面积为 39×5=195 米 2.
三、 11. 450 米 12.设 BD =x,则有:( 10+x)2+402=(50-x)2,解得 x=15 米 13、解:在直角三角形 ADE中,由勾股定理,得 DE2=AD2+AE2. 在直角三角形 BEC中,由勾股定理,得 EC2=BE2+BC2. 因为 DE=EC,因此 DE2=EC2,所以 AD2+AE2=BE2+BC2. 所以 152+AE2=( 25-AE)2+102,解得 AE=10(km)

A. 正东方向
B. 正南方向
C. 正西方向
D. 正北方向
7.如图,正方形小方格边长为 1,则网格中的△ ABC是 ( )
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 以上答案都不对
二、填空题 8. 一透明的圆柱状玻璃杯, 底面半径为 10cm,高为 15cm,一根吸管斜放于杯中, 吸管露出杯口外 5cm, 则吸管长为 ________cm. 9.轮船在大海中航行,它从 A 点出发,向正北方向航行 20 千米,遇到冰山后,又折向正东方向航行 15 千米,此时轮船与 A 点的距离为 ______. 10、如图,某农户有一块直角三角形地,两直角边长分别为 15 米和 36 米,靠近这块地 的斜边有一个长方形养鱼塘,已知鱼塘宽 5 米,则这个鱼塘的面积是 _____.

北师大版八年级数学上册《1.3 勾股定理的应用》同步练习题-带答案

北师大版八年级数学上册《1.3 勾股定理的应用》同步练习题-带答案

北师大版八年级数学上册《1.3 勾股定理的应用》同步练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一艘轮船以16nmile/h的速度从港口A出发向东北方向航行,另一艘轮船以12nmile/h的速度同时从港口A出发向东南方向航行,则离开港口2h后,两船相距()A.25nmile B.30nmile C.35nmile D.40nmile2.如图所示,ABCD是长方形地面,长20MN=m,一只AB=m,宽10AD=m.中间竖有一堵砖墙高2蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()的路程.A.27cm B.26cm C.25cm D.24cm3.如图是一个长方体包装盒,高为5cm,底面是正方形,边长为6cm,现需用绳子装饰,绳子从A出发,沿长方体表面绕到C处,则绳子的最短长度是()A.10B.11C.12D.134.如图是一个长为12cm,宽为5cm,高为8cm的长方体,一只蜘蛛从一条侧棱的中点A沿着长方体表面爬行到顶点B去捕捉蚂蚁,此时蜘蛛爬行的最短距离是()A.13 cm B.15 cm C.21 cm D.25cm5.如图所示,一圆柱高8cm,底面半径为2cm,要爬行的最短路程(π取3)是()A .20cmB .10cmC .14cmD .无法确定6.如图,一棵大树在一次强台风中在距地面5m 处折断,倒下后树顶着地点A 距树底B 的距离为12m ,则这棵大树在折断前的高度为( )A .10B .17C .18D .207.如图,一条小巷的左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离OB 为1.5米,梯子顶端到地面距离AB 为2米.若梯子底端位置保持不动,将梯子斜靠在右墙时,梯子顶端到地面距离CD 为2.4米,则小巷的宽度BD 为( )A .2.2米B .2.3米C .2.4米D .2.5米8.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去高六尺,折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),一阵风将竹子折断,竹梢恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.设竹子折断处离地面x 尺,根据题意,可列方程为( )A .222610x +=B .22210)6x x -+=(C .222(10)6x x +-=D .2226(10)x x +=-9.《九章算术》是我国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:今有竹高一丈,末折抵地,去根五尺,问折高者几何?意思是一根竹子,原高一丈(一丈10=尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部5尺远,则折断处离地面的高度是( )A .53B .6.25尺C .4.75尺D .3.75尺10.以下列三条线段的长度为边,其中能组成直角三角形的是( )A .7,2,9B .4,5,6C .3,4,5D .5,10,13二、填空题11.如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和3木棒露在盒外面的最短长度是 ㎝.12.《九章算术》中有一个“折竹抵地”问题:“今有竹高二十五尺,末折抵地,去本五尺,问折者高几何?”意思是:现有竹子高25尺,折后竹尖抵地与竹子底部的距离为5尺,问折处高几尺?即:如图,25AB AC +=尺,5BC =尺,则AC = 尺.13.如图,一个圆柱形水杯,底面直径为8cm ,高为9cm ,则一只小虫从下底点A 处爬到上底B 处,则小虫所爬的最短路径长是(π取3) cm .14.如图,在一个长方形草坪ABCD 上,放着一根长方体的木块.已知6AD =米,4AB =米,该木块的较长边与AD 平行,横截面是边长为2米的正方形,一只蚂蚁从点A 爬过木块到达C 处需要走的最短路程是 米.15.如图,有一圆柱,它的高等于2,底面直径等于()4π3=,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程为 .16.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是 .17.要将一根笔直的细玻璃棒放进一个内部长、宽、高分别是504030cm cm cm 、、的木箱中,这根细玻璃棒的长度至多为 cm .18.有两棵树,一棵高6米,另一棵高2米,两树相距3米,小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.19.学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为 米.20.已知7x y +=,且x ,y 2291x y ++的最小值是 .三、解答题21.如图,同学们想测量旗杆的高度(米),他们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.小明和小亮同学应用勾股定理分别提出解决这个问题的方案如下:小明:①测量出绳子垂直落地后还剩余1米,如图1;①把绳子拉直,绳子末端在地面上离旗杆底部的距离4AC =米,如图2.小亮:先在旗杆底端的绳子上打了一个结,然后举起绳结拉到如图3点D 处()BD BC =,作DF 垂直AC 于点,F DF EC =.(1)请你按小明的方案求出旗杆的高度BC ;(2)在(1)的条件下,已知小亮举起绳结离旗杆的距离 4.5DE =米,求此时绳结到地面的高度DF .22.如图,明明在距离河面高度为8m 的岸边C 处,用长为17m 的绳子拉点B 处的船靠岸,若明明收绳7m 后,船到达D 处,则船向岸A 移动了多少米?23.如图,一只蚂蚁从点A沿圆柱表面爬到点B,圆柱高为15cm,底面半径为8cm,蚂蚁爬行的最短路线长为多少?24.某中学计划翻修学校体育馆,有一条从楼顶垂下的绳子,绳子顶端A固定在楼顶部,绳子自然垂下至楼底还余2米,当绳子的下端从点C拉开6米至点B时,发现绳子下端刚好接触地面.求体育馆楼高AC的值.25.三月草长莺飞,万物复苏,在一个阳光明媚的周末,李明与同学相约公园放风筝,如图所示风筝线断了、风筝被挂在了树上A点处,他想知道此时风筝距地而的高度,于是他先拉住风筝线垂直到地面上B点、发现风筝线多出2米,然后把风筝线沿直线向后拉开6米,发现风筝线末端刚好接触地而C点(如图所示),请你帮李明求出风筝距离地面的高度AB.参考答案1.D2.B3.D4.B5.B6.C7.A8.D9.D10.C11.512.1213.1514.1015.1016.13m/13米17.50218.519.214206521.(1)旗杆的高度为7.5米DF 米(2) 1.522.向岸A移动了9米23.蚂蚁爬行的最短路线长为17cm.24.体育馆楼高AC的值为8米25.风筝距离地面的高度AB为8米。

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

2018-2019学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word解析版)学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.62.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店()A.880米B.1100米C.1540米D.1760米4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形5.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D 为底边BC的中点)的长是()A.6米 B.5米 C.3米 D.2.5米6.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2 C.3 D.49.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(共6小题)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长海里.12.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3cm到D,则橡皮筋被拉长了cm.14.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.三.解答题(共4小题)17.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD的长.18.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?19.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?20.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?2018-2019学年度北师大版数学八年级上册同步练习:1.3勾股定理的应用(word 解析版)参考答案与试题解析一.选择题(共10小题)1.【分析】证明△AEC ∽△BED ,可得 =,由此构建方程即可解决问题;【解答】解:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED .∴△AEC ∽△BED .∴=,又∵若AC=3,BD=6,CD=12,∴=,求得EC=4.故选:B .2.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.【解答】解:在Rt △ACB 中,AC 2=AB 2﹣BC 2=2.52﹣1.52=4,∴AC=2,∵BD=0.9,∴CD=2.4.在Rt △ECD 中,EC 2=ED 2﹣CD 2=2.52﹣2.42=0.49,∴EC=0.7,∴AE=AC ﹣EC=2﹣0.7=1.3.故选:B .【分析】利用勾股定理求出小明家到书店所用的时间,求出小明的速度,再求小明家距离书店的距离.【解答】解:∵小明家到书店所用的时间为=10分钟,又∵小明的速度为=110米/分钟,故小明家距离书店的距离为110×10=1100米.故选:B.4.【分析】根据勾股定理的逆定理即可判断.【解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.5.【分析】首先证明AD⊥BC,再利用勾股定理计算即可;【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADB中,AD===2.5,故选:D.6.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角盒内可放木棒最长的长度是=7cm.故选:B.7.【分析】首先根据题意画出图形,利用勾股定理计算出AC的长【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),则这只铅笔的长度大于15cm.故选:D.8.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP=,故选:C.9.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.10.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题(共6小题)11.【分析】首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=2海里.【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=2海里.故答案为2.12.【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.13.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.15.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.【解答】解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.三.解答题(共4小题)17.【分析】如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长.【解答】解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.18.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r 则圆柱型唇膏和纸盒的体积之比为:()(2)易拉罐总体积和纸箱容积的比:=;(3)∵=∴第二种包装的空间利用率大.19.【分析】首先求得线段AB的长,然后利用勾股定理求得线段AC的长,然后除以时间即可得到乙船的速度.【解答】解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.…(1分)∴AC2+AB2=BC2.∴AC2=BC2﹣AB2=302﹣242=324∴AC=18.…(4分)∴乙船的航速是:18÷2=9海里/时.…(6分)20.【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【解答】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。

1.3+勾股定理的应用+练习2024-2025学年北师大版八年级数学上册+

1.3+勾股定理的应用+练习2024-2025学年北师大版八年级数学上册+

1.3勾股定理的应用一、单选题1.如图,在一个高是3m,长是5 m的楼梯表面铺地毯,则地毯长度是()A.5 m B.7 m C.8 m D.9 m2.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对3.如图所示,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺4.如图,一棵大树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.6米B.8米C.10米D.12米5.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距()A.12海里B.13海里C.14海里D.15海里6.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm7.如图,一轮船以12海里/时的速度从港口A出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后两船相距()A.13海里B.16海里C.20海里D.26海里二、填空题1.如图,某学校(A点)到公路(直线l)的距离为300米,到公交车站(D点)的距离为500米,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,则商店C与车站D之间的距离是米.2.某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子底端A到左墙的距离AE为0.7m,梯子顶端D到地面的距离DE为2.4m,若梯子底端A保持不动,将梯子斜靠在右墙BC上,梯子顶端C到地面的距离CB为1.5m,则这两面直立墙壁之间的安全通道的宽BE为m.3.如今人们锻炼身体的意识日渐增强,但是发现少数人保护环境的意识仍显淡薄,应提醒注意.如图是房山某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=30米,BC=40米,他们踩坏了米的草坪,只为少走米的路.4.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是.5.如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是秒.三、解答题1.如图,将长为6米的梯子AC斜靠在墙上,BC长为2米,求梯子上端A到墙的底端B的距离AB.2.据统计:超速行驶是引发交通事故的主要原因,学完第一章后,李鹏、王军、张力三位同学尝试用自己所学的知识检测车速,他们决定在峨城大道金源山水城路段进行测试汽车速度的实验,并把观测点设在到公路l的距离为30米的点P处,选择了一辆匀速行驶的大众轿车作为观测对象,测得此车从A处行驶到B处所用的时间为3秒,并测得∠PAO=45°,同时发现将∠BPO沿过A点的直线折叠,点B能与点P重合,试判断此车是否超过了每小时60千米的限制速度?并说明理由.3.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米?4.如图,北泉路OM和长春路ON相交成30°角;沿公路OM方向离两条公路的交叉处O点160米的A处坐落着向阳桥中学,当拖拉机沿ON方向行驶时,路两旁100米内受到噪声影响,已知有一台拖拉机正沿ON方向行驶,速度为5米秒.(1)向阳桥中学是否受到噪声的影响,并说明理由;(2)若向阳桥中学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给向阳桥中学带来噪声影响的时间是多少?。

2021年八年级数学上册.3勾股定理的应用同步练习含解析新版北师大版

2021年八年级数学上册.3勾股定理的应用同步练习含解析新版北师大版

2019-2020年八年级数学上册1.3勾股定理的应用同步练习1含解析新版北师大版一、选择题1. (江苏淮阴中学月考)已知某直角三角形的两直角边的长分别为和,则这个直角三角形的周长()A. B.C. 26D.无法确定2.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m 处,则树折断之前高( ).A.5mB.7mC.8mD.10m3.如图,从台阶的下端点B到上端点A的直线距离为( ).A. B.C. D.二、填空题4.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.5.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.6.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)7.(重庆八中期中)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC 交 AC 于点 D,且AB= 4, BD = 5,则点D到BC的距离是 .8.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线 AC上(不与点A,C重合),且∠ABP=30°,则CP的长为 .三、解答题9.在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?10.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?11.古诗赞美荷花“竹色溪下绿,荷花镜里香”,平静的湖面上,一朵荷花亭亭玉立,露出水面10 cm,忽见它随风斜倚,花朵恰好浸入水面,仔细观察,发现荷花偏离原地40 cm(如图).请部:水深多少?参考答案1.B 解析由勾股定理得该直角三角形的斜边长为,所以这个直角三角形的周长为.2.C .3. A4.5.5.2.6.25.7.3解析在Rt △ABD 中,由勾股定理得2222543DA BD AB =-=-=.又点D 是∠ABC 的平分线上的点,它到BA,BC 边的距离相等,所以点D 到BC 的距离等于DA 的长度,为3.8.解析由于在Rt △ABC 中,没有明确∠B 和∠C 哪个为60°,因此要分别讨论,根据题意画出图形,当∠B =60°时,点P 也有两种情况;当∠C =60°时,点P 只有一种情况.故共有三种情况,分别解答.(1)如图(1)所示,∠ABP =30°,∵∠ABC =60°,∴∠ACB =30°.∵BC =6,∴AB =3,∴AC =.在Rt △BAP 中,设AP =x,则BP =2x,故x 2+32-(2x)2,解得,即,.(2)如图(2)所示,由图(1)知AB =3,又∠ABP-30°,,.(3)如图(3),∵∠ABC =∠ABP =30°,∠BAC =90°,∴∠C =∠P,∴BC =BP.∵∠C =60°,∴△CBP 是等边三角形,∴CP =BC =6.故答案为.9.15米.10.7米,420元.11.解:设水深CB为x cm,则AC为(x+10)cm,即CD=(x+10)cm.在Rt△BCD中,由勾股定理得x2+402=(x+10)2.解得x=75.答:水深为75cm24869 6125 愥]uQ23614 5C3E 尾N32906 808A 肊. M23976 5DA8 嶨33715 83B3 莳d36925 903D 逽W。

2022-2023学年北师大版八年级数学上册《1-3勾股定理的应用》同步练习题(附答案)

2022-2023学年北师大版八年级数学上册《1-3勾股定理的应用》同步练习题(附答案)

2022-2023学年北师大版八年级数学上册《1.3勾股定理的应用》同步练习题(附答案)一.选择题1.如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,如图①所示,人只要移至距该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”.如图②所示,一位学生走到D处,门铃恰好自动响起,已知该学生的身高CD =1.5m,则BD的长为()A.3米B.4米C.5米D.7米2.如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.3.如图长方体木箱的长、宽、高分别为12m,4m,3m,则能放进木箱中的直木棒最长为()A.12m B.13m C.15m D.24m4.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向右滑动()A.15m B.9m C.7m D.8m5.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm二.填空题6.如图,已知圆柱底面的周长为6dm,圆柱高为3dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为.7.云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的,如图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为m,其边缘AB =CD=24m,点E在CD上,CE=4m,一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为m.8.如图,淇淇在离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.(1)开始时,船距岸A的距离是m;(2)若淇淇收绳5m后,船到达D处,则船向岸A移动m.9.如图,在高为6米,坡面长度AB为10米的楼梯表面铺上地毯,则至少需要地毯米.10.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛沿圆柱外侧面爬行的最短路程是.11.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是寸.12.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.13.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若P A=AB=5米,点P 到AD的距离是3米,有一只蚂蚁要从点P爬到点B,它的最短行程是米.三.解答题14.如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.15.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,若一只壁虎从A点出发沿着台阶面爬到B点.(1)画出从点A到点B的台阶侧面展开图;(2)求壁虎爬行的最短路线的长.16.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?17.如图,隧道的截面由半径为5米的半圆构成.(1)如图1,一辆货车高4m,宽2.8m,它能通过该隧道吗?(2)如图2,如果该隧道内设双行道,一辆宽为4m,高为2.8m的货车能驶入这个隧道吗?(3)如图3,如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.6m的隔离带,则该辆宽为4m,高为2.8m的货车还能通过隧道吗?18.如图,圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,则壁虎捕捉蚊子的最短路程是多少?19.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则:(1)E站应建在距A站多少千米处?(2)DE和EC垂直吗?说明理由.20.如图,某港口O位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A、B处(图1),且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?请说明理由.(2)若“远航”号沿北偏东30°方向航行(图2),从港口O离开经过两个小时后位于点F处,此时船上有一名乘客需要紧急回到PE海岸线上,若他从F处出发,乘坐的快艇的速度是每小时90海里,他能在20分钟内回到海岸线吗?请说明理由.参考答案一.选择题1.解:由题意可知.BE=CD=1.5m,AE=AB﹣BE=4.5﹣1.5=3m,AC=5m,由勾股定理得BD=CE==4(m),故离门4米远的地方,门铃恰好自动响起.故选:B.2.解:将圆柱侧面沿AC“剪开”,侧面展开图为矩形,∵圆柱的底面直径为AB,∴点B是展开图的一边的中点,∵蚂蚁爬行的最近路线为线段,∴C选项符合题意,故选:C.3.解:∵侧面对角线BC2=32+42=52,∴CB=5m,∵AC=12m,∴AB==13(m),∴空木箱能放的最大长度为13m,故选:B.4.解;梯子顶端距离墙角地距离为=24(m),顶端下滑后梯子底端距离墙角的距离为=15(m),15﹣7=8(m).故选:D.5.解:三级台阶平面展开图为长方形,长为8dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=82+[(2+3)×3]2=172,解得x=17.故选:B.二.填空题6.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6dm,圆柱高为3dm,∴AB=3dm,BC=BC′=3dm,∴AC2=32+32=25,∴AC=3dm,∴这圈金属丝的周长最小为2AC=6dm.故答案为:6dm.7.解:将半圆面展开可得:AD=12m,DE=DC﹣CE=20m,在Rt△ADE中,AE===4(m),即滑行的最短路线长为4m,故答案为:4.8.解:(1)在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴(m),故答案为:12;(2)∵淇淇收绳5m后,船到达D处,∴CD=8(m),∴AD=(m),∴BD=AB﹣AD=(12﹣)m.故答案为:(12﹣).9.解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,由题意得:∠ACB=90°,AB=10米,AC=6米,由勾股定理得BC===8(米),则AC+BC=14(米),故答案为:14.10.解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=×24=12cm,EF=18﹣1﹣1=16cm,在Rt△FES中,由勾股定理得:SF===20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.故答案为:20cm.11.解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故答案为:101.12.解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.13.解:如图,过P作PG⊥BF于G,连接PB,∵AG=3,AP=AB=5,∴PG=4,∴BG=8,∴PB==4.故这只蚂蚁的最短行程应该是4.故答案为:4.三.解答题14.解:(1)过点A作AH⊥ON于H,∵∠O=30°,OA=80米,∴AH=OA=40米,∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,由(1)知AH=40米,∴CH===30(米),∴CN=2CH=60(米),∴t=60÷5=12(秒),∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.15.解:(1)将台阶展开,如图;(2)因为BC=30×3+10×3=120,AC=50,所以AB2=AC2+BC2=16900,所以AB=130(cm),所以壁虎爬行的最短线路为130cm.16.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.17.解:(1)如右图1所示,设CD⊥AB于点D,CD=4m,∵OC=5m,∴OD==3(m),∵3>2.8,∴这辆车能通过该隧道;(2)设CD⊥AB于点D,OD=4m,连接OC,如图2所示,∵OC=5m,∴CD===3(m),∵3>2.8,∴这辆车能通过该隧道;(3)设CD⊥AB于点D,OD=4.3m,连接OC,如图3所示,∵OC=5m,∴CD===(m),∵<=2.8,∴这辆车不能通过该隧道.18.解:如图,将容器侧面展开,连接AB,则AB即为最短距离.∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,∴AD=0.8m,DE=2.4m,过B作BC⊥AD于C,则∠BCD=90°,∵四边形ACEF是矩形,∴∠CDE=∠DEB=∠CAF=∠BF A=90°,∴四边形BCDE和四边形ACBF是矩形,∴CD=BE=0.1m,BC=DE=2.4m,∴AC=AD﹣CD=0.7m,在直角△ABC中,AB===2.5(m).答:壁虎捕捉蚊子的最短路程是2.5m.19.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km.∴BE=15km.(2)DE和EC垂直,理由如下:在△DAE与△EBC中,,∴△DAE≌△EBC(SAS),∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即DE⊥EC.20.解:(1)∵OA=16×1.5=24(海里),OB=12×1.5=18(海里),AB=30(海里),∴OA2+OB2=AB2,∴△AOB是直角三角形,∴∠AOB=90°,∵“远航”号沿东北方向航行,∴∠AON=45°,∴∠BON=90°﹣45°=45°,∴“海天”号沿西北方向航行;(2)过点F作FD⊥PE于D,OF=16×2=32(海里),∵∠NOF=30°,∴∠FOD=90°﹣30°=60°,∴FD=×32=16(海里),∵90×=30(海里),30>16,∴能在20分钟内回到海岸线.。

2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版

2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版

2023-2024学年八年级数学上册《第一章勾股定理的应用》同步练习题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题1.梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米2.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺5.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积41,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.25 B.41 C.62 D.816.如图,斜坡BC的长度为4米.为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4√3米,则原来斜坡的水平距离CD的长度是()米.A.2 B.4 C.2√3D.67.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=√2;再过点P,作P1P2⊥OP1且P1P2=1,得OP2=√3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=()A.√2023B.√2022C.√2021D.√2020二、填空题9.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距海里.10.如图是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条不该有的捷径路AB.某学习实践小组通过测量可知,AC的长约为6米,BC的长约为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌.则提示牌上的“多行数步”是指多行米.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.12.如图,一个长方体铁盒的长,宽,高分别是8 cm,6 cm,24 cm,-根长28 cm的木棒完全装进这个盒子里.(填“能”或“不能”)13.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC =10m,已知两棵树的水平距离为6m,则树甲原来高.三、解答题14.如图,小旭放风筝时,风筝挂在了树上,他先拉住风筝线,垂直于地面,发现风筝线多出1米;把风筝线沿直线BC向后拉5米,风筝线末端刚好接触地面,求风筝距离地面的高度AB.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).16.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1).如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE点B在DE上,OE的长即为消防车的高3m)17.如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?18.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B与监测点A所在的直线由东向西移动,已知点C为一海港,且点C与A,B两点的距离分别为300km、400km,且∠ACB=90°,过点C作CE⊥AB于点E,以台风中心为圆心,半径为260km的圆形区域内为受影响区域,台风的速度为25km/h.(1)求监测点A与监测点B之间的距离;(2)请判断海港C是否会受此次台风的影响,若受影响,则台风影响该海港多长时间?若不受影响,请说明理由.参考答案1.C2.B3.C4.B5.D6.A7.D8.B9.3010.411.3.7512.不能13.(4+6√5)m14.解:设AB=x米,则AC=(x+1)米由图可得,∠ABC=90°,BC=5米在Rt△ABC中AB2+BC2=AC2即x2+52=(x+1)2解得x=12答:风筝距离地面的高度AB为12米.15.解:如图设旗杆高度为x米,则AC=AD=x(m),AB=(x−2)(m)而BC=8m 在Rt△ABC中AB2+BC2=AC2,即(x−2)2+82=x2解得:x=17(m)即旗杆的高度为17m.16.解:在 Rt △ABO 中∵∠AOB =90° AB =15m ,OB =12−3=9 (m ) ∴AO =√AB 2−OB 2=√152−92=12 (m )在 Rt △COD 中∵∠COD =90°,CD =15m ,OD =15−3=12 (m ) ∴OC =√CD 2−OD 2=√152−122=9 (m )∴AC =OA −OC =3 (m )答:消防车从原处向着火的楼房靠近的距离 AC 为 3m .17.(1)解:∵AC=15km ,BC=20km ,AB=25km152+202=252∴△ACB 是直角三角形,∠ACB=90°∵12AC ×BC=12AB ×CD∴CD=AC ×BC ÷AB=12(km ).故修建的公路CD 的长是12km ;(2)解:在Rt △BDC 中,BD= √BC 2−CD 2=16(km )一辆货车从C 处经过D 点到B 处的路程=CD+BD=12+16=28(km ). 故一辆货车从C 处经过D 点到B 处的路程是28km .18.(1)解:在RtΔABC 中,AC =300km ,BC =400km ∴AB =√AC 2+BC 2=√3002+4002=500(km )答:监测点A 与监测点B 之间的距离为500km ;(2)解:海港C 受台风影响理由:∵∠ACB =90°,CE ⊥AB∴S ΔABC =12AC ⋅BC =12CE ⋅AB ∴300×400=500CE∴CE =240km∵以台风中心为圆心周围260km 以内为受影响区域∴海港C 会受到此次台风的影响以C 为圆心,260km 长为半径画弧,交AB 于D ,F则DE =EF =260km 时,正好影响C 港口在RtΔCDE 中∵ED =√CD 2−CE 2=√2602−2402=100(km )∴DF =200km∵台风的速度为25千米/小时∴200÷25=8(小时).答:台风影响该海港持续的时间为8小时.。

八年级数学上册 1.1 探索勾股定理同步练习3(含解析)北师大版(2021年整理)

八年级数学上册 1.1 探索勾股定理同步练习3(含解析)北师大版(2021年整理)

八年级数学上册1.1 探索勾股定理同步练习3(含解析)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册1.1 探索勾股定理同步练习3(含解析)(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册1.1 探索勾股定理同步练习3(含解析)(新版)北师大版的全部内容。

勾股定理一、选择题1。

在Rt △ABC中,∠C = 90°,AB = 10,AC = 6,则BC的长为( )A。

2 B.4 C。

8 D. 92.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).A.150cm2 B。

200cm2C.225cm2D.无法计算3。

(教材习题变式)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A。

13 B. 26C。

47 D。

94二、填空题4.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.5.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.6.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C 所走的路程为______.7.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.三、解答题8.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.9.以a、b为直角边,以c为斜边作两个全等的直角三角形,把这两个直角三角形拼成如图所示的图形,使A、E、B三点在一条直线上,连接CD,由此得到梯形ABCD,观察图形,验证:a2+b2=c210。

八年级数学上册第一章勾股定理3勾股定理的应用训练pdf含解析新版北师大版

八年级数学上册第一章勾股定理3勾股定理的应用训练pdf含解析新版北师大版

3 勾股定理的应用基础闯关全练 拓展训练1.(2013山东济南中考)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m.则旗杆的高度(滑轮上方的部分忽略不计)为( )A.12 mB.13 mC.16 mD.17 m2.如图所示,将长方形纸片ABCD(四个角都是直角)折叠,使点D 落在BC 边上的点F 处,已知AB=DC=8 cm,AD=BC=10 cm,求EC 的长.能力提升全练 拓展训练1.如图所示,有一张直角三角形纸片ABC,已知AC=5 cm,BC=10 cm,将纸片折叠,使点B 与点A 重合,折痕为DE,则CD 的长为( ) A. cmB. cmC. cmD. cm2521522541542.如图,要在河边(直线l)修建一个水泵站,分别向张村(点A)和李庄(点B)送水.已知张村、李庄到河边的距离分别为2千米和7千米,且CD=12千米.(1)水泵站应修建在什么地方,可使所用的水管最短?请你在图中设计出水泵站的位置; (2)如果铺设水管的工程费用为每千米1 500元,请求出铺设水管的最少费用.三年模拟全练 拓展训练 (2016江苏盐城一中期末,21,★☆☆)如图,在B 港有甲、乙两艘渔船同时航行,若甲船沿北偏东60°方向以8海里/小时的速度前进,乙船沿南偏东某方向以15海里/小时的速度前进,2小时后甲船到达M 岛,乙船到达P 岛,两岛相距34海里,你知道乙船沿哪个方向航行吗?五年中考全练 拓展训练1.(2017四川宜宾中考,7,★★☆)如图,在长方形ABCD 中,BC=8,CD=6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上F 处,则DE 的长是( )A.3B.C.5D.24589162.(2017山东淄博中考,12,★★☆)如图,在Rt△AB 中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB 的平分线相交于点E,过点E 作EF∥BC 交AC 于点F,则EF 的长为( )A. B.C. D.5283103154核心素养全练 拓展训练 如图,圆柱底面半径为2 cm,高为9π cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A沿着圆柱侧面绕3圈到B,则棉线最短为 cm.3勾股定理的应用基础闯关全练拓展训练1.答案D如图所示,作BC⊥AE于点C,则BC=DE=8 m,设AE=x m,则AB=x m,AC=(x-2)m,在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.所以旗杆的高度为17 m.2.解析设EC的长为x cm,则DE=(8-x)cm.∵△ADE折叠后的图形是△AFE,∴AD=AF,DE=EF=(8-x)cm.∵AD=10 cm,∴AF=10 cm.又∵AB=8 cm,AB2+BF2=AF2,∴82+BF2=102,∴BF=6 cm.∵BC=10cm,∴FC=BC-BF=10-6=4(cm).在Rt△EFC中,根据勾股定理,得FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=48,解得x=3.故EC的长为3 cm.能力提升全练拓展训练1.答案D由题意知DE所在直线为线段AB的垂直平分线,所以AD=BD.设CD=x cm,则.故选D.AD=BD=(10-x)cm.在Rt△ACD中,由勾股定理,得x2+52=(10-x)2,所以x=1542.解析(1)如图,作点A关于直线l的对称点A',连接A'B交l于点P,则点P即为水泵站的位置,此时,PA+PB最小,即所铺设的水管最短.(2)如图,过点A'作l的平行线与BD的延长线相交于点B',则∠B'=90°.由题意知AC=A'C=B'D=2千米,A'B'=CD=12千米,BD=7千米.在Rt△A'B'B中,BB'=7+2=9(千米),根据勾股定理,得BA'2=A'B'2+BB'2=122+92=225,故BA'=15千米.因为PA=PA',所以(PA+PB)min=BA'=15千米.此时,铺设水管的费用为1 500×15=22 500(元).所以铺设水管的最少费用为22 500元.三年模拟全练拓展训练解析由题意知BM=8×2=16(海里),BP=15×2=30(海里),在△BMP中,BM2+BP2=256+900=1 156,PM2=342=1 156,∴△BMP是直角三角形,∠MBP=90°,∴∠ABP=180°-90°-60°=30°.故乙船沿南偏东30°方向航行.五年中考全练拓展训练1.答案C∵四边形ABCD是长方形,∴AB=CD=6,AD=BC=8.由勾股定理得BD2=BC2+CD2=100,∴BD=10.由折叠可知,BF=AB=6,AE=EF,∴DF=4.在Rt△DEF中,∵EF2+DF2=DE2,∴(8-DE)2+42=DE2,解得DE=5.故选C.2.答案C如图,过点E分别作ED⊥AB,EM⊥BC,EN⊥AC,垂足分别为D,M,N,∵∠BAC,∠ACB的平分线相交于点E,∴ED=EM=EN.在Rt△ABC中,由勾股定理得AC=10.设ED=EM=EN=x,易知AN=AD=6-x,CN=CM=8-x.又6-x+8-x=10,∴x=2.∵EF∥BC,∴∠FEC=∠ECB,∵∠FCE=∠ECB,∴∠FEC=∠FCE.∴EF=CF.在Rt△EFN中,NF=CN-CF=8-2-CF=6-EF..∴EF2-(6-EF)2=22,解得x=103核心素养全练拓展训练答案15π解析圆柱的侧面展开图如图所示,用一棉线从A沿着圆柱侧面绕3圈到B的最短路线是AC→C'D'→DB,即在圆柱的侧面展开图(长方形)中,将长方形平均分成3个小长方形,沿着3个小长方形的对角线到B的路线最短.∵圆柱底面半径为2 cm,∴小长方形的一条边长即是圆柱的底面周长:2π×2=4π(cm).∵圆柱高为9π cm,∴小长方形的另一条边长是3π cm.根据勾股定理求得AC=5π cm,则C'D'=DB=5π cm,∴AC+C'D'+DB=15π(cm).。

2022-2023学年北师大版八年级数学上册《1-3勾股定理的应用》解答专题训练(附答案)

2022-2023学年北师大版八年级数学上册《1-3勾股定理的应用》解答专题训练(附答案)

2022-2023学年北师大版八年级数学上册《1.3勾股定理的应用》解答专题训练(附答案)1.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船同时以12海里/时的速度向北偏西某一角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?2.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B′离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB 的长.3.如图,一根2.5米长的竹竿AB斜靠在竖直的墙AC上,这时B到墙底端为0.7米,如果竹竿的底端沿地面向外滑动0.8米,那么点A将向下移动多少米?4.如图,圆柱形无盖玻璃容器,高18cm,底面圆的直径为cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.(结果保留根号)5.交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路l上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路l上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO =60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)7.如图,长方体底面是长为2cm宽为1cm的长方形,其高为8cm.(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少?(2)如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要多少?8.如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON 方向以72千米/时的速度行驶时,A处受噪音影响的时间为多少?10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)若每平方米草皮需要200元,问要多少投入?(2)若BE⊥DC,垂足为E,求BE的长.11.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?12.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD ⊥BC于点D,求AD的长.13.2017年9月3日21时30分,台风“玛娃”在广东汕尾陆丰市登陆,给人们的生活环境造成极大的破坏.台风“玛娃”将一棵竖直9米高的参天古树吹折(如图),事后测得树尖距树底6米远,求断裂处距树底的高度.14.某工厂的大门如图所示,其中下部分是矩形,上部分是一个半圆,一辆装满货物的卡车要通过此门.已知卡车高为2.5m,车宽为1.6m,你认为卡车能通过工厂的大门吗?请说明理由.15.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?16.如图是一个三级台阶,每一级的长,宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,若一只壁虎从A点出发沿着台阶面爬到B点.(1)画出从点A到点B的台阶侧面展开图;(2)求壁虎爬行的最短路线的长.17.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?18.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)19.如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.20.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?参考答案1.解:由题意可知,OA=16×1.5=24(海里),OB=12×1.5=18(海里),AB=30海里,∵242+182=302,即OA2+OB2=AB2,∴△OAB是直角三角形,∵∠AOD=40°,∴∠BOD=90°﹣40°=50°,即另一艘轮船的航行的方向是北偏西50度.2.解:设AB=AB′=xm,由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△AEB中,∵AE2+BE2=AB2,∴(x﹣0.8)2+2.42=x2解得:x=4,答:秋千AB的长为4m.3.解:由题意得,AB=A1B1=2.5m,BC=0.7m,B1C=1.5m,在Rt△ABC中,AC==2.4(m),在Rt△A1B1C中,A1C==2(m),则顶端下移的距离=2.4﹣2=0.4(m),答:点A将向下移动0.4米.4.解:画圆柱的展开图,如图所示:过C作CM⊥DE于M,由题意得:BC=DF=1,DE=AB=18,∴FM=DE﹣DF﹣ME=18﹣1﹣1=16,CM=π××=10,由勾股定理得:CF===2,答:急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度为2cm.5.解:此车超速,理由:∵∠POB=90°,∠PBO=45°,∴△POB是等腰直角三角形,∴OB=OP=100米,∵∠APO=60°,∴OA=OP=100≈173米,∴AB=OA﹣OB=73米,∴≈24米/秒≈86千米/小时>80千米/小时,∴此车超速.6.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.7.解:(1)将长方体的四个侧面展开如图,连接A、B,根据两点之间线段最短,AB=cm;(2)如果从点A开始经过4个侧面缠绕2圈到达点B,相当于直角三角形的两条直角边分别是12和8,根据勾股定理可知所用细线最短需要4cm.答:(1)所用细线最短需要10cm.(2)所用细线最短需要4cm.8.解:设旗杆高为x m,那么绳长为(x+0.8)m,由勾股定理得x2+42=(x+0.8)2,解得x=9.6.答:旗杆的高度为9.6 m.9.解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.答:A处受噪音影响的时间为16秒.10.(1)解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,即∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).(2)作BE⊥CD,垂足为E,在Rt△DBC中,由于BD•BC=CD•BE,即BE==.11.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.12.解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.13.解:设断裂处距树底的高度为x米,则树尖距吹折处为(9﹣x)米,由勾股定理得:x2+62=(9﹣x)2,解得:x=.故断裂处距树底的高度是米.14.解:能通过,理由如下:设点O为半圆的圆心,则O为AB的中点,OG为半圆的半径,如图,∵直径AB=2(已知),∴半径OG=1,OF=1.6÷2=0.8,∴在Rt△OFG中,FG2=OG2﹣OF2=12﹣0.82=0.36;∴FG=0.6∴EG=0.6+2.3=2.9>2.5.∴能通过.15.解:(1)该城市会受到这次台风的影响.理由是:如图,过A作AD⊥BC于D.在Rt△ABD中,∵∠ABD=30°,AB=240,∴AD=AB=120,∵城市受到的风力超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200.∵120<200,∴该城市会受到这次台风的影响.(2)如图以A为圆心,200为半径作⊙A交BC于E、F.则AE=AF=200.∴台风影响该市持续的路程为:EF=2DE=2=320.∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).16.解:(1)将台阶展开,如图;(2)因为BC=30×3+10×3=120,AC=50,所以AB2=AC2+BC2=16900,所以AB=130(cm),所以壁虎爬行的最短线路为130cm.17.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.18.解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB==12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD===(米),∴BD=AB﹣AD=12﹣(米),答:船向岸边移动了(12﹣)米.19.解:如图所示:过点A作AC⊥CB于C,则在Rt△ABC中,AC=40+40=80(米),BC=70﹣20+10=60(米),故终止点与原出发点的距离AB==100(米),答:终止点B与原出发点A的距离AB为100m.20.解:(1)由题意得:该长方体中能放入木棒的最大长度是:(cm).(2)分三种情况可得:AG=cm>AG=cm>AG=cm,所以最短路程为cm;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==13(Cm).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的应用
一、选择题
1.已知直角三角形的周长为,斜边为2,则该三角形的面积是( ).62+
A. B. C. D.1
41
43
212.若等腰三角形两边长分别为4和6,则底边上的高等于( ).A. B.或 C. D.或774124247
二、填空题
3.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.
4.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高
BE =______.
5.在△ABC 中,若AC =BC ,∠A CB =90°,AB =10,则AC =______,AB 边上的高
CD =______.
6.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.
7.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则
AC =______,AB =______,BC 边上的高AE =______.
三、解答题
8.如图,在Rt△ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =求AB 102的长.
9.在数轴上画出表示及的点.
10-1310.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.
11.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.
12.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC 的长.
13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且
DE⊥DF.求证:AE2+BF2=EF2.
14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线
l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?
15.如图,C 为线段BD 上一动点,分别过点B ,D 作AB 丄BD ,ED 丄BD ,连接AC,EC.已知AB = 5,DE=1,BD=8,设CD=x.
(1)用含x 的代数式表示AC+CE 的长;
(2)请问点C 满足什么条件时,AC+CE 的值最小?
(3)根据(2)的最小值.
16.勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.定理表述
请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).
尝试证明
以图(1)中的直角三角形为基础,可以构造出以a,b 为底,以a+b 为髙的直角梯形(如图(2)),请你利用图(2)验证勾股定理.知识拓展
利用图(2)中的直角梯形,我们可以证明,其证明步骤如下:
a b c +<
∵BC=a+b,AD=,
又∵在直角梯形ABCD 中,有BC AD (填大小关系),即 ,
∴a b c +<
参考答案
1.C .
2.D
3. ;3434
15,344.16,19.2.
5.5,5.
26..4
32a 7.6,,.
36338. 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.132.
1324422=+k m 9.图略.
,3213,31102222+=+=10.BD =5.提示:设BD =x ,则CD =30-x .在Rt△ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.
11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt△ABE 中,
AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.
12.EC =3cm .提示:设EC =x ,则
DE =EF =8-x ,AF =AD =10,BF =,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得622=-AB AF x =3.
13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .
14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则
.
172,34=∴=AC AB 15.思想建立(1)要求AC +CE 的长,只需分别在Rt△ABC 和Rt△CDE 中利用勾股定理求出AC,CE 的长即可;(2)要使AC +CE 的值最小,就须满足AC,CE 在同一条直线上;(3)根据题意,先画出满足题意的图形,再根据勾股定理求解即可.
解.
(2)当A,C,E 三点共线时,AC +CE 的值最小.
(3)如图所示,作BD =12,过点B 作AB⊥BD,过点D 作ED⊥BD,使AB =2,ED =3,连接AE 交BD 于
点C,设BC =x,则AE 的最小值,
过点A 作AF∥BD 交ED 的延长线于点F,得长方形ABDF,则
AB =DF =2,AF =BD =12,EF =ED +DF =3+2=5,所以,即13AE ==
的最小值为13.
16.思想建立重要验证勾股定理,就是要证明a 2+b 2=c 2.利用面积关系:S 梯形ABCD =S Rt △ABE +S R t△DEC +S Rt △AED 即可证明a 2+b 2=C 2.
解:[定理表述]如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.
[尝试证明]∵RtΔABE≌RtΔECD,∴∠AEB=∠EDC.
又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,
∴∠AED=90°.
∵S 棒形ABCD =S RtΔABE +S RtΔDEC +S RtΔAED ,
∴(a+b )(a+b )=ab+ab+c 2,12121212
整理,得a 2+b 2=c 2.。

相关文档
最新文档